51
|
Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I, Zaballos Á, Janbon G, Ariño J, Zaragoza Ó. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 2018; 14:e1007007. [PMID: 29775477 PMCID: PMC5959073 DOI: 10.1371/journal.ppat.1007007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Haroldo Cesar de Oliveira
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brazil
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Suélen Andreia Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Irene Llorente
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific Services, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
52
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
53
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
54
|
Mukaremera L, Lee KK, Wagener J, Wiesner DL, Gow NA, Nielsen K. Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. Cell Surf 2018; 1:15-24. [PMID: 30123851 PMCID: PMC6095662 DOI: 10.1016/j.tcsw.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that often causes infections in immunocompromised individuals. Upon inhalation into the lungs C. neoformans differentiates into cells with altered size and morphology, including production of large titan cells. Titan cells possess thickened cell wall and dense, cross-linked capsule when compared to in vitro grown cells. In addition, titan cells have increased cell wall chitin that is associated with a detrimental anti-inflammatory immune response. Here we examined the cell wall and capsule composition of in vitro, in vivo typical-sized and in vivo titan cells using High Performance Liquid Chromatography (HPLC). The monomer composition of cell wall polysaccharides showed that in vivo C. neoformans cells contained more glucosamine and less glucose than in vitro cells, suggesting alteration in abundance of both chitin and glucans, respectively. Low levels of galactosamine were also detected in carbohydrates from both in vivo and vitro cells. Within the in vivo cell population, differences in the proportions of cell wall and capsule monomers between typical and titan cells were also observed. Taken together, these results demonstrate that C. neoformans reshapes its cell wall and capsule composition during infection. These cell wall and capsule alterations likely help C. neoformans escape recognition by, and allow modulation of, the host immune system.
Collapse
Affiliation(s)
- Liliane Mukaremera
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, USA
| | - Keunsook K. Lee
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeanette Wagener
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Darin L. Wiesner
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, USA
| |
Collapse
|
55
|
Mechanisms of Pulmonary Escape and Dissemination by Cryptococcus neoformans. J Fungi (Basel) 2018; 4:jof4010025. [PMID: 29463005 PMCID: PMC5872328 DOI: 10.3390/jof4010025] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.
Collapse
|
56
|
Abstract
Cryptococcus neoformans is a human pathogenic yeast that causes hundreds of thousands of deaths worldwide among susceptible individuals, in particular, HIV+ patients. This yeast has developed several adaptation mechanisms that allow replication within the host. During decades, this yeast has been well known for a very peculiar and unique structure that contributes to virulence, a complex polysaccharide capsule that surrounds the cell wall. In contrast to other fungal pathogens, such as Candida albicans or Aspergillus fumigatus, the role of morphological transitions has not been studied in the virulence of Cryptococcus neoformans since this yeast does not form hyphae during infection. However, in the last years, different groups have described the ability of this fungus to change its size during infection. In particular, Cryptococcus can form "titan cells," which are blastoconidia of an abnormal large size. Since their discovery, there is increasing evidence that these cells contribute, not only to long-term persistence in the host, but they can also actively participate in the development of the disease. Recently, several groups have simultaneously described different media that induce the appearance of titan cells in laboratory conditions. Using these conditions, new inducing factors and signaling pathways involved in this transition have been described. In this article, we will review the main phenotypic features of these cells, factors, and transduction pathways that induce cell growth, and how titan cells contribute to the disease caused by this pathogen.
Collapse
|
57
|
Camacho E, Chrissian C, Cordero RJB, Liporagi-Lopes L, Stark RE, Casadevall A. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. MICROBIOLOGY-SGM 2017; 163:1540-1556. [PMID: 29043954 DOI: 10.1099/mic.0.000552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Chrissian
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.,Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Livia Liporagi-Lopes
- Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruth E Stark
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.,Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
58
|
Taylor-Smith LM. Cryptococcus-Epithelial Interactions. J Fungi (Basel) 2017; 3:jof3040053. [PMID: 29371569 PMCID: PMC5753155 DOI: 10.3390/jof3040053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen, Cryptococcus neoformans, causes devastating levels of morbidity and mortality. Infections with this fungus tend to be predominantly in immunocompromised individuals, such as those with HIV. Infections initiate with inhalation of cryptococcal cells and entry of the pathogen into the lungs. The bronchial epithelial cells of the upper airway and the alveolar epithelial cells of the lower airway are likely to be the first host cells that Cryptococcus engage with. Thus the interaction of cryptococci and the respiratory epithelia will be the focus of this review. C. neoformans has been shown to adhere to respiratory epithelial cells, although if the role of the capsule is in aiding or hindering this adhesion is debatable. The epithelia are also able to react to cryptococci with the release of cytokines and chemokines to start the immune response to this invading pathogen. The activity of surfactant components that line this mucosal barrier towards Cryptococcus and the metabolic and transcriptional reaction of cryptococci when encountering epithelial cells will also be discussed.
Collapse
Affiliation(s)
- Leanne M Taylor-Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, UK.
| |
Collapse
|
59
|
Trevijano-Contador N, Rossi SA, Alves E, Landín-Ferreiroa S, Zaragoza O. Capsule Enlargement in Cryptococcus neoformans Is Dependent on Mitochondrial Activity. Front Microbiol 2017; 8:1423. [PMID: 28824559 PMCID: PMC5534456 DOI: 10.3389/fmicb.2017.01423] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans is an environmental encapsulated yeast that behaves as an opportunistic pathogen in immunocompromised individuals. The capsule is the main virulence factor of this pathogen. This structure is highly dynamic, and it can change its size and structure according to the environmental conditions. During infection, C. neoformans significantly enlarges the size of the capsule by the addition of new polysaccharide. It is believed that capsule growth is an energy-cost process, but this aspect has never been addressed. In this work, we have evaluated the role of mitochondrial activity on capsule growth using specific inhibitors of the electron respiratory chain. We observed that capsule growth was impaired in the presence of inhibitors of the respiratory chain as salicylhydroxamic acid or antimycin A. Furthermore, capsule growth correlated with an increase of the mitochondrial membrane potential and higher production of reactive oxygen species. Our results confirm that capsule growth depends on mitochondrial activity, and open new insights to understand the regulation of this process.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Suelen A Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Elisabete Alves
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Santiago Landín-Ferreiroa
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
60
|
Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR. The Crucial Role of Biofilms in Cryptococcus neoformans Survival within Macrophages and Colonization of the Central Nervous System. J Fungi (Basel) 2017; 3:E10. [PMID: 29371529 PMCID: PMC5715963 DOI: 10.3390/jof3010010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated yeast-like fungus capable of causing life threatening meningoencephalitis in patients with impaired immunity. This microbe primarily infects the host via inhalation but has the ability to disseminate to the central nervous system (CNS) either as a single cell or inside of macrophages. Upon traversing the blood brain barrier, C. neoformans has the capacity to form biofilm-like structures known as cryptococcomas. Hence, we will discuss the C. neoformans elements contributing to biofilm formation including the fungus' ability to survive in the acidic environment of a macrophage phagosome and inside of the CNS. The purpose of this mini-review is to instill fresh interest in understanding the importance of biofilms on fungal pathogenesis.
Collapse
Affiliation(s)
- Lilit Aslanyan
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - David A Sanchez
- Howard University College of Medicine, Washington, DC 20059-1027, USA.
| | - Silvana Valdebenito
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Eliseo A Eugenin
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Raddy L Ramos
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
61
|
Physiological Differences in Cryptococcus neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal Susceptibility. Antimicrob Agents Chemother 2017; 61:AAC.02108-16. [PMID: 28031206 PMCID: PMC5328578 DOI: 10.1128/aac.02108-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cryptococcus neoformans is an environmentally ubiquitous fungal pathogen that primarily causes disease in people with compromised immune systems, particularly those with advanced AIDS. There are estimated to be almost 1 million cases per year of cryptococcal meningitis in patients infected with human immunodeficiency virus, leading to over 600,000 annual deaths, with a particular burden in sub-Saharan Africa. Amphotericin B (AMB) and fluconazole (FLC) are key components of cryptococcal meningitis treatment: AMB is used for induction, and FLC is for consolidation, maintenance and, for occasional individuals, prophylaxis. However, the results of standard antifungal susceptibility testing (AFST) for AMB and FLC do not correlate well with therapeutic outcomes and, consequently, no clinical breakpoints have been established. While a number of explanations for this absence of correlation have been proffered, one potential reason that has not been adequately explored is the possibility that the physiological differences between the in vivo infection environment and the in vitro AFST environment lead to disparate drug susceptibilities. These susceptibility-influencing factors include melanization, which does not occur during AFST, the size of the polysaccharide capsule, which is larger in infecting cells than in those grown under normal laboratory conditions, and the presence of large polyploid "titan cells," which rarely occur under laboratory conditions. Understanding whether and how C. neoformans differentially expresses mechanisms of resistance to AMB and FLC in the AFST environment compared to the in vivo environment could enhance our ability to interpret AFST results and possibly lead to the development of more applicable testing methods.
Collapse
|
62
|
Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation. mBio 2017; 8:mBio.02290-16. [PMID: 28143983 PMCID: PMC5285508 DOI: 10.1128/mbio.02290-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to mask immunogenic epitopes. We have created a fungal strain with a targeted mutation in a pH response pathway that is unable to properly organize its cell wall, resulting in a dramatic immune reaction during infection. This mutant cell wall is defective in hiding important cell wall components, such as the chito-oligomers chitin and chitosan. By creating a series of cell wall mutants, we demonstrated that the degree of chito-oligomer exposure correlates with the intensity of innate immune cell activation. This activation requires a combination of host receptors to recognize and respond to these infecting microorganisms. Therefore, these experiments explored host-pathogen interactions that determine the degree of the subsequent inflammatory response and the likely outcome of infection.
Collapse
|
63
|
Species in the Cryptococcus gattii Complex Differ in Capsule and Cell Size following Growth under Capsule-Inducing Conditions. mSphere 2016; 1:mSphere00350-16. [PMID: 28066814 PMCID: PMC5196034 DOI: 10.1128/msphere.00350-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023] Open
Abstract
Infections with the fungal pathogen Cryptococcus gattii have been increasing in recent years. Recently, four different species have been described within C. gattii, which correspond to four previously known molecular genotypes (VGI to VGIV). Examining traits related to infection and disease is important for determining whether these different species have clinical relevance. This study examined variation in attributes that are important for infecting and surviving in the host, including tolerance to various stresses, yeast cell size, and the amount of polysaccharide capsule that covers the cell. The cell size and capsule size were significantly different and inversely correlated across the species. Thermotolerance was highest in C. deuterogattii (VGII), the only species known to cause outbreaks, while most strains of the species C. bacillisporus (VGIII) and C. tetragattii (VGIV) grew poorly at 37°C. These findings argue for increased acceptance of the new species and may be useful for informing diagnosis and prognosis in clinical infection. Cryptococcus gattii causes invasive fungal infections that have been increasing in incidence and global distribution in recent years. The major molecular genotypes of C. gattii that were previously classified as VGI to VGIV have recently been described as four new species: C. gattii (VGI), C. deuterogattii (VGII), C. bacillisporus (VGIII), and C. tetragattii (VGIV). The main driver for their classification has been phylogeny, and phenotypic diversity has not yet been extensively characterized. This study examines variation in attributes related to virulence and pathogenicity, including capsule thickness, cell size, tolerance to temperature, oxidative and osmotic stress, and cell wall integrity. A capsule induction agar using diluted Sabouraud medium revealed significant differences in capsule and cell size across the C. gattii species complex and produced irregularly shaped elongated cells in a number of strains. C. gattii/VGI strains possessed the largest capsules of all species but had smaller cells, while C. deuterogattii/VGII strains possessed the largest cells of all species but had smaller capsules. Overall thermotolerance was highest in C. deuterogattii/VGII strains, while a number of C. bacillisporus/VGIII, and C. tetragattii/VGIV strains had substantially reduced growth at 37°C. There was no significant difference among species in their tolerances to oxidative or osmotic stresses, and there was no evidence for defects in cell wall integrity in strains producing irregular cells. These data support the division of the C. gattii species complex into distinctly identified species and suggest underlying reasons for their differences in virulence, epidemiology, and host preference. IMPORTANCE Infections with the fungal pathogen Cryptococcus gattii have been increasing in recent years. Recently, four different species have been described within C. gattii, which correspond to four previously known molecular genotypes (VGI to VGIV). Examining traits related to infection and disease is important for determining whether these different species have clinical relevance. This study examined variation in attributes that are important for infecting and surviving in the host, including tolerance to various stresses, yeast cell size, and the amount of polysaccharide capsule that covers the cell. The cell size and capsule size were significantly different and inversely correlated across the species. Thermotolerance was highest in C. deuterogattii (VGII), the only species known to cause outbreaks, while most strains of the species C. bacillisporus (VGIII) and C. tetragattii (VGIV) grew poorly at 37°C. These findings argue for increased acceptance of the new species and may be useful for informing diagnosis and prognosis in clinical infection.
Collapse
|
64
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
65
|
Aminnejad M, Cogliati M, Duan S, Arabatzis M, Tintelnot K, Castañeda E, Lazéra M, Velegraki A, Ellis D, Sorrell TC, Meyer W. Identification and Characterization of VNI/VNII and Novel VNII/VNIV Hybrids and Impact of Hybridization on Virulence and Antifungal Susceptibility Within the C. neoformans/C. gattii Species Complex. PLoS One 2016; 11:e0163955. [PMID: 27764108 PMCID: PMC5072701 DOI: 10.1371/journal.pone.0163955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are pathogenic basidiomycetous yeasts and the commonest cause of fungal infection of the central nervous system. Cryptococci are typically haploid but several inter-species, inter-varietal and intra-varietal hybrids have been reported. It has a bipolar mating system with sexual reproduction occurring normally between two individuals with opposite mating types, α and a. This study set out to characterize hybrid isolates within the C. neoformans/C. gattii species complex: seven unisexual mating intra-varietal VNI/VNII (αAAα) and six novel inter-varietal VNII/VNIV (aADα). The URA5-RFLP pattern for VNII/VNIV (aADα) differs from the VNIII (αADa) hybrids. Analysis of the allelic patterns of selected genes for AD hybrids showed 79% or more heterozygosis for the studied loci except for CBS132 (VNIII), which showed 50% of heterozygosity. MALDI-TOF MS was applied to hybrids belonging to different sero/mating type allelic patterns. All hybrid isolates were identified as belonging to the same hybrid group with identification scores ranging between 2.101 to 2.634. All hybrids were virulent when tested in the Galleria mellonella (wax moth) model, except for VNII/VNIV (aADα) hybrids. VNI/VGII hybrids were the most virulent hybrids. Hybrids recovered from larvae manifested a significant increase in capsule and total cell size and produced a low proportion (5-10%) of giant cells compared with the haploid control strains. All strains expressed the major virulence factors-capsule, melanin and phospholipase B-and grew well at 37°C. The minimal inhibitory concentration of nine drugs was measured by micro-broth dilution and compared with published data on haploid strains. MICs were similar amongst hybrids and haploid parental strains. This is the first study reporting natural same sex αAAα intra-varietal VNI/VNII hybrids and aADα inter-varietal VNII/VNIV hybrids.
Collapse
Affiliation(s)
- Mojgan Aminnejad
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Massimo Cogliati
- Laboratory Micologia Medica, Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Michael Arabatzis
- Mycology Research Laboratory, Department of Microbiology, Medical School, National Kapodistrian University of Athens, Athens, Greece
| | | | | | - Marcia Lazéra
- Mycology Laboratory, National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Aristea Velegraki
- Mycology Research Laboratory, Department of Microbiology, Medical School, National Kapodistrian University of Athens, Athens, Greece
| | - David Ellis
- School of Molecular & Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tania C. Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| |
Collapse
|
66
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
67
|
Identification of QTLs Associated with Virulence Related Traits and Drug Resistance in Cryptococcus neoformans. G3-GENES GENOMES GENETICS 2016; 6:2745-59. [PMID: 27371951 PMCID: PMC5015932 DOI: 10.1534/g3.116.029595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptococcus neoformans is a basidiomycete fungus capable of causing deadly meningoenchephilitis, primarily in immunocompromised individuals. Formerly, C. neoformans was composed of two divergent lineages, but these have recently been elevated to species status, now C. neoformans (formerly C. neoformans var. grubii) and C. deneoformans (formerly C. neoformans var. neoformans). While both species can cause deadly infections in humans, C. neoformans is much more prevalent in clinical settings than C. deneoformans. However, the genetic factors contributing to their significant differences in virulence remain largely unknown. Quantitative trait locus (QTL) mapping is a powerful tool that can be used to identify genomic regions associated with phenotypic differences between strains. Here, we analyzed a hybrid cross between these two species and identified a total of 23 QTL, including five for melanin production, six for cell size, one for cell wall thickness, five for the frequency of capsule production, three for minimal inhibitory concentration (MIC) of fluconazole in broth, and three for MIC on solid medium. For the fluconazole resistance-associated QTL, three showed environment and/or concentration-specific effects. Our results provide a large number of candidate gene regions from which to explore the molecular bases for phenotypic differences between C. neoformans and C. deneoformans.
Collapse
|
68
|
Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM, Peralta RHS. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol Res 2016; 193:30-38. [PMID: 27825484 DOI: 10.1016/j.micres.2016.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Free-living amoebas (FLA) are ubiquitous environmental protists that have enormously contributed to the microbiological contamination of water sources. FLAs have displayed resistance to environmental adversities and germicides and have played important roles in the population control of microbial communities due to its predatory behavior and microbicidal activity. However, some organisms have developed resistance to the intracellular milieu of amoebas, as in the case of Acanthamoebas, which in turn, have been functioning as excellent reservoirs for amoeba-resistant microorganisms (ARMs), such as bacteria, viruses and fungi. Little is known about these relationships and interaction mechanisms, but it is speculated that the FLAs need a very broad repertoire or universal class of receptors to bind and recognize these diverse species of microorganisms. By harboring these organisms as a "Trojan Horse", the Achantamoeba has been working as an excellent vector for pathogens. Moreover, studies have demonstrated that the interaction of pathogens with Acanthamoeba results in environmental selective pressure responsible for induction and maintenance of virulence factors and increase in microbial pathogenicity. This phenomenon is correlated to the observation of higher gene number and DNA content of ARMs, when compared to their relatives which are adapted to other hosts, due to allopatric or sympatric gene transfer and acquisition, contradicting the overall genome reduction theory for intracellularly adapted pathogens. Thus, adaptation to FLAs indirectly provided a "learning" environment for pathogens to resist later to macrophages; besides the evolutionary distance, these phagocytes share similar predatory mechanisms, such as phagocytosis and phagolysossomal degradation. In this mini-review, we cover the most important aspects of Acanthamoeba biology and their interactions with endemically important human pathogens.
Collapse
Affiliation(s)
- Allan J Guimaraes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Brazil.
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Brazil
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
69
|
Trevijano-Contador N, Rueda C, Zaragoza O. Fungal morphogenetic changes inside the mammalian host. Semin Cell Dev Biol 2016; 57:100-109. [PMID: 27101887 DOI: 10.1016/j.semcdb.2016.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
One of the main features of the majority of pathogenic fungi is the ability to switch between different types of morphological forms. These changes include the transition between cells of different shapes (such as the formation of pseudohyphae and hyphae), or the massive growth of the blastoconidia and formation of titan cells. Morphological changes occur during infection, and there is extensive evidence that they play a key role in processes required for disease, such as adhesion, invasion and dissemination, immune recognition evasion, and phagocytosis avoidance. In the present review, we will provide an overview of how morphological transitions contribute to the development of fungal disease, with special emphasis in two cases: Candida albicans as an example of yeast that switches between blastoconidia and filaments, and Cryptococcus neoformans as an example of a fungus that changes the size without modifying the shape of the cell.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda 28220, Madrid, Spain
| | - Cristina Rueda
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda 28220, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda 28220, Madrid, Spain.
| |
Collapse
|
70
|
Palková Z, Váchová L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol 2016; 57:110-119. [PMID: 27084693 DOI: 10.1016/j.semcdb.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
Abstract
Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | - Libuše Váchová
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
71
|
Abstract
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Collapse
|
72
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Araújo GRDS, Fontes GN, Leão D, Rocha GM, Pontes B, Sant'Anna C, de Souza W, Frases S. Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy. J Struct Biol 2015; 193:75-82. [PMID: 26655746 DOI: 10.1016/j.jsb.2015.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals. Its main virulence factor is an extracellular polysaccharide capsule whose structure, assembly and dynamics remain poorly understood. In this study, we apply improved protocols for sample preparation and recently-developed scanning microscopy techniques to visualize the ultrastructure of the C. neoformans capsule at high-resolution (up to 1 nm) and improved structural preservation. Although most capsule structures in nature consist of linear polymers, we show here that the C. neoformans capsule is a 'microgel-like' structure composed of branched polysaccharides. Moreover, we imaged the capsule-to-cell wall link, which is formed by thin fibers that branch out of thicker capsule filaments, and have one end firmly embedded in the cell wall structure. Together, our findings provide compelling ultrastructural evidence for a branched and complex capsule conformation, which may have important implications for the biological activity of the capsule as a virulence factor.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Giselle N Fontes
- National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Daniela Leão
- National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Gustavo Miranda Rocha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Óticas - COPEA, Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Sant'Anna
- National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
74
|
García-Barbazán I, Trevijano-Contador N, Rueda C, de Andrés B, Pérez-Tavárez R, Herrero-Fernández I, Gaspar ML, Zaragoza O. The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses. Cell Microbiol 2015; 18:111-24. [PMID: 26243235 DOI: 10.1111/cmi.12488] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/20/2015] [Accepted: 07/11/2015] [Indexed: 01/10/2023]
Abstract
Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.
Collapse
Affiliation(s)
- Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Cristina Rueda
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Belén de Andrés
- Immunobiology Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Raquel Pérez-Tavárez
- Histology Unit, Functional Unit for Research in Chronic Diseases, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Inés Herrero-Fernández
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - María Luisa Gaspar
- Immunobiology Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, Majadahonda, Madrid, 28220, Spain
| |
Collapse
|
75
|
Bouklas T, Fries BC. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future Microbiol 2015; 10:191-7. [PMID: 25689531 DOI: 10.2217/fmb.14.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathogenic fungus, Cryptococcus neoformans, is known to undergo phenotypic variation, which affects its virulence in the host. Recent investigations on C. neoformans cells in humans have validated the concept that phenotypic variation is present and relevant for the outcome of chronic cryptococcosis. The C. neoformans capsule is not the only trait that varies among strains. An emerging variant is the "old cell phenotype" generated when C. neoformans undergoes replicative aging. This phenotype, which other than larger size also exhibits a thickened cell wall, inhibits phagocytosis and killing by antifungals in vitro. In concert with the finding that old cells accumulate in vivo, this emergent trait could have significant impact on cryptococcal virulence and infection, and contribute to treatment failure.
Collapse
Affiliation(s)
- Tejas Bouklas
- Division of Infectious Diseases, Department of Medicine, Health Sciences Center T15-080, Stony Brook University Medical Center, Stony Brook, NY 11794-8153, USA
| | | |
Collapse
|
76
|
Pontes B, Frases S. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools. Front Microbiol 2015; 6:640. [PMID: 26157436 PMCID: PMC4478440 DOI: 10.3389/fmicb.2015.00640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 01/19/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses.
Collapse
Affiliation(s)
- Bruno Pontes
- Laboratório de Pinças Óticas da Coordenação de Programas de Estudos Avançados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
77
|
Zhang N, Park YD, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol 2015; 78:99-107. [PMID: 25460849 PMCID: PMC4433448 DOI: 10.1016/j.fgb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States.
| |
Collapse
|
78
|
Beardsley J, Thanh LT, Day J. A Model CNS Fungal Infection: Cryptococcal Meningitis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
79
|
Cryptococcal phospholipase B1 is required for intracellular proliferation and control of titan cell morphology during macrophage infection. Infect Immun 2015; 83:1296-304. [PMID: 25605772 PMCID: PMC4363446 DOI: 10.1128/iai.03104-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and a leading cause of fungal-infection-related fatalities, especially in immunocompromised hosts. Several virulence factors are known to play a major role in the pathogenesis of cryptococcal infections, including the enzyme phospholipase B1 (Plb1). Compared to other well-studied Cryptococcus neoformans virulence factors such as the polysaccharide capsule and melanin production, very little is known about the contribution of Plb1 to cryptococcal virulence. Phospholipase B1 is a phospholipid-modifying enzyme that has been implicated in multiple stages of cryptococcal pathogenesis, including initiation and persistence of pulmonary infection and dissemination to the central nervous system, but the underlying reason for these phenotypes remains unknown. Here we demonstrate that a Δplb1 knockout strain of C. neoformans has a profound defect in intracellular growth within host macrophages. This defect is due to a combination of a 50% decrease in proliferation and a 2-fold increase in cryptococcal killing within the phagosome. In addition, we show for the first time that the Δplb1 strain undergoes a morphological change during in vitro and in vivo intracellular infection, resulting in a subpopulation of very large titan cells, which may arise as a result of the attenuated mutant's inability to cope within the macrophage.
Collapse
|
80
|
Trevijano-Contador N, Herrero-Fernández I, García-Barbazán I, Scorzoni L, Rueda C, Rossi SA, García-Rodas R, Zaragoza O. Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella. Virulence 2015; 6:66-74. [PMID: 25531532 PMCID: PMC4603429 DOI: 10.4161/21505594.2014.986412] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated opportunistic fungal pathogen that is found in multiple niches in the environment and that can cause fatal meningoencephalitis in susceptible patients, mainly HIV+ individuals. Cryptococcus also infects environmental hosts such as nematodes, insects and plants. In particular, C. neoformans can kill the lepidopteran Galleria mellonella, which offers a useful tool to study microbial virulence and drug efficacy. Galleria mellonella immunity relies on innate responses based on melanization, accumulation of antimicrobial peptides, and cellular responses as phagocytosis or multicellular encapsulation. In this work we have investigated the immune response of G. mellonella during cryptococcal infection. We found that G. mellonella infected with C. neoformans had a high lytic activity in their hemolymph. This response was temperature- and capsule-dependent. During interaction with phagocytic cells, C. neoformans behaved as an intracellular pathogen since it could replicate within hemocytes. Non-lytic events were also observed. In contrast to Candida species, C. neoformans did not induce melanization of G. mellonella after infection. Finally, passage of C. neoformans through G. mellonella resulted in changes in capsule structure as it has been also reported during infection in mammals. Our results highlight that G. mellonella is an optimal model to investigate innate immune responses against C. neoformans.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| | - Inés Herrero-Fernández
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| | - Irene García-Barbazán
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| | - Liliana Scorzoni
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
- Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; R. Expedicionários do Brasil, 1621, CEP. 14801–902, Araraquara, São Paulo, Brazil
| | - Cristina Rueda
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| | - Suélen Andreia Rossi
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
- Laboratório de Micologia Clínica; Faculdade de Ciências Farmacêuticas; R. Expedicionários do Brasil, 1621, CEP. 14801–902, Araraquara, São Paulo, Brazil
| | - Rocío García-Rodas
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory; National Center for Microbiology; Instituto de Salud Carlos III; Carretera Majadahonda-Pozuelo, Km2; Majadahonda, 28220, Madrid, Spain
| |
Collapse
|
81
|
Azevedo MID, Ferreiro L, Da Silva AS, Tonin AA, Ruchel JB, Rezer JF, França RT, Zimmermann CE, Leal DB, Duarte MM, Lopes ST, Flores MM, Fighera R, Santurio JM. E-NTPDase and E-ADA activities in rats experimental infected by Cryptococcus neoformans. Vet Microbiol 2014; 174:206-13. [DOI: 10.1016/j.vetmic.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
82
|
Nosanchuk JD, Nimrichter L, Casadevall A, Rodrigues ML. A role for vesicular transport of macromolecules across cell walls in fungal pathogenesis. Commun Integr Biol 2014; 1:37-39. [PMID: 19169363 DOI: 10.4161/cib.1.1.6639] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In our recent work, we have shown that fungal species from different phyla produce extracellular vesicles. The vesicles are heterogeneous and morphologically similar to mammalian exosomes, with intact bilayered membranes. Proteomic analyses reveal that the vesicles contain a broad array of macromolecules, many of which are associated with fungal virulence. Further, the biological import of the extracellular fungal vesicles is supported by their presence during murine cryptococcosis and the immunoreactivity of convalescent serum from patients with Cryptococcus neoformans or Histoplasma capsulatum vesicle protein extracts.In contrast to most eukaryotic cells, fungi have complex cell walls, that could in theory provide a significant barrier to the secretion of large molecules. The discovery of trans-cell wall vesicular transport in fungi provides a solution to the problem of extracellular transport of macromolecules. Identifying similar vesicles in ascomycetes and basidiomycetes suggest that the shuttle system is ancient, predating the divergence of these branches 0.5-1.0 billion years ago. Importantly, the discovery of this trans-cell wall vesicular transport system also poses new, interesting questions for future investigations.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Microbiology and Immunology; Albert Einstein College of Medicine; Bronx, New York USA
| | | | | | | |
Collapse
|
83
|
Bouklas T, Fries BC. Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans. Fungal Genet Biol 2014; 78:59-64. [PMID: 25307541 DOI: 10.1016/j.fgb.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
Cryptococcus neoformans, similar to other eukaryotes, undergoes replicative aging. Replicative life spans have been determined for clinical C. neoformans strains, and although they are a reproducible trait, life spans vary considerably among strains. C. neoformans has been proposed as an ideal model organism to investigate the contribution of replicative aging in a fungal pathogen population to emerging phenotypic variation during chronic cryptococcal infections. C. neoformans cells of advanced generational age manifest a distinct phenotype; specifically, a larger cell size, a thicker cell wall, drug resistance, as well as resistance to hydrogen peroxide-mediated killing. Consequently, old cells are selected in the host environment during chronic infection and aging could be an unanticipated mechanism of pathogen adaptation that contributes to persistent disease. Aging as a natural process of phenotypic variation should be further studied as it likely is also relevant for other eukaryotic pathogen populations that undergo asymmetric replicative aging.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
84
|
Teixeira PAC, Penha LL, Mendonça-Previato L, Previato JO. Mannoprotein MP84 mediates the adhesion of Cryptococcus neoformans to epithelial lung cells. Front Cell Infect Microbiol 2014; 4:106. [PMID: 25191644 PMCID: PMC4137752 DOI: 10.3389/fcimb.2014.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 01/13/2023] Open
Abstract
The capsule is the most important virulence factor of the fungal pathogen Cryptococcus neoformans. This structure consists of highly hydrated polysaccharides, including glucuronoxylomannan (GXM), and galactoxylomannan (GalXM). It is also composed of mannoproteins (MPs) which corresponds to less than 1% of the capsular weight. Despite MPs being the minority and least studied components, four of these molecules with molecular masses of 115, 98, 88, and 84 kDa were identified and characterized as C. neoformans immunoreactive antigens involved in the pathogenesis, and are potential cryptococcosis vaccine candidates. With the aim to describe the adhesive property of MPs, we cloned and expressed the MP84, a mannoprotein with molecular weight of 84 kDa, on Pichia pastoris yeast, and performed interaction assays of C. neoformans with epithelial lung cells, in the presence or absence of capsule components. Two fungal strains, the wild type, NE-241, and a mutant, CAP67, deficient in GXM production, were used throughout this study. The adhesion assays were completed using epithelial lung cells, A549, and human prostate cancer cells, PC3, as a control. We observed that capsulated wild type (NE-241), and acapsular (CAP67) strains adhered significantly to A549 cells, compared with PC3 cells (p < 0.05). GXM inhibits the NE-241 adhesion, but not the CAP67. In contrast, CAP67 adhesion was only inhibited in the presence of MP84. These results demonstrate the involvement of MP in the adhesion of C. neoformans to epithelial lung cells. We conclude that this interaction possibly involves an adhesion-like interaction between MP on the fungal surface and the complementary receptor molecules on the epithelial cells.
Collapse
Affiliation(s)
- Pedro A C Teixeira
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Luciana L Penha
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
85
|
Firacative C, Duan S, Meyer W. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii. PLoS One 2014; 9:e105076. [PMID: 25133687 PMCID: PMC4136835 DOI: 10.1371/journal.pone.0105076] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/20/2014] [Indexed: 12/18/2022] Open
Abstract
Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p <0.05) than the highly virulent Vancouver Island outbreak strain VGIIa (CDCR265), 11 (four VGI, two VGII, four VGIII and one VGIV) had similar virulence (p >0.05), 21 (five VGI, five VGII, four VGIII and seven VGIV) were less virulent (p <0.05) while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001). No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05). The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature), that maybe crucial for the development and progression of cryptococcosis.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- * E-mail:
| |
Collapse
|
86
|
Abstract
The fungal pathogen Cryptococcus neoformans has several virulence factors, among which the most important is a polysaccharide capsule. The size of the capsule is variable and can increase significantly during infection. In this work, we investigated the relationship between capsular enlargement and the cell cycle. Capsule growth occurred primarily during the G1 phase. Real-time visualization of capsule growth demonstrated that this process occurred before the appearance of the bud and that capsule growth arrested during budding. Benomyl, which arrests the cells in G2/M, inhibited capsule growth, while sirolimus (rapamycin) addition, which induces G1 arrest, resulted in cells with larger capsule. Furthermore, we have characterized a mutant strain that lacks a putative G1/S cyclin. This mutant showed an increased capacity to enlarge the capsule, both in vivo (using Galleria mellonella as the host model) and in vitro. In the absence of Cln1, there was a significant increase in the production of extracellular vesicles. Proteomic assays suggest that in the cln1 mutant strain, there is an upregulation of the glyoxylate acid cycle. Besides, this cyclin mutant is avirulent at 37°C, which correlates with growth defects at this temperature in rich medium. In addition, the cln1 mutant showed lower intracellular replication rates in murine macrophages. We conclude that cell cycle regulatory elements are involved in the modulation of the expression of the main virulence factor in C. neoformans. Cryptococcus neoformans is a pathogenic fungus that has significant incidence worldwide. Its main virulence factor is a polysaccharide capsule that can increase in size during infection. In this work, we demonstrate that this process occurs in a specific phase of the cell cycle, in particular, in G1. In agreement, mutants that have an abnormal longer G1 phase show larger capsule sizes. We believe that our findings are relevant because they provide a link between capsule growth, cell cycle progression, and virulence in C. neoformans that reveals new aspects about the pathogenicity of this fungus. Moreover, our findings indicate that cell cycle elements could be used as antifungal targets in C. neoformans by affecting both the growth of the cells and the expression of the main virulence factor of this pathogenic yeast.
Collapse
|
87
|
Galiza GJ, Silva TM, Caprioli RA, Tochetto C, Rosa FB, Fighera RA, Kommers GD. Características histomorfológicas e histoquímicas determinantes no diagnóstico da criptococose em animais de companhia. PESQUISA VETERINÁRIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000300011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sete casos de criptococose (seis gatos e um cão) foram estudados para estabelecer as características histomorfológicas e histoquímicas determinantes no diagnóstico histopatológico dessa condição. Os dados complementares relacionados à epidemiologia, aos aspectos clínicos, à localização das lesões e às alterações macroscópicas foram obtidos dos protocolos de necropsias e biópsias. Na histologia, as leveduras foram observadas no interior de macrófagos ou livres no parênquima, associadas à reação inflamatória linfo-histioplasmocítica que variou de escassa a acentuada. Pela técnica de hematoxilina-eosina (HE) as leveduras eram arredondadas, com célula central contendo um núcleo, circundada por um halo claro (cápsula geralmente não corada). As técnicas histoquímicas do ácido periódico de Schiff (PAS), Grocott e Fontana-Masson (FM) foram utilizadas e evidenciaram a parede das células das leveduras. Pelo FM observou-se a melanina presente nessas células. As técnicas do azul Alciano e da mucicarmina de Mayer evidenciaram principalmente a cápsula polissacarídica das leveduras. O diâmetro das células das leveduras variou de 1,67 a 10,00µm e o diâmetro total das leveduras encapsuladas variou entre 4,17 e 34,16µm. Os brotamentos foram melhor visualizados através do PAS e ocorreram em base estreita, de forma única ou múltipla, principalmente em polos opostos das células das leveduras ou formando uma cadeia. O diagnóstico definitivo de criptococose foi estabelecido através do exame histopatológico, baseando-se na morfologia característica do agente (levedura encapsulada) e em suas propriedades tintoriais (histoquímicas), principalmente nos casos em que a cultura micológica não foi realizada.
Collapse
|
88
|
Temporal behavior of capsule enlargement by Cryptococcus neoformans. EUKARYOTIC CELL 2013; 12:1383-8. [PMID: 23954840 DOI: 10.1128/ec.00163-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial capsules are important virulence traits that mediate cell-host interactions and provide protection against host immune defense mechanisms. Cryptococcus neoformans is a yeast-like fungus that is capable of synthesizing a complex polysaccharide (PS) capsule that is required for causing disease. Microscopic visualization of capsule enlargement is difficult, because the capsule is a highly hydrated structure with an index of refraction that is very close to that of aqueous medium. In this study, we took advantage of the capsular reaction ("quellung" effect) produced by IgM monoclonal antibody (MAb) 13F1 to increase the refraction index difference between capsule and medium such that we visualized the capsule using differential interference contrast (DIC) microscopy. Time-lapse size measurements allowed us to quantify the growth rate of the capsule relative to that of the cell body. The increase in capsule volume per unit of time was consistent with a logistic variable slope model in which the capsule's final size was proportional to the rate of its growth. The rate of capsule growth (0.3 to 2.5 µm(3)/min) was at least 4-fold faster than the rate of cell body growth (0.1 to 0.3 µm(3)/min), and there was large cell-to-cell variation in the temporal kinetics of capsule and cellular growth. Previous to the first cellular replication event, both the capsule and cell body enlarged simultaneously, and their differences showed monotonic growth, which was affected only by its rate of volume increase per unit of time. Using these results, we provide an updated model for cryptococcal capsule biogenesis.
Collapse
|
89
|
Abstract
Does cell age matter in virulence? The emergence of persister cells during chronic infections is critical for persistence of infection, but little is known how this occurs. Here, we demonstrate for the first time that the replicative age of the fungal pathogen Cryptococcus neoformans contributes to persistence during chronic meningoencephalitis. Generationally older C. neoformans cells are more resistant to hydrogen peroxide stress, macrophage intracellular killing, and antifungal agents. Older cells accumulate in both experimental rat infection and in human cryptococcosis. Mathematical modeling supports the concept that the presence of older C. neoformans cells emerges from in vivo selection pressures. We propose that advanced replicative aging is a new unanticipated virulence trait that emerges during chronic fungal infection and facilitates persistence. Therapeutic interventions that target old cells could help in the clearance of chronic infections. Our findings that the generational age of Cryptococcus neoformans cells matters in pathogenesis introduces a novel concept to eukaryotic pathogenesis research. We propose that emerging properties of aging C. neoformans cells and possibly also other fungal pathogens contribute to persistence and virulence. Whereas the replicative life span of strains may not matter for virulence per se, age-related resilience and thus the generational age of individual C. neoformans cells within a pathogen population could greatly affect persistence of the pathogen population and therefore impact outcome.
Collapse
|
90
|
Low concentrations of hydrogen peroxide or nitrite induced of Paracoccidioides brasiliensis cell proliferation in a Ras-dependent manner. PLoS One 2013; 8:e69590. [PMID: 23922749 PMCID: PMC3726682 DOI: 10.1371/journal.pone.0069590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/10/2013] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioides brasiliensis, a causative agent of paracoccidioidomycosis (PCM), should be able to adapt to dramatic environmental changes inside the infected host after inhalation of air-borne conidia and transition to pathogenic yeasts. Proteins with antioxidant functions may protect fungal cells against reactive oxygen (ROS) and nitrogen (RNS) species generated by phagocytic cells, thus acting as potential virulence factors. Ras GTPases are involved in stress responses, cell morphology, and differentiation in a range of organisms. Ras, in its activated form, interacts with effector proteins and can initiate a kinase cascade. In lower eukaryotes, Byr2 kinase represents a Ras target. The present study investigated the role of Ras in P. brasiliensis after in vitro stimulus with ROS or RNS. We have demonstrated that low concentrations of H2O2 (0.1 mM) or NO2 (0.1–0.25 µM) stimulated P. brasiliensis yeast cell proliferation and that was not observed when yeast cells were pre-incubated with farnesyltransferase inhibitor. We constructed an expression plasmid containing the Byr2 Ras-binding domain (RBD) fused with GST (RBD-Byr2-GST) to detect the Ras active form. After stimulation with low concentrations of H2O2 or NO2, the Ras active form was observed in fungal extracts. Besides, NO2 induced a rapid increase in S-nitrosylated Ras levels. This alternative posttranslational modification of Ras, probably in residue Cys123, would lead to an exchange of GDP for GTP and consequent GTPase activation in P. brasiliensis. In conclusion, low concentrations of H2O2 or NO2 stimulated P. brasiliensis proliferation through Ras activation.
Collapse
|
91
|
X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. mBio 2013; 4:mBio.00265-13. [PMID: 23820392 PMCID: PMC3705448 DOI: 10.1128/mbio.00265-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.
Collapse
|
92
|
Pool A, Lowder L, Wu Y, Forrester K, Rumbaugh J. Neurovirulence of Cryptococcus neoformans determined by time course of capsule accumulation and total volume of capsule in the brain. J Neurovirol 2013; 19:228-38. [PMID: 23733307 DOI: 10.1007/s13365-013-0169-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Cryptococcal meningitis remains a significant opportunistic infection in HIV-infected individuals worldwide, despite availability of antiretroviral therapies in developed nations. Current therapy with amphotericin B is difficult to administer and only partially effective. Mechanisms of cryptococcal neuropathogenesis are still not clearly defined. In the present study, we used a C57Bl/6 mouse model with intravenous inoculation of three isogenic strains of Cryptococcus neoformans: H99, Cap59, and Pkr1-33. These strains differ in their capsule production and are normocapsular, hypocapsular, and hypercapsular, respectively. We studied the role of capsule in the morbidity and mortality of our host animal. Surprisingly, we found that the hypercapsular strain was least virulent while the strains that produced less capsule were more virulent and had higher concentrations of organism in the brain. These results suggest that neurovirulence is related to total capsule volume and rate of capsule accumulation in the brain, rather than the amount of capsule produced per organism. Therapies which decrease central nervous system dissemination and inhibit replication rates in the brain may be more effective than therapies which target capsule production.
Collapse
Affiliation(s)
- A Pool
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
93
|
Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013; 14:9581-603. [PMID: 23644887 PMCID: PMC3676800 DOI: 10.3390/ijms14059581] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023] Open
Abstract
In the past few years, extracellular vesicles (EVs) from at least eight fungal species were characterized. EV proteome in four fungal species indicated putative biogenesis pathways and suggested interesting similarities with mammalian exosomes. Moreover, as observed for mammalian exosomes, fungal EVs were demonstrated to be immunologically active. Here we review the seminal and most recent findings related to the production of EVs by fungi. Based on the current literature about secretion of fungal molecules and biogenesis of EVs in eukaryotes, we focus our discussion on a list of cellular proteins with the potential to regulate vesicle biogenesis in the fungi.
Collapse
|
94
|
Bouklas T, Fries BC. Cryptococcus neoformans constitutes an ideal model organism to unravel the contribution of cellular aging to the virulence of chronic infections. Curr Opin Microbiol 2013; 16:391-7. [PMID: 23631868 DOI: 10.1016/j.mib.2013.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Aging affects all organisms, from unicellular yeasts to multicellular humans. Studies in model organisms demonstrate that the pathways that mediate the two forms of aging, replicative and chronological, are highly conserved. Most studies are focused on the effect of aging on an individual cell rather than a whole population. Complex longevity regulation, however, makes aging a highly adaptive trait that is subject to natural selection. Recent studies have shed light on the potential relevance of aging in fungal pathogens, which undergo replicative aging when they expand in the host environment. Hence, pathogens causing chronic infections can constitute ideal model organisms in unraveling the contribution of selection to aging within a population and help elucidate the contribution of aging itself to the virulence of infections.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
95
|
Sabiiti W, May RC. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol 2013; 7:1297-313. [PMID: 23075448 DOI: 10.2217/fmb.12.102] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain infection by the fungus Cryptococcus neoformans results in inflammation of the meninges and brain parenchyma, a condition known as meningoencephalitis. One million people are estimated to suffer cryptococcal meningitis globally and >60% of these cases die within 3 months of diagnosis. Humans are believed to contract infection by inhalation of spores or dried yeast cells, which subsequently colonize the lung tissue. In the lungs, cryptococci may be cleared by the lung phagocytes, stay latent, cause pulmonary infection and/or disseminate to other body parts, preferentially the brain, culminating in cryptococcal meningoencephalitis. In this review, we discuss the pathogenesis of C. neoformans from the environment to the brain, the current understanding of the mechanisms of cryptococcal transmission into the brain and cryptococcal meningitis. We also give an insight into future cryptococcosis research and the development of novel therapies.
Collapse
Affiliation(s)
- Wilber Sabiiti
- Infection & Immunity, Clinical Sciences Division, St Georges' University of London, London SW17 0RE, UK
| | | |
Collapse
|
96
|
Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol 2013; 16:409-13. [PMID: 23588027 DOI: 10.1016/j.mib.2013.03.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
Cryptococcus neoformans is a pathogenic yeast that commonly infects immunocompromised individuals, yet has developed multiple adaptation mechanisms to the host. Several virulence factors (capsule and melanin) have been known for many years. However, this yeast also possesses a morphogenetic program that is still not well characterized. C. neoformans has the ability to dramatically enlarge its size during infection to form 'titan cells' that can reach up to 100μm in cell body diameter, in contrast to typical size cells of 5-7μm. These titan cells pose a problem for the host because they contribute to fungal survival, dissemination to the central nervous system, and possibly even latency. In this review, we will provide an overview of these cells, covering current knowledge about their phenotypic features, mechanism of formation, and their significance during infection.
Collapse
Affiliation(s)
- Oscar Zaragoza
- National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2, Majadahonda 28220, Madrid, Spain
| | | |
Collapse
|
97
|
Morrow CA, Fraser JA. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin Cell Dev Biol 2013; 24:339-46. [PMID: 23380396 DOI: 10.1016/j.semcdb.2013.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Changes in ploidy have a profound and usually negative influence on cellular viability and proliferation, yet the vast majority of cancers and tumours exhibit an aneuploid karyotype. Whether this genomic plasticity is a cause or consequence of malignant transformation remains uncertain. Systemic fungal pathogens regularly develop aneuploidies in a similar manner during human infection, often far in excess of the natural rate of chromosome nondisjunction. As both processes fundamentally represent cells evolving under selective pressures, this suggests that changes in chromosome number may be a concerted mechanism to adapt to the hostile host environment. Here, we examine the mechanisms by which aneuploidy and polyploidy are generated in the fungal pathogens Candida albicans and Cryptococcus neoformans and investigate whether these represent an adaptive strategy under severe stress through the rapid generation of large-scale mutations. Insights into fungal ploidy changes, strategies for tolerating aneuploidies and proliferation during infection may yield novel targets for both antifungal and anticancer therapies.
Collapse
Affiliation(s)
- Carl A Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
98
|
Altered immune response differentially enhances susceptibility to Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 transgene. Infect Immun 2013; 81:1100-13. [PMID: 23340313 DOI: 10.1128/iai.01339-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans var. grubii is the most frequent cause of AIDS-associated cryptococcosis worldwide, while Cryptococcus gattii usually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococcal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIV(MutA) transgenic (Tg) mice expressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally with C. neoformans var. grubii strain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival of Tg mice infected with C. gattii strain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic examination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99, R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and production of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg mice markedly enhances C. neoformans but not C. gattii infection. This model therefore provides a powerful new tool to further investigate the immunopathogenesis of cryptococcosis.
Collapse
|
99
|
Abstract
The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.
Collapse
|
100
|
García-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. ACTA ACUST UNITED AC 2012; 64:147-61. [PMID: 22029633 DOI: 10.1111/j.1574-695x.2011.00871.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After inhalation of infectious particles, Cryptococcus neoformans resides in the alveolar spaces, where it can survive and replicate in the extracellular environment. This yeast has developed different mechanisms to avoid internalization by phagocytic cells, the main one being a polysaccharide capsule around the cell body, which inhibits the uptake of the yeast by macrophages. In addition, capsule-independent mechanisms have also been described, such as the production of antiphagocytic proteins. Despite these mechanisms, phagocytosis can occur in the presence of opsonins, and once C. neoformans is internalized, multiple outcomes are possible, including pathogen killing or intracellular replication and escape from macrophages. For this reason, C. neoformans is considered a facultative intracellular pathogen. As alveolar macrophages are the first component of the host immune system to confront C. neoformans, the outcome of this interaction could determine the degree of infection, producing either a severe disseminated disease or a latency state. In this review, we will tackle the complexity of the interaction between C. neoformans and macrophages, including the phagocytic avoidance mechanisms and all the possible outcomes that have been described for this interaction. Finally, we will discuss the consequences of the different outcomes for the type of infection produced in the host.
Collapse
Affiliation(s)
- Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|