51
|
Jackson M, Brennan PJ. Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 2008; 284:1949-53. [PMID: 18786916 DOI: 10.1074/jbc.r800047200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria produce two sets of unusual polymethylated polysaccharides, the 3-O-methylmannose polysaccharides and the 6-O-methylglucose lipopolysaccharides. Both polysaccharides localize to the cytoplasm, where they have been postulated to regulate fatty acid metabolism due to their ability to form stable 1:1 complexes with fatty acyl chains. Physiological evidence for this assumption is lacking, however. Recent advances in our knowledge of the processes underlying sugar transfer in mycobacteria, together with the availability of genome sequences and tools for the genetic manipulation of these microorganisms, have opened the way to the elucidation of the biosynthetic pathways and biological functions of these unique carbohydrates.
Collapse
Affiliation(s)
- Mary Jackson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA
| | | |
Collapse
|
52
|
Pan YT, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD. Trehalose synthase converts glycogen to trehalose. FEBS J 2008; 275:3408-20. [PMID: 18505459 DOI: 10.1111/j.1742-4658.2008.06491.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trehalose (alpha,alpha-1,1-glucosyl-glucose) is essential for the growth of mycobacteria, and these organisms have three different pathways that can produce trehalose. One pathway involves the enzyme described in the present study, trehalose synthase (TreS), which interconverts trehalose and maltose. We show that TreS from Mycobacterium smegmatis, as well as recombinant TreS produced in Escherichia coli, has amylase activity in addition to the maltose <--> trehalose interconverting activity (referred to as MTase). Both activities were present in the enzyme purified to apparent homogeneity from extracts of Mycobacterium smegmatis, and also in the recombinant enzyme produced in E. coli from either the M. smegmatis or the Mycobacterium tuberculosis gene. Furthermore, when either purified or recombinant TreS was chromatographed on a Sephacryl S-200 column, both MTase and amylase activities were present in the same fractions across the peak, and the ratio of these two activities remained constant in these fractions. In addition, crystals of TreS also contained both amylase and MTase activities. TreS produced both radioactive maltose and radioactive trehalose when incubated with [(3)H]glycogen, and also converted maltooligosaccharides, such as maltoheptaose, to both maltose and trehalose. The amylase activity was stimulated by addition of Ca(2+), but this cation inhibited the MTase activity. In addition, MTase activity, but not amylase activity, was strongly inhibited, and in a competitive manner, by validoxylamine. On the other hand, amylase, but not MTase activity, was inhibited by the known transition-state amylase inhibitor, acarbose, suggesting the possibility of two different active sites. Our data suggest that TreS represents another pathway for the production of trehalose from glycogen, involving maltose as an intermediate. In addition, the wild-type organism or mutants blocked in other trehalose biosynthetic pathways, but still having active TreS, accumulate 10- to 20-fold more glycogen when grown in high concentrations (> or = 2% or more) of trehalose, but not in glucose or other sugars. Furthermore, trehalose mutants that are missing TreS do not accumulate glycogen in high concentrations of trehalose or other sugars. These data indicate that trehalose and TreS are both involved in the production of glycogen, and that the metabolism of trehalose and glycogen is interconnected.
Collapse
Affiliation(s)
- Yuan-Tseng Pan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
53
|
Seibold GM, Eikmanns BJ. The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. MICROBIOLOGY-SGM 2007; 153:2212-2220. [PMID: 17600065 DOI: 10.1099/mic.0.2006/005181-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum cells growing in medium containing sugars accumulate glycogen in the early exponential-growth phase, and start to degrade this polymer at entry into the stationary phase. In a first attempt to investigate glycogen degradation, the C. glutamicum glgX gene, which encodes a protein with 46 % identity to the isoamylase-type debranching enzyme of Escherichia coli, was analysed, expressed and inactivated. The purified C. glutamicum gene product showed debranching activity towards glycogen, amylopectin and starch. Chromosomal inactivation of glgX in C. glutamicum wild-type led to slower growth and to a higher intracellular glycogen pool throughout growth, when compared to those in the parental strain. This result suggests that glycogen synthesis and degradation occur simultaneously in C. glutamicum. When exposed to hyperosmotic shock, C. glutamicum rapidly degrades glycogen, and at the same time, synthesizes the osmoprotectant trehalose. The glgX mutant, however, synthesized only minor amounts of trehalose throughout cultivation, and its growth ceased after hyperosmotic shock. Taken together, the results indicate that the glgX gene product is essential for glycogen degradation in C. glutamicum, that glycogen is constantly recycled in C. glutamicum, and that it serves as a carbon store for trehalose synthesis via the TreYZ pathway after hyperosmotic shock.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
54
|
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 2007; 132:99-109. [PMID: 17624457 DOI: 10.1016/j.jbiotec.2007.05.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 05/15/2007] [Accepted: 05/25/2007] [Indexed: 11/18/2022]
Abstract
In the present work, metabolic flux engineering of Corynebacterium glutamicum was carried out to increase lysine production. The strategy focused on engineering of the pentose phosphate pathway (PPP) flux by different genetic modifications. Over expression of the zwf gene, encoding G6P dehydrogenase, in the feedback-deregulated lysine-producing strain C. glutamicum ATCC 13032 lysC(fbr) resulted in increased lysine production on different carbon sources including the two major industrial sugars, glucose and sucrose. The additional introduction of the A243T mutation into the zwf gene and the over expression of fructose 1,6-bisphosphatase resulted in a further successive improvement of lysine production. Hereby the point mutation resulted in higher affinity of G6P dehydrogenase towards NADP and reduced sensitivity against inhibition by ATP, PEP and FBP. Overall, the lysine yield increased up to 70% through the combination of the different genetic modifications. Through strain engineering formation of trehalose was reduced by up to 70% due to reduced availability of its precursor G6P. Metabolic flux analysis revealed a 15% increase of PPP flux in response to over expression of the zwf gene. Overall a strong apparent NADPH excess resulted. Redox balancing indicated that this excess is completely oxidized by malic enzyme.
Collapse
Affiliation(s)
- Judith Becker
- Biochemical Engineering, Saarland University, Im Stadtwald, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Korduláková J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G, Gicquel B, Rivière M, Jackson M. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 2007; 282:27270-27276. [PMID: 17640872 DOI: 10.1074/jbc.m702676200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M. smegmatis greatly stimulated MGLP production, whereas the targeted disruption of Rv3032 in M. tuberculosis and that of the putative methyltransferase gene MSMEG2349 in M. smegmatis resulted in a dramatic reduction in the amounts of MGLP synthesized and in the accumulation of precursors of these molecules. Disruption of Rv3032 also led to a significant decrease in the glycogen content of the tubercle bacillus, indicating that the product of this gene is likely to be involved in the elongation of more than one alpha-(1-->4)-glucan in this bacterium. Results thus suggest that Rv3032 encodes the alpha-(1-->4)-glucosyltransferase responsible for the elongation of MGLP, whereas MSMEG2349 encodes the O-methyltransferase required for the 6-O-methylation of these compounds.
Collapse
Affiliation(s)
| | - Tounkang Sambou
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Marcelo Guerin
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Nathalie Barilone
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Frédéric Boudou
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Jana Korduláková
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Patricia Charles
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Pedro M Alzari
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Anne Lemassu
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mamadou Daffé
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Germain Puzo
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Brigitte Gicquel
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Michel Rivière
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mary Jackson
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
56
|
Gebhardt H, Meniche X, Tropis M, Krämer R, Daffé M, Morbach S. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology (Reading) 2007; 153:1424-1434. [PMID: 17464056 DOI: 10.1099/mic.0.2006/003541-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been shown that trehalose and mycolic acids are essential for the growth of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, and important but not indispensable to the survival of Corynebacterium glutamicum. Therefore, to investigate the function of mycolic acids in both the permeability of the cell wall to small nutrients and antibiotics, and the excretion of amino acids by C. glutamicum, a trehalose-deficient mutant of the L-lysine producer ATCC 21527, designated LP Delta treS Delta otsA Delta treY, was constructed. By using different carbon sources in either the presence or the absence of external trehalose, a set of endogenously trehalose-free LP Delta treS Delta otsA Delta treY cells that exhibited various mycolate contents was generated. The results showed that the structure of the arabinogalactan of these different cell types of LP Delta treS Delta otsA Delta treY was not affected when the mycolic acid layer was either missing or impaired. Nevertheless, cells were more susceptible to antibiotics, and the permeability of their cell walls to glycerol was increased. Interestingly, a concomitant increase in the excretion of both L-lysine and L-glutamate was also observed, indicating that the mycolic acid content of the permeability barrier (and not only the peptidoglycan and/or the arabinogalactan) is implicated in the glutamate excretion process.
Collapse
Affiliation(s)
- Henrike Gebhardt
- Institut für Biochemie der Universität zu Köln, Zülpicher Straße 47, 50674 Köln, Germany
| | - Xavier Meniche
- Départment 'Mécanismes Moléculaires des Infections Mycobactériennes', Institut de Pharmacologie et Biologie Structurale (UMR 5089 du Centre National de la Recherche Scientifique et de l'Université Paul Sabatier), 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | - Marielle Tropis
- Départment 'Mécanismes Moléculaires des Infections Mycobactériennes', Institut de Pharmacologie et Biologie Structurale (UMR 5089 du Centre National de la Recherche Scientifique et de l'Université Paul Sabatier), 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | - Reinhard Krämer
- Institut für Biochemie der Universität zu Köln, Zülpicher Straße 47, 50674 Köln, Germany
| | - Mamadou Daffé
- Départment 'Mécanismes Moléculaires des Infections Mycobactériennes', Institut de Pharmacologie et Biologie Structurale (UMR 5089 du Centre National de la Recherche Scientifique et de l'Université Paul Sabatier), 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | - Susanne Morbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Straße 47, 50674 Köln, Germany
| |
Collapse
|
57
|
McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol 2007; 73:3984-92. [PMID: 17449695 PMCID: PMC1932737 DOI: 10.1128/aem.00412-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii forms nitrogen-fixing root nodules on the pasture legume Trifolium repens, and T. repens seed is often coated with a compatible R. leguminosarum bv. trifolii strain prior to sowing. However, significant losses in bacterial viability occur during the seed-coating process and during storage of the coated seeds, most likely due to desiccation stress. The disaccharide trehalose is known to function as an osmoprotectant, and trehalose accumulation due to de novo biosynthesis is a common response to desiccation stress in bacteria. In this study we investigated the role of endogenous trehalose synthesis in desiccation tolerance in R. leguminosarum bv. trifolii strain NZP561. Strain NZP561 accumulated trehalose as it entered the stationary phase due to the combined actions of the TreYZ and OtsAB pathways. Mutants deficient in either pathway showed near-wild-type levels of trehalose accumulation, but double otsA treY mutants failed to accumulate any trehalose. The double mutants were more sensitive to the effects of drying, and their survival was impaired compared to that of the wild type when glass beads were coated with the organisms and stored at relative humidities of 5 and 32%. The otsA treY mutants were also less competitive for nodule occupancy. Gene expression studies showed that the otsA and treY genes were expressed constitutively and that expression was not influenced by the growth phase, suggesting that trehalose accumulation is controlled at the posttranscriptional level or by control of trehalose breakdown rates. Our results indicate that accumulated trehalose plays an important role in protecting R. leguminosarum bv. trifolii cells against desiccation stress and against stress encountered during nodulation.
Collapse
Affiliation(s)
- Helen J McIntyre
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
58
|
Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology (Reading) 2007; 153:1042-1058. [PMID: 17379713 DOI: 10.1099/mic.0.2006/003657-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and Nocardia validates the use of C. glutamicum to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in C. glutamicum R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.
Collapse
Affiliation(s)
- Hideaki Yukawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Crispinus A Omumasaba
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Hiroshi Nonaka
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Péter Kós
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Naoko Okai
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Nobuaki Suzuki
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Masako Suda
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Yota Tsuge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Junko Watanabe
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Yoko Ikeda
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Alain A Vertès
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| |
Collapse
|
59
|
Seibold G, Dempf S, Schreiner J, Eikmanns BJ. Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology (Reading) 2007; 153:1275-1285. [PMID: 17379737 DOI: 10.1099/mic.0.2006/003368-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycogen is generally assumed to serve as a major reserve polysaccharide in bacteria. In this work, glycogen accumulation in the amino acid producer Corynebacterium glutamicum was characterized, expression of the C. glutamicum glgC gene, encoding the key enzyme in glycogen synthesis, ADP-glucose (ADP-Glc) pyrophosphorylase, was analysed, and the relevance of this enzyme for growth, survival, amino acid production and osmoprotection was investigated. C. glutamicum cells grown in medium containing the glycolytic substrates glucose, sucrose or fructose showed rapid glycogen accumulation (up to 90 mg per g dry weight) in the early exponential growth phase and degradation of the polymer when the sugar became limiting. In contrast, no glycogen was detected in cells grown on the gluconeogenic substrates acetate or lactate. In accordance with these results, the specific activity of ADP-Glc pyrophosphorylase was 20-fold higher in glucose-grown than in acetate- or lactate-grown cells. Expression analysis suggested that this carbon-source-dependent regulation might be only partly due to transcriptional control of the glgC gene. Inactivation of the chromosomal glgC gene led to the absence of ADP-Glc pyrophosphorylase activity, to a complete loss of intracellular glycogen in all media tested and to a distinct lag phase when the cells were inoculated in minimal medium containing 750 mM sodium chloride. However, the growth of C. glutamicum, its survival in the stationary phase and its glutamate and lysine production were not affected by glgC inactivation under either condition tested. These results indicate that intracellular glycogen formation is not essential for growth and survival of and amino acid production by C. glutamicum and that ADP-Glc pyrophosphorylase activity might be advantageous for fast adaptation of C. glutamicum to hyperosmotic stress.
Collapse
Affiliation(s)
- Gerd Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Stefan Dempf
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Joy Schreiner
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
60
|
Garg SK, Alam MS, Kishan KVR, Agrawal P. Expression and characterization of α-(1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2007; 51:198-208. [PMID: 17005418 DOI: 10.1016/j.pep.2006.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 11/29/2022]
Abstract
Glycogen branching enzyme (GlgB, EC 2.4.1.18) catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and subsequent transfer of cleaved oligosaccharide to form a new alpha-(1,6)-branch. A single glgB gene Rv1326c is present in Mycobacterium tuberculosis. The predicted amino acid sequence of GlgB of M. tuberculosis has all the conserved regions of alpha-amylase family proteins. The overall amino acid identity to other GlgBs ranges from 48.5 to 99%. The glgB gene of M. tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein was purified to homogeneity using metal affinity and ion exchange chromatography. The recombinant protein is a monomer as evidenced by gel filtration chromatography, is active as an enzyme, and uses amylose as the substrate. Enzyme activity was optimal at pH 7.0, 30 degrees C and divalent cations such as Zn2+ and Cu2+ inhibited activity. CD spectroscopy, proteolytic cleavage and mass spectroscopy analyses revealed that cysteine residues of GlgB form structural disulfide bond(s), which allow the protein to exist in two different redox-dependent conformational states. These conformations have different surface hydrophobicities as evidenced by ANS-fluorescence of oxidized and reduced GlgB. Although the conformational change did not affect the branching enzyme activity, the change in surface hydrophobicity could influence the interaction or dissociation of different cellular proteins with GlgB in response to different physiological states.
Collapse
Affiliation(s)
- Saurabh K Garg
- Institute Of Microbial Technology, Sector-39A, Chandigarh 160 036, India
| | | | | | | |
Collapse
|
61
|
Berg S, Kaur D, Jackson M, Brennan PJ. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 2007; 17:35-56R. [PMID: 17261566 DOI: 10.1093/glycob/cwm010] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.
Collapse
Affiliation(s)
- Stefan Berg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Background The compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes. Results In this study we show that trehalose biosynthesis ability is present in eubacteria, archaea, plants, fungi and animals. In bacteria there are five different biosynthetic routes, whereas in fungi, plants and animals there is only one. We present phylogenetic analyses of the trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP) domains and show that there is a close evolutionary relationship between these domains in proteins from diverse organisms. In bacteria TPS and TPP genes are clustered, whereas in eukaryotes these domains are fused in a single protein. Conclusion We have demonstrated that trehalose biosynthesis pathways are widely distributed in nature. Interestingly, several eubacterial species have multiple pathways, while eukaryotes have only the TPS/TPP pathway. Vertebrates lack trehalose biosynthetic capacity but can catabolise it. TPS and TPP domains have evolved mainly in parallel and it is likely that they have experienced several instances of gene duplication and lateral gene transfer.
Collapse
|
63
|
Carpinelli J, Krämer R, Agosin E. Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 2006; 72:1949-55. [PMID: 16517642 PMCID: PMC1393185 DOI: 10.1128/aem.72.3.1949-1955.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 01/04/2006] [Indexed: 11/20/2022] Open
Abstract
Trehalose has many potential applications in biotechnology and the food industry due to its protective effect against environmental stress. Our work explores microbiological production methods based on the capacity of Corynebacterium glutamicum to excrete trehalose. We address here raising trehalose productivity through homologous overexpression of maltooligosyltrehalose synthase and the maltooligosyltrehalose trehalohydrolase genes. In addition, heterologous expression of the UDP-glucose pyrophosphorylase gene from Escherichia coli improved the supply of glycogen. Gene expression effects were tested on enzymatic activities and intracellular glycogen content, as well as on accumulated and excreted trehalose. Overexpression of the treY gene and the treY/treZ synthetic operon significantly increased maltooligosyltrehalose synthase activity, the rate-limiting step, and improved the specific productivity and the final titer of trehalose. Furthermore, a strong decrease was noted in glycogen accumulation. Expression of galU/treY and galU/treYZ synthetic operons showed a partial recovery in the intracellular glycogen levels and a significant improvement in both intra- and extracellular trehalose content.
Collapse
Affiliation(s)
- Jorge Carpinelli
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile, Institut für Biochemie, Universität zu Köln, Cologne, Germany
| | - Reinhard Krämer
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile, Institut für Biochemie, Universität zu Köln, Cologne, Germany
| | - Eduardo Agosin
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile, Institut für Biochemie, Universität zu Köln, Cologne, Germany
| |
Collapse
|
64
|
Tropis M, Meniche X, Wolf A, Gebhardt H, Strelkov S, Chami M, Schomburg D, Krämer R, Morbach S, Daffé M. The Crucial Role of Trehalose and Structurally Related Oligosaccharides in the Biosynthesis and Transfer of Mycolic Acids in Corynebacterineae. J Biol Chem 2005; 280:26573-85. [PMID: 15901732 DOI: 10.1074/jbc.m502104200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose (alpha-D-glucopyranosyl-alpha'-D-glucopyranoside) is essential for the growth of the human pathogen Mycobacterium tuberculosis but not for the viability of the phylogenetically related corynebacteria. To determine the role of trehalose in the physiology of these bacteria, the so-called Corynebacterineae, mutant strains of Corynebacterium glutamicum unable to synthesize trehalose due to the knock-out of the genes of the three pathways of trehalose biosynthesis, were biochemically analyzed. We demonstrated that the synthesis of trehalose under standard conditions is a prerequisite for the production of mycolates, major and structurally important constituents of the cell envelope of Corynebacterineae. Consistently, the trehalose-less cells also lack the cell wall fracture plane that typifies mycolate-containing bacteria. Importantly, however, the mutants were able to synthesize mycolates when grown on glucose, maltose, and maltotriose but not on other carbon sources known to be used for the production of internal glucose phosphate such as fructose, acetate, and pyruvate. The mycoloyl residues synthesized by the mutants grown on alpha-D-glucopyranosyl-containing oligosaccharides were transferred both onto the cell wall and free sugar acceptors. A combination of chemical analytical approaches showed that the newly synthesized glycolipids consisted of 1 mol of mycolate located on carbon 6 of the non reducing glucopyranosyl unit. Additionally, experiments with radioactively labeled trehalose showed that the transfer of mycoloyl residues onto sugars occurs outside the plasma membrane. Finally, and in contradiction to published data, we demonstrated that trehalose 6-phosphate has no impact on mycolate synthesis in vivo.
Collapse
Affiliation(s)
- Marielle Tropis
- Department of Molecular Mechanisms of Mycobacterial Infections, Institut de Pharmacologie et Biologie Structurale (UMR 5089 du CNRS et de l'Université Paul Sabatier) 205, route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 2005; 18:81-101. [PMID: 15653820 PMCID: PMC544180 DOI: 10.1128/cmr.18.1.81-101.2005] [Citation(s) in RCA: 464] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is known to synthesize alpha-, methoxy-, and keto-mycolic acids. We propose a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis. Fatty acid synthetase I provides C(20)-S-coenzyme A to the fatty acid synthetase II system (FAS-IIA). Modules of FAS-IIA and FAS-IIB introduce cis unsaturation at two locations on a growing meroacid chain to yield three different forms of cis,cis-diunsaturated fatty acids (intermediates to alpha-, methoxy-, and keto-meroacids). These are methylated, and the mature meroacids and carboxylated C(26)-S-acyl carrier protein enter into the final Claisen-type condensation with polyketide synthase-13 (Pks13) to yield mycolyl-S-Pks13. We list candidate genes in the genome encoding the proposed dehydrase and isomerase in the FAS-IIA and FAS-IIB modules. We propose that the processing of mycolic acids begins by transfer of mycolic acids from mycolyl-S-Pks13 to d-mannopyranosyl-1-phosphoheptaprenol to yield 6-O-mycolyl-beta-d-mannopyranosyl-1-phosphoheptaprenol and then to trehalose 6-phosphate to yield phosphorylated trehalose monomycolate (TMM-P). Phosphatase releases the phosphate group to yield TMM, which is immediately transported outside the cell by the ABC transporter. Antigen 85 then catalyzes the transfer of a mycolyl group from TMM to the cell wall arabinogalactan and to other TMMs to produce arabinogalactan-mycolate and trehalose dimycolate, respectively. We list candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter. The enzymes within this total pathway are targets for new drug discovery.
Collapse
Affiliation(s)
- Kuni Takayama
- Mycobacteriology Research Laboratory, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | | | | |
Collapse
|
66
|
Wittmann C, Kiefer P, Zelder O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 2005; 70:7277-87. [PMID: 15574927 PMCID: PMC535182 DOI: 10.1128/aem.70.12.7277-7287.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-(13C)Fru]sucrose, [1-(13C)Glc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTS(Man) or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.
Collapse
|
67
|
Murphy HN, Stewart GR, Mischenko VV, Apt AS, Harris R, McAlister MSB, Driscoll PC, Young DB, Robertson BD. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2005; 280:14524-9. [PMID: 15703182 DOI: 10.1074/jbc.m414232200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disaccharide trehalose is the major free sugar in the cytoplasm of mycobacteria; it is a constituent of cell wall glycolipids, and it plays a role in mycolic acid transport during cell wall biogenesis. The pleiotropic role of trehalose in the biology of Mycobacterium tuberculosis and its absence from mammalian cells suggests that its biosynthesis may provide a useful target for novel drugs. However, there are three potential pathways for trehalose biosynthesis in M. tuberculosis, and the aim of the present study was to introduce mutations into each of the pathways to determine whether or not they are functionally redundant. The results show that the OtsAB pathway, which generates trehalose from glucose and glucose-6-phosphate, is the dominant pathway required for M. tuberculosis growth in laboratory culture and for virulence in a mouse model. Of the two otsB homologues annotated in the genome sequence of M. tuberculosis, only OtsB2 (Rv3372) has a functional role in the pathway. OtsB2, trehalose-6-phosphate phosphatase, is strictly essential for growth and provides a tractable target for high throughput screening. Inactivation of the TreYZ pathway, which can generate trehalose from alpha-1,4-linked glucose polymers, had no effect on the growth of M. tuberculosis in vitro or in mice. Deletion of the treS gene altered the late stages of pathogenesis of M. tuberculosis in mice, significantly increasing the time to death in a chronic infection model. Because the TreS enzyme catalyzes the interconversion of trehalose and maltose, the mouse phenotype could reflect either a requirement for synthesis of additional trehalose or, conversely, a requirement for breakdown of stored trehalose to liberate free glucose.
Collapse
Affiliation(s)
- Helen N Murphy
- Centre for Molecular Microbiology and Infection, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD. Trehalose synthase of Mycobacterium smegmatis. ACTA ACUST UNITED AC 2004; 271:4259-69. [PMID: 15511231 DOI: 10.1111/j.1432-1033.2004.04365.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of trehalose (glucosyl-alpha,alpha-1,1-glucose) and maltose (glucosyl-alpha1-4-glucose). TreS was purified from the cytosol of Mycobacterium smegmatis to give a single protein band on SDS gels with a molecular mass of approximately 68 kDa. However, active enzyme exhibited a molecular mass of approximately 390 kDa by gel filtration suggesting that TreS is a hexamer of six identical subunits. Based on amino acid compositions of several peptides, the treS gene was identified in the M. smegmatis genome sequence, and was cloned and expressed in active form in Escherichia coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. The interconversion of trehalose and maltose by the purified TreS was studied at various concentrations of maltose or trehalose. At a maltose concentration of 0.5 mm, an equilibrium mixture containing equal amounts of trehalose and maltose (42-45% of each) was reached during an incubation of about 6 h, whereas at 2 mm maltose, it took about 22 h to reach the same equilibrium. However, when trehalose was the substrate at either 0.5 or 2 mm, only about 30% of the trehalose was converted to maltose in >or= 12 h, indicating that maltose is the preferred substrate. These incubations also produced up to 8-10% free glucose. The K(m) for maltose was approximately 10 mm, whereas for trehalose it was approximately 90 mm. While beta,beta-trehalose, isomaltose (alpha1,6-glucose disaccharide), kojibiose (alpha1,2) or cellobiose (beta1,4) were not substrates for TreS, nigerose (alpha1,3-glucose disaccharide) and alpha,beta-trehalose were utilized at 20 and 15%, respectively, as compared to maltose. The enzyme has a pH optimum of about 7 and is inhibited in a competitive manner by Tris buffer. [(3)H]Trehalose is converted to [(3)H]maltose even in the presence of a 100-fold or more excess of unlabeled maltose, and [(14)C]maltose produces [(14)C]trehalose in excess unlabeled trehalose, suggesting the possibility of separate binding sites for maltose and trehalose. The catalytic mechanism may involve scission of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose, as [(3)H]glucose incubated with TreS and either unlabeled maltose or trehalose results in formation of [(3)H]disaccharide. TreS also catalyzes production of a glucosamine disaccharide from maltose and glucosamine, suggesting that this enzyme may be valuable in carbohydrate synthetic chemistry.
Collapse
Affiliation(s)
- Yuan T Pan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 2004; 54:420-38. [PMID: 15469514 DOI: 10.1111/j.1365-2958.2004.04249.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MtrAB two-component signal transduction system is highly conserved in sequence and genomic organization in Mycobacterium and Corynebacterium species, but its function is completely unknown. Here, the role of MtrAB was studied with C. glutamicum as model organism. In contrast to M. tuberculosis, it was possible to delete the mtrAB genes in C. glutamicum. The mutant cells showed a radically different cell morphology and were more sensitive to penicillin, vancomycin and lysozyme but more resistant to ethambutol. In order to identify the molecular basis for this pleiotropic phenotype, the mRNA profiles of mutant and wild type were compared with DNA microarrays. Three genes showed a more than threefold increased RNA level in the mutant, i.e. mepA (NCgl2411) encoding a putative secreted metalloprotease, ppmA (NCgl2737 ) encoding a putative membrane-bound protease modulator, and lpqB encoding a putative lipoprotein of unknown function. Expression of plasmid-encoded mepA in Escherichia coli led to elongated cells that were hypersensitive to an osmotic downshift, supporting the idea that peptidoglycan is the target of MepA. The mRNA level of two genes was more than fivefold decreased in the mutant, i.e. betP and proP which encode transporters for the uptake of betaine and proline respectively. The microarray results were confirmed by primer extension and RNA dot blot experiments. In the latter, the transcript level of genes involved in osmoprotection was tested before and after an osmotic upshift. The mRNA level of betP, proP and lcoP was strongly reduced or undetectable in the mutant, whereas that of mscL (mechanosensitive channel) was increased. The changes in cell morphology, antibiotics susceptibility and the mRNA levels of betP, proP, lcoP, mscL and mepA could be reversed by expression of plasmid-encoded copies of mtrAB in the DeltamtrAB mutant, confirming that these changes occurred as a consequence of the mtrAB deletion.
Collapse
Affiliation(s)
- Nina Möker
- Institut für Biochemie der Universität zu Köln, D-50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Padilla L, Morbach S, Krämer R, Agosin E. Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum. Appl Environ Microbiol 2004; 70:3845-54. [PMID: 15240254 PMCID: PMC444832 DOI: 10.1128/aem.70.7.3845-3854.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/16/2004] [Indexed: 11/20/2022] Open
Abstract
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.
Collapse
Affiliation(s)
- Leandro Padilla
- Departmento de Ingeniería y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Casilla 306 Correo 22, Santiago, Chile
| | | | | | | |
Collapse
|
71
|
Abstract
As the number of completely sequenced microbial genomes continues to rise at an impressive rate, it is important to prepare students with the skills necessary to investigate microorganisms at the genomic level. As a part of the core curriculum for first-year graduate students in the biological sciences, we have implemented a web-based tutorial to introduce students to the fields of comparative and functional genomics. The tutorial focuses on recent computational methods for identifying functionally linked genes and proteins on a genome-wide scale and was used to introduce students to the Rosetta Stone, Phylogenetic Profile, conserved Gene Neighbor, and Operon computational methods. Students learned to use a number of publicly available web servers and databases to identify functionally linked genes in the
Escherichia coli
genome, with emphasis on genome organization and operon structure. The overall effectiveness of the tutorial was assessed based on student evaluations and homework assignments. The tutorial is available to other educators at
http://www.doe-mbi.ucla.edu/~strong/m253.php
.
Collapse
|
72
|
STRONG MICHAEL, CASCIO DUILIO, EISENBERG DAVID. A web-based comparative genomics tutorial for investigating microbial genomes. Microbiol Educ 2004; 5:30-35. [PMID: 23653555 PMCID: PMC3633132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As the number of completely sequenced microbial genomes continues to rise at an impressive rate, it is important to prepare students with the skills necessary to investigate microorganisms at the genomic level. As a part of the core curriculum for first-year graduate students in the biological sciences, we have implemented a web-based tutorial to introduce students to the fields of comparative and functional genomics. The tutorial focuses on recent computational methods for identifying functionally linked genes and proteins on a genome-wide scale and was used to introduce students to the Rosetta Stone, Phylogenetic Profile, conserved Gene Neighbor, and Operon computational methods. Students learned to use a number of publicly available web servers and databases to identify functionally linked genes in the Escherichia coli genome, with emphasis on genome organization and operon structure. The overall effectiveness of the tutorial was assessed based on student evaluations and homework assignments. The tutorial is available to other educators at http://www.doe-mbi.ucla.edu/~strong/m253.php.
Collapse
Affiliation(s)
- MICHAEL STRONG
- Corresponding author. Mailing address: Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Box 951570, Los Angeles, CA 90095-1570. Phone: 310-206-3642. Fax: 310-206-3914. E-mail:
| | | | | |
Collapse
|
73
|
Woodruff PJ, Carlson BL, Siridechadilok B, Pratt MR, Senaratne RH, Mougous JD, Riley LW, Williams SJ, Bertozzi CR. Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 2004; 279:28835-43. [PMID: 15102847 DOI: 10.1074/jbc.m313103200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria contain high levels of the disaccharide trehalose in free form as well as within various immunologically relevant glycolipids such as cord factor and sulfolipid-1. By contrast, most bacteria use trehalose solely as a general osmoprotectant or thermoprotectant. Mycobacterium tuberculosis and Mycobacterium smegmatis possess three pathways for the synthesis of trehalose. Most bacteria possess only one trehalose biosynthesis pathway and do not elaborate the disaccharide into more complex metabolites, suggesting a distinct role for trehalose in mycobacteria. We disabled key enzymes required for each of the three pathways in M. smegmatis by allelic replacement. The resulting trehalose biosynthesis mutant was unable to proliferate and enter stationary phase unless supplemented with trehalose. At elevated temperatures, however, the mutant was unable to proliferate even in the presence of trehalose. Genetic complementation experiments showed that each of the three pathways was able to recover the mutant in the absence of trehalose, even at elevated temperatures. From a panel of trehalose analogs, only those with the native alpha,alpha-(1,1) anomeric stereochemistry rescued the mutant, whereas alternate stereoisomers and general osmo- and thermoprotectants were inactive. These findings suggest a dual role for trehalose as both a thermoprotectant and a precursor of critical cell wall metabolites.
Collapse
Affiliation(s)
- Peter J Woodruff
- Departments of Chemistry and Molecular, School of Public Health and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kacem R, De Sousa-D'Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffé M. Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology (Reading) 2004; 150:73-84. [PMID: 14702399 DOI: 10.1099/mic.0.26583-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoloyltransferases (Myts) play an essential role in the biogenesis of the cell envelope of members of the Corynebacterineae, a group of bacteria that includes the mycobacteria and corynebacteria. While the existence of several functional myt genes has been demonstrated in both mycobacteria and corynebacteria (cmyt), the disruption of any of these genes has at best generated cell-wall-defective but always viable strains. To investigate the importance of Myts on the physiology of members of the Corynebacterineae, a double mutant of Corynebacterium glutamicum was constructed by deleting cmytA and cmytB, and the consequences of the deletion on the viability of the mutant, the transfer of corynomycoloyl residues onto its cell-wall arabinogalactan and trehalose derivatives, and on its cell envelope ultrastructure were determined. The double mutant strain failed to grow at 34 degrees C and exhibited a growth defect and formed segmentation-defective cells at 30 degrees C. Biochemical analyses showed that the double mutant elaborated 60 % less cell-wall-bound corynomycolates and produced less crystalline surface layer proteins associated with the cell surface than the parent and cmytA-inactivated mutant strains. Freeze-fracture electron microscopy showed that the DeltacmytA DeltacmytB double mutant, unlike the wild-type and cmytA-inactivated single mutant strains, frequently exhibited an additional fracture plane that propagated within the plasma membrane and rarely exposed the S-layer protein. Ultra-thin sectioning of the double mutant cells showed that they were totally devoid of the outermost layer. Complementation of the double mutant with the wild-type cmytA or cmytB gene restored completely or partially this phenotype. The data indicate that Myts are important for the physiology of C. glutamicum and reinforce the concept that these enzymes would represent good targets for the discovery of new drugs against the pathogenic members of the Corynebacterineae.
Collapse
Affiliation(s)
- Raoudha Kacem
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| | - Célia De Sousa-D'Auria
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Marielle Tropis
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| | - Mohamed Chami
- M.E. Müller Institute (MSB) Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Pierre Gounon
- Institut National de la Santé et de la Recherche Médicale (INSERM U 452), UFR de Médecine, 28 Avenue de Valombrose, 06107 Nice Cedex 02, France
- Institut Pasteur, Service de Microscopie électronique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gérard Leblon
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Christine Houssin
- Laboratoire de Biotechnologie des Micro-organismes d'Intérêt Industriel, Institut de Génétique et Microbiologie, UMR 8621 du CNRS et de l'Université Paris-Sud, 91405 Orsay Cedex, France
| | - Mamadou Daffé
- Département des Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex 04, France
| |
Collapse
|
75
|
Gibson RP, Tarling CA, Roberts S, Withers SG, Davies GJ. The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution. J Biol Chem 2003; 279:1950-5. [PMID: 14570926 DOI: 10.1074/jbc.m307643200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose is an unusual non-reducing disaccharide that plays a variety of biological roles, from food storage to cellular protection from environmental stresses such as desiccation, pressure, heat-shock, extreme cold, and oxygen radicals. It is also an integral component of the cell-wall glycolipids of mycobacteria. The primary enzymatic route to trehalose first involves the transfer of glucose from a UDP-glucose donor to glucose-6-phosphate to form alpha,alpha-1,1 trehalose-6-phosphate. This reaction, in which the configurations of two glycosidic bonds are set simultaneously, is catalyzed by the glycosyltransferase trehalose-6-phosphate synthase (OtsA), which acts with retention of the anomeric configuration of the UDP-sugar donor. The classification of activated sugar-dependent glycosyltransferases into approximately 70 distinct families based upon amino acid sequence similarities places OtsA in glycosyltransferase family 20 (see afmb.cnrs-mrs.fr/CAZY/). The recent 2.4 A structure of Escherichia coli OtsA revealed a two-domain enzyme with catalysis occurring at the interface of the twin beta/alpha/beta domains. Here we present the 2.0 A structures of the E. coli OtsA in complex with either UDP-Glc or the non-transferable analogue UDP-2-deoxy-2-fluoroglucose. Both complexes unveil the donor subsite interactions, confirming a strong similarity to glycogen phosphorylases, and reveal substantial conformational differences to the previously reported complex with UDP and glucose 6-phosphate. Both the relative orientation of the two domains and substantial (up to 10 A) movements of an N-terminal loop (residues 9-22) characterize the more open "relaxed" conformation of the binary UDP-sugar complexes reported here.
Collapse
Affiliation(s)
- Robert P Gibson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|