51
|
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018; 11:24. [PMID: 29720258 PMCID: PMC5930937 DOI: 10.1186/s13041-018-0368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Victoria Hodgkinson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Stuart Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Jennifer Kass
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Sascha Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
52
|
Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp Mol Med 2018; 50:1-11. [PMID: 29628501 PMCID: PMC5938027 DOI: 10.1038/s12276-018-0028-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Bipolar disorder (BD) is a common psychiatric disorder characterized by recurrent mood swings between depression and mania, and is associated with high treatment costs. The existence of manic episodes is the defining feature of BD, during which period, patients experience extreme elevation in activity, energy, and mood, with changes in sleep patterns that together severely impair their ability to function in daily life. Despite some limitations in recapitulating the complex features of human disease, several rodent models of mania have been generated and characterized, which have provided important insights toward understanding its underlying pathogenic mechanisms. Among the mechanisms, neuronal excitatory and inhibitory (E/I) synaptic dysfunction in some brain regions, including the frontal cortex, hippocampus, and striatum, is an emerging hypothesis explaining mania. In this review, we highlight recent studies of rodent manic models having impairments in the E/I synaptic development and function. We also summarize the molecular and functional changes of E/I synapses by some mood stabilizers that may contribute to the therapeutic efficacy of drugs. Furthermore, we discuss potential future directions in the study of this emerging hypothesis to better connect the outcomes of basic research to the treatment of patients with this devastating mental illness. Studies in rodents offer insights into bipolar disorder that may help understanding and treatment of this common and debilitating condition. Kihoon Han and colleagues at Korea University in Seoul review research using mice and rats to model the episodes of mania in patients with bipolar disorder. The research supports an emerging hypothesis implicating specific problems with nervous transmission in the brain in the onset of mania. The hypothesis suggests that the transmission of signals between particular nerve cells whose normal function is either to excite or to inhibit other nerve cells may be involved. It also indicates regions of the brain most involved in manic episodes. Changes at the affected nerve junctions—called synapses—brought about by mood-stabilizing drugs are examined. The hypothesis suggests new approaches to treatment options for researchers to explore.
Collapse
|
53
|
El Refaey MM, Mohler PJ. Ankyrins and Spectrins in Cardiovascular Biology and Disease. Front Physiol 2017; 8:852. [PMID: 29163198 PMCID: PMC5664424 DOI: 10.3389/fphys.2017.00852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a complex array of electrical and structural phenotypes now termed “ankyrin-B syndrome,” whereas alterations in the ankyrin-G pathway for Nav channel targeting are associated with human Brugada syndrome. Further, both ankyrin-G and -B are now linked with acquired forms of cardiovascular disease including myocardial infarction and atrial fibrillation. Spectrins are ankyrin-associated proteins and recent studies support the critical role of ankyrin-spectrin interactions in normal cardiac physiology as well as regulation of key ion channel and signaling complexes. This review will highlight the roles of ankyrins and spectrins in cardiovascular physiology as well as illustrate the link between the dysfunction in ankyrin- and spectrin-based pathways and disease.
Collapse
Affiliation(s)
- Mona M El Refaey
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
54
|
Uranga CC, Ghassemian M, Hernández-Martínez R. Novel proteins from proteomic analysis of the trunk disease fungus Lasiodiplodia theobromae (Botryosphaeriaceae). BIOCHIMIE OPEN 2017; 4:88-98. [PMID: 29450146 PMCID: PMC5802045 DOI: 10.1016/j.biopen.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022]
Abstract
Many basic science questions remain regarding protein functions in the pathogen: host interaction, especially in the trunk disease fungi family, the Botryosphaeriaceae, which are a global problem for economically important plants, especially fruiting trees. Proteomics is a highly useful technology for studying protein expression and for discovering novel proteins in unsequenced and poorly annotated organisms. Current fungal proteomics approaches involve 2D SDS-PAGE and extensive, complex, protein extraction methodologies. In this work, a modified Folch extraction was applied to protein extraction to perform both de novo peptide sequencing and peptide fragmentation analysis/protein identification of the plant and human fungal pathogen Lasiodiplodia theobromae. Both bioinformatics approaches yielded novel peptide sequences from proteins produced by L. theobromae in the presence of exogenous triglycerides and glucose. These proteins and the functions they may possess could be targeted for further functional characterization and validation efforts, due to their potential uses in biotechnology and as new paradigms for understanding fungal biochemistry, such as the finding of allergenic enolases, as well as various novel proteases, including zinc metalloproteinases homologous to those found in snake venom. This work contributes to genomic annotation efforts, which, hand in hand with genomic sequencing, will help improve fungal bioinformatics databases for future studies of Botryosphaeriaceae. All data, including raw data, are available via the ProteomeXchange data repository with identifier PXD005283. This is the first study of its kind in Botryosphaeriaceae.
Collapse
Affiliation(s)
- Carla C. Uranga
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C., Mexico
| | - Majid Ghassemian
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| | - Rufina Hernández-Martínez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C., Mexico
| |
Collapse
|
55
|
Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation. Cell Tissue Res 2017; 369:395-412. [DOI: 10.1007/s00441-017-2591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
|
56
|
Zhang Y, Abiraman K, Li H, Pierce DM, Tzingounis AV, Lykotrafitis G. Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLoS Comput Biol 2017; 13:e1005407. [PMID: 28241082 PMCID: PMC5348042 DOI: 10.1371/journal.pcbi.1005407] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/13/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023] Open
Abstract
Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young’s modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration. Super-resolution microscopy has suggested that the actin cytoskeleton structure differ between various neuronal subcompartments. To determine the possible implication of the differing actin cytoskeleton structure, we determined the stiffness of the plasma membrane of neuronal subcompartments using atomic force microscopy (AFM). We found that axons are almost ~6 fold stiffer than the soma and ~2 fold stiffer than dendrites. By using a particle-based model for the surface membrane skeleton of the axon that comprises actin rings connected with spring filaments to represent the axonal structure, we show that regions neighboring actin rings are stiffer than areas between these rings. In these in between sub-regions, the spectrin filaments determine stiffness. Our modeling also shows that because the spectrin filaments are under tension, the thermal jitter of the actin-associated ankyrin particles, connected to the middle area of spectrin filaments, is minimal. As a result, we propose that the sodium channels bound to ankyrin particles will maintain an ordered distribution along the axon. We also predict that laceration of the spectrin filaments due to injury will cause a permanent damage to the axon since spontaneous repair of the spectrin network is not possible as spectrin filaments are under entropic tension.
Collapse
Affiliation(s)
- Yihao Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - David M. Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Mathematics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Anastasios V. Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
57
|
Chen K, Li J, Wang C, Wei Z, Zhang M. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions. eLife 2017; 6:29150. [PMID: 28841137 PMCID: PMC5779224 DOI: 10.7554/elife.29150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins.
Collapse
Affiliation(s)
- Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Chao Wang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui, China
| | - Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Department of BiologySouth University of Science and Technology of ChinaShenzhenChina
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Center of Systems Biology and Human Health, Institute for Advanced StudyHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
58
|
Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9231057. [PMID: 28078303 PMCID: PMC5203884 DOI: 10.1155/2016/9231057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies.
Collapse
|
59
|
Huq AJ, Pertile MD, Davis AM, Landon H, James PA, Kline CF, Vohra J, Mohler PJ, Delatycki MB. A Novel Mechanism for Human Cardiac Ankyrin-B Syndrome due to Reciprocal Chromosomal Translocation. Heart Lung Circ 2016; 26:612-618. [PMID: 27916589 DOI: 10.1016/j.hlc.2016.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiac rhythm abnormalities are a leading cause of morbidity and mortality in developed countries. Loss-of-function variants in the ANK2 gene can cause a variety of cardiac rhythm abnormalities including sinus node dysfunction, atrial fibrillation and ventricular arrhythmias (called the "ankyrin-B syndrome"). ANK2 encodes ankyrin-B, a molecule critical for the membrane targeting of key cardiac ion channels, transporters, and signalling proteins. METHODS AND RESULTS Here, we describe a family with a reciprocal chromosomal translocation between chromosomes 4q25 and 9q26 that transects the ANK2 gene on chromosome 4 resulting in loss-of-function of ankyrin-B. Select family members with ankyrin-B haploinsufficiency due to the translocation displayed clinical features of ankyrin-B syndrome. Furthermore, evaluation of primary lymphoblasts from a carrier of the translocation showed altered levels of ankyrin-B as well as a reduced expression of downstream ankyrin-binding partners. CONCLUSIONS Thus, our data conclude that, similar to previously described ANK2 loss-of-function "point mutations", large chromosomal translocations resulting in ANK2 haploinsufficiency are sufficient to cause the human cardiac ankyrin-B syndrome. The unexpected ascertainment of ANK2 dysfunction via the discovery of a chromosomal translocation in this family, the determination of the familial phenotype, as well as the complexities in formulating screening and treatment strategies are discussed.
Collapse
Affiliation(s)
- A J Huq
- Department of Clinical Genetics, Austin Hospital, Melbourne, Vic, Australia; Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia.
| | - M D Pertile
- Victorian Clinical Genetics Services, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - A M Davis
- Department of Cardiology, Royal Children's Hospital, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Murdoch Childrens Research Institute, Melbourne, Vic, Australia
| | - H Landon
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - P A James
- Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia; Department of Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - C F Kline
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - J Vohra
- Department of Genetic Medicine, Royal Melbourne Hospital, Melbourne, Vic, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - P J Mohler
- Dorothy M. Davis Heart and Lung Research Institute; Departments of Physiology & Cell Biology and Internal Medicine; Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - M B Delatycki
- Department of Clinical Genetics, Austin Hospital, Melbourne, Vic, Australia; Victorian Clinical Genetics Services, Melbourne, Vic, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Vic, Australia
| |
Collapse
|
60
|
Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S. Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clin Proteomics 2016; 13:31. [PMID: 27799870 PMCID: PMC5084393 DOI: 10.1186/s12014-016-9132-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis. METHODS We utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables. RESULTS Top cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01). CONCLUSION These results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis Genome Center, Davis, CA USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, Davis, CA USA
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | | | - William Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | - Yanhong Zhang
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA USA
| | - Oliver Fiehn
- University of California, Davis Genome Center, Davis, CA USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York City, NY USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| |
Collapse
|
61
|
Tulodziecka K, Diaz-Rohrer BB, Farley MM, Chan RB, Di Paolo G, Levental KR, Waxham MN, Levental I. Remodeling of the postsynaptic plasma membrane during neural development. Mol Biol Cell 2016; 27:3480-3489. [PMID: 27535429 PMCID: PMC5221582 DOI: 10.1091/mbc.e16-06-0420] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022] Open
Abstract
Neuronal synapses require precise regulation, particularly of membrane components. The composition and organization of synaptic membranes are dramatically remodeled during development, including accumulation of lipids associated with raft domains, and concomitant palmitoylation of PSD-95, suggesting recruitment of domains via scaffold lipidation. Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse.
Collapse
Affiliation(s)
- Karolina Tulodziecka
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Barbara B Diaz-Rohrer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Madeline M Farley
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Robin B Chan
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
62
|
Liu Q, Liu F, Yu KL, Tas R, Grigoriev I, Remmelzwaal S, Serra-Marques A, Kapitein LC, Heck AJR, Akhmanova A. MICAL3 Flavoprotein Monooxygenase Forms a Complex with Centralspindlin and Regulates Cytokinesis. J Biol Chem 2016; 291:20617-29. [PMID: 27528609 DOI: 10.1074/jbc.m116.748186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
During cytokinesis, the antiparallel array of microtubules forming the central spindle organizes the midbody, a structure that anchors the ingressed cleavage furrow and guides the assembly of abscission machinery. Here, we identified a role for the flavoprotein monooxygenase MICAL3, an actin disassembly factor, in organizing midbody-associated protein complexes. By combining cell biological assays with cross-linking mass spectrometry, we show that MICAL3 is recruited to the central spindle and the midbody through a direct interaction with the centralspindlin component MKLP1. Knock-out of MICAL3 leads to an increased frequency of cytokinetic failure and a delayed abscission. In a mechanism independent of its enzymatic activity, MICAL3 targets the adaptor protein ELKS and Rab8A-positive vesicles to the midbody, and the depletion of ELKS and Rab8A also leads to cytokinesis defects. We propose that MICAL3 acts as a midbody-associated scaffold for vesicle targeting, which promotes maturation of the intercellular bridge and abscission.
Collapse
Affiliation(s)
- Qingyang Liu
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Fan Liu
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ka Lou Yu
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Roderick Tas
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Ilya Grigoriev
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Sanne Remmelzwaal
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Andrea Serra-Marques
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Lukas C Kapitein
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| | - Albert J R Heck
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- From the Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht and
| |
Collapse
|
63
|
Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more. BIOARCHITECTURE 2016; 6:39-45. [PMID: 27044909 DOI: 10.1080/19490992.2016.1156284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ankyrins are a family of well-characterized metazoan adaptor proteins that play a key role in linking various membrane-spanning proteins to the underlying spectrin-actin cytoskeleton; a mechanistic understanding of their role in tissue architecture and mechanics, however, remains elusive. Here we comment on a recent study demonstrating a key role for ankyrin-B in maintaining the hexagonal shape and radial alignment of ocular lens fiber cells by regulating the membrane organization of periaxin, dystrophins/dystroglycan, NrCAM and spectrin-actin network of proteins, and revealing that ankyrin-B deficiency impairs fiber cell shape and mechanical properties of the ocular lens. These observations indicate that ankyrin-B plays an important role in maintaining tissue cytoarchitecture, cell shape and biomechanical properties via engaging in key protein: protein interactions required for membrane anchoring and organization of the spectrin-actin skeleton, scaffolding proteins and cell adhesive proteins.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pharmacology & Cancer Biology , Duke University School of Medicine , Durham , NC , USA
| | - Rupalatha Maddala
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
64
|
Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plast 2016; 2016:6808293. [PMID: 27493806 PMCID: PMC4967436 DOI: 10.1155/2016/6808293] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/22/2016] [Indexed: 12/28/2022] Open
Abstract
The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability.
Collapse
|
65
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|
66
|
Erythrocytes and their role as health indicator: Using structure in a patient-orientated precision medicine approach. Blood Rev 2016; 30:263-74. [DOI: 10.1016/j.blre.2016.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
|
67
|
Satchwell TJ, Bell AJ, Hawley BR, Pellegrin S, Mordue KE, van Deursen CTBM, Braak NHT, Huls G, Leers MPG, Overwater E, Tamminga RYJ, van der Zwaag B, Fermo E, Bianchi P, van Wijk R, Toye AM. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts. Haematologica 2016; 101:1018-27. [PMID: 27247322 DOI: 10.3324/haematol.2016.146209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialized erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting ANK1 to generate erythroblasts and reticulocytes with a novel ankyrin-R 'near null' human phenotype with less than 5% of normal ankyrin expression. Using this model, we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins, including band 3, glycophorin A, spectrin, adducin and, more strikingly, protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorization of hereditary spherocytosis arising from ankyrin deficiency.
Collapse
Affiliation(s)
- Timothy J Satchwell
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | - Bethan R Hawley
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Stephanie Pellegrin
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | | | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry and Hematology, Atrium Medical Center Parkstad, Heerlen, The Netherlands
| | - Eline Overwater
- Department of Clinical Genetics, VU University Medical Center, and Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rienk Y J Tamminga
- Department of Pediatric Hematology, Beatrix Childrens Hospital, University Medical Center Groningen, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, The Netherlands
| | - Elisa Fermo
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, The Netherlands
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| |
Collapse
|
68
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
69
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
70
|
Zynda ER, Grimm MJ, Yuan M, Zhong L, Mace TA, Capitano M, Ostberg JR, Lee KP, Pralle A, Repasky EA. A role for the thermal environment in defining co-stimulation requirements for CD4(+) T cell activation. Cell Cycle 2016; 14:2340-54. [PMID: 26131730 DOI: 10.1080/15384101.2015.1049782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever.
Collapse
Key Words
- APC, antigen-presenting cell
- CD28, cluster of differentiation 28
- CD3, cluster of differentiation 3
- CD4, cluster of differentiation 4
- CD8, cluster of differentiation 8
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- CTxB, cholera toxin B subunit
- Ct, cycle threshold
- ELISA, enzyme-linked immunosorbant assay
- EtOH, ethanol
- FITC, fluoroisothiocyanate
- GM1, monosialotetrahexosylganglioside
- IDEAS, imagestream data exploration and analysis software
- IL-2, interleukin 2
- LA, latrunculin A
- MβCD, methyl-β-cyclodextrin
- PD-1, Programmed cell death-1
- PMA, phorbol 12-myristate 13-acetate
- T cell activation
- T cell co-stimulation
- TCR, T cell receptor
- TDI, time delay integration
- TMA-DPH, trimethylammonium diphenylhexatriene
- WBH, whole body hyperthermia.
- fever
- hyperthermia
- immune response
- membrane fluidity
- pMHC, peptide-major histocompatibility complexes
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Evan R Zynda
- a Department of Cell Stress Biology ; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, Kwon A, Choi H, Lee JW, Chung NG, Kim M, Kim Y. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet 2016; 90:69-78. [PMID: 26830532 DOI: 10.1111/cge.12749] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
Abstract
The aim of this study was to describe the mutational characteristics in Korean hereditary spherocytosis (HS) patients. Relevant literatures including genetically confirmed cases with well-documented clinical summaries and relevant information were also reviewed to investigate the mutational gene- or domain-specific laboratory and clinical association. Twenty-five HS patients carried one heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12) but not in SPTA1, SLC4A1, or EPB42. Deleterious mutations including frameshift, nonsense, and splice site mutations were identified in 91% (21/23), and non-hotspot mutations were dispersed across multiple exons. Genotype-phenotype correlation was clarified after combined analysis of the cases and the literature review; anemia was most severe in HS patients with mutations on the ANK1 spectrin-binding domain (p < 0.05), and SPTB mutations in HS patients spared the tetramerization domain in which mutations of hereditary elliptocytosis and pyropoikilocytosis are located. Splenectomy (17/75) was more frequent in ANK1 mutant HS (32%) than in HS with SPTB mutation (10%) (p = 0.028). Aplastic crisis occurred in 32.0% of the patients (8/25; 3 ANK1 and 5 SPTB), and parvovirus B19 was detected in 88%. The study clarifies ANK1 or SPTB mutational characteristics in HS Korean patients. The genetic association of laboratory and clinical aspects suggests comprehensive considerations for genetic-based management of HS.
Collapse
Affiliation(s)
- J Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - D-C Jeong
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J Yoo
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - W Jang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Laboratory Medicine, Samkwang Medical Laboratories, Seoul, Republic of Korea
| | - H Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - A Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - H Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J W Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - N-G Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - M Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Y Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
72
|
Leite SC, Sousa MM. The neuronal and actin commitment: Why do neurons need rings? Cytoskeleton (Hoboken) 2016; 73:424-34. [DOI: 10.1002/cm.21273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Sérgio Carvalho Leite
- Nerve Regeneration Group, IBMC - Instituto De Biologia Molecular E Celular; Porto Portugal
- Instituto De Investigação E Inovação Em Saúde, Universidade Do Porto; Porto Portugal
- ICBAS, Universidade Do Porto; Porto Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC - Instituto De Biologia Molecular E Celular; Porto Portugal
- Instituto De Investigação E Inovação Em Saúde, Universidade Do Porto; Porto Portugal
| |
Collapse
|
73
|
Harrison PJ. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr Opin Neurobiol 2016; 36:1-6. [PMID: 26210959 PMCID: PMC4779149 DOI: 10.1016/j.conb.2015.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Bipolar disorder is a serious psychiatric disorder, with a high heritability and unknown pathogenesis. Recent genome-wide association studies have identified the first loci, implicating genes such as CACNA1C and ANK3. The genes highlight several pathways, notably calcium signalling, as being of importance. Molecular studies suggest that the risk variants impact on gene regulation and expression. Preliminary studies using reprogrammed patient-derived cells report alterations in the transcriptome and in cellular adhesion and differentiation. Mouse models show that genes involved in circadian biology, acting via dopaminergic effects, reproduce aspects of the bipolar phenotype. These findings together represent significant advances in identification of the genetic and molecular basis of bipolar disorder, yet we are still far from an integrated, evidence-based understanding of its aetiopathogenesis.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
74
|
Susuki K, Otani Y, Rasband MN. Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 2016; 283:446-51. [PMID: 26775177 DOI: 10.1016/j.expneurol.2015.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Abstract
Rapid action potential propagation along myelinated axons requires voltage-gated Na(+) (Nav) channel clustering at nodes of Ranvier. At paranodes flanking nodes, myelinating glial cells interact with axons to form junctions. The regions next to the paranodes called juxtaparanodes are characterized by high concentrations of voltage-gated K(+) channels. Paranodal axoglial junctions function as barriers to restrict the position of these ion channels. These specialized domains along the myelinated nerve fiber are formed by multiple molecular mechanisms including interactions between extracellular matrix, cell adhesion molecules, and cytoskeletal scaffolds. This review highlights recent findings into the roles of submembranous cytoskeletal proteins in the stabilization of molecular complexes at and near nodes. Axonal ankyrin-spectrin complexes stabilize Nav channels at nodes. Axonal protein 4.1B-spectrin complexes contribute to paranode and juxtaparanode organization. Glial ankyrins enriched at paranodes facilitate node formation. Finally, disruption of spectrins or ankyrins by genetic mutations or proteolysis is involved in the pathophysiology of various neurological or psychiatric disorders.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| | - Yoshinori Otani
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
75
|
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. CURRENT TOPICS IN MEMBRANES 2015; 77:143-84. [PMID: 26781832 DOI: 10.1016/bs.ctm.2015.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection.
Collapse
|
76
|
Cadwell CM, Jenkins PM, Bennett V, Kowalczyk AP. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers. J Biol Chem 2015; 291:691-704. [PMID: 26574545 DOI: 10.1074/jbc.m115.648386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 01/26/2023] Open
Abstract
Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions.
Collapse
Affiliation(s)
- Chantel M Cadwell
- From the Biochemistry, Cell, and Developmental Biology Graduate Program
| | - Paul M Jenkins
- the Howard Hughes Medical Institute, Department of Biochemistry, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Vann Bennett
- the Howard Hughes Medical Institute, Department of Biochemistry, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Andrew P Kowalczyk
- Department of Cell Biology, Department of Dermatology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322 and
| |
Collapse
|
77
|
Kim JH, Kwon SJ, Stankewich MC, Huh GY, Glantz SB, Morrow JS. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp Mol Pathol 2015; 100:1-7. [PMID: 26551084 DOI: 10.1016/j.yexmp.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from resting protoplasmic astrocytes to reactive fibrous astrocytes.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA.
| | - Soojung J Kwon
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Michael C Stankewich
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Gi-Yeong Huh
- Department of Forensic Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Susan B Glantz
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Jon S Morrow
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| |
Collapse
|
78
|
Laird JG, Pan Y, Modestou M, Yamaguchi DM, Song H, Sokolov M, Baker SA. Identification of a VxP Targeting Signal in the Flagellar Na+ /K+ -ATPase. Traffic 2015; 16:1239-53. [PMID: 26373354 DOI: 10.1111/tra.12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Na(+) /K(+) -ATPase (NKA) participates in setting electrochemical gradients, cardiotonic steroid signaling and cellular adhesion. Distinct isoforms of NKA are found in different tissues and subcellular localization patterns. For example, NKA α1 is widely expressed, NKA α3 is enriched in neurons and NKA α4 is a testes-specific isoform found in sperm flagella. In some tissues, ankyrin, a key component of the membrane cytoskeleton, can regulate the trafficking of NKA. In the retina, NKA and ankyrin-B are expressed in multiple cell types and immunostaining for each is striking in the synaptic layers. Labeling for NKA is also prominent along the inner segment plasma membrane (ISPM) of photoreceptors. NKA co-immunoprecipitates with ankyrin-B, but on a subcellular level colocalization of these two proteins varies dependent on the cell type. We used transgenic Xenopus laevis tadpoles to evaluate the subcellular trafficking of NKA in photoreceptors. GFP-NKA α3 and α1 are localized to the ISPM, but α4 is localized to outer segments (OSs). We identified a VxP motif responsible for the OS targeting by using a series of chimeric and mutant NKA constructs. This motif is similar to previously identified ciliary targeting motifs. Given the structural similarities between OSs and flagella, our findings shed light on the subcellular targeting of this testes-specific NKA isoform.
Collapse
Affiliation(s)
- Joseph G Laird
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yuan Pan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Current address: Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Modestos Modestou
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David M Yamaguchi
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Hongman Song
- Department of Ophthalmology, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, WV, 26506, USA.,Current address: Section for Translational Research in Retina & Macular Degeneration, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, WV, 26506, USA
| | - Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
79
|
Tsytlonok M, Ibrahim SM, Rowling PJE, Xu W, Ruedas-Rama MJ, Orte A, Klenerman D, Itzhaki LS. Single-molecule FRET reveals hidden complexity in a protein energy landscape. Structure 2015; 23:190-198. [PMID: 25565106 PMCID: PMC4291146 DOI: 10.1016/j.str.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 10/27/2022]
Abstract
Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured "safety pin" or "staple" from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Shehu M Ibrahim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Pamela J E Rowling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Wenshu Xu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Maria J Ruedas-Rama
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, University of Granada, 18071 Granada, Spain
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, University of Granada, 18071 Granada, Spain
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Laura S Itzhaki
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
80
|
Lemonidis K, Sanchez-Perez MC, Chamberlain LH. Identification of a Novel Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-Acyltransferases. J Biol Chem 2015; 290:21939-50. [PMID: 26198635 PMCID: PMC4571948 DOI: 10.1074/jbc.m115.657668] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7-24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington's disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs.
Collapse
Affiliation(s)
- Kimon Lemonidis
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Maria C Sanchez-Perez
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Luke H Chamberlain
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
81
|
Harrison PJ. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr Opin Neurobiol 2015. [PMID: 26210959 DOI: 10.1016/j.conb.2015.07.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Bipolar disorder is a serious psychiatric disorder, with a high heritability and unknown pathogenesis. Recent genome-wide association studies have identified the first loci, implicating genes such as CACNA1C and ANK3. The genes highlight several pathways, notably calcium signalling, as being of importance. Molecular studies suggest that the risk variants impact on gene regulation and expression. Preliminary studies using reprogrammed patient-derived cells report alterations in the transcriptome and in cellular adhesion and differentiation. Mouse models show that genes involved in circadian biology, acting via dopaminergic effects, reproduce aspects of the bipolar phenotype. These findings together represent significant advances in identification of the genetic and molecular basis of bipolar disorder, yet we are still far from an integrated, evidence-based understanding of its aetiopathogenesis.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
82
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
83
|
Papandréou MJ, Vacher H, Fache MP, Klingler E, Rueda-Boroni F, Ferracci G, Debarnot C, Pipéroglou C, Garcia Del Caño G, Goutebroze L, Dargent B. CK2-regulated schwannomin-interacting protein IQCJ-SCHIP-1 association with AnkG contributes to the maintenance of the axon initial segment. J Neurochem 2015; 134:527-37. [PMID: 25950943 DOI: 10.1111/jnc.13158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage-gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS. We previously showed that IQ motif containing J-Schwannomin-Interacting Protein 1 (IQCJ-SCHIP-1), an isoform of the SCHIP-1, accumulated at the AIS in vivo. Here, we analyzed the molecular mechanisms involved in IQCJ-SCHIP-1-specific axonal location. We showed that IQCJ-SCHIP-1 accumulation in the AIS of cultured hippocampal neurons depended on AnkG expression. Pull-down assays and surface plasmon resonance analysis demonstrated that AnkG binds to CK2-phosphorylated IQCJ-SCHIP-1 but not to the non-phosphorylated protein. Surface plasmon resonance approaches using IQCJ-SCHIP-1, SCHIP-1a, another SCHIP-1 isoform, and their C-terminus tail mutants revealed that a segment including multiple CK2-phosphorylatable sites was directly involved in the interaction with AnkG. Pharmacological inhibition of CK2 diminished both IQCJ-SCHIP-1 and AnkG accumulation in the AIS. Silencing SCHIP-1 expression reduced AnkG cluster at the AIS. Finally, over-expression of IQCJ-SCHIP-1 decreased AnkG concentration at the AIS, whereas a mutant deleted of the CK2-regulated AnkG interaction site did not. Our study reveals that CK2-regulated IQJC-SCHIP-1 association with AnkG contributes to AIS maintenance. The axon initial segment (AIS) organization depends on ankyrin (Ank) G and kinases. Here we showed that AnkG binds to CK2-phosphorylated IQCJ-SCHIP-1, in a segment including 12 CK2-phosphorylatable sites. In cultured neurons, either pharmacological inhibition of CK2 or IQCJ-SCHIP-1 silencing reduced AnkG clustering. Overexpressed IQCJ-SCHIP-1 decreased AnkG concentration at the AIS whereas a mutant deleted of the CK2-regulated AnkG interaction site did not. Thus, CK2-regulated IQJC-SCHIP-1 association with AnkG contributes to AIS maintenance.
Collapse
Affiliation(s)
| | - Hélène Vacher
- CRN2M-UMR7286, Aix Marseille Université, CNRS, Marseille, France
| | | | - Esther Klingler
- Institut du Fer à Moulin, Inserm, UMR-S 839, Université Pierre et Marie-Curie, Paris, France
| | | | | | - Claire Debarnot
- CRN2M-UMR7286, Aix Marseille Université, CNRS, Marseille, France
| | | | - Gontzal Garcia Del Caño
- CRN2M-UMR7286, Aix Marseille Université, CNRS, Marseille, France.,Department of Neurosciences, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Laurence Goutebroze
- Institut du Fer à Moulin, Inserm, UMR-S 839, Université Pierre et Marie-Curie, Paris, France
| | | |
Collapse
|
84
|
Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 2015; 34:940-54. [PMID: 25712476 PMCID: PMC4388601 DOI: 10.15252/embj.201489642] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.
Collapse
Affiliation(s)
- Georgina C Fletcher
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ichha Khanal
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Paulo S Ribeiro
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nic Tapon
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| |
Collapse
|
85
|
F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 2015; 72:3185-3200. [PMID: 25809162 DOI: 10.1007/s00018-015-1890-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.
Collapse
|
86
|
Maxwell W. Development of Concepts in the Pathology of Traumatic Axonal and Traumatic Brain Injury. BRAIN NEUROTRAUMA 2015. [DOI: 10.1201/b18126-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
87
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Pretorius E, Kell DB. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol (Camb) 2014; 6:486-510. [PMID: 24714688 DOI: 10.1039/c4ib00025k] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most non-communicable diseases involve inflammatory changes in one or more vascular systems, and there is considerable evidence that unliganded iron plays major roles in this. Most studies concentrate on biochemical changes, but there are important biophysical correlates. Here we summarize recent microscopy-based observations to the effect that iron can have major effects on erythrocyte morphology, on erythrocyte deformability and on both fibrinogen polymerization and the consequent structure of the fibrin clots formed, each of which contributes significantly and negatively to such diseases. We highlight in particular type 2 diabetes mellitus, ischemic thrombotic stroke, systemic lupus erythematosus, hereditary hemochromatosis and Alzheimer's disease, while recognizing that many other diseases have co-morbidities (and similar causes). Inflammatory biomarkers such as ferritin and fibrinogen are themselves inflammatory, creating a positive feedback that exacerbates disease progression. The biophysical correlates we describe may provide novel, inexpensive and useful biomarkers of the therapeutic benefits of successful treatments.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia 0007, South Africa.
| | | |
Collapse
|
89
|
Swanepoel AC, Pretorius E. Erythrocyte-platelet interaction in uncomplicated pregnancy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1848-1860. [PMID: 25470019 DOI: 10.1017/s1431927614013518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Maternal and fetal requirements during uncomplicated pregnancy are associated with changes in the hematopoietic system. Platelets and erythrocytes [red blood cells (RBCs)], and especially their membranes, are involved in coagulation, and their interactions may provide reasons for the changed hematopoietic system during uncomplicated pregnancy. We review literature regarding RBC and platelet membrane structure and interactions during hypercoagulability and hormonal changes. We then study interactions between RBCs and platelets in uncomplicated pregnancy, as their interactions may be one of the reasons for increased hypercoagulability during uncomplicated pregnancy. Scanning electron microscopy was used to study whole blood smears from 90 pregnant females in different phases of pregnancy. Pregnancy-specific interaction was seen between RBCs and platelets. Typically, one or more platelets interacted through platelet spreading and pseudopodia formation with a single RBC. However, multiple interactions with RBCs were also shown for a single platelet. Specific RBC-platelet interaction seen during uncomplicated pregnancy may be caused by increased estrogen and/or increased fibrinogen concentrations. This interaction may contribute to the hypercoagulable state associated with healthy and uncomplicated pregnancy and may also play a fundamental role in gestational thrombocytopenia.
Collapse
Affiliation(s)
- Albe C Swanepoel
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| | - Etheresia Pretorius
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| |
Collapse
|
90
|
Chang KJ, Zollinger DR, Susuki K, Sherman DL, Makara MA, Brophy PJ, Cooper EC, Bennett V, Mohler PJ, Rasband MN. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci 2014; 17:1673-81. [PMID: 25362471 PMCID: PMC4260775 DOI: 10.1038/nn.3858] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel R. Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom EH16 4SB
| | - Michael A. Makara
- Departments of Physiology and Cell Biology, Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom EH16 4SB
| | - Edward C. Cooper
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vann Bennett
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Peter J. Mohler
- Departments of Physiology and Cell Biology, Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew N. Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
91
|
Wang C, Wei Z, Chen K, Ye F, Yu C, Bennett V, Zhang M. Structural basis of diverse membrane target recognitions by ankyrins. eLife 2014; 3. [PMID: 25383926 PMCID: PMC4358367 DOI: 10.7554/elife.04353] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/07/2014] [Indexed: 12/24/2022] Open
Abstract
Ankyrin adaptors together with their spectrin partners coordinate diverse ion channels and cell adhesion molecules within plasma membrane domains and thereby promote physiological activities including fast signaling in the heart and nervous system. Ankyrins specifically bind to numerous membrane targets through their 24 ankyrin repeats (ANK repeats), although the mechanism for the facile and independent evolution of these interactions has not been resolved. Here we report the structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide, respectively, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites. These structures establish a framework for understanding the evolution of ankyrins' membrane targets, with implications for other proteins containing extended ANK repeat domains. DOI:http://dx.doi.org/10.7554/eLife.04353.001 Proteins are made up of smaller building blocks called amino acids that are linked to form long chains that then fold into specific shapes. Each protein gets its unique identity from the number and order of the amino acids that it contains, but different proteins can contain similar arrangements of amino acids. These similar sequences, known as motifs, are usually short and typically mark the sites within proteins that bind to other molecules or proteins. A single protein can contain many motifs, including multiple repeats of the same motif. One common motif is called the ankyrin (or ANK) repeat, which is found in 100s of proteins in different species, including bacteria and humans. Ankyrin proteins perform a range of important functions, such as connecting proteins in the cell surface membrane to a scaffold-like structure underneath the membrane. Proteins containing ankyrin repeats are known to interact with a diverse range of other proteins (or targets) that are different in size and shape. The 24 repeats found in human ankyrin proteins appear to have essentially remained unchanged for the last 500 million years. As such, it remains unclear how the conserved ankyrin repeats can bind to such a wide variety of protein targets. Now, Wang, Wei et al. have uncovered the three-dimensional structure of ankyrin repeats from a human ankyrin protein while it was bound either to a regulatory fragment from another ankyrin protein or to a region of a target protein (which transports sodium ions in and out of cells). The ankyrin repeats were shown to form an extended ‘left-handed helix’: a structure that has also been seen in other proteins with different repeating motifs. Wang, Wei et al. found that the ankyrin protein fragment bound to the inner surface of the part of the helix formed by the first 14 ankyrin repeats. The target protein region also bound to the helix's inner surface. Wang, Wei et al. show that this surface contains many binding sites that can be used, in different combinations, to allow ankyrins to interact with diverse proteins. Other proteins with long sequences of repeats are widespread in nature, but uncovering the structures of these proteins is technically challenging. Wang, Wei et al.'s findings might reveal new insights into the functions of many of such proteins in a wide range of living species. Furthermore, the new structures could help explain why specific mutations in the genes that encode ankyrins (or their binding targets) can cause various diseases in humans—including heart diseases and psychiatric disorders. DOI:http://dx.doi.org/10.7554/eLife.04353.002
Collapse
Affiliation(s)
- Chao Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Cong Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Vann Bennett
- Department of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
92
|
Wang Y, Yago T, Zhang N, Abdisalaam S, Alexandrakis G, Rodgers W, McEver RP. Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin. J Biol Chem 2014; 289:35159-71. [PMID: 25359776 DOI: 10.1074/jbc.m114.600767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Tadayuki Yago
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation and
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Salim Abdisalaam
- Department of Biomedical Engineering, University of Texas, Arlington, Texas 76010
| | - George Alexandrakis
- Department of Biomedical Engineering, University of Texas, Arlington, Texas 76010
| | - William Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Rodger P McEver
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation and
| |
Collapse
|
93
|
Smith KR, Kopeikina KJ, Fawcett-Patel JM, Leaderbrand K, Gao R, Schürmann B, Myczek K, Radulovic J, Swanson GT, Penzes P. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 2014; 84:399-415. [PMID: 25374361 DOI: 10.1016/j.neuron.2014.10.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 01/21/2023]
Abstract
Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using superresolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, probably as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions and open directions for basic and translational investigation of psychiatric risk molecules.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine J Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jessica M Fawcett-Patel
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Britta Schürmann
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA.
| |
Collapse
|
94
|
He M, Abdi KM, Bennett V. Ankyrin-G palmitoylation and βII-spectrin binding to phosphoinositide lipids drive lateral membrane assembly. J Cell Biol 2014; 206:273-88. [PMID: 25049274 PMCID: PMC4107783 DOI: 10.1083/jcb.201401016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022] Open
Abstract
Ankyrin-G and βII-spectrin colocalize at sites of cell-cell contact in columnar epithelial cells and promote lateral membrane assembly. This study identifies two critical inputs from lipids that together provide a rationale for how ankyrin-G and βII-spectrin selectively localize to Madin-Darby canine kidney (MDCK) cell lateral membranes. We identify aspartate-histidine-histidine-cysteine 5/8 (DHHC5/8) as ankyrin-G palmitoyltransferases required for ankyrin-G lateral membrane localization and for assembly of lateral membranes. We also find that βII-spectrin functions as a coincidence detector that requires recognition of both ankyrin-G and phosphoinositide lipids for its lateral membrane localization. DHHC5/8 and βII-spectrin colocalize with ankyrin-G in micrometer-scale subdomains within the lateral membrane that are likely sites for palmitoylation of ankyrin-G. Loss of either DHHC5/8 or ankyrin-G-βII-spectrin interaction or βII-spectrin-phosphoinositide recognition through its pleckstrin homology domain all result in failure to build the lateral membrane. In summary, we identify a functional network connecting palmitoyltransferases DHHC5/8 with ankyrin-G, ankyrin-G with βII-spectrin, and βII-spectrin with phosphoinositides that is required for the columnar morphology of MDCK epithelial cells.
Collapse
Affiliation(s)
- Meng He
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Khadar M Abdi
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Vann Bennett
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 Howard Hughes Medical Institute, Durham, NC 27710
| |
Collapse
|
95
|
Jones SL, Korobova F, Svitkina T. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. ACTA ACUST UNITED AC 2014; 205:67-81. [PMID: 24711503 PMCID: PMC3987141 DOI: 10.1083/jcb.201401045] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The axon initial segment of differentiated neurons contains a dense submembranous cytoskeleton that overlays microtubule bundles and includes two sparse actin populations: short, stable actin filaments and longer, dynamic non-oriented filaments. The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.
Collapse
Affiliation(s)
- Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | |
Collapse
|
96
|
AlphaII-spectrin participates in the surface expression of cell adhesion molecule L1 and neurite outgrowth. Exp Cell Res 2014; 322:365-80. [DOI: 10.1016/j.yexcr.2014.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
|
97
|
Gutzmann A, Ergül N, Grossmann R, Schultz C, Wahle P, Engelhardt M. A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat 2014; 8:11. [PMID: 24653680 PMCID: PMC3949221 DOI: 10.3389/fnana.2014.00011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/20/2014] [Indexed: 01/09/2023] Open
Abstract
Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS) located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential (AP) generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E) 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P) 10 to P15 (eyes open P13–14). Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21). Shortest AIS were observed at the peak of the CP (P28), followed by a moderate elongation toward the end of the CP (P35). To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity), animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0 to 28 and P14 to 28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal excitability.
Collapse
Affiliation(s)
- Annika Gutzmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Nursah Ergül
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Rebecca Grossmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Christian Schultz
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Petra Wahle
- AG Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Germany
| | - Maren Engelhardt
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| |
Collapse
|
98
|
Marlinge E, Bellivier F, Houenou J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16:97-112. [PMID: 24571279 DOI: 10.1111/bdi.12135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Brain white matter (WM) alterations have recently emerged as potentially relevant in bipolar disorder. New techniques such as diffusion tensor imaging allow precise exploration of these WM microstructural alterations in bipolar disorder. Our objective was to critically review WM alterations in bipolar disorder, using neuroimaging and neuropathological studies, in the context of neural models and the potential for drug discovery and development. METHODS We conducted a systematic PubMed and Google Scholar search of the WM and bipolar disorder literature up to and including January 2013. RESULTS Findings relating to WM alterations are consistent in neuroimaging and neuropathology studies of bipolar disorder, especially in regions involved in emotional processing such as the anterior frontal lobe, corpus callosum, cingulate cortex, and in fronto-limbic connections. Some of the structural alterations are related to genetic risk factors for bipolar disorder and may underlie the dysfunctional emotional processing described in recent neurobiological models of bipolar disorder. Medication effects in bipolar disorder, from lithium and other mood stabilizers, might impact myelinating processes, particularly by inhibition of glycogen synthase kinase-3 beta. CONCLUSIONS Pathways leading to WM alterations in bipolar disorder represent potential targets for the development and discovery of new drugs. Myelin damage in bipolar disorder suggests that the effects of existing pro-myelinating drugs should also be evaluated to improve our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Emeline Marlinge
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Paris, France; Inserm, U955, Equipe 15 (Psychiatrie Génétique), Paris, France; Fondation Fondamental, Créteil, France; Neurospin, I2BM, CEA, Gif-Sur-Yvette, France
| | | | | |
Collapse
|
99
|
Barry J, Gu Y, Jukkola P, O'Neill B, Gu H, Mohler PJ, Rajamani KT, Gu C. Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons. Dev Cell 2014; 28:117-31. [PMID: 24412576 DOI: 10.1016/j.devcel.2013.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/14/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Action potentials (APs) propagating along axons require the activation of voltage-gated Na(+) (Nav) channels. How Nav channels are transported into axons is unknown. We show that KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with small interfering RNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing AP firing. Live-cell imaging showed that fluorescently tagged AnkG or Nav1.2 cotransported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav, but not Kv1.2, channels in mouse cerebellum. These results indicate that AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport before anchoring them to the AIS and nodes of Ranvier.
Collapse
Affiliation(s)
- Joshua Barry
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yuanzheng Gu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian O'Neill
- Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Howard Gu
- Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Departments of Internal Medicine and Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Chen Gu
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
100
|
Ebel J, Beuter S, Wuchter J, Kriebel M, Volkmer H. Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin. ADVANCES IN NEUROBIOLOGY 2014; 8:231-47. [DOI: 10.1007/978-1-4614-8090-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|