51
|
Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med 2016; 14:83. [PMID: 27256449 PMCID: PMC4891875 DOI: 10.1186/s12916-016-0625-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
HIV/AIDS causes severe dysfunction of the immune system through CD4+ T cell depletion, leading to dysregulation of both the adaptive and innate immune arms. A primary target for viral infection is the gastrointestinal tract, which is a reservoir of CD4+ T cells. In addition to being a major immune hub, the human gastrointestinal tract harbors trillions of commensal microorganisms, the microbiota, which have recently been shown to play critical roles in health. Alterations in the composition and function of microbiota have been implicated in a variety of 'multi-factorial' disorders, including infectious, autoimmune, metabolic, and neoplastic disorders. It is widely accepted that, in addition to its direct role in altering the gastrointestinal CD4+ T cell compartment, HIV infection is characterized by gut microbiota compositional and functional changes. Herein, we review such alterations and discuss their potential local and systemic effects on the HIV-positive host, as well as potential roles of novel microbiota-targeting treatments in modulating HIV progression and associated adverse systemic manifestations.
Collapse
Affiliation(s)
- Gili Zilberman-Schapira
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Niv Zmora
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Shlomik Itav
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Stavros Bashiardes
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Hila Elinav
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| |
Collapse
|
52
|
Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of Gut Microbiome Dysbiosis in the Context of HIV Infection and Antiretroviral Therapy. Clin Pharmacol Ther 2016; 99:600-11. [PMID: 26940481 DOI: 10.1002/cpt.363] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with an altered gut microbiome that is not consistently restored with effective antiretroviral therapy (ART). Interpretation of the specific microbiome changes observed during HIV infection is complicated by factors like population, sample type, and ART-each of which may have dramatic effects on gut bacteria. Understanding how these factors shape the microbiome during HIV infection (which we refer to as the HIV-associated microbiome) is critical for defining its role in HIV disease, and for developing therapies that restore gut health during infection.
Collapse
Affiliation(s)
- S X Li
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ajs Armstrong
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - C P Neff
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Shaffer
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - C A Lozupone
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - B E Palmer
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
53
|
Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther 2016; 13:19. [PMID: 27073405 PMCID: PMC4828806 DOI: 10.1186/s12981-016-0103-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, extensive work has been carried out in the field of microbial translocation in HIV infection, ranging from studies on its clinical significance to investigations on its pathogenic features. In the present work, we review the most recent findings on this phenomenon, focusing on the predictive role of microbial translocation in HIV-related morbidity and mortality, the mechanisms by which it arises and potential therapeutic approaches. From a clinical perspective, current work has shown that markers of microbial translocation may be useful in predicting clinical events in untreated HIV infection, while conflicting data exist on their role in cART-experienced subjects, possibly due to the inclusion of extremely varied patient populations in cohort studies. Results from studies addressing the pathogenesis of microbial translocation have improved our knowledge of the damage of the gastrointestinal epithelial barrier occurring in HIV infection. However, the extent to which mucosal impairment translates directly to increased gastrointestinal permeability remains an open issue. In this respect, novel work has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial translocation and systemic T-cell activation/inflammation, thus representing a possible target of immune-therapeutic interventions shown to be promising in the animal model. Further, recent reports have not only confirmed the presence of a dysbiotic intestinal community in the course of HIV infection but have also shown that it may be linked to mucosal damage, microbial translocation and peripheral immune activation. Importantly, technical advances have also shed light on the metabolic activity of gut microbes, highlighting the need for novel therapeutic approaches to correct the function, as well as the composition, of the gastrointestinal microbiota.
Collapse
|
54
|
Fecal bacterial microbiome diversity in chronic HIV-infected patients in China. Emerg Microbes Infect 2016; 5:e31. [PMID: 27048741 PMCID: PMC4855070 DOI: 10.1038/emi.2016.25] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/06/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to identify fecal bacterial microbiome changes in patients with chronic human immunodeficiency virus (HIV) infection in China. Bacterial 16S rRNA genes were amplified, sequenced (454 pyrosequencing), and clustered into operational taxonomic units using the QIIME software. Relative abundance at the phylum and genus levels were calculated. Alpha diversity was determined by Chao 1 and observed-species indices, and beta diversity was determined by double principal component analysis using the estimated phylogeny-based unweighted Unifrac distance matrices. Fecal samples of the patients with chronic HIV-infection tended to be enriched with bacteria of the phyla Firmicutes (47.20%±0.43 relative abundance) and Proteobacteria (37.21%±0.36) compared with those of the non-HIV infected controls (17.95%±0.06 and 3.81%±0.02, respectively). Members of the genus Bilophila were exclusively detected in samples of the non-HIV infected controls. Bacteroides and arabacteroides were more abundant in the chronic HIV-infected patients. Our study indicated that chronic HIV-infected patients in China have a fecal bacterial microbiome composition that is largely different from that found in non-HIV infected controls, and further study is needed to evaluate whether microbiome changes play a role in disease complications in the distal gut, including opportunistic infections.
Collapse
|
55
|
Márquez M, Fernández Gutiérrez del Álamo C, Girón-González JA. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity. World J Gastroenterol 2016; 22:1433-1448. [PMID: 26819512 PMCID: PMC4721978 DOI: 10.3748/wjg.v22.i4.1433] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/11/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Even in cases where viral replication has been controlled by antiretroviral therapy for long periods of time, human immunodeficiency virus (HIV)-infected patients have several non-acquired immunodeficiency syndrome (AIDS) related co-morbidities, including liver disease, cardiovascular disease and neurocognitive decline, which have a clear impact on survival. It has been considered that persistent innate and acquired immune activation contributes to the pathogenesis of these non-AIDS related diseases. Immune activation has been related with several conditions, remarkably with the bacterial translocation related with the intestinal barrier damage by the HIV or by hepatitis C virus (HCV)-related liver cirrhosis. Consequently, increased morbidity and mortality must be expected in HIV-HCV coinfected patients. Disrupted gut barrier lead to an increased passage of microbial products and to an activation of the mucosal immune system and secretion of inflammatory mediators, which in turn might increase barrier dysfunction. In the present review, the intestinal barrier structure, measures of intestinal barrier dysfunction and the modifications of them in HIV monoinfection and in HIV-HCV coinfection will be considered. Both pathogenesis and the consequences for the progression of liver disease secondary to gut microbial fragment leakage and immune activation will be assessed.
Collapse
|
56
|
Dillon SM, Lee EJ, Donovan AM, Guo K, Harper MS, Frank DN, McCarter MD, Santiago ML, Wilson CC. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology 2016; 13:5. [PMID: 26762145 PMCID: PMC4712466 DOI: 10.1186/s12977-016-0237-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Early HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated. RESULTS The majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation. CONCLUSIONS Gram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance CCR5-tropic HIV-1 productive infection and depletion of LP CD4 T cells in vitro. Enhanced infection appears to be primarily mediated indirectly through increased expression of CCR5 on LP CD4 T cells without concomitant large scale T cell activation. This represents a novel mechanism potentially linking intestinal dysbiosis to HIV-1 mucosal pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eric J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrew M Donovan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Kejun Guo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael S Harper
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,University of Colorado Microbiome Research Consortium, Aurora, CO, USA.
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
57
|
Abstract
OBJECTIVE HIV-1 infection is characterized by altered intestinal barrier, gut microbiota dysbiosis, and systemic inflammation. We hypothesized that changes of the gut microbiota predict immune dysfunction and HIV-1 progression, and that antiretroviral therapy (ART) partially restores the microbiota composition. DESIGN An observational study including 28 viremic patients, three elite controllers, and nine uninfected controls. Blood and stool samples were collected at baseline and for 19 individuals at follow-up (median 10 months) during ART. METHODS Microbiota composition was determined by 16S rRNA sequencing (Illumina MiSeq). Soluble markers of microbial translocation and monocyte activation were analyzed by Limulus Amebocyte Lysate assay or ELISA. RESULTS Several alpha-diversity measures, including number of observed bacterial species and Shannon index, were significantly lower in viremic patients compared to controls. The alpha diversity correlated with CD4 T-cell counts and inversely with markers of microbial translocation and monocyte activation. In multivariate linear regression, for every age and sex-adjusted increase in the number of bacterial species, the CD4 T-cell count increased with 0.88 (95% confidence interval 0.35-1.41) cells/μl (P = 0.002). After introduction of ART, microbiota alterations persisted with further reduction in alpha diversity. The microbiota composition at the genus level was profoundly altered in viremic patients, both at baseline and after ART, with Prevotella reduced during ART (P < 0.007). CONCLUSIONS Gut microbiota alterations are closely associated with immune dysfunction in HIV-1 patients, and these changes persist during short-term ART. Our data implicate that re-shaping the microbiota may be an adjuvant therapy in patients commencing successful ART.
Collapse
|
58
|
García-Álvarez L, Pérez-Matute P, Blanco JR, Ibarra V, Oteo JA. High prevalence of asymptomatic carriers of Tropheryma whipplei in different populations from the North of Spain. Enferm Infecc Microbiol Clin 2015; 34:340-5. [PMID: 26585816 DOI: 10.1016/j.eimc.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tropheryma whipplei is the causative agent of Whipple disease. T. whipplei has also been detected in asymptomatic carriers with a very different prevalence. To date, in Spain, there are no data regarding the prevalence of T. whipplei in a healthy population or in HIV-positive patients, or in chronic fatigue syndrome (CFS). Therefore, the aim of this work was to assess the prevalence of T. whipplei in stools in those populations. METHODS Stools from 21 HIV-negative subjects, 65 HIV-infected, and 12 CFS patients were analysed using real time-PCR. HIV-negative and positive subjects were divided into two groups, depending on the presence/absence of metabolic syndrome (MS). Positive samples were sequenced. RESULTS The prevalence of T. whipplei was 25.51% in 98 stool samples analysed. Prevalence in HIV-positive patients was significantly higher than in HIV-negative (33.8% vs. 9.09%, p=0.008). Prevalence in the control group with no associated diseases was 20%, whereas no positive samples were observed in HIV-negative patients with MS, or in those diagnosed with CFS. The prevalence observed in HIV-positive patients without MS was 30.35%, and with MS it was 55.5%. The number of positive samples varies depending on the primers used, although no statistically significant differences were observed. CONCLUSIONS There is a high prevalence of asymptomatic carriers of T. whipplei among healthy and in HIV-infected people from Spain. The role of T. whipplei in HIV patients with MS is unclear, but the prevalence is higher than in other populations.
Collapse
Affiliation(s)
- Lara García-Álvarez
- Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - José Ramón Blanco
- Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Valvanera Ibarra
- Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - José Antonio Oteo
- Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain.
| |
Collapse
|
59
|
Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy. HIV Med 2015; 17:89-105. [PMID: 26452565 DOI: 10.1111/hiv.12310] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 12/31/2022]
Abstract
Systemic immune activation is a striking consequence of HIV-1 infection. Even in virologically suppressed patients, some hyperactivity of the immune system and even of the endothelium and of the coagulation pathway may persist. Apart from immune deficiency, this chronic activation may contribute to various morbidities including atherothrombosis, neurocognitive disorders, liver steatosis and osteoporosis, which are currently main challenges. It is therefore of major importance to better understand the causes and the phenotypes of immune activation in the course of HIV-1 infection. In this review we will discuss the various causes of immune activation in HIV-1 infected organisms: the presence of the virus together with other microbes, eventually coming from the gut, CD4+ T cell lymphopenia, senescence and dysregulation of the immune system, and/or genetic factors. We will also describe the activation of the immune system: CD4+ and CD8+ T cells, B cells, NKT and NK cells, dendritic cells, monocytes and macrophages, and neutrophils of the inflammation cascade, as well as of the endothelium and the coagulation system. Finally, we will see that antiretroviral therapy reduces the hyperactivity of the immune and coagulation systems and the endothelial dysfunction, but often does not abolish it. A better knowledge of this phenomenon might help us to identify biomarkers predictive of non AIDS-linked comorbidities, and to define new strategies aiming at preventing their emergence.
Collapse
Affiliation(s)
- M Younas
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France
| | - C Psomas
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France
| | - J Reynes
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France
| | - P Corbeau
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France.,Immunology Department, University Hospital, Nîmes Cedex, France
| |
Collapse
|
60
|
Yang GB. Intestinal tract and acquired immunodeficiency syndrome. Shijie Huaren Xiaohua Zazhi 2015; 23:4304-4316. [DOI: 10.11569/wcjd.v23.i27.4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal tract is closely associated with the transmission, disease progression and the prevention and control of acquired immune deficiency syndrome (AIDS). It has been noticed early in AIDS research that a large percent of AIDS patients presented abnormalities in their intestinal tract, such as diarrhea. Now it is known that the intestinal tract has close and complex relationships with AIDS: (1) the intestinal tract is directly involved in the transmission of human immunodeficiency virus-1 (HIV-1); (2) the damage of the intestinal barrier of HIV/AIDS patients directly promotes AIDS disease progression; and (3) most importantly, the intestinal tract is an important target for the treatment and prevention of HIV/AIDS. The author has previously reviewed the progress in understanding the roles of the intestinal tract in HIV-1 infection and the changes of the intestinal tract after HIV-1 infection. In the current review, I discuss the progress in understanding the roles of the damage of the intestinal mucosal immune system in AIDS disease progression, and the potential application value of the restoration of intestinal mucosal immunity in the treatment of AIDS.
Collapse
|
61
|
Vázquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrús ML, Madrid N, Vallejo A, Sainz T, Martínez-Botas J, Ferrando-Martínez S, Vera M, Dronda F, Leal M, Del Romero J, Moreno S, Estrada V, Gosalbes MJ, Moya A. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol 2015; 8:760-772. [PMID: 25407519 DOI: 10.1038/mi.2014.107] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Altered interplay between gut mucosa and microbiota during treated HIV infection may possibly contribute to increased bacterial translocation and chronic immune activation, both of which are predictors of morbidity and mortality. Although a dysbiotic gut microbiota has recently been reported in HIV+ individuals, the metagenome gene pool associated with HIV infection remains unknown. The aim of this study is to characterize the functional gene content of gut microbiota in HIV+ patients and to define the metabolic pathways of this bacterial community, which is potentially associated with immune dysfunction. We determined systemic markers of innate and adaptive immunity in a cohort of HIV-infected individuals on successful antiretroviral therapy without comorbidities and in healthy non-HIV-infected subjects. Metagenome sequencing revealed an altered functional profile, with enrichment of the genes involved in various pathogenic processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory pathways. In contrast, we observed depletion of genes involved in amino acid metabolism and energy processes. Bayesian networks showed significant interactions between the bacterial community, their altered metabolic pathways, and systemic markers of immune dysfunction. This study reveals altered metabolic activity of microbiota and provides novel insight into the potential host-microbiota interactions driving the sustained inflammatory state in successfully treated HIV-infected patients.
Collapse
Affiliation(s)
- J F Vázquez-Castellanos
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - S Serrano-Villar
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - A Latorre
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A Artacho
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - M L Ferrús
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - N Madrid
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - A Vallejo
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - T Sainz
- 1] Laboratory of Molecular Immune Biology, University Hospital Gregorio Marañón and Gregorio Marañón Research Institute, Madrid, Spain [2] CIBER on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - J Martínez-Botas
- 1] Department of Biochemistry, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain [2] CIBER on Obesity and Nutrition Pathophysiology (CIBEROBN), Madrid, Spain
| | - S Ferrando-Martínez
- 1] Laboratory of Molecular Immune Biology, University Hospital Gregorio Marañón and Gregorio Marañón Research Institute, Madrid, Spain [2] CIBER on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain [3] Laboratory of Immunovirology, Department of Infectious Diseases, Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocío, Sevilla, Spain
| | - M Vera
- Centro Sandoval, Madrid, Spain
| | - F Dronda
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - M Leal
- Laboratory of Immunovirology, Department of Infectious Diseases, Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocío, Sevilla, Spain
| | | | - S Moreno
- Department of Infectious Diseases, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - V Estrada
- HIV Unit, Department of Internal Medicine, University Hospital Clínico San Carlos, Madrid, Spain
| | - M J Gosalbes
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A Moya
- 1] Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain [2] CIBER on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
62
|
Fast disease progression in simian HIV-infected female macaque is accompanied by a robust local inflammatory innate immune and microbial response. AIDS 2015; 29:F1-8. [PMID: 26035329 DOI: 10.1097/qad.0000000000000711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Gender differences in immune response and the rate of disease progression in HIV-infected individuals have been reported but the underlying mechanism remains unclear, in part because of the lack of relevant animal models. Here, we report a novel nonhuman primate model for investigation of sex disparity in HIV disease progression. DESIGN/METHODS Viral load and rate of disease progression were evaluated in rhesus macaques infected intrarectally with lineage-related subtype C R5 simian HIVs. Cytokine/chemokine levels in rectal swab eluates, and bacterial species adherent to the swabs and in the feces were determined. RESULTS Simian HIV-infected female rhesus macaques progressed faster to AIDS than male macaques, recapitulating the sex bias in HIV-1 disease in humans. There were no significant differences in the levels of soluble immune mediators in the rectal mucosa of naive female and male macaques. However, an exploratory longitudinal study in six infected macaques indicates that the female macaques mounted an earlier and more robust proinflammatory skewed rectal immune response to infection. Moreover, expansion of Proteobacteria that increase in other intestinal inflammatory disorders was significantly higher in the rectal mucosa of female than male macaques during acute infection. CONCLUSION These findings suggest that sex differences in local innate immune activation and compositional shifts in the gut microbiota could be the drivers of increased disease susceptibility in female macaques. Further studies with this novel nonhuman primate model of HIV infection could lead to innovative research on gender differences, which may have important therapeutic implications for controlling disease in infected men as well as women.
Collapse
|
63
|
Role of intestinal myofibroblasts in HIV-associated intestinal collagen deposition and immune reconstitution following combination antiretroviral therapy. AIDS 2015; 29:877-88. [PMID: 25784439 DOI: 10.1097/qad.0000000000000636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the potential role of mucosal intestinal myofibroblasts (IMFs) in HIV and associated fibrosis in gut-associated lymphoid tissue. DESIGN Profibrotic changes within the secondary lymphoid organs and mucosa have been implicated in failed immune reconstitution following effective combination antiretroviral therapy (cART). Microbial translocation is believed to be sustaining these systemic inflammatory pathways. IMFs are nonprofessional antigen-presenting cells with both immunoregulatory and mesenchymal functions that are ideally positioned to respond to translocating microbial antigen. METHODS Duodenal biopsies, obtained from patients naive to cART, underwent trichrome staining and were examined for tissue growth factor-beta (TGF-β) expression. Combined immunostaining and second harmonic generation analysis were used to determine IMF activation and collagen deposition. Confocal microscopy was performed to examine IMF activation and Toll-like receptor (TLR)4 expression. Finally, primary IMF cultures were stimulated with lipopolysaccharide to demonstrate the expression of the inflammatory biomarkers. RESULTS The expression of the fibrosis-promoting molecule, TGF-β1, is significantly increased in duodenal biopsies from HIV patients naïve to cART, and negatively correlated with subsequent peripheral CD4(+) recovery. The increase in TGF-β1 coincided with an increase in collagen deposition in the duodenal mucosa in the tissue area adjacent to the IMFs. We also observed that IMFs expressed TLR4 and had an activated phenotype since they were positive for fibroblast activation protein. Finally, stimulation of IMFs from HIV patients with TLR4 resulted in significantly increased expression of profibrotic molecules, TGF-β1, and interleukin-6. CONCLUSION Our data support the hypothesis that activated IMFs may be among the major cells contributing to the profibrotic changes, and thus, the establishment and maintenance of systemic inflammation interfering with immune reconstitution in HIV patients.
Collapse
|
64
|
Abstract
OBJECTIVE Despite the use of HAART to control HIV, systemic immune activation and inflammation persists with the consequence of developing serious non-AIDS events. The mechanisms that contribute to persistent systemic immune activation have not been well defined. The intestine is the major source of "sterile" inflammation and plays a critical role in immune function; thus, we sought to determine whether intestinal gene expression was altered in virally controlled HIV-infected individuals. DESIGN AND METHODS Gene expression was compared in biopsy samples collected from HIV-uninfected and HIV-infected individuals from the ileum, right colon (ascending colon), and left colon (sigmoid). Affymetrix gene arrays were performed on tissues and pathway analyses were conducted. Gene expression was correlated with systemic markers of intestinal barrier dysfunction and inflammation and intestinal microbiota composition. RESULTS Genes involved in cellular immune response, cytokine signaling, pathogen-influenced signaling, humoral immune response, apoptosis, intracellular and second messenger signaling, cancer, organismal growth and development, and proliferation and development were upregulated in the intestine of HIV-infected individuals with differences observed in the ileum, right, and left colon. Gene expression in the ileum primarily correlated with systemic markers of inflammation (e.g., IL7R, IL2, and TLR2 with serum TNF) whereas expression in the colon correlated with the microbiota community (e.g., IFNG, IL1B, and CD3G with Bacteroides). CONCLUSION These data demonstrate persistent, proinflammatory changes in the intestinal mucosa of virally suppressed HIV-infected individuals. These changes in intestinal gene expression may be the consequence of or contribute to barrier dysfunction and intestinal dysbiosis observed in HIV.
Collapse
|
65
|
Volpe GE, Ward H, Mwamburi M, Dinh D, Bhalchandra S, Wanke C, Kane AV. Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J Stud Alcohol Drugs 2014; 75:347-57. [PMID: 24650829 DOI: 10.15288/jsad.2014.75.347] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE HIV and illicit drug use have been associated with altered nutrition, immune function, and metabolism. We hypothesized that altered composition and decreased diversity of the intestinal microbiota, along with microbial translocation, contribute to nutritional compromise in HIV-infected drug users. METHOD We enrolled 26 men and 6 women, 15 HIV infected and 17 HIV uninfected, in this exploratory, cross-sectional study; 7 HIV-infected and 7 HIV-uninfected participants had used cocaine within the previous month. We examined the independent effects of cocaine use and HIV infection on the composition and diversity of the intestinal microbiota, determined by 16S rRNA gene pyrosequencing. Using dietary records, anthropometrics, and dual x-ray absorptiometry, we examined the additional effects of nutritional indices on the intestinal microbiota. We compared markers of inflammation and microbial translocation between groups. RESULTS Cocaine users had a higher relative abundance of Bacteroidetes (M ± SD = 57.0% ± 21 vs. 37.1% ± 23, p = .02) than nonusers. HIV-infected individuals had a higher relative abundance of Proteobacteria (Mdn [interquartile range] = 1.56% [0.5, 2.2] vs. 0.36% [0.2, 0.7], p = .03), higher levels of soluble CD14 and tumor necrosis factor-α, and lower levels of anti-endotoxin core antibodies than uninfected subjects. HIV-infected cocaine users had higher interferon-γ levels than all other groups. Food insecurity was higher in HIV-infected cocaine users. CONCLUSIONS We identified differences in the relative abundance of major phyla of the intestinal microbiota, as well as markers of inflammation and microbial translocation, based on cocaine use and HIV infection. Nutritional factors, including alcohol use and lean body mass, may contribute to these differences.
Collapse
Affiliation(s)
- Gretchen E Volpe
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, Tufts University School of Medicine, Boston, Massachusetts
| | - Honorine Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, Tufts University School of Medicine, Boston, Massachusetts
| | - Mkaya Mwamburi
- Tufts University School of Medicine, Boston, Massachusetts
| | - Duy Dinh
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| | - Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| | - Christine Wanke
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, Tufts University School of Medicine, Boston, Massachusetts
| | - Anne V Kane
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
66
|
Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 2014; 211:19-27. [PMID: 25057045 DOI: 10.1093/infdis/jiu409] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite effective antiretroviral therapy (ART), patients with chronic human immunodeficiency virus (HIV) infection have increased microbial translocation and systemic inflammation. Alterations in the intestinal microbiota may play a role in microbial translocation and inflammation. METHODS We profiled the fecal microbiota by pyrosequencing the gene encoding 16S ribosomal RNA (rRNA) and measured markers of microbial translocation and systemic inflammation in 21 patients who had chronic HIV infection and were receiving suppressive ART (cases) and 16 HIV-uninfected controls. RESULTS The fecal microbial community composition was significantly different between cases and controls. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, and Barnesiella was significantly enriched in cases, whereas that of Rikenellaceae and Alistipes was depleted. The plasma soluble CD14 level (sCD14) was significantly higher and the endotoxin core immunoglobulin M (IgM) level lower in cases, compared with controls. There were significant positive correlations between the relative abundances of Enterobacteriales and Enterobacteriaceae and the sCD14 level; the relative abundances of Gammaproteobacteria, Enterobacteriales, and Enterobacteriaceae and the interleukin 1β (IL-1β) level; the relative abundances of Enterobacteriales and Enterobacteriaceae and the interferon γ level; and the relative abundances of Erysipelotrichi and Barnesiella and the TNF-α level. There were negative correlations between endotoxin core IgM and IL-1β levels. CONCLUSIONS Patients who have chronic HIV infection and are receiving suppressive ART display intestinal dysbiosis associated with increased microbial translocation and significant associations between specific taxa and markers of microbial translocation and systemic inflammation. This was an exploratory study, the findings of which need to be confirmed.
Collapse
Affiliation(s)
- Duy M Dinh
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Gretchen E Volpe
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| | - Chad Duffalo
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Albert K Tai
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Anne V Kane
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center
| | - Christine A Wanke
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Department of Public Health and Community Medicine
| |
Collapse
|
67
|
Nema V, Nair R. Metagenomic analysis of diarrheal stool samples of HIV infected individual and HIV-uninfected individual using 16SrDNA sequencing. Indian J Med Microbiol 2014; 32:347-8. [PMID: 25008839 DOI: 10.4103/0255-0857.136606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- V Nema
- Division of Microbiology and Clinical Pathology, National AIDS Research Institute, Bhosari, Pune, Maharashtra, India
| | | |
Collapse
|
68
|
Aging of the human innate immune system in HIV infection. Curr Opin Immunol 2014; 29:127-36. [PMID: 24997358 DOI: 10.1016/j.coi.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
HIV infection is associated with a chronic inflammatory state arising from multiple factors, including innate immune recognition of HIV, increased microbial translocation, and release of endogenous ligands from damaged cells (such as CD4 T cells). In many respects, this heightened pro-inflammatory environment resembles that associated with aging in the absence of HIV infection, and evidence of dysregulated innate immune responses can be found in not only older HIV-negative adults, but also adults with HIV infection. While the study of innate immune aging in HIV infection is still in its early stages, it seems likely that at least additive, or potentially synergistic effects of aging and HIV infection will be found.
Collapse
|
69
|
Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, Gianella S, Siewe B, Smith DM, Landay AL, Robertson CE, Frank DN, Wilson CC. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 2014; 7:983-94. [PMID: 24399150 PMCID: PMC4062575 DOI: 10.1038/mi.2013.116] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T-cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T-cell activation, inflammation, and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1-infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared with uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1-infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation, and blood T-cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection.
Collapse
Affiliation(s)
- SM Dillon
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - EJ Lee
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - CV Kotter
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - GL Austin
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Z Dong
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - DK Hecht
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - S Gianella
- University of California, San Diego, La Jolla, California
| | - B Siewe
- Rush University Medical Center, Chicago
| | - DM Smith
- University of California, San Diego, La Jolla, California
| | - AL Landay
- Rush University Medical Center, Chicago
| | | | - DN Frank
- University of Colorado Anschutz Medical Campus, Aurora Colorado,University of Colorado Microbiome Research Consortium
| | - CC Wilson
- University of Colorado Anschutz Medical Campus, Aurora Colorado
| |
Collapse
|
70
|
Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 2014; 10:e1004198. [PMID: 24968145 PMCID: PMC4072797 DOI: 10.1371/journal.ppat.1004198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Effective antiretroviral therapy (ART) dramatically reduces AIDS-related complications, yet the life expectancy of long-term ART-treated HIV-infected patients remains shortened compared to that of uninfected controls, due to increased risk of non-AIDS related morbidities. Many propose that these complications result from translocated microbial products from the gut that stimulate systemic inflammation--a consequence of increased intestinal paracellular permeability that persists in this population. Concurrent intestinal immunodeficiency and structural barrier deterioration are postulated to drive microbial translocation, and direct evidence of intestinal epithelial breakdown has been reported in untreated pathogenic SIV infection of rhesus macaques. To assess and characterize the extent of epithelial cell damage in virally-suppressed HIV-infected patients, we analyzed intestinal biopsy tissues for changes in the epithelium at the cellular and molecular level. The intestinal epithelium in the HIV gut is grossly intact, exhibiting no decreases in the relative abundance and packing of intestinal epithelial cells. We found no evidence for structural and subcellular localization changes in intestinal epithelial tight junctions (TJ), but observed significant decreases in the colonic, but not terminal ileal, transcript levels of TJ components in the HIV+ cohort. This result is confirmed by a reduction in TJ proteins in the descending colon of HIV+ patients. In the HIV+ cohort, colonic TJ transcript levels progressively decreased along the proximal-to-distal axis. In contrast, expression levels of the same TJ transcripts stayed unchanged, or progressively increased, from the proximal-to-distal gut in the healthy controls. Non-TJ intestinal epithelial cell-specific mRNAs reveal differing patterns of HIV-associated transcriptional alteration, arguing for an overall change in intestinal epithelial transcriptional regulation in the HIV colon. These findings suggest that persistent intestinal epithelial dysregulation involving a reduction in TJ expression is a mechanism driving increases in colonic permeability and microbial translocation in the ART-treated HIV-infected patient, and a possible immunopathogenic factor for non-AIDS related complications.
Collapse
|
71
|
Gut Microbiota in HIV Infection: Implication for Disease Progression and Management. Gastroenterol Res Pract 2014; 2014:803185. [PMID: 25024700 PMCID: PMC4082943 DOI: 10.1155/2014/803185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/15/2022] Open
Abstract
Survival rates among HIV patients have significantly improved since the introduction of antiretroviral therapy (ART) in HIV management. However, persistent disease progression and clinical complications in virally suppressed individuals point to additional contributing factors other than HIV replication; microbial translocation is one such factor. The role of underlying commensal microbes and microbial products that traverse the intestinal lumen into systemic circulation in the absence of overt bacteraemia is under current investigation. This review focuses on current knowledge of the complex microbial communities and microbial markers involved in the disruption of mucosal immune T-cells in the promotion of inflammatory processes in HIV infections. Unanswered questions and aims for future studies are addressed. We provide perspective for discussing potential future therapeutic strategies focused on modulating the gut microbiota to abate HIV disease progression.
Collapse
|
72
|
|
73
|
Trøseid M, Manner IW, Pedersen KK, Haissman JM, Kvale D, Nielsen SD. Microbial translocation and cardiometabolic risk factors in HIV infection. AIDS Res Hum Retroviruses 2014; 30:514-22. [PMID: 24521167 DOI: 10.1089/aid.2013.0280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The widespread access to antiretroviral treatment during the past decades has transformed HIV infection from a lethal disease to a chronic condition, in which the relative burden of non-AIDS-related chronic disorders such as cardiovascular disease, malignancy, renal, liver, and bone disease has increased. The adjusted relative risk for myocardial infarction is reported to be around 2-fold compared to that of the general population, which over time is likely to translate into increased absolute risk in an aging population. Thus, delineating potentially HIV-specific pathogenetic mechanisms is crucial in order to tailor novel strategies for prophylaxis and treatment. This review will focus on advances in the field that possibly link HIV-induced alterations of the gut mucosa and consequent microbial translocation to cardiometabolic risk factors in HIV infection. Recent work suggests that markers of microbial translocation are closely associated with several cardiovascular risk factors such as dyslipidemia, insulin resistance, hypertension, coagulation abnormalities, endothelial dysfunction, and carotid atherosclerosis. Future studies should investigate whether associations between microbial translocation and cardiovascular risk factors will translate into increased risk of acute events, and whether strategies to target gut microbiota and microbial translocation might reduce such a risk.
Collapse
Affiliation(s)
- Marius Trøseid
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | | | - Karin K. Pedersen
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | - Judith M. Haissman
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | - Dag Kvale
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Susanne D. Nielsen
- Viro-Immunology, Department of Infectious Diseases, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
74
|
Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, Deeks SG, Hunt PW, Lynch SV, McCune JM. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 2014; 5:193ra91. [PMID: 23843452 DOI: 10.1126/scitranslmed.3006438] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progressive HIV infection is characterized by dysregulation of the intestinal immune barrier, translocation of immunostimulatory microbial products, and chronic systemic inflammation that is thought to drive progression of disease to AIDS. Elements of this pathologic process persist despite viral suppression during highly active antiretroviral therapy (HAART), and drivers of these phenomena remain poorly understood. Disrupted intestinal immunity can precipitate dysbiosis that induces chronic inflammation in the mucosa and periphery of mice. However, putative microbial drivers of HIV-associated immunopathology versus recovery have not been identified in humans. Using high-resolution bacterial community profiling, we identified a dysbiotic mucosal-adherent community enriched in Proteobacteria and depleted of Bacteroidia members that was associated with markers of mucosal immune disruption, T cell activation, and chronic inflammation in HIV-infected subjects. Furthermore, this dysbiosis was evident among HIV-infected subjects undergoing HAART, and the extent of dysbiosis correlated with activity of the kynurenine pathway of tryptophan catabolism and plasma concentrations of the inflammatory cytokine interleukin-6 (IL-6), two established markers of disease progression. Gut-resident bacteria with capacity to catabolize tryptophan through the kynurenine pathway were found to be enriched in HIV-infected subjects, strongly correlated with kynurenine levels in HIV-infected subjects, and capable of kynurenine production in vitro. These observations demonstrate a link between mucosal-adherent colonic bacteria and immunopathogenesis during progressive HIV infection that is apparent even in the setting of viral suppression during HAART. This link suggests that gut-resident microbial populations may influence intestinal homeostasis during HIV disease.
Collapse
Affiliation(s)
- Ivan Vujkovic-Cvijin
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco UCSF, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, Wilson ML, Hahn BH, Ochman H. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 2014; 14:340-5. [PMID: 24034619 DOI: 10.1016/j.chom.2013.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/25/2013] [Accepted: 08/09/2013] [Indexed: 02/01/2023]
Abstract
Simian immunodeficiency virus of chimpanzees (SIVcpz) is the ancestor of human immunodeficiency virus type 1 (HIV-1), the etiologic agent of acquired immunodeficiency syndrome (AIDS) in humans. Like HIV-1-infected humans, SIVcpz-infected chimpanzees can develop AIDS-like symptoms. Because SIVcpz/HIV-1 may disrupt regulation of the gut microbiome and because it has not been possible to sample individual humans pre- and postinfection, we investigated the influence of infection on gut communities through long-term monitoring of chimpanzees from Gombe National Park, Tanzania. SIVcpz infection accelerated the rate of change in gut microbiota composition within individuals for periods of years after the initial infection and led to gut communities marked by high frequencies of pathogen-containing bacterial genera absent from SIVcpz-negative individuals. Our results indicate that immune function maintains temporally stable gut communities that are lost when individuals become infected with SIVcpz.
Collapse
Affiliation(s)
- Andrew H Moeller
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 2014; 10:e1003829. [PMID: 24586144 PMCID: PMC3930561 DOI: 10.1371/journal.ppat.1003829] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy. Human immunodeficiency virus (HIV) infection related illness progresses despite the control of the virus itself by medications that stop the replication of the virus. This happens because the immune system gets activated. While the causes for such activation of the immune system are not exactly known, immune activation in HIV infection may be occurring as a result of bacteria or their products in the digestive tract. This study looks at the types of bacteria that reside in the lower intestinal tract in patients infected with human immunodeficiency virus, using state of the art sequencing technology, that can simultaneously look at thousands of bacteria. We have found that the bacteria at the end of the small bowel (an area also called the terminal ileum), at the right and left sides of the large intestine and in the stool is different in patients infected with the human immunodeficiency virus. HIV patients harbor more bacteria that have been linked to other human diseases and have been previously described as harmful. This finding is new and could open up a new frontier of study that could now pave the way to gain a deeper understanding of how the HIV causes illness.
Collapse
|
77
|
Sinha B, Rubens M. Systemic immune activation in HIV and potential therapeutic options. Immunopharmacol Immunotoxicol 2014; 36:89-95. [PMID: 24552614 DOI: 10.3109/08923973.2014.890217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Advancement in HIV treatment has evolved over the last two decades with the discovery of new drugs and approaches. Studies have demonstrated that HIV-infected individuals have elevated immune activation even during effective antiretroviral therapy. Persistently elevated immune activation has been one of the main obstacles against developing an effective approach for curing HIV. OBJECTIVE This review examines the mechanism of microbial translocation in HIV-infected individuals and currently investigated potential therapeutic approaches. METHODS We searched PubMed and Medline for peer-reviwed articles and recent HIV/AIDS conference abstracts and papers. Narrative review method was used since the objectives of the study were mechanism of microbial translocation and mechanism of action of multiple drugs against it. RESULTS Microbial translocation occurs as a result of the disruption of epithelial barrier and immunological dysfunction within the intestinal tract due to defective tight junctions, loss of TH17 type CD4(+) T cells, impaired liver architecture, and depletion of intestinal myelomonocytic cells. Potent and effective way to intervene microbial translocation is to target the mechanism of actions involved in microbial translocation by restoration of beneficial microbiata with supplemental probiotics/prebiotics, increased clearance of microbial products from systemic circulation with targeted antibodies and restoration of intestinal integrity with antibiotics. CONCLUSIONS Number of promising drug molecules against microbial translocation are currently under various stages of trials and the results of these trials will hopefully contribute significantly toward effective therapeutic intervention. However, studies also need to explore the effect of combination drugs to abrogate microbial translocation.
Collapse
|
78
|
Abstract
Limited information is available about the effects of HIV and subsequent antiretroviral treatment on host-microbe interactions. This study aimed to determine the salivary microbial composition for 10 HIV-seropositive subjects, before and 6 months after highly active antiretroviral therapy (HAART), compared with that for 10 HIV-seronegative subjects. A conventional culture and two culture-independent analyses were used and consistently demonstrated differences in microbial composition among the three sets of samples. HIV-positive subjects had higher levels of total cultivable microbes, including oral streptococci, lactobacilli, Streptococcus mutans, and Candida, in saliva than did HIV-negative subjects. The total cultivable microbial levels were significantly correlated with CD4+ T cell counts. Denaturing gradient gel electrophoresis (DGGE), which compared the overall microbial profiles, showed distinct fingerprinting profiles for each group. The human oral microbe identification microarray (HOMIM) assay, which compared the 16S rRNA genes, showed clear separation among the three sample groups. Veillonella, Synergistetes, and Streptococcus were present in all 30 saliva samples. Only minor changes or no changes in the prevalence of Neisseria, Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvimonas, and Rothia were observed. Seven genera, Capnocytophaga, Slackia, Porphyromonas, Kingella, Peptostreptococcaceae, Lactobacillus, and Atopobium, were detected only in HIV-negative samples. The prevalences of Fusobacterium, Campylobacter, Prevotella, Capnocytophaga, Selenomonas, Actinomyces, Granulicatella, and Atopobium were increased after HAART. In contrast, the prevalence of Aggregatibacter was significantly decreased after HAART. The findings of this study suggest that HIV infection and HAART can have significant effects on salivary microbial colonization and composition.
Collapse
|
79
|
Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev 2014; 37:762-92. [PMID: 23789590 DOI: 10.1111/1574-6976.12029] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/21/2023] Open
Abstract
The urogenital tract appears to be the only niche of the human body that shows clear differences in microbiota between men and women. The female reproductive tract has special features in terms of immunological organization, an epithelial barrier, microbiota, and influence by sex hormones such as estrogen. While the upper genital tract is regarded as free of microorganisms, the vagina is colonized by bacteria dominated by Lactobacillus species, although their numbers vary considerably during life. Bacterial vaginosis is a common pathology characterized by dysbiosis, which increases the susceptibility for HIV infection and transmission. On the other hand, HIV infections are often characterized by a disturbed vaginal microbiota. The endogenous vaginal microbiota may protect against HIV by direct production of antiviral compounds, through blocking of adhesion and transmission by ligands such as lectins, and/or by stimulation of immune responses. The potential role of probiotics in the prevention of HIV infections and associated symptoms, by introducing them to the vaginal and gastrointestinal tract (GIT), is also discussed. Of note, the GIT is a site of considerable HIV replication and CD4(+) T-cell destruction, resulting in both local and systemic inflammation. Finally, genetically engineered lactobacilli show promise as new microbicidal agents against HIV.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | | | | | | | | |
Collapse
|
80
|
|
81
|
Abstract
Combination antiretroviral therapy for HIV infection improves immune function and eliminates the risk of AIDS-related complications but does not restore full health. HIV-infected adults have excess risk of cardiovascular, liver, kidney, bone, and neurologic diseases. Many markers of inflammation are elevated in HIV disease and strongly predictive of the risk of morbidity and mortality. A conceptual model has emerged to explain this syndrome of diseases where HIV-mediated destruction of gut mucosa leads to local and systemic inflammation. Translocated microbial products then pass through the liver, contributing to hepatic damage, impaired microbial clearance, and impaired protein synthesis. Chronic activation of monocytes and altered liver protein synthesis subsequently contribute to a hypercoagulable state. The combined effect of systemic inflammation and excess clotting on tissue function leads to end-organ disease. Multiple therapeutic interventions designed to reverse these pathways are now being tested in the clinic. It is likely that knowledge gained on how inflammation affects health in HIV disease could have implications for our understanding of other chronic inflammatory diseases and the biology of aging.
Collapse
|
82
|
Fitzgerald F, Harris K, Doyle R, Alber D, Klein N. Short communication: Evidence that microbial translocation occurs in HIV-infected children in the United Kingdom. AIDS Res Hum Retroviruses 2013; 29:1589-93. [PMID: 23972017 DOI: 10.1089/aid.2013.0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microbial translocation (MT) from the gut is implicated in driving immune activation, increasing morbidity and mortality in HIV. We used bacterial 16S rDNA PCR, Sanger sequencing, and high-throughput sequencing to identify microbial DNA in the bloodstream of HIV-infected children in London, United Kingdom. Blood samples were collected from sequential children attending the HIV clinic at Great Ormond Street Hospital, London. DNA extraction, broad range 16S rDNA PCR, and standard Sanger sequencing were carried out. A subset of positive samples was analyzed by high-throughput sequencing (Roche 454 platform). Of 105 samples collected from sequential children, nine were positive using broad range 16S rDNA PCR (8.6%; 95% CI 4.4-16%). From three amplicons, 16S rDNA sequences were identified as Streptococcus, Propionibacterium acnes, and coagulase-negative Staphylococcus. Four positive samples were analyzed by high-throughput sequencing. In the three samples in which organisms were identified by Sanger sequencing, the same species were identified. Further species, in differing proportions, were identified in all four samples. The identified organisms included known gut orders Bifidobacteriaceae, Lactobacillaceae, Bacteroidales, and Clostridiales. In immunocompetent children of equivalent age, no bacterial DNA was detected in blood using this approach. This is the first study to our knowledge using molecular techniques to identify MT in children in the developed world. Our data indicate that 16S rDNA is detectable in 8.6% of HIV-infected children. Levels of DNA were low and from multiple bacterial species. Further studies are needed to ascertain the importance of MT in HIV-infected children.
Collapse
Affiliation(s)
- Felicity Fitzgerald
- Paediatrics Department, North Middlesex University Hospital, London, United Kingdom
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Kathryn Harris
- Microbiology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Ronan Doyle
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Dagmar Alber
- The ithree Institute, University of Technology Sydney, Sydney, Australia
| | - Nigel Klein
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
83
|
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14:660-7. [PMID: 23778793 DOI: 10.1038/ni.2611] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023]
Abstract
The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.
Collapse
Affiliation(s)
- Eric M Brown
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
84
|
Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, Knight R, Fontenot AP, Palmer BE. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 2013; 14:329-39. [PMID: 24034618 PMCID: PMC3864811 DOI: 10.1016/j.chom.2013.08.006] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 12/27/2022]
Abstract
Understanding gut microbiota alterations associated with HIV infection and factors that drive these alterations may help explain gut-linked diseases prevalent with HIV. 16S rRNA sequencing of feces from HIV-infected individuals revealed that HIV infection is associated with highly characteristic gut community changes, and antiretroviral therapy does not consistently restore the microbiota to an HIV-negative state. Despite the chronic gut inflammation characteristic of HIV infection, the associated microbiota showed limited similarity with other inflammatory states and instead showed increased, rather than decreased, diversity. Meta-analysis revealed that the microbiota of HIV-infected individuals in the U.S. was most similar to a Prevotella-rich community composition typically observed in healthy individuals in agrarian cultures of Malawi and Venezuela and related to that of U.S. individuals with carbohydrate-rich, protein- and fat-poor diets. By evaluating innate and adaptive immune responses to lysates from bacteria that differ with HIV, we explore the functional drivers of these compositional differences.
Collapse
Affiliation(s)
- Catherine A Lozupone
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Asmuth DM, Ma ZM, Albanese A, Sandler NG, Devaraj S, Knight TH, Flynn NM, Yotter T, Garcia JC, Tsuchida E, Wu TT, Douek DC, Miller CJ. Oral serum-derived bovine immunoglobulin improves duodenal immune reconstitution and absorption function in patients with HIV enteropathy. AIDS 2013; 27:2207-17. [PMID: 23660579 PMCID: PMC3754419 DOI: 10.1097/qad.0b013e328362e54c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To examine the impact of serum-derived bovine immunoglobulin, an oral medical food known to neutralize bacterial antigen and reduce intestinal inflammation, on restoration of mucosal immunity and gastrointestinal function in individuals with HIV enteropathy. DESIGN Open-label trial with intensive 8-week phase of bovine serum immunoglobulin (SBI) 2.5 g twice daily with a 4-week washout period and an optional 9-month extension study. METHODS HIV enteropathy was defined as chronic gastrointestinal symptoms including frequent loose or watery stools despite no identifiable, reversible cause. Upper endoscopy for tissue immunofluorescent antibody assay and disaccharide gut permeability/absorption studies were performed before and after 8 weeks of SBI to test mucosal immunity and gastrointestinal function. Blood was collected for markers of microbial translocation, inflammation, and collagen kinetics. A validated gastrointestinal questionnaire assessed changes in symptoms. RESULTS All eight participants experienced profound improvement in symptoms with reduced bowel movements/day (P = 0.008) and improvements in stool consistency (P = 0.008). Gut permeability was normal before and after the intervention, but D-xylose absorption increased in seven of eight participants. Mucosal CD4 lymphocyte densities increased by a median of 139.5 cells/mm2 from 213 to 322 cells/mm2 (P = 0.016). Intestinal-fatty acid binding protein (I-FABP), a marker of enterocyte damage, initially rose in seven of eight participants after 8 weeks (P = 0.039), and then fell below baseline in four of five who continued receiving SBI (P = 0.12). Baseline serum I-FABP levels were negatively correlated with subsequent rise in mucosal CD4 lymphocyte densities (r = -0.74, P = 0.046). CONCLUSION SBI significantly increases intestinal mucosal CD4 lymphocyte counts, improves duodenal function, and showed evidence of promoting intestinal repair in the setting of HIV enteropathy.
Collapse
Affiliation(s)
- David M Asmuth
- aUniversity of California Davis Medical School bVeterans Administration Northern California Healthcare System, Sacramento cUniversity of California - Davis dCenter for Comparative Medicine, Davis, California eVaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland fBaylor College of Medicine and Texas Children's Hospital, Houston, Texas gCARES Clinic, Sacramento, California hMayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Collini PJ, Kuijper E, Dockrell DH. Clostridium difficile infection in patients with HIV/AIDS. Curr HIV/AIDS Rep 2013; 10:273-82. [PMID: 23657793 DOI: 10.1007/s11904-013-0162-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clostridium difficile infection (CDI) affects significant numbers of hospitalized patients and is an increasing problem in the community. It is also among the most commonly isolated pathogens in HIV patients with diarrheal illness and is ≥2 fold more common in HIV-seropositive individuals. This association is stronger in those with low absolute CD4 T cell counts or meeting clinical criteria for an AIDS diagnosis, and was most pronounced before the wide availability of highly active antiretroviral therapy. The presentation and outcome of CDI in HIV appears similar to the general population. The increased risk can in part be attributed to increased hospitalization and antimicrobial use, but HIV related alterations in fecal microbiota, gut mucosal integrity, and humoral and cell mediated immunity are also likely to play a role. Here we review the evidence for these observations and the relevance of recent advances in the diagnosis and management of CDI for the HIV clinician.
Collapse
Affiliation(s)
- Paul J Collini
- Department of Infection and Immunity, The University of Sheffield Medical School & Sheffield Teaching Hospitals, Room LU108, L Floor, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | | |
Collapse
|
87
|
Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS 2013; 27:1921-31. [PMID: 24180001 DOI: 10.1097/qad.0b013e3283611816] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Early HIV infection is characterized by a dramatic depletion of CD4 T cells in the gastrointestinal tract and translocation of bacterial products from the gut into the blood. In this study, we evaluated if gut bacterial profiles were associated with immune status before and after starting antiretroviral therapy (ART). DESIGN We evaluated the gut microbiota of men recently infected with HIV (n = 13) who were participating in a randomized, double-blind controlled trial of combination ART and maraviroc versus placebo and who were followed for 48 weeks. METHODS To evaluate the gut microbiota of participants, we pyrosequenced the bacterial populations from anal swabs collected before and longitudinally after the initiation of ART. Associations of the gut flora with clinical variables (lymphocyte profiles and viral loads), activation and proliferation markers in peripheral blood mononuclear cells and gut biopsies (measured by flow cytometry) and markers of microbial translocation (lipopolysaccharide and soluble CD14) were performed by regression analyses using R statistical software. RESULTS Using pyrosequencing, we identified that higher proportions of Lactobacillales in the distal gut of recently HIV-infected individuals were associated with lower markers of microbial translocation, higher CD4% and lower viral loads before ART was started. Similarly, during ART, higher proportions of gut Lactobacillales were associated with higher CD4%, less microbial translocation, less systemic immune activation, less gut T lymphocyte proliferation, and higher CD4% in the gut. CONCLUSION Shaping the gut microbiome, especially proportions of Lactobacillales, could help to preserve immune function during HIV infection.
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW Over the past decades, AIDS research has made tremendous progress in all key areas, including pathogenesis, prevention, and treatment. In particular, the introduction of potent antiretroviral therapy (ART) has dramatically reduced the morbidity and mortality of HIV-infected individuals. However, several challenges remain, including the absence of a vaccine that can reliably prevent virus acquisition, and the inability of current ART regimens to eradicate the infection. RECENT FINDINGS Several key advances in HIV/AIDS research have been made possible by the extensive use of animal models and, in particular, the nonhuman primate models of SIV and SHIV infection of various monkey species including macaques, sooty mangabeys, vervets, and others. Key advantages of these models include the ability to control for parameters that are virtually impossible to assess in humans, to extensively study cells and tissues (including elective necropsy), and to perform proof-of-concept studies that would pose unacceptable safety risks in humans. SUMMARY In this review, we describe the most recent advances in the use of animal models for HIV/AIDS research, and will break down these advances in three areas: models for virus transmission, dissemination, and pathogenesis; models for virus prevention and vaccines; and models for virus eradication and indefinite virus containment (functional cure) under ART.
Collapse
Affiliation(s)
- David T. Evans
- New England National Primate Research Center, Harvard Medical School, Boston, MA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
89
|
Brenchley JM. Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol 2013; 6:657-65. [PMID: 23549448 PMCID: PMC4154146 DOI: 10.1038/mi.2013.15] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overwhelming evidence indicates that distinct pathological phenomenon occurs within the gastrointestinal (GI) tract of progressively simian immunodeficiency virus (SIV)-infected Asian macaques and HIV-infected humans compared with other anatomical sites. Massive loss of GI tract lamina propria CD4 T cells, alteration in the profile of lymphocytic cytokine production, changes in the landscape of GI tract antigen-presenting cells, and variations to the structural barrier of the GI tract are hallmarks of progressive HIV/SIV infections. The pathology within the GI tract results in translocation of microbial products from the lumen of the intestine into peripheral circulation. These translocated microbial products directly stimulate the immune system and exacerbate immune activation and, thus, disease progression. Initiation of combination antiretroviral therapy (cART) does not restore completely the immunological abnormalities within the GI tract. This incomplete restoration within the GI tract may contribute to the increased mortality observed within HIV-infected individuals treated for decades with cART. Novel therapeutic interventions aimed at enhancing GI tract anatomy and physiology may improve the prognosis of HIV-infected individuals.
Collapse
Affiliation(s)
- JM Brenchley
- Program in Tissue Immunity and Repair and Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
90
|
Abstract
In pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections, the translocation of microbial products from the gastrointestinal (GI) tract to portal and systemic circulation has been proposed as a major driver of the chronic immune activation that is associated with disease progression. Consistently, microbial translocation is not present in nonpathogenic SIV infections of natural host species. In vivo studies demonstrated that HIV/SIV-associated microbial translocation results from a series of immunopathological events occurring at the GI mucosa: (i) early and severe mucosal CD4(+) depletion, (ii) mucosal immune hyperactivation/persistent inflammation; (iii) damage to the integrity of the intestinal epithelium with enterocyte apoptosis and tight junction disruption; and (iv) subverted the gut microbiome, with a predominance of opportunistic bacteria. Direct in situ evidence of microbial translocation has been provided for SIV-infected rhesus macaques showing translocated microbial products in the intestinal lamina propria and distant sites. While the mechanisms by which microbial translocation causes immune activation remain controversial, a key pathogenic event appears to be innate immunity activation via Toll-like receptors and other pathogen recognition receptors. Accumulating clinical observations suggest that microbial translocation might affect HIV disease progression, response to therapy, and non-AIDS comorbidities. Given its detrimental effect on overall immunity, several interventions to prevent/block microbial translocation are currently under investigation as novel therapeutic agents for HIV/AIDS.
Collapse
|
91
|
|
92
|
Taiwo B, Barcena L, Tressler R. Understanding and controlling chronic immune activation in the HIV-infected patients suppressed on combination antiretroviral therapy. Curr HIV/AIDS Rep 2013; 10:21-32. [PMID: 23225316 DOI: 10.1007/s11904-012-0147-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combination antiretroviral therapy (cART) has resulted in tremendous gains in survival among HIV-infected patients, but as a group those who achieve undetectable viral loads on cART experience a greater degree of immune activation and inflammation than the general population. HIV-infected patients continue to experience premature immune senescence with earlier and more frequent non-AIDS events compared to HIV-uninfected individuals. Chronic immune activation during suppressive cART derives from a variety of sources mediated by cytokines, chemokines, coagulation, microbial translocation, immune regulators and T(effector) cell activation abnormalities, among others. Current investigational strategies to control immune activation target potential causes of persistently heightened immune activation during cART such as microbial translocation, co-infections, and comorbidities or mediators along a common final pathway. Although several interventions have shown promise in vitro or in preliminary clinical trials, no intervention has sufficient evidence for routine use, making control of immune activation during cART an unmet need.
Collapse
Affiliation(s)
- Babafemi Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
93
|
Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status. PLoS One 2013; 8:e54673. [PMID: 23355888 PMCID: PMC3552853 DOI: 10.1371/journal.pone.0054673] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023] Open
Abstract
The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain’s microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain.
Collapse
|
94
|
Bengmark S. Nutrition of the critically ill — a 21st-century perspective. Nutrients 2013; 5:162-207. [PMID: 23344250 PMCID: PMC3571643 DOI: 10.3390/nu5010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 02/07/2023] Open
Abstract
Health care-induced diseases constitute a fast-increasing problem. Just one type of these health care-associated infections (HCAI) constitutes the fourth leading cause of death in Western countries. About 25 million individuals worldwide are estimated each year to undergo major surgery, of which approximately 3 million will never return home from the hospital. Furthermore, the quality of life is reported to be significantly impaired for the rest of the lives of those who, during their hospital stay, suffered life-threatening infections/sepsis. Severe infections are strongly associated with a high degree of systemic inflammation in the body, and intimately associated with significantly reduced and malfunctioning GI microbiota, a condition called dysbiosis. Deranged composition and function of the gastrointestinal microbiota, occurring from the mouth to the anus, has been found to cause impaired ability to maintain intact mucosal membrane functions and prevent leakage of toxins - bacterial endotoxins, as well as whole bacteria or debris of bacteria, the DNA of which are commonly found in most cells of the body, often in adipocytes of obese individuals or in arteriosclerotic plaques. Foods rich in proteotoxins such as gluten, casein and zein, and proteins, have been observed to have endotoxin-like effects that can contribute to dysbiosis. About 75% of the food in the Western diet is of limited or no benefit to the microbiota in the lower gut. Most of it, comprised specifically of refined carbohydrates, is already absorbed in the upper part of the GI tract, and what eventually reaches the large intestine is of limited value, as it contains only small amounts of the minerals, vitamins and other nutrients necessary for maintenance of the microbiota. The consequence is that the microbiota of modern humans is greatly reduced, both in terms of numbers and diversity when compared to the diets of our paleolithic forebears and the individuals living a rural lifestyle today. It is the artificial treatment provided in modern medical care - unfortunately often the only alternative provided - which constitute the main contributors to a poor outcome. These treatments include artificial ventilation, artificial nutrition, hygienic measures, use of skin-penetrating devices, tubes and catheters, frequent use of pharmaceuticals; they are all known to severely impair the microbiomes in various locations of the body, which, to a large extent, are ultimately responsible for a poor outcome. Attempts to reconstitute a normal microbiome by supply of probiotics have often failed as they are almost always undertaken as a complement to - and not as an alternative to - existing treatment schemes, especially those based on antibiotics, but also other pharmaceuticals.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, 4th floor, 74 Huntley Street, London, WC1E 6AU, UK.
| |
Collapse
|
95
|
Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends Microbiol 2013; 21:6-13. [PMID: 23062765 PMCID: PMC3534808 DOI: 10.1016/j.tim.2012.09.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has significantly improved the prognosis of human immunodeficiency virus (HIV)-infected individuals. However, individuals treated long-term with cART still manifest increased mortality compared to HIV-uninfected individuals. This increased mortality is closely associated with inflammation, which persists in cART-treated HIV-infected individuals despite levels of plasma viremia below detection limits. Chronic, pathological immune activation is a key factor in progression to acquired immunodeficiency syndrome (AIDS) in untreated HIV-infected individuals. One contributor to immune activation is microbial translocation, which occurs when microbial products traverse the tight epithelial barrier of the gastrointestinal tract. Here we review the mechanisms underlying microbial translocation and its role in contributing to immune activation and disease progression in HIV infection.
Collapse
Affiliation(s)
- Nichole R. Klatt
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Nicholas T. Funderburg
- Division of Infectious Diseases, Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
96
|
Bacterial DNA Translocation and Liver Disease Severity Among HIV-Infected Patients With Chronic Hepatitis C. J Acquir Immune Defic Syndr 2012; 61:552-6. [DOI: 10.1097/qai.0b013e31826ea109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
97
|
Bengmark S. Nutrition of the critically ill - emphasis on liver and pancreas. Hepatobiliary Surg Nutr 2012; 1:25-52. [PMID: 24570901 PMCID: PMC3924628 DOI: 10.3978/j.issn.2304-3881.2012.10.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 10/25/2012] [Indexed: 12/13/2022]
Abstract
About 25 million individuals undergo high risk surgery each year. Of these about 3 million will never return home from hospital, and the quality of life for many of those who return is often significantly impaired. Furthermore, many of those who manage to leave hospital have undergone severe life-threatening complications, mostly infections/sepsis. The development is strongly associated with the level of systemic inflammation in the body, which again is entirely a result of malfunctioning GI microbiota, a condition called dysbiosis, with deranged composition and function of the gastrointestinal microbiota from the mouth to the anus and impaired ability to maintain intact mucosal membrane functions and prevent leakage of toxins-bacterial endotoxins and whole or debris of bacteria, but also foods containing proteotoxins gluten, casein and zein and heat-induced molecules such as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Markedly lower total anaerobic bacterial counts, particularly of the beneficial Bifidobacterium and Lactobacillus and higher counts of total facultative anaerobes such as Staphylococcus and Pseudomonas are often observed when analyzing the colonic microbiota. In addition Gram-negative facultative anaerobes are commonly identified microbial organisms in mesenteric lymph nodes and at serosal "scrapings" at laparotomy in patients suffering what is called "Systemic inflammation response system" (SIRS). Clearly the outcome is influenced by preexisting conditions in those undergoing surgery, but not to the extent as one could expect. Several studies have for example been unable to find significant influence of pre-existing obesity. The outcome seems much more to be related to the life-style of the individual and her/his "maintenance" of the microbiota e.g., size and diversity of microbiota, normal microbiota, eubiosis, being highly preventive. About 75% of the food Westerners consume does not benefit microbiota in the lower gut. Most of it, refined carbohydrates, is already absorbed in the upper part of the GI tract, and of what reaches the large intestine is of limited value containing less minerals, less vitamins and other nutrients important for maintenance of the microbiota. The consequence is that the microbiota of modern man has a much reduced size and diversity in comparison to what our Palelithic forefathers had, and individuals living a rural life have today. It is the artificial treatment provided by modern care, unfortunately often the only alternative, which belongs to the main contributor to poor outcome, among them; artificial ventilation, artificial nutrition, hygienic measures, use of skin penetrating devices, tubes and catheters, frequent use of pharmaceuticals, all known to significantly impair the total microbiome of the body and dramatically contribute to poor outcome. Attempts to reconstitute a normal microbiome have often failed as they have always been undertaken as a complement to and not an alternative to existing treatment schemes, especially treatments with antibiotics. Modern nutrition formulas are clearly too artificial as they are based on mixture of a variety of chemicals, which alone or together induce inflammation. Alternative formulas, based on regular food ingredients, especially rich in raw fresh greens, vegetables and fruits and with them healthy bacteria are suggested to be developed and tried.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, London, WC1E 6AU, United Kingdom
| |
Collapse
|
98
|
Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol 2012; 5:596-604. [PMID: 22929559 DOI: 10.1038/mi.2012.82] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While only partial immune reconstitution in gut-associated lymphoid tissue typically occurs following initiation of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) infection, near-complete immune reconstitution has occasionally been described. This review highlights findings from studies examining the effects of HAART and the timing of its initiation on gastrointestinal (GI) CD4+ T-cell recovery. Its effects on specific CD4+ T-cell subtypes, CD8+ T cells, natural killer cells, and immunoglobulins are also described. Finally, the ability of HAART to restore the intestinal epithelial barrier and lymphatic tissue architecture and reduce microbial translocation is addressed. Determining whether HAART has the ability to prevent permanent GI immune damage when commenced in acute HIV infection has implications for the optimal timing of HAART initiation.
Collapse
|
99
|
Bengmark S. Gut microbiota, immune development and function. Pharmacol Res 2012; 69:87-113. [PMID: 22989504 DOI: 10.1016/j.phrs.2012.09.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 02/08/2023]
Abstract
The microbiota of Westerners is significantly reduced in comparison to rural individuals living a similar lifestyle to our Paleolithic forefathers but also to that of other free-living primates such as the chimpanzee. The great majority of ingredients in the industrially produced foods consumed in the West are absorbed in the upper part of small intestine and thus of limited benefit to the microbiota. Lack of proper nutrition for microbiota is a major factor under-pinning dysfunctional microbiota, dysbiosis, chronically elevated inflammation, and the production and leakage of endotoxins through the various tissue barriers. Furthermore, the over-comsumption of insulinogenic foods and proteotoxins, such as advanced glycation and lipoxidation molecules, gluten and zein, and a reduced intake of fruit and vegetables, are key factors behind the commonly observed elevated inflammation and the endemic of obesity and chronic diseases, factors which are also likely to be detrimental to microbiota. As a consequence of this lifestyle and the associated eating habits, most barriers, including the gut, the airways, the skin, the oral cavity, the vagina, the placenta, the blood-brain barrier, etc., are increasingly permeable. Attempts to recondition these barriers through the use of so called 'probiotics', normally applied to the gut, are rarely successful, and sometimes fail, as they are usually applied as adjunctive treatments, e.g. in parallel with heavy pharmaceutical treatment, not rarely consisting in antibiotics and chemotherapy. It is increasingly observed that the majority of pharmaceutical drugs, even those believed to have minimal adverse effects, such as proton pump inhibitors and anti-hypertensives, in fact adversely affect immune development and functions and are most likely also deleterious to microbiota. Equally, it appears that probiotic treatment is not compatible with pharmacological treatments. Eco-biological treatments, with plant-derived substances, or phytochemicals, e.g. curcumin and resveratrol, and pre-, pro- and syn-biotics offers similar effects as use of biologicals, although milder but also free from adverse effects. Such treatments should be tried as alternative therapies; mainly, to begin with, for disease prevention but also in early cases of chronic diseases. Pharmaceutical treatment has, thus far, failed to inhibit the tsunami of endemic diseases spreading around the world, and no new tools are in sight. Dramatic alterations, in direction of a paleolithic-like lifestyle and food habits, seem to be the only alternatives with the potential to control the present escalating crisis. The present review focuses on human studies, especially those of clinical relevance.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, 4th floor, 74 Huntley Street, London WC1E 6AU, United Kingdom.
| |
Collapse
|
100
|
Gastrointestinal-associated lymphoid tissue immune reconstitution in a randomized clinical trial of raltegravir versus non-nucleoside reverse transcriptase inhibitor-based regimens. AIDS 2012; 26:1625-34. [PMID: 22820612 DOI: 10.1097/qad.0b013e3283546595] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To examine immune restoration in duodenal tissue and correlates of reduction of immune activation in chronic HIV-infected patients randomized to different treatment regimens. DESIGN Randomized clinical trial (RCT) comparing raltegravir to a non-nucleoside reverse transcriptase inhibitor-based regimen, both with fixed-dose tenofovir difumerate/emtricitabine. METHODS Antiretroviral therapy (ART)-naive volunteers underwent upper endoscopy for duodenal biopsies before and after 9 months of therapy. Tissue was paraffin-embedded for immunohistochemistry or digested into single-cell suspensions for flow cytometry of lymphocyte subsets and activation phenotype. Plasma-soluble CD14 levels were measured as a surrogate for bacterial translocation. RESULTS Sixteen HIV-positive and seven control individuals completed study procedures. Small increases in duodenal lamina propria CD4 T-cell numbers were observed, especially when viewed relative to populations in control volunteers, with no differences between treatment arms. The increase in CD4 T-cell percentage was due largely to declines in CD8 T-cell numbers, which were disproportionately increased compared to peripheral blood and controls. Patients randomized to the raltegravir arm had consistent declines in both sCD14 levels and CD8 T-cell numbers in the duodenal tissue lamina propria. CONCLUSIONS This first RCT of lymphocyte population restoration in duodenal tissue demonstrates more modest increases in CD4 T-cell numbers during the first 9 months of therapy than when considering CD3/CD4 percentages only. Although reduced after 9 months of ART, disproportional increased CD8 populations persist in duodenal gastrointestinal-associated lymphoid tissue (GALT). Local rather than systemic antigenic stimulation appears to be driving expanded CD8 T lymphocytes in GALT. Factors other than viral-induced CD8 expansion may be contributing to this local immunologic response.
Collapse
|