51
|
Wang Y, Zhang F, Liu Y, Yin S, Pang X, Li Z, Wei Z. Nebivolol alleviates aortic remodeling through eNOS upregulation and inhibition of oxidative stress in l-NAME-induced hypertensive rats. Clin Exp Hypertens 2017. [DOI: 10.1080/10641963.2017.1306539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Wang
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Fei Zhang
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Yu Liu
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Sha Yin
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Xuefen Pang
- Department of Physiology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Zhidong Li
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Zehui Wei
- Department of Pharmacology, ShanXi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| |
Collapse
|
52
|
Harvey AP, Montezano AC, Hood KY, Lopes RA, Rios F, Ceravolo G, Graham D, Touyz RM. Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sci 2017; 179:110-119. [PMID: 28478264 PMCID: PMC5446265 DOI: 10.1016/j.lfs.2017.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Abstract
AIMS We questioned whether aldosterone and oxidative stress play a role in vascular damage in severe hypertension and investigated the role of Nox1 in this process. MATERIALS AND METHODS We studied mesenteric arteries, aortas and vascular smooth muscle cells (VSMC) from WKY and SHRSP rats. Vascular effects of eplerenone or canrenoic acid (CA) (mineralocorticoid receptor (MR) blockers), ML171 (Nox1 inhibitor) and EHT1864 (Rac1/2 inhibitor) were assessed. Nox1-knockout mice were also studied. Vessels and VSMCs were probed for Noxs, reactive oxygen species (ROS) and pro-fibrotic/inflammatory signaling. KEY FINDINGS Blood pressure and plasma levels of aldosterone and galectin-3 were increased in SHRSP versus WKY. Acetylcholine-induced vasorelaxation was decreased (61% vs 115%) and phenylephrine-induced contraction increased in SHRSP versus WKY (Emax 132.8% vs 96.9%, p<0.05). Eplerenone, ML171 and EHT1864 attenuated hypercontractility in SHRSP. Vascular expression of collagen, fibronectin, TGFβ, MCP-1, RANTES, MMP2, MMP9 and p66Shc was increased in SHRSP versus WKY. These changes were associated with increased ROS generation, 3-nitrotyrosine expression and Nox1 upregulation. Activation of vascular p66Shc and increased expression of Nox1 and collagen I were prevented by CA in SHRSP. Nox1 expression was increased in aldosterone-stimulated WKY VSMCs, an effect that was amplified in SHRSP VSMCs (5.2vs9.9 fold-increase). ML171 prevented aldosterone-induced VSMC Nox1-ROS production. Aldosterone increased vascular expression of fibronectin and PAI-1 in wild-type mice but not in Nox1-knockout mice. SIGNIFICANCE Our findings suggest that aldosterone, which is increased in SHRSP, induces vascular damage through MR-Nox1-p66Shc-mediated processes that modulate pro-fibrotic and pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Katie Y Hood
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rheure A Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Graziela Ceravolo
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
53
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
54
|
Prieto-Bermejo R, Hernández-Hernández A. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Antioxidants (Basel) 2017; 6:antiox6020032. [PMID: 28505091 PMCID: PMC5488012 DOI: 10.3390/antiox6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells have to cope with the constant generation of reactive oxygen species (ROS). Although the excessive production of ROS might be deleterious for cell biology, there is a plethora of evidence showing that moderate levels of ROS are important for the control of cell signaling and gene expression. The family of the nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases or Nox) has evolved to produce ROS in response to different signals; therefore, they fulfil a central role in the control of redox signaling. The role of NADPH oxidases in vascular physiology has been a field of intense study over the last two decades. In this review we will briefly analyze how ROS can regulate signaling and gene expression. We will address the implication of NADPH oxidases and redox signaling in angiogenesis, and finally, the therapeutic possibilities derived from this knowledge will be discussed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
55
|
Barančík M, Grešová L, Barteková M, Dovinová I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res 2017; 65 Suppl 1:S1-S10. [PMID: 27643930 DOI: 10.33549/physiolres.933403] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oxidative stress plays an important role in the development of cardiovascular diseases (CVD). In CVD progression an aberrant redox regulation was observed. In this regulation levels of reactive oxygen species (ROS) play an important role in cellular signaling, where Nrf2 is the key regulator of redox homeostasis. Keap1-Nrf2-ARE system regulates a great set of detoxificant and antioxidant enzymes in cells after ROS and electrophiles exposure. In this review we focus on radical-generating systems in cardiovascular system as well as on Nrf2 as a target against oxidative stress and a key player of redox regulation in cardiovascular diseases. We also summarize the current knowledge about the role of Nrf2 in pathophysiology of several CVD (hypertension, cardiac hypertrophy, cardiomyopathies) as well as in cardioprotection against myocardial ischemia/ reperfusion injury.
Collapse
Affiliation(s)
- M Barančík
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
56
|
Abais-Battad JM, Dasinger JH, Fehrenbach DJ, Mattson DL. Novel adaptive and innate immunity targets in hypertension. Pharmacol Res 2017; 120:109-115. [PMID: 28336371 DOI: 10.1016/j.phrs.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy.
Collapse
Affiliation(s)
| | | | | | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, United States
| |
Collapse
|
57
|
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120:713-735. [DOI: 10.1161/circresaha.116.309326] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Major reactive oxygen species (ROS)–producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Collapse
Affiliation(s)
- Ulrich Förstermann
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Ning Xia
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Huige Li
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| |
Collapse
|
58
|
Stroot PG. Blood oxidative stress (BLOS) is a secondary host defense system responding normally to anaerobic wound infection and inadvertently to dietary ultra-exogenous sulfide formation (USF). Med Hypotheses 2016; 98:28-34. [PMID: 28012599 DOI: 10.1016/j.mehy.2016.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Blood oxidative stress (BLOS) is the presence of white blood cells and platelets that are generating high levels of reactive oxygen species (ROS). A mathematical model links the level of BLOS or BLOS# and plasma sulfide concentration. An increase in the BLOS# reduces the plasma sulfide concentration. The reported maximum plasma sulfide concentration for defined health conditions were used to calculate the minimum BLOS#. Elevated BLOS generates high plasma concentration of ROS, which triggers multiple responses in the body that protect the host. First, insulin production by the pancreas is inhibited, which results in elevated blood glucose levels. This results in advanced glycation end products (AGE), which thicken the blood vessel wall. Elevated blood glucose levels also increases urination, which reduces the availability of substrates for infectious bacteria. Second, one or more signaling molecules are stimulated to produce vascular hypertrophy resulting in hypertension. Third, the initial stage of atherosclerosis thickens the blood vessel wall while also protecting the inner surface of the blood vessels from localized infection. The first three mechanisms provide added protection against pathogen migration through the blood vessel wall and reduce the cross-sectional area of blood vessels, which increases the retention time (RT) for improved ROS inactivation of pathogens. Fourth, genes expressed in the liver, which are associated with drug oxidation and uptake transport, are inhibited. This inhibition protects the host from any toxins produced by an anaerobic infection. Elevated BLOS also reduces plasma sulfide concentration, which inhibits wound healing and extends aerobic conditions of the wound. The normal induction of BLOS offers a short-term, cascade of several primary mechanisms for secondary defense against anaerobic infection of a wound. Normal induction of BLOS is due to ultra-exogenous sulfide formation (USF) generated by a local anaerobic infection of a wound in the natural environment. The presence of BLOS without infection is indicative of inadvertent dietary induction. Long-term dietary BLOS results in many severe inflammatory diseases and cancers that are common in an ageing population. Glands were identified as more susceptible to cancers caused by long-term dietary BLOS. Variable BLOS levels in patients of clinical trials may also be reducing effectiveness of experimental drugs and causing drug toxicity. If BLOS is confirmed as a secondary defense against infection that is inadvertently triggered by diet, then a large number of common health problems may be treated and managed by apheresis and dietary changes.
Collapse
|
59
|
Callera GE, Antunes TT, He Y, Montezano AC, Yogi A, Savoia C, Touyz RM. c-Src Inhibition Improves Cardiovascular Function but not Remodeling or Fibrosis in Angiotensin II–Induced Hypertension. Hypertension 2016; 68:1179-1190. [DOI: 10.1161/hypertensionaha.116.07699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II–induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II–infused (400 ng/kg/min) mice in which c-Src was partially deleted (
c-Src
+/−
) and in wild-type (WT,
c-Src
+/+
) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in
c-Src
+/−
and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and
c-Src
+/−
mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II–infused WT mice was normalized in
c-Src
+/−
mice. Increased oxidative stress (plasma thiobarbituric acid–reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II–infused WT mice was attenuated in c-Src–deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal–regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and
c-Src
+/−
mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in
c-Src
+/−
and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II–dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling.
Collapse
Affiliation(s)
- Glaucia E. Callera
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Tayze T. Antunes
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Ying He
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Augusto C. Montezano
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Alvaro Yogi
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Carmine Savoia
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| | - Rhian M. Touyz
- From the Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada (G.E.C., T.T.A., Y.H., A.C.M., A.Y., R.M.T.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (A.C.M., R.M.T.); and Clinical and Molecular Medicine Department, Cardiology Unit, Sapienza University of Rome, Rome, Italy (C.S.)
| |
Collapse
|
60
|
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114:110-120. [PMID: 27773825 DOI: 10.1016/j.phrs.2016.10.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are key signaling molecules that regulate vascular function and structure in physiological conditions. A misbalance between the production and detoxification of ROS increases oxidative stress that is involved in the vascular remodeling associated with cardiovascular diseases such as hypertension by affecting inflammation, hypertrophy, migration, growth/apoptosis and extracellular matrix protein turnover. The major and more specific source of ROS in the cardiovascular system is the NADPH oxidase (NOX) family of enzymes composed of seven members (NOX1-5, DUOX 1/2). Vascular cells express several NOXs being NOX-1 and NOX-4 the most abundant NOXs present in vascular smooth muscle cells. This review focuses on specific aspects of NOX-1 and NOX-4 isoforms including information on regulation, function and their role in vascular remodeling. In order to obtain a more integrated view about the role of the different NOX isoforms in different types of vascular remodeling, we discuss the available literature not only on hypertension but also in atherosclerosis, restenosis and aortic dilation.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Andrea Aguado
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| |
Collapse
|
61
|
Deng Y, Zhang Q, Luo H, Chen X, Han Q, Wang F, Huang P, Lai W, Guan X, Pan X, Ji Y, Guo W, Che L, Tang Y, Gu L, Yu J, Namaka M, Deng Y, Li X. Sustained elevation of NF-κB activity sensitizes offspring of maternal inflammation to hypertension via impairing PGC-1α recovery. Sci Rep 2016; 6:32642. [PMID: 27616627 PMCID: PMC5018852 DOI: 10.1038/srep32642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has demonstrated that maternal detrimental factors, including inflammation, contribute to the development of hypertension in the offspring. The current study found that offspring subjected to prenatal exposure of inflammation by lipopolysaccharide (LPS) challenge during the second semester showed significantly increased systolic blood pressure. In addition, these offspring also displayed augmented vascular damage and reactive oxygen species (ROS) levels in thoracic aortas when challenged with deoxycorticosterone acetate and high-salt diet (DOCA-salt). Interestingly, the antioxidant N-acetyl-L-cysteine markedly reversed these changes. Mechanistically, prenatal LPS exposure led to pre-existing elevated peroxisome proliferators-activated receptor-γ co-activator (PGC)-1α, a critical master of ROS metabolism, which up-regulated the ROS defense capacity and maintained the balance of ROS generation and elimination under resting state. However, continued elevation of NF-κB activity significantly suppressed the rapid recovery of PGC-1α expression response to DOCA-salt challenge in offspring that underwent prenatal inflammatory stimulation. This was further confirmed by using a NF-κB inhibitor (N-p-Tosyl-L-phenylalanine chloromethyl ketone) that restored PGC-1α recovery and prevented blood pressure elevation induced by DOCA-salt. Our results suggest that maternal inflammation programmed proneness to NF-κB over-activation which impaired PGC-1α-mediated anti-oxidant capacity resulting in the increased sensitivity of offspring to hypertensive damage.
Collapse
Affiliation(s)
- Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qi Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xianhua Chen
- Diagosis and Treatment Center for Servicemen, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qi Han
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wei Guo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ling Che
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liangqi Gu
- The Center for Disease Control and Prevention of Chengdu Military Command, Chengdu, China
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael Namaka
- Colleges of Pharmacy and Medicine, University of Manitoba, Winnipeg, MB, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine University of Manitoba, Shantou, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
62
|
Kumar N, Maurya PK, Kant R, Rizvi SI. (-)-Epicatechin in vitro ameliorates erythrocyte protein carbonyl content in hypertensive patients: comparison with L-ascorbic acid. Arch Physiol Biochem 2016; 122:155-60. [PMID: 26939969 DOI: 10.3109/13813455.2016.1159699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT Oxidative stress plays a key role in the patho-physiology of hypertension. (-)-Epicatechin has many important biological properties. OBJECTIVE The present study was undertaken to evaluate effect of (-)-epicatechin on protein carbonyl content in gender-based hypertensive patients and normal subjects. METHODS The study was carried out on 83 normal (male: 42; female: 41) and 62 hypertensive subjects (male: 32; female: 30). In vitro effect on (-)-epicatechin and L-ascorbic acid was estimated on protein carbonyl content. RESULTS Result showed a significant (p < 0.001) increase in protein carbonyl content in hypertensive patients but no gender-based difference was observed. (-)-epicatechin shows significant (p < 0.001) dose-dependent effect as compared to L-ascorbic acid, which is manifested as decrease in protein carbonyl content. CONCLUSION We hypothesizes that a higher intake of (-)-epicatechin may provide protection against hypertension in males and females.
Collapse
Affiliation(s)
- Navneet Kumar
- a School of Medicine, College of Medicine and Health Sciences, Wollo University , Dessie , Ethiopia
- b Department of Biochemistry , University of Allahabad , Allahabad , Uttar Pradesh , India
| | - Pawan Kumar Maurya
- c Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Federal University of São Paulo , São Paulo , Brazil
- d Amity Institute of Biotechnology, Amity University , Noida , Uttar Pradesh , India , and
| | - Ruchi Kant
- e Department of Chemistry , College of Natural Science, Wollo University , Dessie , Ethiopia
| | - Syed Ibrahim Rizvi
- b Department of Biochemistry , University of Allahabad , Allahabad , Uttar Pradesh , India
| |
Collapse
|
63
|
Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul Pharmacol 2016; 82:41-50. [PMID: 26903240 DOI: 10.1016/j.vph.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Hypertension is a predominant risk factor for cardiovascular diseases and a major health care burden. Accumulating epidemiological and experimental evidence suggest that adult-onset hypertension may have its origins during early development. Upon exposure to glucocorticoids, the fetus develops hypertension, and the offspring may be programmed to continue the hypertensive trajectory into adulthood. Elevated oxidative stress and deranged nitric oxide system are not only hallmarks of adult hypertension but are also observed earlier in life. Endothelial dysfunction and remodeling of the vasculature, which are robustly associated with increased incidence of hypertension, are likely to have been pre-programmed during fetal life. Apparently, genomic, non-genomic, and epigenomic factors play a significant role in the development of hypertension, including glucocorticoid-driven effects on blood pressure. In this review, we discuss the involvement of the aforementioned participants in the pathophysiology of hypertension and suggest therapeutic opportunities for targeting epigenome modifiers, potentially for personalized medicine.
Collapse
|
64
|
Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:511-540. [DOI: 10.1007/5584_2016_90] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|