51
|
Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Santa Cruz S, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. PLANT PHYSIOLOGY 2012; 158:1359-70. [PMID: 22253256 PMCID: PMC3291258 DOI: 10.1104/pp.111.189605] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (J.T., O.L., K.B., C.L., K.J.O.); and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (K.M.W., A.G.R., S.S.C.)
| |
Collapse
|
52
|
Sturbois B, Dubrana-Ourabah MP, Gombert J, Lasseur B, Macquet A, Faure C, Bendahmane A, Baurès I, Candresse T. Identification and characterization of tomato mutants affected in the Rx-mediated resistance to PVX isolates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:341-54. [PMID: 22088194 DOI: 10.1094/mpmi-07-11-0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five tomato mutants affected in the Rx-mediated resistance against Potato virus X (PVX) were identified by screening a mutagenized population derived from a transgenic, Rx1-expressing 'Micro-Tom' line. Contrary to their parental line, they failed to develop lethal systemic necrosis upon infection with the virulent PVX-KH2 isolate. Sequence analysis and quantitative reverse-transcription polymerase chain reaction experiments indicated that the mutants are not affected in the Rx1 transgene or in the Hsp90, RanGap1 and RanGap2, Rar1 and Sgt1 genes. Inoculation with the PVX-CP4 avirulent isolate demonstrated that the Rx1 resistance was still effective in the mutants. In contrast, the virulent PVX-KH2 isolate accumulation was readily detectable in all mutants, which could further be separated in two groups depending on their ability to restrict the accumulation of PVX-RR, a mutant affected at two key positions for Rx1 elicitor activity. Finally, transient expression of the viral capsid protein elicitor indicated that the various mutants have retained the ability to mount an Rx1-mediated hypersensitive response. Taken together, the results obtained are consistent with a modification of the specificity or intensity of the Rx1-mediated response. The five Micro-Tom mutants should provide very valuable resources for the identification of novel tomato genes affecting the functioning of the Rx gene.
Collapse
Affiliation(s)
- Bénédicte Sturbois
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry d'Essonne, INRA, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012; 37:125-33. [PMID: 22357210 DOI: 10.1007/s12038-011-9177-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
Abstract
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
Collapse
Affiliation(s)
- Noemi Cerovska
- Institute of Experimental Botany, v. v. i., Academy of Sciences of Czech Republic, Na Karlovce 1a, 16000 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Vijayapalani P, Chen JCF, Liou MR, Chen HC, Hsu YH, Lin NS. Phosphorylation of bamboo mosaic virus satellite RNA (satBaMV)-encoded protein P20 downregulates the formation of satBaMV-P20 ribonucleoprotein complex. Nucleic Acids Res 2012; 40:638-49. [PMID: 21965537 PMCID: PMC3258126 DOI: 10.1093/nar/gkr705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/14/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023] Open
Abstract
Bamboo mosaic virus (BaMV) satellite RNA (satBaMV) depends on BaMV for its replication and encapsidation. SatBaMV-encoded P20 protein is an RNA-binding protein that facilitates satBaMV systemic movement in co-infected plants. Here, we examined phosphorylation of P20 and its regulatory functions. Recombinant P20 (rP20) was phosphorylated by host cellular kinase(s) in vitro, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and mutational analyses revealed Ser-11 as the phosphorylation site. The phosphor-mimic rP20 protein interactions with satBaMV-translated mutant P20 were affected. In overlay assay, the Asp mutation at S11 (S11D) completely abolished the self-interaction of rP20 and significantly inhibited the interaction with both the WT and S11A rP20. In chemical cross-linking assays, S11D failed to oligomerize. Electrophoretic mobility shift assay and subsequent Hill transformation analysis revealed a low affinity of the phospho-mimicking rP20 for satBaMV RNA. Substantial modulation of satBaMV RNA conformation upon interaction with nonphospho-mimic rP20 in circular dichroism analysis indicated formation of stable satBaMV ribonucleoprotein complexes. The dissimilar satBaMV translation regulation of the nonphospho- and phospho-mimic rP20 suggests that phosphorylation of P20 in the ribonucleoprotein complex converts the translation-incompetent satBaMV RNA to messenger RNA. The phospho-deficient or phospho-mimicking P20 mutant of satBaMV delayed the systemic spread of satBaMV in co-infected Nicotiana benthamiana with BaMV. Thus, satBaMV likely regulates the formation of satBaMV RNP complex during co-infection in planta.
Collapse
Affiliation(s)
- Paramasivan Vijayapalani
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Jeff Chien-Fu Chen
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Ming-Ru Liou
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Chuan Chen
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Na-Sheng Lin
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
55
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S. An update on plant membrane rafts. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:642-9. [PMID: 21903451 DOI: 10.1016/j.pbi.2011.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 05/18/2023]
Abstract
The dynamic segregation of membrane components within microdomains, such as the sterol-enriched and sphingolipid-enriched membrane rafts, emerges as a central regulatory mechanism governing physiological responses in various organisms. Over the past five years, plasma membrane located raft-like domains have been described in several plant species. The protein and lipid compositions of detergent-insoluble membranes, supposed to contain these domains, have been extensively characterised. Imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level at the plant plasma membrane, correlating detergent insolubility and membrane-domain localisation of presumptive raft proteins. Finally, the dynamic association of specific proteins with detergent-insoluble membranes upon environmental stress has been reported, confirming a possible role for plant rafts as signal transduction platforms, particularly during biotic interactions.
Collapse
Affiliation(s)
- Françoise Simon-Plas
- UMR Plante-Microbe-Environnement 1088, Institut National de la Recherche Agronomique-5184, CNRS-Université de Bourgogne, 21065 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
57
|
Genetic variability in the coat protein genes of Cymbidium mosaic virus isolates from orchids. Virus Genes 2011; 44:323-8. [PMID: 22015427 DOI: 10.1007/s11262-011-0683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
The variability in the nucleotide (nt) and amino acid (aa) sequences of the coat protein (CP) of Cymbidium mosaic virus (CymMV), which naturally infects orchids worldwide, was investigated. The CP genes of 55 CymMV isolates originating from different locations in Korea were amplified using RT-PCR and sequenced. The encoded CP consists of 223 aa. The CP sequences of the Korean isolates were compared with those of previously published CymMV isolates originating from different countries at both nt and aa levels. The Korean isolates shared 74.9-98.3 and 52.7-100% CP homology with CymMV isolates from other countries at the nt and aa levels, respectively. No particular region of variability could be found in either grouping of viruses. In the deduced CymMV CP aa sequence, the C-terminal region was more divergent than the N-terminal. The phylogenetic tree analysis based on nt sequence diversity of CP genes of CymMV isolates supported the hypothesis that CymMV isolates were divided into two subgroups. However, these subgroups were not formed by phylogenetic tree analysis of CP aa sequences. There was no distinct correlation between geographical locations and specific sequence identity, while recombination analysis revealed that there were no intra-specific recombination events among CymMV isolates.
Collapse
|
58
|
Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimoto M, Miura C, Neriya Y, Namba S. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J Virol 2011; 85:10269-78. [PMID: 21752911 PMCID: PMC3196401 DOI: 10.1128/jvi.05273-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/30/2011] [Indexed: 11/20/2022] Open
Abstract
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.
Collapse
Affiliation(s)
- Hiroko Senshu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nami Minato
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Shiraishi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihiro Miura
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
59
|
Sabanadzovic S, Abou Ghanem-Sabanadzovic N, Tzanetakis IE. Blackberry virus E: an unusual flexivirus. Arch Virol 2011; 156:1665-9. [DOI: 10.1007/s00705-011-1015-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/30/2011] [Indexed: 11/28/2022]
|
60
|
Plchova H, Moravec T, Hoffmeisterova H, Folwarczna J, Cerovska N. Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expr Purif 2011; 77:146-52. [PMID: 21266198 DOI: 10.1016/j.pep.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
Abstract
The E7 oncoprotein from Human papillomavirus type 16 (HPV16) is an attractive candidate for anti-cancer therapeutical vaccine development. In this study, we engineered different fusions of mutagenized coding sequence of E7 oncoprotein (E7ggg) with coat protein of Potato virus X (PVX CP) both on 5'- and 3'-terminus of PVX CP and evaluated the influence of the length of linker (no linker, 4, 15aa) connecting PVX CP and E7ggg on their production. At first the expression in Escherichia coli was conducted to assess the characteristics of the recombinant protein prior to be further produced in plants, that is, resultant proteins were used for screening of their immunological reactivity with antibodies against PVX CP and E7. Fusion proteins successfully expressed in bacteria and plants were partially purified and their reactivity and ability to form virus-like particles were evaluated with anti-E7 antibodies.
Collapse
Affiliation(s)
- Helena Plchova
- Academy of Sciences of the Czech Republic, 160 00 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
61
|
Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T. Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 2011; 413:205-15. [PMID: 21377183 DOI: 10.1016/j.virol.2011.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/27/2011] [Accepted: 02/05/2011] [Indexed: 01/30/2023]
Abstract
Movement protein (MP) of Red clover necrotic mosaic virus (RCNMV) forms punctate structures on the cortical endoplasmic reticulum (ER) of Nicotiana benthamiana cells, which are associated with viral RNA1 replication (Kaido et al., Virology 395, 232-242. 2009). We investigated the significance of ER-targeting by MP during virus movement from cell to cell, by analyzing the function of a series of MPs with varying length deletions at their C-terminus, either fused or not fused with green fluorescent protein (GFP). The C-terminal 70 amino acids were crucial to ER-localization of MP-GFP and cell-to-cell movement of the recombinant virus encoding it. However, C-terminal deletion did not affect MP functions, such as increasing the size exclusion limit of plasmodesmata, single-stranded RNA binding in vitro, and MP interacting in vivo. We discuss the possible role of this MP region in virus movement from cell to cell.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
62
|
Wu CH, Lee SC, Wang CW. Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. ACTA ACUST UNITED AC 2011; 193:521-35. [PMID: 21518793 PMCID: PMC3087015 DOI: 10.1083/jcb.201006023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sorting signal-mediated oligomerization and localization of the viral protein TGBp3 to curved ER tubules is essential for viral movement between cells in plants. Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
63
|
Sempere RN, Gómez P, Truniger V, Aranda MA. Development of expression vectors based on pepino mosaic virus. PLANT METHODS 2011; 7:6. [PMID: 21396092 PMCID: PMC3065447 DOI: 10.1186/1746-4811-7-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/11/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. RESULTS Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. CONCLUSIONS A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long-distance movement.
Collapse
Affiliation(s)
- Raquel N Sempere
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Bioprodin SL, Edificio CEEIM, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Department of Zoology, Oxford University, Oxford OX1 3PS, UK
| | - Verónica Truniger
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
64
|
Lee WS, Fu SF, Verchot-Lubicz J, Carr JP. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC PLANT BIOLOGY 2011; 11:41. [PMID: 21356081 PMCID: PMC3058079 DOI: 10.1186/1471-2229-11-41] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/28/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. RESULTS Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. CONCLUSIONS We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX.
Collapse
Affiliation(s)
- Wing-Sham Lee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Shih-Feng Fu
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
65
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
66
|
Liu Z, Kearney CM. An efficient Foxtail mosaic virus vector system with reduced environmental risk. BMC Biotechnol 2010; 10:88. [PMID: 21162736 PMCID: PMC3022558 DOI: 10.1186/1472-6750-10-88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/16/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of Agrobacterium tumefaciens has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment. RESULTS In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from Foxtail mosaic virus to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, Nicotiana benthamiana. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as N. benthamiana, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low Agrobacterium-mediated transformation rate of monocots. CONCLUSIONS The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing.
Collapse
Affiliation(s)
- Zun Liu
- Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798 USA
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 USA
| | | |
Collapse
|
67
|
Ivanov PA, Mukhamedzhanova AA, Smirnov AA, Rodionova NP, Karpova OV, Atabekov JG. The complete nucleotide sequence of Alternanthera mosaic virus infecting Portulaca grandiflora represents a new strain distinct from phlox isolates. Virus Genes 2010; 42:268-71. [PMID: 21127957 DOI: 10.1007/s11262-010-0556-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
A southeastern European isolate of Alternanthera mosaic virus (AltMV-MU) of the genus Potexvirus (family Flexiviridae) was purified from the ornamental plant Portulaca grandiflora. The complete nucleotide sequence (6606 nucleotides) of AltMV-MU genomic RNA was defined. The AltMV-MU genome is different from those of all isolates described earlier and is most closely related to genomes of partly sequenced portulaca isolates AltMV-Po (America) and AltMV-It (Italy). Phylogenetic analysis supports the view that AltMV-MU belongs to a new "portulaca" genotype distinguishable from the "phlox" genotype.
Collapse
Affiliation(s)
- Peter A Ivanov
- Department of Virology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
68
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
69
|
Harries PA, Schoelz JE, Nelson RS. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1381-93. [PMID: 20653412 DOI: 10.1094/mpmi-05-10-0121] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant viruses are obligate organisms that require host components for movement within and between cells. A mechanistic understanding of virus movement will allow the identification of new methods to control virus systemic spread and serve as a model system for understanding host macromolecule intra- and intercellular transport. Recent studies have moved beyond the identification of virus proteins involved in virus movement and their effect on plasmodesmal size exclusion limits to the analysis of their interactions with host components to allow movement within and between cells. It is clear that individual virus proteins and replication complexes associate with and, in some cases, traffic along the host cytoskeleton and membranes. Here, we review these recent findings, highlighting the diverse associations observed between these components and their trafficking capacity. Plant viruses operate individually, sometimes within virus species, to utilize unique interactions between their proteins or complexes and individual host cytoskeletal or membrane elements over time or space for their movement. However, there is not sufficient information for any plant virus to create a complete model of its intracellular movement; thus, more research is needed to achieve that goal.
Collapse
Affiliation(s)
- Phillip A Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | | |
Collapse
|
70
|
Meng B, Li C. The capsid protein of Grapevine rupestris stem pitting-associated virus contains a typical nuclear localization signal and targets to the nucleus. Virus Res 2010; 153:212-7. [PMID: 20708048 DOI: 10.1016/j.virusres.2010.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV) is a positive strand, ssRNA virus of the genus Foveavirus (family Betaflexiviridae; order Tymovirales). GRSPaV is distributed in table and wine grapes worldwide and comprises a large family of sequence variants. As a newly discovered virus, mechanisms of virus replication and movement of GRSPaV have not been elucidated. We recently revealed the subcellular localization of the proteins encoded by the triple gene block of GRSPaV (Rebelo et al., 2008). However, the subcellular localization and interaction of its capsid protein (CP) have not been explored. We report here that GRSPaV CP contains a nuclear localization signal "KRKR" near its N-terminus, which is conserved among all five strains whose genomes are completely sequenced. Similar sequences were also detected in the CP of two other viruses of the same family: African oil palm ringspot virus and Cherry green ring mottle virus. Using fluorescent protein tagging, we demonstrate that the CP targets to the nucleus in tobacco protoplasts. Mutation to this nuclear localization signal abolished the nuclear localization. Using bi-molecular fluorescence complementation, we show that the capsid protein of GRSPaV engages in homologous interaction. To our knowledge, this is the first report on the nuclear localization of a CP encoded by a RNA plant virus.
Collapse
Affiliation(s)
- Baozhong Meng
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
71
|
Kim OK, Mizutani T, Soe K, Lee KW, Natsuaki KT. Characterization of Lagenaria mild mosaic virus, a New Potexvirus from Bottle Gourd in Myanmar. PLANT DISEASE 2010; 94:1225-1230. [PMID: 30743609 DOI: 10.1094/pdis-02-10-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A putative Potexvirus was detected from bottle gourd (Lagenaria siceraria) showing mosaic and mottle symptoms in Myanmar in 2007. The virus was designated Lagenaria mild mosaic virus (LaMMoV) and was further characterized. In artificial inoculation tests, infectivity of LaMMoV was limited to two families: Chenopodiaceae and Cucurbitaceae. The host range of LaMMoV differs from those of the two cucurbit-infecting potexviruses, Alternanthera mosaic virus (AltMV) and Papaya mosaic virus (PapMV). Sequence analyses of LaMMoV showed that the C-terminal 3,859 nucleotides, excluding the poly-A tail, includes the C-terminal region of an RNA-dependent RNA polymerase (RdRp), a triple gene block (TGB), a coat protein (CP), and a 3' untranslated region (UTR), all of which are typical of potexviruses. Although LaMMoV is related closely to AltMV and PapMV, its nucleotide sequences differ from those of other previously reported potexviruses. Therefore, we report LaMMoV as a new species of the genus Potexvirus that occurs in the cucurbit bottle gourd.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Department of International Agricultural Development, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Tadasuke Mizutani
- Department of International Agricultural Development, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Khin Soe
- Ministry of Agriculture and Irrigation, Naypyitaw, Myanmar
| | - Key-Woon Lee
- Division of Applied Life Sciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Keiko T Natsuaki
- Department of International Agricultural Development, Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
72
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Lim HS, Vaira AM, Bae H, Bragg JN, Ruzin SE, Bauchan GR, Dienelt MM, Owens RA, Hammond J. Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement. J Gen Virol 2010; 91:2102-2115. [PMID: 20392901 DOI: 10.1099/vir.0.019448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell movement of potexviruses requires coordinated action of the coat protein and triple gene block (TGB) proteins. The structural properties of Alternanthera mosaic virus (AltMV) TGB3 were examined by methods differentiating between signal peptides and transmembrane domains, and its subcellular localization was studied by Agrobacterium-mediated transient expression and confocal microscopy. Unlike potato virus X (PVX) TGB3, AltMV TGB3 was not associated with the endoplasmic reticulum, and accumulated preferentially in mesophyll cells. Deletion and site-specific mutagenesis revealed an internal signal VL(17,18) of TGB3 essential for chloroplast localization, and either deletion of the TGB3 start codon or alteration of the chloroplast-localization signal limited cell-to-cell movement to the epidermis, yielding a virus that was unable to move into the mesophyll layer. Overexpression of AltMV TGB3 from either AltMV or PVX infectious clones resulted in veinal necrosis and vesiculation at the chloroplast membrane, a cytopathology not observed in wild-type infections. The distinctive mesophyll and chloroplast localization of AltMV TGB3 highlights the critical role played by mesophyll targeting in virus long-distance movement within plants.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Anna Maria Vaira
- CNR, Istituto di Virologia Vegetale, Strada delle Cacce 73, Torino 10135, Italy
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea
| | - Jennifer N Bragg
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Steven E Ruzin
- University of California-Berkeley, CNR, 381 Koshland Hall, Berkeley, CA 94720, USA
| | - Gary R Bauchan
- USDA-ARS, Plant Sciences Institute, Electron and Confocal Microscopy Unit, B-465, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Margaret M Dienelt
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Robert A Owens
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - John Hammond
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
74
|
Lan P, Yeh WB, Tsai CW, Lin NS. A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:903-14. [PMID: 20521953 DOI: 10.1094/mpmi-23-7-0903] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The coat proteins (CP) of many plant viruses are multifunctional proteins. We used N-terminal sequencing and mass spectrometry/mass spectrometry analysis to identify a truncated form of the Bamboo mosaic virus (BaMV) CP missing the N-terminal 35 amino acids (N35). The N35 region is unique in the potexviruses by its containing a glycine-rich motif (GRM) not present in databases but highly conserved among BaMV isolates. Results from site-directed mutagenesis and deletion mutational analysis showed that loss of this region converted necrotic local lesions to chlorotic local lesions on Chenopodium quinoa leaves. Furthermore, this region is required for successful development of mosaic symptoms on Nicotiana benthamiana leaves but is dispensable for BaMV replication and cell-to-cell and long-distance movement as well as virion assembly. This unique GRM-containing region of BaMV CP may be a symptom determinant in specific hosts.
Collapse
Affiliation(s)
- Ping Lan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
75
|
Tilsner J, Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov E, Torrance L. Plasmodesmal targeting and intercellular movement of potato mop-top pomovirus is mediated by a membrane anchored tyrosine-based motif on the lumenal side of the endoplasmic reticulum and the C-terminal transmembrane domain in the TGB3 movement protein. Virology 2010; 402:41-51. [PMID: 20350737 DOI: 10.1016/j.virol.2010.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/02/2009] [Accepted: 03/03/2010] [Indexed: 12/27/2022]
Abstract
Live-cell fluorescence microscopy was used to investigate the third triple gene block protein (TGB3) of potato mop-top pomovirus and its role in assisted targeting of TGB2 to plasmodesmata (PD). Wild-type and mutant TGB3 proteins were expressed under the control of the 35S promoter or from a virus reporter clone. Assisted targeting of TGB2 to PD was optimal when the proteins were expressed from a bicistronic plasmid in the relative ratios expected in a virus infection, suggesting that excess TGB3 inhibited PD localisation. Contrary to the generally accepted view, bimolecular fluorescence complementation showed that the TGB3 N terminus is located in the cytosol. Mutational analysis to dissect TGB3 sub domain functions showed that PD targeting was mediated by a composite signal comprising an ER-lumenal tyrosine-based motif and the C-terminal transmembrane domain. Mutation of either of these domains also abolished cell-to-cell movement of the virus. The results are discussed in the context of TGB3 membrane topology.
Collapse
Affiliation(s)
- J Tilsner
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
76
|
Genovés A, Navarro JA, Pallás V. The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:263-72. [PMID: 20121448 DOI: 10.1094/mpmi-23-3-0263] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant viruses hijack endogenous host transport machinery to aid their intracellular spread. Here, we study the localization of the p7B, the membrane-associated viral movement protein (MP) of the Melon necrotic spot virus (MNSV), and also the potential involvement of the secretory pathway on the p7B targeting and intra- and intercellular virus movements. p7B fused to fluorescent proteins was located throughout the endoplasmic reticulum (ER) at motile Golgi apparatus (GA) stacks that actively tracked the actin microfilaments, and at the plasmodesmata (PD). Hence, the secretory pathway inhibitor, Brefeldin A (BFA), and the overexpression of the GTPase-defective mutant of Sar1p, Sar1[H74L], fully retained the p7B within the ER, revealing that the protein is delivered to PD in a BFA-sensitive and COPII-dependent manner. Disruption of the actin cytoskeleton with latrunculin B led to the accumulation of p7B in the ER, which strongly suggests that p7B is also targeted to the cell periphery in an actin-dependent manner. Remarkably, the local spread of the viral infection was significantly restricted either with the presence of BFA or under the overexpression of Sar1[H74L], thus revealing the involvement of an active secretory pathway in the intracellular movement of MNSV. Overall, these findings support a novel route for the intracellular transport of a plant virus led by the GA.
Collapse
Affiliation(s)
- Ainhoa Genovés
- Instituto Biologia Molecular y Celular de Plantas, Universidad Politécnica, Universidad Politécnica de Valencia-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
77
|
Draghici HK, Varrelmann M. Evidence for similarity-assisted recombination and predicted stem-loop structure determinant in potato virus X RNA recombination. J Gen Virol 2010; 91:552-62. [PMID: 19864501 DOI: 10.1099/vir.0.014712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Virus RNA recombination, one of the main factors for genetic variability and evolution, is thought to be based on different mechanisms. Here, the recently described in vivo potato virus X (PVX) recombination assay [Draghici, H.-K. & Varrelmann, M. (2009). J Virol 83, 7761-7769] was applied to characterize structural parameters of recombination. The assay uses an Agrobacterium-mediated expression system incorporating a PVX green fluorescent protein (GFP)-labelled full-length clone. The clone contains a partial coat protein (CP) deletion that causes defectiveness in cell-to-cell movement, together with a functional CP+3' non-translated region (ntr) transcript, in Nicotiana benthamiana leaf tissue. The structural parameters assessed were the length of sequence overlap, the distance between mutations and the degree of sequence similarity. The effects on the observed frequency of reconstitution and the composition of the recombination products were characterized. Application of four different type X intact PVX CP genes with variable composition allowed the estimation of the junction sites of precise homologous recombination. Although one template switch would have been sufficient for functional reconstitution, between one and seven template switches were observed. Use of PVX-GFP mutants with CP deletions of variable length resulted in a linear decrease of the reconstitution frequency. The critical length observed for homologous recombination was 20-50 nt. Reduction of the reconstitution frequency was obtained when a phylogenetically distant PVX type Bi CP gene was used. Finally, the prediction of CP and 3'-ntr RNA secondary structure demonstrated that recombination-junction sites were located mainly in regions of stem-loop structures, allowing the recombination observed to be categorized as similarity-assisted.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
78
|
Lim HS, Vaira AM, Reinsel MD, Bae H, Bailey BA, Domier LL, Hammond J. Pathogenicity of Alternanthera mosaic virus is affected by determinants in RNA-dependent RNA polymerase and by reduced efficacy of silencing suppression in a movement-competent TGB1. J Gen Virol 2010; 91:277-87. [PMID: 20019006 DOI: 10.1099/vir.0.014977-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four biologically active cDNA clones were derived from the Alternanthera mosaic virus (AltMV; genus Potexvirus) isolate, AltMV-SP, which differ in symptoms in infected Nicotiana benthamiana plants. Two clones induced necrosis and plant death; a mixture of all four clones induced milder symptoms than AltMV-SP. Replication of all clones was enhanced by a minimum of fourfold at 15 degrees C. A mixture of clones 4-7 (severe) and 3-1 (mild) was indistinguishable from AltMV-SP, but the ratio of 4-7 to 3-1 differed at 25 and 15 degrees C. RNA copy numbers of mixed infections were always below those of 4-7 alone. Determinants of symptom severity were identified in both Pol and TGB1; the mildest (4-1) and most severe (3-7) clones differed at three residues in the 'core' Pol domain [R(1110)P, K(1121)R, R(1255)K] and one [S(1535)P] in the C-terminal Pol domain of RNA-dependent RNA polymerase, and one in TGB1 [P(88)L]. Pol [P(1110),R(1121),K(1255)]+TGB1(L(88))] always induced systemic necrosis at 15 degrees C. Gene exchanges of Pol and TGB1 each affected replication and symptom expression, with TGB1(P(88)) significantly reducing silencing suppression. The difference in silencing suppression between TGB1(P(88)) and TGB1(L(88)) was confirmed by an agroinfiltration assay. Further, co-expression of TGB1(P(88)) and TGB1(L(88)) resulted in interference in the suppression of silencing by TGB1(L(88)). Yeast two-hybrid analysis confirmed that TGB1(P(88)) and TGB1(L(88)) interact. These results identify a TGB1 residue that significantly affects replication and silencing suppression, but maintains full movement functions.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- USDA-ARS, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD 20705, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
This review focuses on the extensive membrane and organelle rearrangements that have been observed in plant cells infected with RNA viruses. The modifications generally involve the formation of spherules, vesicles, and/or multivesicular bodies associated with various organelles such as the endoplasmic reticulum and peroxisomes. These virus-induced organelles house the viral RNA replication complex and are known as virus factories or viroplasms. Membrane and organelle alterations are attributed to the action of one or two viral proteins, which additionally act as a scaffold for the assembly of a large complex of proteins of both viral and host origin and viral RNA. Some virus factories have been shown to align with and traffic along microfilaments. In addition to viral RNA replication, the factories may be involved in other processes such as viral RNA translation and cell-to-cell virus transport. Confining the process of RNA replication to a specific location may also prevent the activation of certain host defense functions.
Collapse
Affiliation(s)
- Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7.
| | | |
Collapse
|
80
|
Kaido M, Tsuno Y, Mise K, Okuno T. Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology 2009; 395:232-42. [PMID: 19819513 DOI: 10.1016/j.virol.2009.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/29/2009] [Accepted: 09/16/2009] [Indexed: 12/15/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a positive-strand RNA virus with a bipartite genome. The movement protein (MP) encoded by RNA2 is essential for viral movement. To obtain further insights into the viral movement mechanism, subcellular localizations of RCNMV MP fused with green fluorescent protein (MP:GFP) were examined in Nicotiana benthamiana epidermal cells and protoplasts. The MP:GFP expressed from the recombinant virus first appeared in the cell wall and subsequently was observed on the cortical endoplasmic reticulum (ER) as punctate spots. In contrast, the MP:GFP expressed transiently in the absence of other viral components was localized exclusively in the cell wall. Transient expression of the MP:GFP with a variety of RCNMV components revealed that the ER localization of the MP:GFP was associated with RNA1 replication, or its negative-strand RNA synthesis, but not those of RNA2 or replicase proteins per se. A model of RCNMV cell-to-cell movement is discussed.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
81
|
Qiao Y, Li HF, Wong SM, Fan ZF. Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1523-34. [PMID: 19888818 DOI: 10.1094/mpmi-22-12-1523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato virus X coat protein (PVXCP) is, through communication with host proteins, involved in processes such as virus movement and symptom development. Here, we report that PVXCP also interacts with the precursor of plastocyanin, a protein involved in photosynthesis, both in vitro and in vivo. Yeast two-hybrid analysis indicated that PVXCP interacted with only the plastocyanin transit peptide. In subsequent bimolecular fluorescence complementation assays, both proteins were collocated within chloroplasts. Western blot analyses of chloroplast fractions showed that PVXCP could be detected in the envelope, stroma, and lumen fractions. Transmission electron microscopy demonstrated that grana were dilated in PVX-infected Nicotiana benthamiana. Furthermore, virus-induced gene silencing of plastocyanin by prior infection of N. benthamiana using a Tobacco rattle virus vector reduced the severity of symptoms that developed following subsequent PVX infection as well as the accumulation of PVXCP in isolated chloroplasts. However, PVXCP could not be detected in pea chloroplasts in an in vitro re-uptake assay using the plastocyanin precursor protein. Taken together, these data suggest that PVXCP interacts with the plastocyanin precursor protein and that silencing the expression of this protein leads to reduced PVXCP accumulation in chloroplasts and ameliorates symptom severity in host plants.
Collapse
Affiliation(s)
- Y Qiao
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
82
|
Gómez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 2009; 83:12378-87. [PMID: 19759144 PMCID: PMC2786733 DOI: 10.1128/jvi.01486-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022] Open
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that causes severe economic losses in tomato crops (Solanum lycopersicum L.) in the Northern hemisphere, despite persistent attempts of control. In fact, it is considered one of the most significant viral diseases for tomato production worldwide, and it may constitute a good model for the analysis of virus emergence in crops. We have combined a population genetics approach with an analysis of in planta properties of virus strains to explain an observed epidemiological pattern. Hybridization analysis showed that PepMV populations are composed of isolates of two types (PepMV-CH2 and PepMV-EU) that cocirculate. The CH2 type isolates are predominant; however, EU isolates have not been displaced but persist mainly in mixed infections. Two molecularly cloned isolates belonging to each type have been used to examine the dynamics of in planta single infections and coinfection, revealing that the CH2 type has a higher fitness than the EU type. Coinfections expand the range of susceptible hosts, and coinfected plants remain symptomless several weeks after infection, so a potentially important problem for disease prevention and management. These results provide an explanation of the observed epidemiological pattern in terms of genetic and ecological interactions among the different viral strains. Thus, mixed infections appear to be contributing to shaping the genetic structure and dynamics of PepMV populations.
Collapse
Affiliation(s)
- P. Gómez
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - R. N. Sempere
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - S. F. Elena
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - M. A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Apdo. Correos 164, 30100 Espinardo (Murcia), Spain, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain, The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
83
|
Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MAT, Payton M, Verchot-Lubicz J. Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 2009; 393:272-85. [PMID: 19729179 DOI: 10.1016/j.virol.2009.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/09/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Department of Entomology and Plant Pathology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Mukhamedzhanova AA, Karpova OV, Rodionova NP, Atabekov IG. Nonspecific activation of translation of encapsidated potexviral RNA with involvement of potato virus X movement protein TGB1. DOKL BIOCHEM BIOPHYS 2009; 428:239-41. [DOI: 10.1134/s1607672909050044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A 2009; 106:17594-9. [PMID: 19805075 DOI: 10.1073/pnas.0909239106] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton has been implicated in the intra- and intercellular movement of a growing number of plant and animal viruses. However, the range of viruses influenced by actin for movement and the mechanism of this transport are poorly understood. Here we determine the importance of microfilaments and myosins for the sustained intercellular movement of a group of RNA-based plant viruses. We demonstrate that the intercellular movement of viruses from different genera [tobacco mosaic virus (TMV), potato virus X (PVX), tomato bushy stunt virus (TBSV)], is inhibited by disruption of microfilaments. Surprisingly, turnip vein-clearing virus (TVCV), a virus from the same genus as TMV, did not require intact microfilaments for normal spread. To investigate the molecular basis for this difference we compared the subcellular location of GFP fusions to the 126-kDa protein and the homologous 125-kDa protein from TMV and TVCV, respectively. The 126-kDa protein formed numerous large cytoplasmic inclusions associated with microfilaments, whereas the 125-kDa protein formed few small possible inclusions, none associated with microfilaments. The dependence of TMV, PVX, and TBSV on intact microfilaments for intercellular movement led us to investigate the role of myosin motors in this process. Virus-induced gene silencing of the Nicotiana benthamiana myosin XI-2 gene, but not three other myosins, inhibited only TMV movement. These results indicate that RNA viruses have evolved differently in their requirements for microfilaments and the associated myosin motors, in a manner not correlated with predicted phylogeny.
Collapse
|
86
|
Esfandiari N, Kohi-Habibi M, Hohn T, Pooggin MM. Complete genome sequence of an Iranian isolate of Potato virus X from the legume plant Pisum sativum. Virus Genes 2009; 39:141-5. [PMID: 19484407 DOI: 10.1007/s11262-009-0371-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Affiliation(s)
- Neda Esfandiari
- Institute of Botany, University of Basel, Schoenbeinstrasse 6, Basel 4058, Switzerland
| | | | | | | |
Collapse
|
87
|
Ryazantsev DY, Zavriev SK. An efficient diagnostic method for the identification of potato viral pathogens. Mol Biol 2009. [DOI: 10.1134/s0026893309030200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Ozeki J, Hashimoto M, Komatsu K, Maejima K, Himeno M, Senshu H, Kawanishi T, Kagiwada S, Yamaji Y, Namba S. The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:677-85. [PMID: 19445592 DOI: 10.1094/mpmi-22-6-0677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Potexvirus cell-to-cell movement requires coat protein (CP) and movement proteins. In this study, mutations in two conserved in-frame AUG codons in the 5' region of the CP open reading frame of Plantago asiatica mosaic virus (PlAMV) were introduced, and virus accumulation of these mutants was analyzed in inoculated and upper noninoculated leaves. When CP was translated only from the second AUG codon, virus accumulation in inoculated leaves was lower than that of wild-type PlAMV, and the viral spread was impaired. Trans-complementation analysis showed that the leucine residue at the third position (Leu-3) of CP is important for cell-to-cell movement of PlAMV. The 14-amino-acid N-terminal region of CP was dispensable for virion formation. Immunoprecipitation assays conducted with an anti-TGBp1 antibody indicated that PlAMV CP interacts with TGBp1 in vivo and that this interaction is not affected by alanine substitution at Leu-3. These results support the concept that the N-terminal region of potexvirus CP can be separated into two distinct functional domains.
Collapse
Affiliation(s)
- Johji Ozeki
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Bhattacharjee S, Zamora A, Azhar MT, Sacco MA, Lambert LH, Moffett P. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:940-51. [PMID: 19220787 DOI: 10.1111/j.1365-313x.2009.03832.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Active resistance to viruses is afforded by plant disease resistance (R) genes, which encode proteins with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains. Upon recognition of pathogen-derived elicitors, these NB-LRR proteins are thought to initiate a number of signaling pathways that lead to pathogen restriction. However, little is known about the molecular mechanisms that ultimately curtail virus accumulation. Here, we show that the co-expression of a plant NB-LRR protein with its cognate elicitor results in an antiviral response that inhibits the translation of virus-encoded proteins in Nicotiana benthamiana. This antiviral response is dependent on viral cis elements, and, upon activation of the NB-LRR protein, viral transcripts accumulate but do not associate with ribosomes. The induced inhibition of viral transcript translation and NB-LRR-mediated virus resistance were compromised by the downregulation of Argonaute4-like genes. Argonaute proteins have been implicated in small RNA-mediated RNA degradation, and in degradation-independent translational control. Our results suggest that the engagement of Argonaute proteins in the specific translational control of viral transcripts is a key factor in virus resistance mediated by NB-LRR proteins.
Collapse
|
90
|
Lu HC, Chen CE, Tsai MH, Wang HI, Su HJ, Yeh HH. Cymbidium mosaic potexvirus isolate-dependent host movement systems reveal two movement control determinants and the coat protein is the dominant. Virology 2009; 388:147-59. [PMID: 19345971 PMCID: PMC7103407 DOI: 10.1016/j.virol.2009.02.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/28/2009] [Accepted: 02/28/2009] [Indexed: 11/30/2022]
Abstract
Little is known about how plant viruses of a single species exhibit different movement behavior in different host species. Two Cymbidium mosaic potexvirus (CymMV) isolates, M1 and M2, were studied. Both can infect Phalaenopsis orchids, but only M1 can systemically infect Nicotiana benthamiana plants. Protoplast inoculation and whole-mount in situ hybridization revealed that both isolates can replicate in N. benthamiana; however, M2 was restricted to the initially infected cells. Genome shuffling between M1 and M2 revealed that two control modes are involved in CymMV host dependent movement. The M1 coat protein (CP) plays a dominant role in controlling CymMV movement between cells, because all chimeric CymMV viruses containing the M1 CP systemically infected N. benthamiana plants. Without the M1 CP, one chimeric virus containing the combination of the M1 triple gene block proteins (TGBps), the M2 5' RNA (1-4333), and the M2 CP effectively moved in N. benthamiana plants. Further complementation analysis revealed that M1 TGBp1 and TGBp3 are co-required to complement the movement of the chimeric viruses in N. benthamiana. The amino acids within the CP, TGBp1 and TGBp3 which are required or important for CymMV M2 movement in N. benthamiana plants were mapped. The required amino acids within the CP map to the predicted RNA binding domain. RNA-protein binding assays revealed that M1 CP has higher RNA binding affinity than does M2 CP. Yeast two-hybrid assays to detect all possible interactions of M1 TGBps and CP, and only TGBp1 and CP self-interactions were observed.
Collapse
Affiliation(s)
- Hsiang-Chia Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, 1, sec 4, Roosevelt Road, Taipei 106, Taiwan
| | - Cheng-En Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 1, sec 4, Roosevelt Road, Taipei 106, Taiwan
| | - Meng-Hsiun Tsai
- Department of Management Information Systems, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Hsiang-iu Wang
- Department of Computer Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hong-Ji Su
- Department of Plant Pathology and Microbiology, National Taiwan University, 1, sec 4, Roosevelt Road, Taipei 106, Taiwan
| | - Hsin-Hung Yeh
- Department of Plant Pathology and Microbiology, National Taiwan University, 1, sec 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
91
|
Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaître B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. THE PLANT CELL 2009; 21:1541-55. [PMID: 19470590 PMCID: PMC2700541 DOI: 10.1105/tpc.108.064279] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/20/2009] [Accepted: 05/06/2009] [Indexed: 05/17/2023]
Abstract
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-University of Bordeaux, Bordeaux 33076, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Park MR, Park SH, Cho SY, Kim KH. Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 2009; 386:257-69. [PMID: 19215953 DOI: 10.1016/j.virol.2008.12.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/01/2008] [Accepted: 12/31/2008] [Indexed: 11/24/2022]
Abstract
The interactions of viral coat protein (CP) and host factors play an important role in viral replication and/or host defense mechanism. In this study, we constructed Nicotiana benthamiana cDNA library to find host factors interacting with Potato virus X (PVX) CP. Using yeast two-hybrid assay, we screened 3.3 x 10(6) independent yeast transformants from N. benthamiana cDNA library and identified six positive clones. One positive clone, named PVX CP-interacting protein 1 (NbPCIP1), is a plant-specific protein with homologue in N. tabacum (GenBank accession no. AB04049). We confirmed the PVX CP-NbPCIP1 interaction using yeast-two hybrid assay in yeast, protein-protein binding assay in vitro, and bimolecular fluorescent complementation assay in planta. Quantitative real-time RT-PCR analysis showed that the mRNA level of NbPCIP1 increased in PVX-infected N. benthamiana plants as compared to that of healthy plants. The green fluorescent protein (sGFP)-fused NbPCIP1 (NbPCIP1-sGFP) was localized in ER or ER-associated granular-like structure of cells. When we co-express NbPCIP1-sGFP and red fluorescent protein (RFP)-fused PVX CP (PVX CP-RFP), which were introduced by transiently expressing these proteins in N. benthamiana protoplasts and epidermal cells, however, we observed the co-localization of these proteins in the inclusion body-like complex in areas surrounding nucleus. Transient over-expression and transgene silencing of NbPCIP1 assay analysis indicated that NbPCIP1 plays a critical role in viral replication during PVX infection in host plant.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
93
|
Draghici HK, Pilot R, Thiel H, Varrelmann M. Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis-Identification of regions essential for replication and subgenomic RNA amplification. Virus Res 2009; 143:114-24. [PMID: 19463728 DOI: 10.1016/j.virusres.2009.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 12/31/2022]
Abstract
The replicase protein of Potato virus X (PVX), type species of the genus Potexvirus, was selected to identify regions essential for replication and subgenomic RNA synthesis. Replicase amino acid (aa) sequence alignment of 16 Potexvirus species resulted in the detection of overall sequence homology of 34.4-65.4%. Two regions of consensus with a high proportion of conserved aa (1-411 and 617-1437 according to PVX) were separated by a hyper-variable linker region. Pentapeptide scanning (PS) mutagenesis in a PVX full-length clone expressing green fluorescent protein (GFP) was carried out. For 69 selected PS-mutants where insertions were spread randomly over the replicase ORF the position of the insertion was determined. The replication activity was evaluated by GFP expression from subgenomic viral RNA of PVX replicase mutants. Only one functional PS-mutant was detected in the N-terminal 430 aa, containing the conserved methyltransferase domain of the protein. In the linker region from aa 430-595, nine mutations were discovered which did not induce significant effects on the replicase replication ability. The part of the protein including helicase and polymerase domains was highly intolerant for the PS insertion as demonstrated by 24 independent more or less uniformly spread mutants.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
94
|
Torrance L, Lukhovitskaya NI, Schepetilnikov MV, Cowan GH, Ziegler A, Savenkov EI. Unusual long-distance movement strategies of Potato mop-top virus RNAs in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:381-90. [PMID: 19271953 DOI: 10.1094/mpmi-22-4-0381] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Potato mop-top virus (PMTV) genome encodes replicase, movement, and capsid proteins on three different RNA species that are encapsidated within tubular rod-shaped particles. Previously, we showed that the protein produced on translational readthrough (RT) of the coat protein (CP) gene, CP-RT, is associated with one extremity of the virus particles, and that the two RNAs encoding replicase and movement proteins can move long distance in the absence of the third RNA (RNA-CP) that encodes the capsid proteins, CP and CP-RT. Here, we examined the roles of the CP and CP-RT proteins on RNA movement using infectious clones carrying mutations in the CP and CP-RT coding domains. The results showed that, in infections established with mutant RNA-CP expressing CP together with truncated CP-RT, systemic movement of the mutant RNA-CP was inhibited but not the movement of the other two RNAs. Furthermore, RNA-CP long-distance movement was inhibited in a mutant clone expressing only CP in the absence of the CP-RT polypeptide. CP-RT was not necessary for particle assembly because virions were observed in leaf extracts infected with the CP-RT deletion mutants. RNA-CP moved long distance when protein expression was suppressed completely or when CP expression was suppressed so that only CP-RT or truncated CP-RT was expressed. CP-RT but not CP interacted with the movement protein TGB1 in the yeast two-hybrid system. CP-RT and TGB1 were detected by enzyme-linked immunosorbent assay in virus particles and the long-distance movement of RNA-CP was correlated with expression of CP-RT that interacted with TGB1; mutant RNA-CP expressing truncated CP-RT proteins that did not interact with TGB1 formed virions but did not move to upper noninoculated leaves. The results indicate that PMTV RNA-CP can move long distance in two distinct forms: either as a viral ribonucleoprotein complex or as particles that are most likely associated with CP-RT and TGB1.
Collapse
Affiliation(s)
- Lesley Torrance
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter SLU, Sweden
| | | | | | | | | | | |
Collapse
|
95
|
Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol 2009; 90:1014-1024. [PMID: 19264652 DOI: 10.1099/vir.0.008243-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.
Collapse
Affiliation(s)
- Hiroko Senshu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Johji Ozeki
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kouji Hatada
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michiko Aoyama
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kagiwada
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
96
|
Hu P, Meng Y, Wise RP. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:311-20. [PMID: 19245325 DOI: 10.1094/mpmi-22-3-0311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2), and chorismate mutase 1 (HvCM1) occupy pivotal branch points downstream of the shikimate pathway leading to the synthesis of aromatic amino acids. Here, we provide functional evidence that these genes contribute to penetration resistance to Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. Single-cell transient-induced gene silencing of HvCS and HvCM1 in mildew resistance locus a (Mla) compromised cells resulted in increased susceptibility. Correspondingly, overexpression of HvCS, HvASa2, and HvCM1 in lines carrying mildew resistance locus o (Mlo), a negative regulator of penetration resistance, significantly decreased susceptibility. Barley stripe mosaic virus-induced gene silencing of HvCS, HvASa2, and HvCM1 significantly increased B. graminis f. sp. hordei penetration into epidermal cells, followed by formation of haustoria and secondary hyphae. However, sporulation of B. graminis f. sp. hordei was not detected on the silenced host plants up to 3 weeks after inoculation. Taken together, these results establish a previously unrecognized role for the influence of HvCS, HvASa2, and HvCM1 on penetration resistance and on the rate of B. graminis f. sp. hordei development in Mla-mediated, barley-powdery mildew interactions.
Collapse
Affiliation(s)
- Pingsha Hu
- Interdepartmental Genetics Program, Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames 50011-1020, USA
| | | | | |
Collapse
|
97
|
Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS. The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. PLANT PHYSIOLOGY 2009; 4:454-6. [PMID: 19028879 PMCID: PMC2633818 DOI: 10.1104/pp.108.131755] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/19/2008] [Indexed: 05/19/2023]
Abstract
The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.
Collapse
Affiliation(s)
- Phillip A Harries
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | | | | | |
Collapse
|
98
|
Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY. Hordeivirus replication, movement, and pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:385-422. [PMID: 19400645 DOI: 10.1146/annurev-phyto-080508-081733] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The last Hordeivirus review appearing in this series 20 years ago focused on the comparative biology, relationships, and genome organization of members of the genus ( 68 ). Prior to the 1989 review, useful findings about the origin, disease occurrence, host ranges, and general biological properties of Barley stripe mosaic virus (BSMV) were summarized in three comprehensive reviews ( 26, 67, 107 ). Several recent reviews emphasizing contemporary molecular genetic findings also may be of interest to various readers ( 15, 37, 42, 69, 70, 88, 113 ). In the current review, we briefly reiterate the biological properties of the four members of the Hordeivirus genus and describe advances in our understanding of organization and expression of the viral genomes. We also discuss the infection processes and pathogenesis of the most extensively characterized Hordeiviruses and frame these advances in the broader context of viruses in other families that have encoded triple gene block proteins. In addition, an overview of recent advances in the use of BSMV for virus-induced gene silencing is presented.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
99
|
Rebelo AR, Niewiadomski S, Prosser SW, Krell P, Meng B. Subcellular localization of the triple gene block proteins encoded by a Foveavirus infecting grapevines. Virus Res 2008; 138:57-69. [PMID: 18804498 DOI: 10.1016/j.virusres.2008.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/25/2022]
Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV; Foveavirus; Flexiviridae) contains a positive-sense, ssRNA genome. GRSPaV occurs worldwide in grapes and is involved in the Rugose Wood disease complex. The GRSPaV genome contains the triple gene block (TGB), a genetic module present in several genera of plant RNA viruses. TGB encodes three proteins (TGBp1, TGBp2 and TGBp3) that are believed to work together to achieve intra- and inter-cellular transport of virions in infected plants. To reveal the subcellular localization of each TGB protein and to examine the impact that different fusion positions may have on the behavior of the native protein, we made a series of expression constructs and expressed the corresponding protein fusions in Nicotiana tabacum BY-2 cells and protoplasts. We demonstrated that TGBp1 had both a cytosolic and nuclear distribution. Two TGBp1 fusions (GFP fused at the N- or C-terminus) differ in subcellular distribution. Through the use of truncation mutants, we mapped TGBp1 regions responsible for the formation of two distinct types of aggregates. Sequence analyses predicted two and one transmembrane domains in TGBp2 and TGBp3, respectively. GFP fusions at either terminus of TGBp2 revealed identical localization to the ER network and ER-derived structures. In contrast, the two TGBp3 fusions to mRFP differed in localization. This is the first report on the subcellular localization of the viral proteins of a member of the Foveavirus genus.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
100
|
Módena NA, Zelada AM, Conte F, Mentaberry A. Phosphorylation of the TGBp1 movement protein of Potato virus X by a Nicotiana tabacum CK2-like activity. Virus Res 2008; 137:16-23. [PMID: 18632176 DOI: 10.1016/j.virusres.2008.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/31/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022]
Abstract
The movement protein (MP) TGBp1 of the potexvirus Potato virus X (PVX) is a multifunctional protein required for cell-to-cell movement within the host plant. Recent work on other plant viruses has indicated that MP phosphorylation by host kinases can regulate MP function. In this study, we demonstrate that recombinant and native TGBp1 are phosphorylated by Nicotiana tabacum extracts from both PVX-infected and non-infected leaves. The phosphorylation activity present in plant extracts has distinctive characteristics of casein kinase 2 (CK2): it is inhibited by heparin, stimulated by polylysine, and uses either ATP or GTP as phosphoryl donors. We also demonstrate that TGBp1 is efficiently phosphorylated by recombinant tobacco CK2 alpha subunit and by partially purified tobacco CK2. Phosphopeptide mass mapping reveals that TGBp1 is phosphorylated in Ser-165, which is localized within a CK2 consensus sequence. Our results strongly suggest that a N. tabacum kinase of the CK2 family is involved in TBGp1 phosphorylation during the course of viral infection.
Collapse
Affiliation(s)
- Natalia Andrea Módena
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET and FCEN-UBA, Buenos Aires, Argentina
| | | | | | | |
Collapse
|