51
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
52
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
53
|
Freguia CF, Pascual DW, Fanger GR. Sjögren's Syndrome Treatments in the Microbiome Era. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230004. [PMID: 37323129 PMCID: PMC10270702 DOI: 10.20900/agmr20230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory cell infiltration of the salivary and lacrimal glands, resulting in acinar epithelial cell atrophy, cell death, and loss of exocrine function. At least half of SS patients develop extraglandular inflammatory disease and have a wide range of systemic clinical manifestations that can affect any organ system, including connective tissues. As many as 3.1 million people in the U.S. suffer from SS, a disease that causes severe impairment. Women are nine times more likely than men to be affected by this condition. Unfortunately, there is currently no effective treatment for SS, and the available options only provide partial relief. Treatment involves using replacement therapies such as artificial saliva and eye lubricants, or immunosuppressive agents that have limited efficacy. The medical community recognizes that there is a significant need for more effective treatments for SS. Increasing evidence demonstrates the links between the dysfunction of the human microbial community and the onset and development of many human diseases, signifying the potential use of microorganisms as an alternative strategy to conquer these issues. The role of the microbiome in controlling immune function of the human host in the context of autoimmune diseases like SS is now becoming better understood and may help to enable new drug development strategies. Natural probiotics and synthetic biology applications hold promise for novel treatment approaches to solve the encryption of many complex and multifactorial immune disorders, like SS.
Collapse
Affiliation(s)
| | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Gary R. Fanger
- Rise Therapeutics, 1405 Research Blvd., Rockville, MD 20850, USA
| |
Collapse
|
54
|
Thompson SC, Ford AL, Moothedan EJ, Stafford LS, Garrett TJ, Dahl WJ, Conesa A, Gonzalez CF, Lorca GL. Identification of food and nutrient components as predictors of Lactobacillus colonization. Front Nutr 2023; 10:1118679. [PMID: 37153913 PMCID: PMC10160632 DOI: 10.3389/fnut.2023.1118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
A previous double-blind, randomized clinical trial of 42 healthy individuals conducted with Lactobacillus johnsonii N6.2 found that the probiotic's mechanistic tryptophan pathway was significantly modified when the data was stratified based on the individuals' lactic acid bacteria (LAB) stool content. These results suggest that confounding factors such as dietary intake which impact stool LAB content may affect the response to the probiotic treatment. Using dietary intake, serum metabolite, and stool LAB colony forming unit (CFU) data from a previous clinical trial, the relationships between diet, metabolic response, and fecal LAB were assessed. The diets of subject groups with high vs. low CFUs of LAB/g of wet stool differed in their intakes of monounsaturated fatty acids, vegetables, proteins, and dairy. Individuals with high LAB consumed greater amounts of cheese, fermented meats, soy, nuts and seeds, alcoholic beverages, and oils whereas individuals with low LAB consumed higher amounts of tomatoes, starchy vegetables, and poultry. Several dietary variables correlated with LAB counts; positive correlations were determined for nuts and seeds, fish high in N-3 fatty acids, soy, and processed meats, and negative correlations to consumption of vegetables including tomatoes. Using machine learning, predictors of LAB count included cheese, nuts and seeds, fish high in N-3 fatty acids, and erucic acid. Erucic acid alone accurately predicted LAB categorization, and was shown to be utilized as a sole fatty acid source by several Lactobacillus species regardless of their mode of fermentation. Several metabolites were significantly upregulated in each group based on LAB titers, notably polypropylene glycol, caproic acid, pyrazine, and chondroitin sulfate; however, none were correlated with the dietary intake variables. These findings suggest that dietary variables may drive the presence of LAB in the human gastrointestinal tract and potentially impact response to probiotic interventions.
Collapse
Affiliation(s)
- Sharon C. Thompson
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Amanda L. Ford
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Elijah J. Moothedan
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Lauren S. Stafford
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wendy J. Dahl
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ana Conesa
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Institute for Integrative Systems Biology, Spanish National Research CouncilValencia, Spain
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
55
|
Wong MCS, Zhang L, Ching JYL, Mak JWY, Huang J, Wang S, Mok CKP, Wong A, Chiu OL, Fung YT, Cheong PK, Tun HM, Ng SC, Chan FKL. Effects of Gut Microbiome Modulation on Reducing Adverse Health Outcomes among Elderly and Diabetes Patients during the COVID-19 Pandemic: A Randomised, Double-Blind, Placebo-Controlled Trial (IMPACT Study). Nutrients 2023; 15:1982. [PMID: 37111201 PMCID: PMC10143994 DOI: 10.3390/nu15081982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota is believed to be a major determinant of health outcomes. We hypothesised that a novel oral microbiome formula (SIM01) can reduce the risk of adverse health outcomes in at-risk subjects during the coronavirus disease 2019 (COVID-19) pandemic. In this single-centre, double-blind, randomised, placebo-controlled trial, we recruited subjects aged ≥65 years or with type two diabetes mellitus. Eligible subjects were randomised in a 1:1 ratio to receive three months of SIM01 or placebo (vitamin C) within one week of the first COVID-19 vaccine dose. Both the researchers and participants were blinded to the groups allocated. The rate of adverse health outcomes was significantly lower in the SIM01 group than the placebo at one month (6 [2.9%] vs. 25 [12.6], p < 0.001) and three months (0 vs. 5 [3.1%], p = 0.025). At three months, more subjects who received SIM01 than the placebo reported better sleep quality (53 [41.4%] vs. 22 [19.3%], p < 0.001), improved skin condition (18 [14.1%] vs. 8 [7.0%], p = 0.043), and better mood (27 [21.2%] vs. 13 [11.4%], p = 0.043). Subjects who received SIM01 showed a significant increase in beneficial Bifidobacteria and butyrate-producing bacteria in faecal samples and strengthened the microbial ecology network. SIM01 reduced adverse health outcomes and restored gut dysbiosis in elderly and diabetes patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin C. S. Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y. L. Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce W. Y. Mak
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angie Wong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oi-Lee Chiu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Ting Fung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui-Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein-Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
56
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
57
|
Nagle S, Kumar P, kakde N. A Comparative Study to Assess the Add on Effects of Probiotic in Allergic Rhinitis Patients in a Tertiary Care Hospital. Indian J Otolaryngol Head Neck Surg 2023; 75:934-940. [PMID: 37206758 PMCID: PMC10188735 DOI: 10.1007/s12070-023-03481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
Probiotic intervention may have a promising role in the prevention of AR, in preventing allergic diseases including AR. Probiotics can exert beneficial effects on the host through distinct cellular and molecular pathways, these mechanisms of action may vary from one kind of probiotic to another for the same immune response and may be regulated by a combination of several events. Material and methods- Research site-Tertiary Care Government Hospital and Medical College in a major metropolitan city.TYPE OF STUDY-Prospective comparative Study.No. of Subjects -100 cases.Study Duration-Duration for collection of data-24 months.Sample size -100 patientsData Collection:Was collected from data of case proforma of all patients.Mode of Selection -Patients presenting in Out Patient Department (OPD)and In PatientDepartment(IPD) who meet the inclusion criteria and who consent to be a part of the study.Results-Significant difference was found in 12 weeks of treatment among group A and group B. Mild symptoms were seen more after 12 weeks in group B while severity of symptom reduction was less in group A as compared to group B in 12 weeks of treatment.Conclusion Probiotic intervention may have a promising role in the prevention of AR, in preventing allergic diseases including AR.Probiotics can exert beneficial effects on the host through distinct cellular and molecular pathways, these mechanisms of action may vary from one kind of probiotic to another for the same immune response and may be regulated by a combination of several events. Thus making probiotics' mechanism of action a challenging, complex, and fertile area for investigation. Probiotics appear to prevent allergy recurrences, alleviate the severity of symptoms and improve the quality of life of patients with allergic rhinitis.
Collapse
Affiliation(s)
- Smita Nagle
- Grant Government Medical College, Mumbai, 08 India
| | - Purnima Kumar
- Department of ENT, Grant Government Medical College, Mumbai, India
| | - Nilesh kakde
- Department of ENT, Grant Government Medical College, Mumbai, India
| |
Collapse
|
58
|
Almallah TM, Khedr SI, El Nouby KA, Younis SS, Elazeem MA, Elmehy DA. The synergetic potential of Lactobacillus delbrueckii and Lactobacillus fermentum probiotics in alleviating the outcome of acute toxoplasmosis in mice. Parasitol Res 2023; 122:927-937. [PMID: 36786888 PMCID: PMC10006249 DOI: 10.1007/s00436-023-07787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Toxoplasmosis is an immunologically complex disease, particularly in immunocompromised patients. Although there are several therapeutic regimens for such disease, the majority of them have many drawbacks. Therefore, it is of utmost importance to improve the current regimen in an effort to achieve a well-tolerated therapy while also enhancing the host immune response. Famous for their immunomodulatory effect, Lactobacillus delbrueckii and Lactobacillus fermentum probiotics were chosen to be evaluated in this study as an adjuvant therapy against the virulent RH Toxoplasma gondii (T. gondii) strain. Experimental mice were divided into control and treated groups. The control group was further subdivided into two groups: group I: 10 uninfected mice and group II: 20 infected untreated mice. The treated experimental group was subdivided into three groups (20 mice each); group III: sulfamethoxazole-trimethoprim (SMZ-TMP) treated, group IV: probiotics treated, and group V: SMZ-TMP combined with probiotics. The results obtained revealed that combined therapy increased survival rate and time up to 95% and 16 days, respectively, with an 82% reduction of tachyzoites and marked distortion, as detected by the scanning electron microscope (SEM). Additionally, combined therapy alleviated the severity and the extent of the inflammatory cells' infiltration, thereby reducing hepatocyte degeneration. Intriguingly, serum IF-γ level showed a significant increase to 155.92 ± 10.12 ng/L with combined therapy, reflecting the immunological role of the combined therapy. The current results revealed that probiotics have a high adjuvant potential in alleviating the impact of toxoplasmosis. Using probiotics as a synergistic treatment to modulate conventional therapy in systemic toxoplasmosis may gain popularity due to their low cost and current availability.
Collapse
Affiliation(s)
- Tasneem M Almallah
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Safaa I Khedr
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kholoud A El Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona A Elazeem
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia A Elmehy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
59
|
Piccioni A, Covino M, Candelli M, Ojetti V, Capacci A, Gasbarrini A, Franceschi F, Merra G. How Do Diet Patterns, Single Foods, Prebiotics and Probiotics Impact Gut Microbiota? MICROBIOLOGY RESEARCH 2023; 14:390-408. [DOI: 10.3390/microbiolres14010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic population of commensal bacterial species, which have coevolved with the host, generating a symbiotic relationship. Some compounds present in foods, such as polyols, prebiotic fibers, or phenolic compounds, are poorly metabolized and absorbed by the host before the transformation guided by the colonic microbiota. By influencing gut microbiota, diet plays a fundamental role in understanding the beneficial effects of the gut microbiota on the host, including its long-term metabolism. The idea that probiotics can act not only by influencing the colonizing microbiota opens the door to a wider range of probiotic possibilities, encouraging innovation in the field. Furthermore, it has been shown both that some probiotics increase phagocytosis or the activity of natural killer cells. Current prebiotics are mainly based on carbohydrates, but other substances, such as polyphenols and polyunsaturated fatty acids, could exert prebiotic effects. A prebiotic substance has been defined as ‘a substrate that is selectively used by host microorganisms that confer a health benefit’, and so can interact with the gut microbiota through competition for nutrients, antagonism, cross-feeding, and support for microbiota stability. Influencing its composition in terms of richness and diversity, food components have a key impact on the intestinal microbiota. Eating habits can strongly influence the composition of the intestinal microbiota. A healthy intestinal microbiota is essential for maintaining general health, and diet is one of the major modulators of this fascinating world of microorganisms. This must give us one more reason to adopt a healthy lifestyle.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Annunziata Capacci
- Department of Medical and Surgical Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Merra
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
| |
Collapse
|
60
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
61
|
Kiso M, Uraki R, Ito M, Yamayoshi S, Kotani Y, Imai M, Kohda N, Kawaoka Y. Oral intake of heat-killed Lactiplantibacillus pentosus ONRICb0240 partially protects mice against SARS-CoV-2 infection. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1137133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing coronavirus pandemic. Besides vaccines and antiviral drugs, probiotics have attracted attention for prevention of SARS-CoV-2 infection. Here, we examined the efficacy of heat-killed Lactiplantibacillus pentosus ONRICb0240 (b240) against SARS-CoV-2 infection in mice. We observed that oral intake of heat-killed b240 did not affect virus titers in the respiratory organs of SARS-CoV-2-infected mice, but did provide partial protection against SARS-CoV-2 infection. In addition, heat-killed b240 treatment suppressed the expression of IL-6, a key proinflammatory cytokine, on Day 2 post-infection. Our results highlight the promising protective role of heat-killed b240 and suggest a possible mechanism by which heat-killed b240 partially protects against SARS-CoV-2 infection by modulating host responses.
Collapse
|
62
|
Kandati K, Reddy AS, Nannepaga JS, Viswanath B. The Influence of Probiotics in Reducing Cisplatin-Induced Toxicity in Zebrafish (Danio rerio). Curr Microbiol 2023; 80:109. [PMID: 36808248 DOI: 10.1007/s00284-023-03203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
In this work, the effects of probiotic supplementation on cisplatin toxicity in zebrafish (Danio rerio) were examined. For this study, adult female zebrafish were given cisplatin (G2), the probiotic, Bacillus megaterium (G3), and cisplatin+B. megaterium (G4) for 30 days, in addition to the control (G1). In order to investigate changes in antioxidative enzymes, ROS production, and histological changes after treatment, the intestines and ovaries were excised. The levels of lipid peroxidation, glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were found to be significantly higher in the cisplatin group than in the control group in both the intestine and the ovaries. Administration of the probiotic and cisplatin effectively reversed this damage. Histopathological analyses showed that the cisplatin group had much more damage than the control group and that probiotic+cisplatin treatment significantly cured these damages. It opens the door to probiotics being combined with cancer-related drugs, which may be a more efficient approach for minimizing side effects. The underlying molecular mechanisms of probiotics must be further investigated.
Collapse
Affiliation(s)
- Kusuma Kandati
- Dr. Buddolla's Institute of Life Sciences, Tirupati, 517503, India.,Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, 517 502, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, 517 502, India.
| | | |
Collapse
|
63
|
Pratiwi F, Fardah Athiyyah A, Darma A, Gunadi Ranuh R, Widjiati W, Riawan W, Rizky Sumitro K, Marto Sudarmo S. Lactobacillus plantarum IS-10506 Accelerates Healing of Gastric Injury Induced by Ketorolac in Wistar Rats. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:307-313. [DOI: 10.52711/0974-360x.2023.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Gastric injury is an event that often occurs due to many factors, such as the use of drugs, stress factors, infections, chemicals, etc. The use of histamin 2(H2) receptor antagonist drugs and pump inhibitors have become the choice for gastric injury treatment so far and requires a relatively long time. The widespread use of probiotics has been shown to affect the healing process of digestive tract disorders, for example in the small intestine. This study aimed to investigate the effect of Lactobacillus plantarumIS-10506 in acceleratingthe healing of gastric injury induced by ketorolac in the rat. The experimental study used 64 Wistar rats divided into 4 groups, group 1 (control), group 2(ketorolac administration), group 3 (ketorolac and probiotic administration), and group 4(preventive treatment with probiotic before, ketorolac administration, and treatment with probiotic). Each group was divided into 4 subgroups based on the day of sacrifice, days 1, 5, 7, 10. The healing of gastric injury evaluating by epithelial defects improvement and fibroblast cells by hematoxylin and eosin (HE) staining.The group induced by ketorolac (group 2) showed the highest epithelial defect score (p=0.048) on day 1. The repair of the epithelial defect in group 3 and group 4 were significantly increased on day 5, while group 2remains defectiveon day 5(p=0.019). Fibroblast cells of groups 3 and 4 decreased significantly more than others on day 10(p=0.024). Lactobacillus plantarum IS-10506 influences the healing acceleration of gastric injury by ketorolac by enhancing epithelial regenerationand fibroblast cells.
Collapse
Affiliation(s)
- Fauziah Pratiwi
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Alpha Fardah Athiyyah
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Andy Darma
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Khadijah Rizky Sumitro
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| |
Collapse
|
64
|
Hyseni E, Glavas Dodov M. Probiotics in dermatological and cosmetic products – application and efficiency. MAKEDONSKO FARMACEVTSKI BILTEN 2023. [DOI: 10.33320/maced.pharm.bull.2022.68.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The term “probiotics” has first been used in 1907 by Elie Metchnikoff. Since then, probiotics have been part of research not only in regards of digestive health, but also inflammatory diseases. Lately, there has been an increased interest of probiotic’s effects in skincare. The management of atopic dermatitis, acne, psoriasis, photo aging, skin cancer, intimate care, oral care, wound healing is getting harder each passing day, due to increased antibiotic resistance and other side effects of conventional therapy. Therefore, new ingredients have been investigated and probiotics have been proved to be effective in treating various skin conditions.
This review aims to evaluate the scientific evidence on topical and oral probiotics, and to evaluate the efficacy of cosmetic and dermatological products containing probiotics. Many studies have shown that skin and gut microbiome alterations have an important role in skin health. Although this is a new topic in dermatology and cosmetology, there have been some promising results in lots of research studies that the use of probiotics in cosmetic products may help improve the patient’s outcome. While oral probiotics have been shown to promote gut health, which influences the host immune system and helps treat different skin diseases, the mechanism of action of topical probiotics is not yet fully understood. Although the number of commercial probiotic cosmetic products released in the market is increasing and most of the studies have not shown any serious side effect of probiotics, further studies, in larger and heterogeneous groups are needed.
Collapse
Affiliation(s)
- Edita Hyseni
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| | - Marija Glavas Dodov
- Center of Pharmaceutical nanotechnology, Faculty of Pharmacy, Ss Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, N. Macedonia
| |
Collapse
|
65
|
Ma B, Gavzy SJ, Saxena V, Song Y, Piao W, Lwin HW, Lakhan R, Iyyathurai J, Li L, France M, Paluskievicz C, Shirkey MW, Hittle L, Munawwar A, Mongodin EF, Bromberg JS. Strain-specific alterations in gut microbiome and host immune responses elicited by tolerogenic Bifidobacterium pseudolongum. Sci Rep 2023; 13:1023. [PMID: 36658194 PMCID: PMC9852428 DOI: 10.1038/s41598-023-27706-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
The beneficial effects attributed to Bifidobacterium are largely attributed to their immunomodulatory capabilities, which are likely to be species- and even strain-specific. However, their strain-specificity in direct and indirect immune modulation remain largely uncharacterized. We have shown that B. pseudolongum UMB-MBP-01, a murine isolate strain, is capable of suppressing inflammation and reducing fibrosis in vivo. To ascertain the mechanism driving this activity and to determine if it is specific to UMB-MBP-01, we compared it to a porcine tropic strain B. pseudolongum ATCC25526 using a combination of cell culture and in vivo experimentation and comparative genomics approaches. Despite many shared features, we demonstrate that these two strains possess distinct genetic repertoires in carbohydrate assimilation, differential activation signatures and cytokine responses signatures in innate immune cells, and differential effects on lymph node morphology with unique local and systemic leukocyte distribution. Importantly, the administration of each B. pseudolongum strain resulted in major divergence in the structure, composition, and function of gut microbiota. This was accompanied by markedly different changes in intestinal transcriptional activities, suggesting strain-specific modulation of the endogenous gut microbiota as a key to immune modulatory host responses. Our study demonstrated a single probiotic strain can influence local, regional, and systemic immunity through both innate and adaptive pathways in a strain-specific manner. It highlights the importance to investigate both the endogenous gut microbiome and the intestinal responses in response to probiotic supplementation, which underpins the mechanisms through which the probiotic strains drive the strain-specific effect to impact health outcomes.
Collapse
Affiliation(s)
- Bing Ma
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Samuel J Gavzy
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hnin Wai Lwin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael France
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christina Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauren Hittle
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jonathan S Bromberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
66
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| |
Collapse
|
67
|
Ganapathy Y, Muthusamy Sridhar N, Dhandapani P. Probiotics: A Healthy Treasure. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:89-97. [DOI: 10.1007/978-981-99-3126-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
68
|
Emami E, Mt Sherwin C, Heidari-Soureshjani S. Effect of Probiotics on Urinary Tract Infections in Children: A Systematic Review and Meta-Analysis. Curr Rev Clin Exp Pharmacol 2023; 19:111-121. [PMID: 35507743 DOI: 10.2174/2772432817666220501114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most prevalent bacterial infections that occur in children worldwide. OBJECTIVE This meta-analysis aims to investigate the utility of probiotics as preventive therapy in children with a UTI. METHODS The Web of Science, PubMed, and Scopus were searched for articles that investigated the relationship between probiotic consumption and the risk of UTIs. The quality of the articles was evaluated using the Jadad scale. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effects model. Subgroup analyses and sensitivity analyses were also conducted. The Cochran Q test and the statistic I2 were used to evaluate heterogeneity. To determine any potential publication bias, the Egger's and Begg's tests were used. RESULTS In total, eleven studies were selected for the systematic review and meta-analysis. Compared to children who did not receive probiotics, the OR of developing or having a recurring urinary tract infection in those who received probiotics was 0.94 (95% CI; 0.88-0.999; p-value=0.046). The Begg's and Egger's tests showed no evidence of publication bias between probiotics and the risk of developing new or recurring urinary tract infections. CONCLUSION Based on this systematic review and meta-analysis, probiotics could be an alternative therapy for children who are at risk of developing a UTI. They are non-pharmaceutical options and could be used as natural prophylaxis for UTIs. However, the currently published evidence does not irrefutably confirm that probiotics provide a protective effect against urinary bacterial infections. Therefore, there need to be large-scale randomized clinical trials undertaken to investigate the possible prophylaxis of probiotics.
Collapse
Affiliation(s)
- Elham Emami
- Emam Hossein Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catherine Mt Sherwin
- Department of Pediatrics, Clinical Pharmacology, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
69
|
Prakash SE, Manjunatha VC, Nagella P, Veerappa Lakshmaiah V. Nutraceuticals to prevent and manage cardiovascular diseases. NUTRACEUTICALS 2023:269-291. [DOI: 10.1016/b978-0-443-19193-0.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
70
|
Abbasi Kali R, Rajabi Z, Nofouzi K, Khordadmehr M. Effects of Escherichia coli strain Nissle 1917 on immune responses of Japanese quails ( Coturnix japonica) to Newcastle disease vaccines. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:116-121. [PMID: 37790117 PMCID: PMC10542874 DOI: 10.22099/ijvr.2023.44852.6612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 03/12/2023] [Indexed: 10/05/2023]
Abstract
Abstract. Background The development of proper immune responses to Newcastle disease (ND) vaccines is important in controlling the disease. Escherichia coli strain Nissle 1917 (EcN) is involved in regulating the immune system. Aims The current study evaluated the effects of EcN on immune responses to ND live vaccines in Japanese quails. Methods A total of 150 one-day-old quails were divided into three equal groups. Groups A and B received 107 and 106 CFU/ml/day of EcN, respectively, sprayed on their diets, while group C received 1 ml/day of PBS. All birds were vaccinated with B1 and Lasota vaccines at 10 and 20 days of age, respectively. Serum samples were collected in order to assay the levels of IgA and certain cytokines, including IL4, IFN-α, and IFN-γ, as well as antibody titers to NDV by HI and ELISA methods. Results No significant difference (P>0.05) was observed in serum IgA and IFN-α levels among the groups. However, concentrations of IFN-γ and IL-4 in 42-day-old chicks in group A were significantly (P<0.05) higher than in both other groups. After 15 days of the second vaccination, the mean HI titer following NDV was significantly higher in group A than group C. Groups B and C showed significantly lower HI titer than group A after 22 days of the second vaccination. Mean ELISA titer to NDV was significantly (P<0.05) higher in group A than in groups B and C after 22 days of the second vaccination. Conclusion It seems that the spraying of 107 CFU/ml/day of EcN on quail diets enhances the immune response to NDV vaccines by increasing serum levels of IFN-γ and IL-4.
Collapse
Affiliation(s)
- R. Abbasi Kali
- Graduated from Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Z. Rajabi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - K. Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - M. Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
71
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
72
|
Orts JM, Parrado J, Pascual JA, Orts A, Cuartero J, Tejada M, Ros M. Polyurethane Foam Residue Biodegradation through the Tenebrio molitor Digestive Tract: Microbial Communities and Enzymatic Activity. Polymers (Basel) 2022; 15:polym15010204. [PMID: 36616553 PMCID: PMC9823465 DOI: 10.3390/polym15010204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Polyurethane (PU) is a widely used polymer with a highly complex recycling process due to its chemical structure. Eliminating polyurethane is limited to incineration or accumulation in landfills. Biodegradation by enzymes and microorganisms has been studied for decades as an effective method of biological decomposition. In this study, Tenebrio molitor larvae (T. molitor) were fed polyurethane foam. They degraded the polymer by 35% in 17 days, resulting in a 14% weight loss in the mealworms. Changes in the T. molitor gut bacterial community and diversity were observed, which may be due to the colonization of the species associated with PU degradation. The physical and structural biodegradation of the PU, as achieved by T. molitor, was observed and compared to the characteristics of the original PU (PU-virgin) using Fourier Transform InfraRed spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Scanning Electron Microphotography (SEM).
Collapse
Affiliation(s)
- Jose M. Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
| | - Juan Parrado
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
- Correspondence: (J.P.); (J.A.P.)
| | - Jose A. Pascual
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
- Correspondence: (J.P.); (J.A.P.)
| | - Angel Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García Gonzalez 2, 41012 Sevilla, Spain
| | - Jessica Cuartero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
| | - Manuel Tejada
- Grupo de Investigacion Edafologia Ambiental, Departamento de Cristalografia, Mineralogia y Quimica Agricola, E.T.S.I.A. Universidad de Sevilla, 41004 Sevilla, Spain
| | - Margarita Ros
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100 Murcia, Spain
| |
Collapse
|
73
|
Lai J, Jiang F, Zhuo X, Xu X, Liu L, Yin K, Wang J, Zhao J, Xu W, Liu H, Wang X, Jiang W, Wang K, Yang S, Guo H, Qi F, Yuan X, Lin X, Fu G. Effects of Shenling Baizhu powder on pyrotinib-induced diarrhea: analysis of gut microbiota, metabonomics, and network pharmacology. Chin Med 2022; 17:140. [PMID: 36528679 PMCID: PMC9759852 DOI: 10.1186/s13020-022-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Shenling Baizhu Powder (SBP) is a traditional Chinese medicine (TCM) prescription, which has the good efficacy on gastrointestinal toxicity. In this study, we used gut microbiota analysis, metabonomics and network pharmacology to investigate the therapeutic effect of SBP on pyrotinib-induced diarrhea. METHODS 24 Rats were randomly divided into 4 groups: control group, SBP group (3.6 g/kg /bid SBP for 10 days), pyrotinib model group (80 mg/kg/qd pyrotinib) and pyrotinib + SBP treatment group. A 16S rRNA sequencing was used to detect the microbiome of rat fecal bowel. Metabolic profiles were collected by non-targeted metabolomics and key metabolic pathways were identified using MetaboAnalyst 5.0. The antitumor effect of SBP on cells treated with pyrotinib was measured using a CCK-8 assay. Network pharmacology was used to predict the target and action pathway of SBP in treating pyrotinib-related diarrhea. RESULTS In vivo study indicated that SBP could significantly alleviate pyrotinib-induced diarrhea, reaching a therapeutic effect of 66.7%. SBP could regulate pyrotinib-induced microbiota disorder. LEfSe research revealed that the SBP could potentially decrease the relative abundance of Escherichia, Helicobacter and Enterobacteriaceae and increase the relative abundance of Lachnospiraceae, Bacilli, Lactobacillales etc. In addition, 25-Hydroxycholesterol, Guanidinosuccinic acid, 5-Hydroxyindolepyruvate and cAMP were selected as potential biomarkers of SBP for pyrotinib-induced diarrhea. Moreover, Spearman's analysis showed a correlation between gut microbiota and metabolite: the decreased 25-hydroxycholesterol in the pyrotinib + SBP treatment group was negatively correlated with Lachnospiraceae while positively correlated with Escherichia and Helicobacter. Meanwhile, SBP did not affect the inhibitory effect of pyrotinib on BT-474 cells and Calu-3 cells in vitro. Also, the network analysis further revealed that SBP treated pyrotinib-induced diarrhea through multiple pathways, including inflammatory bowel disease, IL-17 signaling pathway, pathogenic Escherichia coli infection and cAMP signaling pathway. CONCLUSIONS SBP could effectively relieve pyrotinib-induced diarrhea, revealing that intestinal flora and its metabolites may be involved in this process.
Collapse
Affiliation(s)
- Jingjiang Lai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, People's Republic of China
| | - Fengxian Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, People's Republic of China
| | - Xiaoli Zhuo
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine), Jinan, 250117, People's Republic of China
| | - Xiaoying Xu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Lei Liu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine), Jinan, 250117, People's Republic of China
| | - Ke Yin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Jingliang Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, People's Republic of China
| | - Jing Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine), Jinan, 250117, People's Republic of China
| | - Wei Xu
- Department of Oncology, Shandong Provincial Hospital Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Hongjing Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, People's Republic of China
| | - Xuan Wang
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250002, People's Republic of China
| | - Wen Jiang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Ke Wang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Honglin Guo
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaotian Yuan
- Laboratory Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China.
- Department of Oncology, Shandong Provincial Hospital Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
74
|
He L, Zhao X, Li J, Yang C. Post-weaning diarrhea and use of feedstuffs in pigs. Anim Front 2022; 12:41-52. [PMID: 36530506 PMCID: PMC9749819 DOI: 10.1093/af/vfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Tianhe District, Guangzhou 510642, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
75
|
Allen J, Evans CA, Datta S. Probiotics for preventing or treating COVID-19; a systematic review of research evidence and meta-analyses of efficacy for preventing death, severe disease, or disease progression. Wellcome Open Res 2022; 7:292. [PMID: 39364259 PMCID: PMC11447443 DOI: 10.12688/wellcomeopenres.18526.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 10/05/2024] Open
Abstract
Background: COVID-19 variants threaten health globally. Despite improving vaccines and treatments, there is an urgent need for alternative strategies to prevent or reduce the severity of COVID-19. Potential strategies include probiotics, which are safe, inexpensive, globally available and have been studied previously in relation to respiratory infections. Methods: We performed a systematic review and meta-analyses of experimental, trial or observational research evidence evaluating probiotics compared with control groups for preventing or treating COVID-19. We searched PubMed, ProQuest, Google Scholar and Web of Science bibliographic databases for studies published until December 6, 2021. We then performed meta-analyses for outcomes reported consistently across studies. Outcomes reported inconsistently or not amenable to meta-analysis were compared descriptively. Results: We identified six eligible studies, which were all published in 2020 and 2021: one randomized controlled trial and five retrospective cohort studies. The only randomized controlled trial reported that groups that ingested probiotics compared with control groups that did not ingest probiotics did not differ significantly with respect to death, severe disease requiring admission to an intensive care unit or disease progression (all p>0.5). The five retrospective cohort studies reported various apparently beneficial and harmful COVID-19 outcome associations with probiotic ingestion. Meta-analyses revealed no significant associations between probiotic use and death, severe disease, or disease progression caused by COVID-19. Descriptive data revealed that probiotic ingestion was associated with a trend towards worsened duration of hospital stay, improvements in measures of respiratory condition and worsened disease duration. The evidence for these contradictory associations was weak because all studies were prone to bias and none were considered to be of high quality. Conclusions: Current evidence does not suggest that probiotics affect COVID-19 severity or mortality. However, additional higher quality studies need to be conducted to definitively determine if probiotics would be a useful adjunctive treatment for COVID-19.
Collapse
Affiliation(s)
- Jawara Allen
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Carlton A Evans
- IFHAD: Innovation For Health and Development, Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
- IFHAD: Innovation For Health and Development, Infectious Diseases and Immunity, Imperial College London and Wellcome Trust Imperial College Centre for Global Health Research, London, W12 0NN, UK
- Innovacion Por la Salud Y el Desarrollo (IPSYD), Asociación Benéfica Prisma, Lima, 15088, Peru
| | - Sumona Datta
- IFHAD: Innovation For Health and Development, Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
- IFHAD: Innovation For Health and Development, Infectious Diseases and Immunity, Imperial College London and Wellcome Trust Imperial College Centre for Global Health Research, London, W12 0NN, UK
- Innovacion Por la Salud Y el Desarrollo (IPSYD), Asociación Benéfica Prisma, Lima, 15088, Peru
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
76
|
Beneficial Effects of Lactic Acid Bacteria on Animal Reproduction Function. Vet Med Int 2022; 2022:4570320. [PMID: 36505731 PMCID: PMC9729032 DOI: 10.1155/2022/4570320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Considering the importance of a healthy uterus to the success of breeding, the beneficial effects of lactic acid bacteria on animal reproduction function are of particular interest. In recent decades, infertility has become a widespread issue, with microbiological variables playing a significant role. According to reports, dysbiosis of the vaginal microbiota is connected with infertility; however, the effect of the normal vaginal microbiota on infertility is unknown. In addition, lactic acid bacteria dominate the reproductive system. According to evidence, vaginal lactic acid bacteria play a crucial role in limiting the invasion of pathogenic bacteria by triggering anti-inflammatory chemicals through IL-8, IL-1, and IL-6; immunological responses through inhibition of the adherence of other microorganisms, production of inhibiting substances, and stimulation of mucus production; and also reproductive hormones by increased testosterone hormone release, enhanced the levels of luteinizing hormone, follicle stimulating hormone, the amount of prostaglandin E (2), and prostaglandin F2 alpha. The objective of this study was to compare the advantages of lactic acid bacteria in animal reproduction based on the most recent literature. The administration of a single strain or numerous strains of lactic acid bacteria has a favourable impact on steroidogenesis, gametogenesis, and animal fertility.
Collapse
|
77
|
Rossini V, Tolosa-Enguis V, Frances-Cuesta C, Sanz Y. Gut microbiome and anti-viral immunity in COVID-19. Crit Rev Food Sci Nutr 2022; 64:4587-4602. [PMID: 36382631 DOI: 10.1080/10408398.2022.2143476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 mainly affects the respiratory system, but the gastrointestinal tract is also a target. Prolonged gut disorders, in COVID-19 patients, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed viral clearance. Although there are no definitive conclusions, ample evidence would suggest that the gut microbiome composition and function play a role in COVID-19 progression. Microbiome modulation strategies for population stratification and management of COVID-19 infection are under investigation, representing an area of interest in the ongoing pandemic. In this review, we present the existing data related to the interaction between gut microbes and the host's immune response to SARS-CoV-2 and discuss the implications for current disease management and readiness to face future pandemics.
Collapse
Affiliation(s)
- V Rossini
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - V Tolosa-Enguis
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - C Frances-Cuesta
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
78
|
Lee J, Kim S, Kang CH. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms 2022; 10:2247. [PMID: 36422317 PMCID: PMC9698684 DOI: 10.3390/microorganisms10112247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Lactic acid bacteria (LAB) can improve host health and has strong potential for use as a health functional food. Specific strains of LAB have been reported to exert immunostimulatory effects. The primary goal of this study was to evaluate the immunostimulatory activities of novel LAB strains isolated from humans and foods and to investigate the probiotic properties of these strains. Cell-free supernatants (CFS) obtained from selected LAB strains significantly increased phagocytosis and level of nitric oxide (NO) and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 macrophage cells. The protein expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, which are immunomodulators, was also upregulated by CFS treatment. CFS markedly induced the phosphorylation of nuclear factor-κB (NF-κB) and MAPKs (ERK, JNK, and p38). In addition, the safety of the LAB strains used in this study was demonstrated by hemolysis and antibiotic resistance tests. Their stability was confirmed under simulated gastrointestinal conditions. Taken together, these results indicate that the LAB strains selected in this study could be useful as probiotic candidates with immune-stimulating activity.
Collapse
Affiliation(s)
| | | | - Chang-Ho Kang
- MEDIOGEN Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea
| |
Collapse
|
79
|
Xu X, Liu R, Zhou X, Zhang Z, Zhu T, Huang Y, Chai L, Wang Y, Zhao Z, Li W, Mao G. Characterization of exosomes derived from IPEC-J2 treated with probiotic Bacillus amyloliquefaciens SC06 and its regulation of macrophage functions. Front Immunol 2022; 13:1033471. [PMID: 36439093 PMCID: PMC9682075 DOI: 10.3389/fimmu.2022.1033471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Probiotics can maintain or improve health by modulating the response of immune cells in the gastrointestinal tract. However, the mechanisms by which probiotics promote macrophage (Mφ) activity are poorly understood. Here, we evaluated exosomes derived from intestinal epithelial cells treated with Bacillus amyloliquefaciens SC06 (Ba) and investigated the regulation of Mφ phagocytosis, apoptosis, and polarization. We isolated two exosomes from intestinal porcine epithelial cell lines (IPEC-J2) with or without Ba-treatment, named Ba-Exo and Exo, respectively. They had typical sizes and a cup-shaped morphology, and their surfaces presented typical exosomes-associated proteins, including CD63, ALIX, and TSG101. Ba-Exo and Exo could entrer Mφ (3D4/21 cells) effectively. Moreover, an in vitro phagocytosis assay demonstrated that Ba-Exo can promote phagocytosis of Mφ. Similar to Exo, Ba-Exo had no effect on Mφ apoptosis. Furthermore, Ba-Exo significantly increased inducible nitric oxide synthase (iNOS), declined the expression of arginase 1 (Arg1) in Mφ, and stimulated Mφ polarization to M1. To explore the differences in the regulation of Mφ polarization between Ba-Exo and Exo, we performed reverse transcription quantitative polymerase chain reaction analysis of the small RNAs and found that miR-222 increased in the Ba-Exo group compared to that in the Exo group. These results provide a new perspective on the relationship between probiotics and intestinal immunity.
Collapse
Affiliation(s)
- Xiaogang Xu
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Tianjun Zhu
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Chai
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yazhen Wang
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhao
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| | - Genxiang Mao
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| |
Collapse
|
80
|
Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022; 10:biomedicines10092245. [PMID: 36140346 PMCID: PMC9496071 DOI: 10.3390/biomedicines10092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.
Collapse
|
81
|
Soleymanzadeh Moghadam S, Momeni M, Mazar Atabaki S, Mousavi Shabestari T, Boustanshenas M, Afshar M, Roham M. Topical Treatment of Second-Degree Burn Wounds with Lactobacillus plantarum Supernatant: Phase I Trial. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:460-468. [PMID: 36532643 PMCID: PMC9745757 DOI: 10.30699/ijp.2022.551202.2863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 09/10/2024]
Abstract
BACKGROUND & OBJECTIVE A burn wound is sterile immediately after injury, but opportunistic bacteria colonize the wound within 48 to 72 hours after the burn, causing delayed or failed burn wound healing. In addition, the presence of multidrug-resistant (MDR) pathogens doubles the treatment problems. Lactobacillus plantarum (L. plantarum) is a well-known antibacterial and healing agent that could be used topically to treat burn wounds. CASE SERIES PRESENTATION This clinical trial study (Case Series) was performed on 20 patients with deep second-degree burns. Patients had bilateral wounds; the wound on one side of the body was considered as control (treated with silver sulfadiazine) and the other side of the body as treatment (treated with bacteria-free supernatants (BFS) of L. plantarum). The wounds were evaluated by microbial assessments and assessments related to healing. Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus were isolated from 4 (22.2%), 0%, and 2 (11.1%) of wounds treated with L. plantarum on the fifth day of the treatment, respectively. Furthermore, 12 (66.7%) of wounds treated with L. plantarum were free from bacteria. The need for skin grafting was the same in both treatment and control groups, but graft rejection in the group treated with L. plantarum was (0%) (P=0.02). CONCLUSION Regarding eliminating or reducing infection and wound healing, bacteria-free supernatants of L. plantarum can be considered a possible topical treatment option in the case of second-degree burn wounds.
Collapse
Affiliation(s)
- Somayeh Soleymanzadeh Moghadam
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnoush Momeni
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mazar Atabaki
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mousavi Shabestari
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mastaneh Afshar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maryam Roham
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
83
|
Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health: Concepts, Methodologies, and Action Mechanisms. Microorganisms 2022; 10:microorganisms10091700. [PMID: 36144301 PMCID: PMC9502345 DOI: 10.3390/microorganisms10091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
Probiotics and related preparations, including synbiotics and postbiotics, are living and non-living microbial-based multi-components, which are now among the most popular bioactive agents. Such interests mainly arise from the wide range and numerous beneficial effects of their use for various hosts. The current minireview article attempts to provide an overview and discuss in a holistic way the concepts, methodologies, action mechanisms, and applications of probiotic-based multi-components in human, animal, plant, soil, and environment health. Probiotic-based multi-component preparations refer to a mixture of bioactive agents, containing probiotics or postbiotics as main functional ingredients, and prebiotics, protectants, stabilizers, encapsulating agents, and other compounds as additional constituents. Analyzing, characterizing, and monitoring over time the traceability, performance, and stability of such multi-component ingredients require relevant and sensitive analytical tools and methodologies. Two innovative profiling and monitoring methods, the thermophysical fingerprinting thermogravimetry-differential scanning calorimetry technique (TGA-DSC) of the whole multi-component powder preparations, and the Advanced Testing for Genetic Composition (ATGC) strain analysis up to the subspecies level, are presented, illustrated, and discussed in this review to respond to those requirements. Finally, the paper deals with some selected applications of probiotic-based multi-components to human, animal, plant, soil and environment health, while mentioning their possible action mechanisms.
Collapse
|
84
|
Song CH, Kim YH, Naskar M, Hayes BW, Abraham MA, Noh JH, Suk G, Kim MJ, Cho KS, Shin M, Lee EJ, Abraham SN, Choi HW. Lactobacillus crispatus Limits Bladder Uropathogenic E. coli Infection by Triggering a Host Type I Interferon Response. Proc Natl Acad Sci U S A 2022; 119:e2117904119. [PMID: 35939684 PMCID: PMC9388105 DOI: 10.1073/pnas.2117904119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Many urinary tract infections (UTIs) are recurrent because uropathogens persist within the bladder epithelial cells (BECs) for extended periods between bouts of infection. Because persistent uropathogens are intracellular, they are often refractive to antibiotic treatment. The recent discovery of endogenous Lactobacillus spp. in the bladders of healthy humans raised the question of whether these endogenous bacteria directly or indirectly impact intracellular bacterial burden in the bladder. Here, we report that in contrast to healthy women, female patients experiencing recurrent UTIs have a bladder population of Lactobacilli that is markedly reduced. Exposing infected human BECs to L. crispatus in vitro markedly reduced the intracellular uropathogenic Escherichia coli (UPEC) load. The adherence of Lactobacilli to BECs was found to result in increased type I interferon (IFN) production, which in turn enhanced the expression of cathepsin D within lysosomes harboring UPECs. This lysosomal cathepsin D-mediated UPEC killing was diminished in germ-free mice and type I IFN receptor-deficient mice. Secreted metabolites of L. crispatus seemed to be responsible for the increased expression of type I IFN in human BECs. Intravesicular administration of Lactobacilli into UPEC-infected murine bladders markedly reduced their intracellular bacterial load suggesting that components of the endogenous microflora can have therapeutic effects against UTIs.
Collapse
Affiliation(s)
- Chang Hyun Song
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Young Ho Kim
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon-si, 14584, South Korea
| | - Manisha Naskar
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Byron W. Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Mathew A. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Joo Hwan Noh
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Gyeongseo Suk
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Min Jung Kim
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Kyu Sang Cho
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Minhye Shin
- Department of Microbiology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Eun-Jin Lee
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
85
|
Fuloria S, Mehta J, Talukdar MP, Sekar M, Gan SH, Subramaniyan V, Rani NNIM, Begum MY, Chidambaram K, Nordin R, Maziz MNH, Sathasivam KV, Lum PT, Fuloria NK. Synbiotic Effects of Fermented Rice on Human Health and Wellness: A Natural Beverage That Boosts Immunity. Front Microbiol 2022; 13:950913. [PMID: 35910609 PMCID: PMC9325588 DOI: 10.3389/fmicb.2022.950913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Department of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
86
|
The Phagocytosis of Lacticaseibacillus casei and Its Immunomodulatory Properties on Human Monocyte-Derived Dendritic Cells Depend on the Expression of Lc-p75, a Bacterial Peptidoglycan Hydrolase. Int J Mol Sci 2022; 23:ijms23147620. [PMID: 35886967 PMCID: PMC9319067 DOI: 10.3390/ijms23147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable morphological changes, which have important consequences in the phagocytosis of L. casei by moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper (Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results. Taken together, these data suggested that formation of short bacterial chains helps to exert the potent immunomodulatory properties of L. casei BL23.
Collapse
|
87
|
Yoshitake R, Nakai H, Ebina M, Kawasaki K, Murosaki S, Hirose Y. Beneficial Effect of Heat-Killed Lactiplantibacillus plantarum L-137 on Skin Functions in Healthy Participants: A Randomized, Placebo-Controlled, Double-Blind Study. Front Med (Lausanne) 2022; 9:912280. [PMID: 35872749 PMCID: PMC9299260 DOI: 10.3389/fmed.2022.912280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
To determine whether consuming heat-killed Lactiplantibacillus plantarum L-137 (HK L-137) influences skin functions, we performed a randomized, placebo-controlled, double-blind study in healthy participants who were conscious of dry skin. A total of 80 healthy participants (20 men, 60 women; mean age, 47.3 years) were assigned to receive a tablet containing HK L-137 or a placebo tablet daily for 12 weeks. Every 4 weeks, the skin water content and transepidermal water loss (TEWL) were measured at the forearm and face, and participants completed two skin-related questionnaires, the Dermatology Life Quality Index and a self-evaluation. The HK L-137 group tended to show greater increases from baseline of water content at the forearm and larger decreases of TEWL at the face. The total scores of both questionnaires improved significantly more in the HK L-137 group. Water content and TEWL improved significantly in participants in the HK L-137 group who were above the median age of study participants or had relatively dry skin. These findings suggest that daily HK L-137 intake can improve dry skin, thereby contributing to skin satisfaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshitaka Hirose
- Research and Development Institute, House Wellness Foods Corp., Itami, Japan
| |
Collapse
|
88
|
Antibacterial and anti-inflammatory effects of Lactobacillus reuteri in its biofilm state contribute to its beneficial effects in a rat model of experimental necrotizing enterocolitis. J Pediatr Surg 2022; 57:1382-1390. [PMID: 34657737 DOI: 10.1016/j.jpedsurg.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Necrotizing enterocolitis (NEC) remains a significant surgical emergency in neonates. We have demonstrated the efficacy of Lactobacillus reuteri (Lr) in protecting against experimental NEC when administered as a biofilm by incubation with maltose loaded dextranomer microspheres. Lr possesses antimicrobial and anti-inflammatory properties. We developed mutant strains of Lr to examine the importance of its antimicrobial and anti-inflammatory properties in protecting the intestines from NEC. METHODS Premature rat pups were exposed to hypoxia/hypothermia/hypertonic feeds to induce NEC. To examine the importance of antimicrobial reuterin and anti-inflammatory histamine, pups received either native or mutant forms of Lr, in either its planktonic or biofilm states, prior to induction of NEC. Intestinal histology was examined upon sacrifice. RESULTS Compared to no treatment, administration of a single dose of Lr in its biofilm state significantly decreased the incidence of NEC (67% vs. 18%, p < 0.0001), whereas Lr in its planktonic state had no significant effect. Administration of reuterin-deficient or histamine-deficient forms of Lr, in either planktonic or biofilm states, resulted in significant loss of efficacy. CONCLUSION Antimicrobial and anti-inflammatory effects of Lr contribute to its beneficial effects against NEC. This suggests that both infectious and inflammatory components contribute to the etiology of NEC.
Collapse
|
89
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
90
|
Noh HJ, Park JM, Kwon YJ, Kim K, Park SY, Kim I, Lim JH, Kim BK, Kim BY. Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages. J Microbiol Biotechnol 2022; 32:638-644. [PMID: 35354761 PMCID: PMC9628881 DOI: 10.4014/jmb.2201.01015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.
Collapse
Affiliation(s)
- Hye-Ji Noh
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Jung Min Park
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Yoo Jin Kwon
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Kyunghwan Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Sung Yurb Park
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Insu Kim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Jong Hyun Lim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Byoung Kook Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea,Corresponding authors B.K. Kim Phone: +82-31-489-1110 Fax: +82-31-495-8162 E-mail:
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea,
B.Y. Kim Phone: +82-2-6292-9107 Fax: +82-2-6292-9266 E-mail:
| |
Collapse
|
91
|
Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101334. [PMID: 35631758 PMCID: PMC9145216 DOI: 10.3390/plants11101334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 05/06/2023]
Abstract
Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in the world. The most common products of its industrial processing in the food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety of processed tomato products. Developments in bioinformatics allow researchers to discuss target probiotic strains from an existing large number of probiotic strains for any link in the soil-plant-animal-human chain. Based on the literature and knowledge on the "One Health" concept, this study relates to the suggestion of a new term for probiotics: "One Health probiotics", beneficial for the unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses, fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable candidates for "One Health" probiotics (also, for "One Health-tomato" probiotics) for the utilization in agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Natalya Harutyunyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
| | - Narine Hovhannisyan
- Plant Origin Raw Material Processing Technology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
- Correspondence: ; Tel.: +374-91-432-493
| |
Collapse
|
92
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
93
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
94
|
Zhang L, Xu Z, Mak JWY, Chow KM, Lui G, Li TCM, Wong CK, Chan PKS, Ching JYL, Fujiwara Y, Chan FKL, Ng SC. Gut microbiota-derived synbiotic formula (SIM01) as a novel adjuvant therapy for COVID-19: An open-label pilot study. J Gastroenterol Hepatol 2022; 37:823-831. [PMID: 35170078 PMCID: PMC9115073 DOI: 10.1111/jgh.15796] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Gut dysbiosis is associated with immune dysfunction and severity of COVID-19. Whether targeting dysbiosis will improve outcomes of COVID-19 is unknown. This study aimed to assess the effects of a novel gut microbiota-derived synbiotic formula (SIM01) as an adjuvant therapy on immunological responses and changes in gut microbiota of hospitalized COVID-19 patients. METHODS This was an open-label, proof-of-concept study. Consecutive COVID-19 patients admitted to an infectious disease referral center in Hong Kong were given a novel formula of Bifidobacteria strains, galactooligosaccharides, xylooligosaccharide, and resistant dextrin (SIM01). The latter was derived from metagenomic databases of COVID-19 patients and healthy population. COVID-19 patients who were admitted under another independent infectious disease team during the same period without receiving SIM01 acted as controls. All patients received standard treatments for COVID-19 according to the hospital protocol. We assessed antibody response, plasma proinflammatory markers, nasopharyngeal SARS-CoV-2 viral load, and fecal microbiota profile from admission up to week 5. RESULTS Twenty-five consecutive COVID-19 patients received SIM01 for 28 days; 30 patients who did not receive the formula acted as controls. Significantly more patients receiving SIM01 than controls developed SARS-CoV-2 IgG antibody (88% vs 63.3%; P = 0.037) by Day 16. One (4%) and 8 patients (26.7%) in the SIM01 and control group, respectively, failed to develop positive IgG antibody upon discharge. At week 5, plasma levels of interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), tumor necrosis factor (TNF-α), and IL-1RA reduced significantly in the SIM01 but not in the control group. There was a significant negative correlation of nasopharyngeal SARS-CoV-2 viral load and SIM01 intervention. Metagenomic analysis showed that bacterial species in SIM01 formula were found in greater abundance leading to enrichment of commensal bacteria and suppression of opportunistic pathogens in COVID-19 patients by week 4 and week 5. CONCLUSIONS This proof-of-concept study suggested that the use of a novel gut microbiota-derived synbiotic formula, SIM01, hastened antibody formation against SARS-CoV-2, reduced nasopharyngeal viral load, reduced pro-inflammatory immune markers, and restored gut dysbiosis in hospitalised COVID-19 patients.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I‐Center (MagIC)The Chinese University of Hong KongHong Kong SARChina,Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Zhilu Xu
- Microbiota I‐Center (MagIC)The Chinese University of Hong KongHong Kong SARChina,Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Joyce W Y Mak
- Microbiota I‐Center (MagIC)The Chinese University of Hong KongHong Kong SARChina,Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Kai Ming Chow
- Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,Stanley Ho Centre for Emerging Infectious Diseases, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Timothy C M Li
- Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Chun Kwok Wong
- Department of Chemical Pathology, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Paul K S Chan
- Department of Microbiology, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yasuhiro Fujiwara
- Department of GastroenterologyOsaka City University Graduate School of MedicineOsakaJapan
| | - Francis K L Chan
- Microbiota I‐Center (MagIC)The Chinese University of Hong KongHong Kong SARChina,Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Siew C Ng
- Microbiota I‐Center (MagIC)The Chinese University of Hong KongHong Kong SARChina,Department of Medicine and Therapeutics, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina,State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
95
|
Fei Y, Huang L, Wang H, Liang J, Liu G, Bai W. Adaptive mechanism of Lactobacillus amylolyticus L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles. Food Sci Nutr 2022; 10:1548-1563. [PMID: 35592287 PMCID: PMC9094474 DOI: 10.1002/fsn3.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus amylolyticus L6 isolated from naturally fermented tofu-whey was characterized as potential probiotics. To give insight into the adaptive mechanism of L. amylolyticus L6 in soymilk, the gene-expression profiles of this strain and changes of chemical components in fermented soymilk were investigated. The viable counts of L. amylolyticus L6 in soymilk reached 1012 CFU/mL in the stationary phase (10 hr). The main sugars reduced gradually while the acidity value significantly increased from 45.33° to 95.88° during fermentation. About 50 genes involved in sugar metabolization and lactic acid production were highly induced during soymilk fermentation. The concentration of total amino acid increased to 668.38 mg/L in the logarithmic phase, and 45 differentially expressed genes (DEGs) in terms of nitrogen metabolism and biosynthesis of amino acid were detected. Other genes related to lipid metabolism, inorganic ion transport, and stress response were also highly induced. Besides, the concentration of isoflavone aglycones with high bioactivity increased from 14.51 mg/L to 36.09 mg/L during the fermentation, and the expression of 6-phospho-β-glucosidase gene was also synchronously induced. This study revealed the adaptive mechanism of L. amylolyticus L6 in the soymilk-based ecosystem, which gives the theoretical guidance for the application of this strain in other soybean-derived products.
Collapse
Affiliation(s)
- Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Li Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
96
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
97
|
The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study. Eur J Nutr 2022; 61:2673-2685. [DOI: 10.1007/s00394-022-02844-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
|
98
|
Scardaci R, Bietto F, Racine PJ, Boukerb AM, Lesouhaitier O, Feuilloley MGJ, Scutera S, Musso T, Connil N, Pessione E. Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved? Microorganisms 2022; 10:microorganisms10030487. [PMID: 35336063 PMCID: PMC8954575 DOI: 10.3390/microorganisms10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.
Collapse
Affiliation(s)
- Rossella Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
- Correspondence:
| | - Francesca Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| | - Pierre-Jean Racine
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Amine M. Boukerb
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Olivier Lesouhaitier
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Sara Scutera
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Tiziana Musso
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Nathalie Connil
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Enrica Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| |
Collapse
|
99
|
Probiotic Lactic Acid Bacteria from Goat’s Milk Potential Producer of Bacteriocin: Evidence from Liquid Chromatography-Mass Spectrometry. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diverse microbial populations in milk produce a range of antimicrobial compounds that confer preservative action. Goat milk characterized by high nutritional value, medicinal properties and hypoallergenic in nature, constitutes the most prevalent non-bovine milk consumed globally. Lactic acid bacteria (LAB), renowned for their probiotic properties, are important constituents of goat milk microflora. In this study, bacterial strains with probiotic potential were isolated and characterized from milk samples of indigenous Indian goat breeds. On MRS medium, Gram-positive rods were observed after anaerobic culture. Based on 16s rRNA technique LAB from goat milk were identified to belong to Enterococcus durans and Lactobacuillus plantarum. Antimicrobial activities were observed against known pathogens (Staphylococcus aureus, Klebsiella pneumoniae, Escherichia. coli and Salmonella typhimurium) and minimum inhibitory concentration was found to be low (6.5 mg/ml) for most of the isolates. High resistance to both acidic condition (pH 2.0) and 0.3% bile salts was observed along with marginal increase in cell counts in some isolates. Adherence to Caco-2 cell lines was observed in all the four identified LABs and was higher in case of Enterococcus durans compared to Lactobacillus plantarum. LC-MS analysis revealed the presence of lacticin as one of the key component of cell free extracts (CFE) of selected isolate. Goat milk as a source of possible LAB probiotics opens up a whole new avenue of probiotics from non-bovine milk sources. LAB strains isolated in this study are potential probiotic candidates that can be employed as antimicrobial agents in food and pharmaceutical industries.
Collapse
|
100
|
Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim Health Res Rev 2022; 22:147-162. [DOI: 10.1017/s146625232100013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractNecrotic enteritis (NE), caused by Clostridium perfringens (CP), is one of the most common of poultry diseases, causing huge economic losses to the poultry industry. This review provides an overview of the pathogenesis of NE in chickens and of the interaction of CP with the host immune system. The roles of management, nutrition, probiotics, and vaccination in reducing the incidence and severity of NE in poultry flocks are also discussed.
Collapse
|