51
|
Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R, Gomis R. Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Sci Transl Med 2020; 11:11/497/eaar6294. [PMID: 31217339 DOI: 10.1126/scitranslmed.aar6294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by β cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Hugo Figueiredo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Escuela de Medicina y Ciencias de la Salud, Dept. Medicina Cardiovascular y Metabolómica, Tecnológico de Monterrey, 66278 San Pedro Garza García, Nuevo León, Mexico
| | - Ana Lucia C Figueroa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Ainhoa Garcia
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Montpellier, Lapeyronie Hospital, 34295 Montpellier, France.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Rita Malpique
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
52
|
Jacob A, Southard S, Rust W. Cell Replacement Therapy for Insulin-Dependent Diabetes: Maintaining Islet Architecture and Distribution After Graft. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
53
|
Rambøl MH, Han E, Niklason LE. Microvessel Network Formation and Interactions with Pancreatic Islets in Three-Dimensional Chip Cultures. Tissue Eng Part A 2020; 26:556-568. [PMID: 31724494 PMCID: PMC7249478 DOI: 10.1089/ten.tea.2019.0186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The pancreatic islet is a highly vascularized micro-organ, and rapid revascularization postislet transplantation is important for islet survival and function. However, the various mechanisms involved in islet revascularization are not fully understood, and we currently lack good in vitro platforms to explore this. Our aim for this study was to generate perfusable microvascular networks in a microfluidic chip device, in which islets could be easily integrated, to establish an in vitro platform for investigations on islet-microvasculature interactions. We compared the ability of mesenchymal stem cells (MSCs) and fibroblasts to support microvascular network formation by human umbilical vein endothelial cells (HUVECs) and human induced pluripotent stem cell-derived endothelial colony-forming cell in two-dimensional and three-dimensional models of angiogenesis, and tested the effect of different culture media on microvessel formation. HUVECs that were supported by MSCs formed patent and perfusable networks in a fibrin gel, whereas networks supported by fibroblasts rapidly regressed. Network morphology could be controlled by adjusting relative cell numbers and densities. Incorporation of isolated rat islets demonstrated that islets recruit local microvasculature in vitro, but that the microvessels did not invade islets, at least during the course of these studies. This in vitro microvascularization platform can provide a useful tool to study how various parameters affect islet integration with microvascular networks and could also be utilized for studies of vascularization of other organ systems. Impact statement To improve pancreatic islet graft survival and function posttransplantation, rapid and adequate revascularization is critical. Efforts to improve islet revascularization are demanding due to an insufficient understanding of the mechanisms involved in the process. We have applied a microfluidics platform to generate microvascular networks, and by incorporating pancreatic islets, we were able to study microvasculature-islet interactions in real time. This platform can provide a useful tool to study islet integration with microvascular networks, and could be utilized for studies of vascularization of other organ systems. Moreover, this work may be adapted toward developing a prevascularized islet construct for transplantation.
Collapse
Affiliation(s)
- Mia H. Rambøl
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Edward Han
- Department of Biomedical Engineering and Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering and Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
54
|
RAZAVI MEHDI, PRIMAVERA ROSITA, KEVADIYA BHAVESHD, WANG JING, BUCHWALD PETER, THAKOR AVNESHS. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1902463. [PMID: 33071709 PMCID: PMC7567341 DOI: 10.1002/adfm.201902463] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The aim of this work was to develop, characterize and test a novel 3D bioscaffold matrix which can accommodate pancreatic islets and provide them with a continuous, controlled and steady source of oxygen to prevent hypoxia-induced damage following transplantation. Hence, we made a collagen based cryogel bioscaffold which incorporated calcium peroxide (CPO) into its matrix. The optimal concentration of CPO integrated into bioscaffolds was 0.25wt.% and this generated oxygen at 0.21±0.02mM/day (day 1), 0.19±0.01mM/day (day 6), 0.13±0.03mM/day (day 14), and 0.14±0.02mM/day (day 21). Accordingly, islets seeded into cryogel-CPO bioscaffolds had a significantly higher viability and function compared to islets seeded into cryogel alone bioscaffolds or islets cultured alone on traditional cell culture plates; these findings were supported by data from quantitative computational modelling. When syngeneic islets were transplanted into the epididymal fat pad (EFP) of diabetic mice, our cryogel-0.25wt.%CPO bioscaffold improved islet function with diabetic animals re-establishing glycemic control. Mice transplanted with cryogel-0.25wt.%CPO bioscaffolds showed faster responses to intraperitoneal glucose injections and had a higher level of insulin content in their EFP compared to those transplanted with islets alone (P<0.05). Biodegradability studies predicted that our cryogel-CPO bioscaffolds will have long-lasting biostability for approximately 5 years (biodegradation rate: 16.00±0.65%/year). Long term implantation studies (i.e. 6 months) showed that our cryogel-CPO bioscaffold is biocompatible and integrated into the surrounding fat tissue with minimal adverse tissue reaction; this was further supported by no change in blood parameters (i.e. electrolyte, metabolic, chemistry and liver panels). Our novel oxygen-generating bioscaffold (i.e. cryogel-0.25wt.%CPO) therefore provides a biostable and biocompatible 3D microenvironment for islets which can facilitate islet survival and function at extra-hepatic sites of transplantation.
Collapse
Affiliation(s)
- MEHDI RAZAVI
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | - ROSITA PRIMAVERA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - BHAVESH D KEVADIYA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - JING WANG
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - PETER BUCHWALD
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - AVNESH S THAKOR
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| |
Collapse
|
55
|
Kuppan P, Kelly S, Polishevska K, Hojanepesov O, Seeberger K, Korbutt GS, Pepper AR. Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. Am J Transplant 2020; 20:714-725. [PMID: 31650674 DOI: 10.1111/ajt.15662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/14/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023]
Abstract
The broad application of ß cell transplantation for type 1 diabetes is hindered by the requisite of lifelong systemic immunosuppression. This study examines the utility of localized islet graft drug delivery to subvert the inflammatory and adaptive immune responses. Herein, we have developed and characterized dexamethasone (Dex) eluting Food and Drug Administration-approved micro-Poly(lactic-co-glycolic acid) micelles and examined their efficacy in a fully major histocompatibility complex-mismatch murine islet allograft model. A clinically relevant dose of 46.6 ± 2.8 μg Dex per graft was confirmed when 2 mg of micelles was implemented. Dex-micelles + CTLA-4-Ig (n = 10) resulted in prolonged allograft function with 80% of the recipients demonstrating insulin independence for 60 days posttransplant compared to 40% in empty micelles + CTLA-4-Ig recipients (n = 10, P = .06). Recipients of this combination therapy (n = 8) demonstrated superior glucose tolerance profiles, compared to empty micelles + CTLA-4-Ig recipients (n = 4, P < .05), and significantly reduced localized intragraft proinflammatory cytokine expression. Histologically, increased insulin positive and FOXP3+ T cells were observed in Dex-micelles + CTLA-4-Ig grafts compared to empty micelles + CTLA-4-Ig grafts (P < .01 and P < .05, respectively). Localized drug delivery via micelles elution has the potential to alter the inflammatory environment, enhances allograft survival, and may be an important adjuvant approach to improve clinical islet transplantation outcomes.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kateryna Polishevska
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Osmanmyrat Hojanepesov
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
56
|
Bachul PJ, Gołębiewska JE, Basto L, Gołąb K, Anteby R, Wang LJ, Tibudan M, Thomas C, Fendler W, Lucander A, Grybowski DJ, Dębska-Ślizień A, Fung J, Witkowski P. BETA-2 score is an early predictor of graft decline and loss of insulin independence after pancreatic islet allotransplantation. Am J Transplant 2020; 20:844-851. [PMID: 31597009 DOI: 10.1111/ajt.15645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Accepted: 09/29/2019] [Indexed: 01/25/2023]
Abstract
This study aimed to evaluate whether the BETA-2 score is a reliable early predictor of graft decline and loss of insulin independence after islet allotransplantation. Islet transplant procedures were stratified into 3 groups according to clinical outcome: long-term insulin independence without islet graft decline (group 1, N = 9), initial insulin independence with subsequent islet graft decline and loss of insulin independence (group 2, N = 13), and no insulin independence (group 3, N = 13). BETA-2 was calculated on day 75 and multiple times afterwards for up to 145 months posttransplantation. A BETA-2 score cut-off of 17.4 on day 75 posttransplantation was discerned between group 1 and groups 2 and 3 (area under the receiver operating characteristic 0.769, P = .005) with a sensitivity and negative predictive value of 100%. Additionally, BETA-2 ≥ 17.4 at any timepoint during follow-up reflected islet function required for long-term insulin independence. While BETA-2 did not decline below 17.4 for each of the 9 cases from group 1, the score decreased below 17.4 for all transplants from group 2 with subsequent loss of insulin independence. The reduction of BETA-2 below 17.4 predicted 9 (1.5-21) months in advance subsequent islet graft decline and loss of insulin independence (P = .03). This finding has important implications for posttransplant monitoring and patient care.
Collapse
Affiliation(s)
- Piotr J Bachul
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Justyna E Gołębiewska
- Department of Surgery, University of Chicago, Chicago, Illinois.,Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Lindsay Basto
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Karolina Gołąb
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Roi Anteby
- Department of Surgery, University of Chicago, Chicago, Illinois.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ling-Jia Wang
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Martin Tibudan
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Celeste Thomas
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Aaron Lucander
- Department of Surgery, University of Chicago, Chicago, Illinois
| | | | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - John Fung
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
57
|
Wiggins SC, Abuid NJ, Gattás-Asfura KM, Kar S, Stabler CL. Nanotechnology Approaches to Modulate Immune Responses to Cell-based Therapies for Type 1 Diabetes. J Diabetes Sci Technol 2020; 14:212-225. [PMID: 32116026 PMCID: PMC7196865 DOI: 10.1177/1932296819871947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising curative treatment option for type 1 diabetes (T1D) as it can provide physiological blood glucose control. The widespread utilization of islet transplantation is limited due to systemic immunosuppression requirements, persisting graft immunodestruction, and poor islet engraftment. Traditional macro- and micropolymeric encapsulation strategies can alleviate the need for antirejection immunosuppression, yet the increased graft volume and diffusional distances imparted by these coatings can be detrimental to graft viability and glucose control. Additionally, systemic administration of pro-engraftment and antirejection therapeutics leaves patients vulnerable to adverse off-target side effects. Nanoscale engineering techniques can be used to immunocamouflage islets, modulate the transplant microenvironment, and provide localized pro-engraftment cues. In this review, we discuss the applications of nanotechnology to advance the clinical potential of islet transplantation, with a focus on cell surface engineering, bioactive functionalization, and use of nanoparticles in T1D cell-based treatments.
Collapse
Affiliation(s)
- Sydney C. Wiggins
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas J. Abuid
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kerim M. Gattás-Asfura
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Saumadritaa Kar
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
58
|
Affiliation(s)
- Alexander E Vlahos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
59
|
Menger MM, Nalbach L, Roma LP, Körbel C, Wrublewsky S, Glanemann M, Laschke MW, Menger MD, Ampofo E. Erythropoietin accelerates the revascularization of transplanted pancreatic islets. Br J Pharmacol 2020; 177:1651-1665. [PMID: 31721150 DOI: 10.1111/bph.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic islet transplantation is a promising therapeutic approach for Type 1 diabetes. A major prerequisite for the survival of grafted islets is a rapid revascularization after transplantation. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to promote angiogenesis. Therefore, we investigated in this study whether EPO improves the revascularization of transplanted islets. EXPERIMENTAL APPROACH Islets from FVB/N mice were transplanted into dorsal skinfold chambers of recipient animals, which were daily treated with an intraperitoneal injection of EPO (500 IU·kg-1 ) or vehicle (control) throughout an observation period of 14 days. In a second set of experiments, animals were only pretreated with EPO over a 6-day period prior to islet transplantation. The revascularization of the grafts was assessed by repetitive intravital fluorescence microscopy and immunohistochemistry. In addition, a streptozotocin-induced diabetic mouse model was used to study the effect of EPO-pretreatment on the endocrine function of the grafts. KEY RESULTS EPO treatment slightly accelerated the revascularization of the islet grafts. This effect was markedly more pronounced in EPO-pretreated animals, resulting in significantly higher numbers of engrafted islets and an improved perfusion of endocrine tissue without affecting systemic haematocrit levels when compared with controls. Moreover, EPO-pretreatment significantly accelerated the recovery of normoglycaemia in diabetic mice after islet transplantation. CONCLUSION AND IMPLICATIONS These findings demonstrate that, particularly, short-term EPO-pretreatment represents a promising therapeutic approach to improve the outcome of islet transplantation, without an increased risk of thromboembolic events.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
60
|
Kuppan P, Seeberger K, Kelly S, Rosko M, Adesida A, Pepper AR, Korbutt GS. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 2020; 27:e12581. [DOI: 10.1111/xen.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Karen Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Sandra Kelly
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Mandy Rosko
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Adetola Adesida
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| |
Collapse
|
61
|
Kim HJ, Moon JH, Chung H, Shin JS, Kim B, Kim JM, Kim JS, Yoon IH, Min BH, Kang SJ, Kim YH, Jo K, Choi J, Chae H, Lee WW, Kim S, Park CG. Bioinformatic analysis of peripheral blood RNA-sequencing sensitively detects the cause of late graft loss following overt hyperglycemia in pig-to-nonhuman primate islet xenotransplantation. Sci Rep 2019; 9:18835. [PMID: 31827198 PMCID: PMC6906328 DOI: 10.1038/s41598-019-55417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical islet transplantation has recently been a promising treatment option for intractable type 1 diabetes patients. Although early graft loss has been well studied and controlled, the mechanisms of late graft loss largely remains obscure. Since long-term islet graft survival had not been achieved in islet xenotransplantation, it has been impossible to explore the mechanism of late islet graft loss. Fortunately, recent advances where consistent long-term survival (≥6 months) of adult porcine islet grafts was achieved in five independent, diabetic nonhuman primates (NHPs) enabled us to investigate on the late graft loss. Regardless of the conventional immune monitoring methods applied in the post-transplant period, the initiation of late graft loss could rarely be detected before the overt graft loss observed via uncontrolled blood glucose level. Thus, we retrospectively analyzed the gene expression profiles in 2 rhesus monkey recipients using peripheral blood RNA-sequencing (RNA-seq) data to find out the potential cause(s) of late graft loss. Bioinformatic analyses showed that highly relevant immunological pathways were activated in the animal which experienced late graft failure. Further connectivity analyses revealed that the activation of T cell signaling pathways was the most prominent, suggesting that T cell-mediated graft rejection could be the cause of the late-phase islet loss. Indeed, the porcine islets in the biopsied monkey liver samples were heavily infiltrated with CD3+ T cells. Furthermore, hypothesis test using a computational experiment reinforced our conclusion. Taken together, we suggest that bioinformatics analyses with peripheral blood RNA-seq could unveil the cause of insidious late islet graft loss.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Department of Dermatology and the Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Bongi Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Yong-Hee Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Joungmin Choi
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- Bioinformatics Institute, Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Computer Science & Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
62
|
Salama BF, Seeberger KL, Korbutt GS. Fibrin supports subcutaneous neonatal porcine islet transplantation without the need for pre‐vascularization. Xenotransplantation 2019; 27:e12575. [DOI: 10.1111/xen.12575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Bassem F. Salama
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| | - Karen L. Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Department of Surgery University of Alberta Edmonton Alberta Canada
| |
Collapse
|
63
|
Dwan BF, Moore A, Wang P. Nucleic acid-based theranostics in type 1 diabetes. Transl Res 2019; 214:50-61. [PMID: 31491371 DOI: 10.1016/j.trsl.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.
Collapse
Affiliation(s)
- Bennett Francis Dwan
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan; College of Natural Science, Michigan State University, East Lansing, Michigan
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
64
|
Augsornworawat P, Velazco-Cruz L, Song J, Millman JR. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater 2019; 97:272-280. [PMID: 31446050 DOI: 10.1016/j.actbio.2019.08.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022]
Abstract
Differentiation of stem cells into functional replacement cells and tissues is a major goal of the regenerative medicine field. However, one limitation has been organization of differentiated cells into multi-cellular, three-dimensional assemblies. The islets of Langerhans contain many endocrine and non-endocrine cell types, such as insulin-producing β cells and endothelial cells. Despite the potential importance of endothelial cells to islet function, facilitating interactions between endothelial cells and islet endocrine cell types already differentiated from human embryonic stem cells has been difficult in vitro. We have developed a strategy of assembling human embryonic stem cell-derived islet cells with endothelial cells into three-dimensional aggregates on a hydrogel. The resulting islet organoids express β cell and other endocrine markers and are functional, capable of undergoing glucose-stimulated insulin secretion. This assembly was not observed on traditional tissue culture plastic and in aggregates generated in suspension culture, highlighting how physical culture conditions greatly influence the interactions among these cell types. These results provide a platform for evaluating the effects of the islet tissue microenvironment on human embryonic stem cell-derived β cells and other islet endocrine cells to develop tissue engineered islets. STATEMENT OF SIGNIFICANCE: Differentiation of insulin-producing cells and tissues from human pluripotent stem cells is being investigated for diabetes cell replacement therapies. Despite successes generating β cells, the cell type responsible for glucose-stimulated insulin secretion within the islets of Langerhans found in the pancreas, successful assembly with other non-endocrine cell types, particularly endothelial cells, has been technically challenging. The present study provides a platform for the assembly of endothelial cells with SC-β and other endocrine cells, producing islet organoids that are functional and express β cell markers, that can be used to study the islet microenvironment and islet tissue engineering.
Collapse
|
65
|
Is the renal subcapsular space the preferred site for clinical porcine islet xenotransplantation? Review article. Int J Surg 2019; 69:100-107. [PMID: 31369877 DOI: 10.1016/j.ijsu.2019.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022]
Abstract
It can reasonably be anticipated that, within 5-10 years, islet allotransplantation or pig islet xenotransplantation may be the preferred options for β-cell replacement therapy. The portal vein/liver is currently the preferred clinical site for free islet transplantation, constituting 90% of clinical islet transplants. Despite being the site of choice for rodent and some large animal studies, the renal subcapsular space is rarely used clinically, even though the introduction of islets intraportally is not entirely satisfactory (particularly for pig islet xenotransplantation). We questioned why this might be so. Is it perhaps based on prior clinical evidence, or from experience in nonhuman primates? When we have questioned experts in the field, no definitive answers have been forthcoming. We have therefore reviewed the relevant literature, and still cannot find a convincing reason why the renal subcapsular space has been so relatively abandoned as a site for clinical islet transplantation. Owing to its sequestered environment, subcapsular transplantation might avoid some of the remaining challenges of intraportal transplantation. This may be particularly true when using pig islets for xenotransplantation, which are exceptionally pure in comparison to human islets used in auto- or allo-transplantation. With evidence from the literature, we question the notion that the subcapsular space is inhospitable to islet transplantation and suggest that, when porcine islet transplantation is introduced, this site should perhaps be reconsidered.
Collapse
|
66
|
Hoveizi E, Tavakol S, Shirian S, Sanamiri K. Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies. Curr Stem Cell Res Ther 2019; 14:152-168. [PMID: 30338744 DOI: 10.2174/1574888x13666181018150107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Research Center, Dr. Daneshbod Pathology Lab, Shiraz, Iran
| | - Khadije Sanamiri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
67
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
68
|
Veroux M, Bottino R, Santini R, Bertera S, Corona D, Zerbo D, Li Volti G, Ekser B, Puzzo L, Raffaele M, Lo Bianco S, Giaquinta A, Veroux P, Vanella L. Mesenteric lymph nodes as alternative site for pancreatic islet transplantation in a diabetic rat model. BMC Surg 2019; 18:126. [PMID: 31074398 PMCID: PMC7402566 DOI: 10.1186/s12893-018-0452-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/02/2022] Open
Abstract
Background Islet transplantation has progressively become a safe alternative to pancreas transplantation for the treatment of type 1 diabetes. However, the long-term results of islet transplantation could be significantly increased by improving the quality of the islet isolation technique even exploring alternative islet transplantation sites to reduce the number of islets required to mitigate hyperglycemia. The goal of the study was to test the lymph node as a suitable anatomical location for islet engraftment in a rodent model. Methods Forty Lewis rats, 6–8 weeks old, body weight 250–300 g, have been used as islet donors and recipients in syngeneic islet transplantation experiments. Ten rats were rendered diabetic by one injection of 65 mg/Kg of streptozotocin. After pancreas retrieval from non diabetic donors, islet were isolated and transplanted in the mesenteric lymph nodes of 7 diabetic rats. Rats were followed for 30 days after islet transplantation. Results A total of 7 islet transplantations in mesenteric lymph nodes have been performed. Two rats died 24 and 36 h after transplantation due to complications. No transplanted rat acquired normal glucose blood levels and insulin independence after the transplantation. However, the mean blood levels of glycemia were significantly lower in transplanted rats compared with diabetic rats (470.4 mg/dl vs 605 mg/dl, p 0.04). Interestingly, transplanted rats have a significant weight increase after transplantation compared to diabetic rats (mean value 295 g in transplanted rats vs 245 g in diabetic rats, p < 0.05), with an overall improvement of social activities and health. Immunohistochemical analysis of the 5 mesenteric lymph nodes of transplanted rats demonstrated the presence of living islets in one lymph node. Conclusions Although islet engraftment in lymph nodes is possible, islet transplantation in lymph nodes in rats resulted in few improvements of glucose parameters.
Collapse
Affiliation(s)
- Massimiliano Veroux
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy.
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Roberta Santini
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Daniela Corona
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy
| | - Domenico Zerbo
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Lidia Puzzo
- Section of Anatomic Pathology, Department od Medical and Surgical Sciences, and Advanced Technologies, University Hospital of Catania, Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | | | - Alessia Giaquinta
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy
| | - Pierfrancesco Veroux
- Vascular Surgery and Organ Transplant Unit, Department of Medical and Surgical Sciences, University Hospital of Catania, Via Santa Sofia, 84 95123, Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
69
|
Duin S, Schütz K, Ahlfeld T, Lehmann S, Lode A, Ludwig B, Gelinsky M. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Adv Healthc Mater 2019; 8:e1801631. [PMID: 30835971 DOI: 10.1002/adhm.201801631] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Transplantation of pancreatic islets is a promising strategy to alleviate the unstable blood-glucose control that some patients with diabetes type 1 exhibit and has seen many advances over the years. Protection of transplanted islets from the immune system can be accomplished by encapsulation within a hydrogel, the most investigated of which is alginate. In this study, islet encapsulation is combined with 3D extrusion bioprinting, an additive manufacturing method which enables the fabrication of 3D structures with a precise geometry to produce macroporous hydrogel constructs with embedded islets. Using a plottable hydrogel blend consisting of clinically approved ultrapure alginate and methylcellulose (Alg/MC) enables encapsulating pancreatic islets in macroporous 3D hydrogel constructs of defined geometry while retaining their viability, morphology, and functionality. Diffusion of glucose and insulin in the Alg/MC hydrogel is comparable to diffusion in plain alginate; the embedded islets continuously produce insulin and glucagon throughout the observation and still react to glucose stimulation albeit to a lesser degree than control islets.
Collapse
Affiliation(s)
- Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Kathleen Schütz
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Tilman Ahlfeld
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Susann Lehmann
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Barbara Ludwig
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstraße 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
70
|
Synergic effects of oxygen supply and antioxidants on pancreatic β-cell spheroids. Sci Rep 2019; 9:1802. [PMID: 30755634 PMCID: PMC6372787 DOI: 10.1038/s41598-018-38011-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.
Collapse
|
71
|
Ren G, Rezaee M, Razavi M, Taysir A, Wang J, Thakor AS. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties. Cell Tissue Res 2019; 376:353-364. [PMID: 30707291 DOI: 10.1007/s00441-019-02997-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
A significant proportion of islets are lost following transplantation due to hypoxia and inflammation. We hypothesize that adipose tissue-derived mesenchymal stem cells (AD-MSCs) can rescue a sub-therapeutic number of transplanted islets by helping them establish a new blood supply and reducing inflammation. Diabetic mice received syngeneic transplantation with 75 (minimal), 150 (sub-therapeutic), or 225 (therapeutic) islets, with or without 1 × 106 mouse AD-MSCs. Fasting blood glucose (FBG) values were measured over 6 weeks with tissue samples collected for islet structure and morphology (H&E, insulin/glucagon staining). Histological and immunohistochemical analyses of islets were also performed at 2 weeks in animals transplanted with a sub-therapeutic number of islets, with and without AD-MSCs, to determine new blood vessel formation, the presence of pro-angiogenic factors facilitating revascularization, and the degree of inflammation. AD-MSCs had no beneficial effect on FBG values when co-transplanted with a minimal or therapeutic number of islets. However, AD-MSCs significantly reduced FBG values and restored glycemic control in diabetic animals transplanted with a sub-therapeutic number of islets. Islets co-transplanted with AD-MSCs preserved their native morphology and organization and exhibited less aggregation when compared to islets transplanted alone. In the sub-therapeutic group, AD-MSCs significantly increased islet revascularization and the expression of angiogenic factors including hepatocyte growth factor (HGF) and angiopoietin-1 (Ang-1) while also reducing inflammation. AD-MSCs can rescue the function of islets when transplanted in a sub-therapeutic number, for at least 6 weeks, via their ability to maintain islet architecture while concurrently facilitating islet revascularization and reducing inflammation.
Collapse
Affiliation(s)
- Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Melika Rezaee
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA.,Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Ahmed Taysir
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University, Department of Radiology, Palo Alto, CA, 94034, USA.
| |
Collapse
|
72
|
Abstract
BACKGROUND Islet transplantation is an attractive treatment for patients with insulin-dependent diabetes mellitus, and currently, the liver is the favored transplantation site. However, an alternative site is desirable because of the low efficiency of hepatic transplantation, requiring 2 to 3 donors for a single recipient, and because the transplanted islets cannot be accessed or retrieved. METHODS We developed a novel procedure of islet transplantation to the inguinal subcutaneous white adipose tissue (ISWAT) of mice and described functional and morphological characteristics of transplanted syngeneic islets. Also, it was determined whether islet allograft rejection in the ISWAT can be prevented by immunosuppressive agents. Furthermore, it was examined whether human islets function when grafted in this particular site of immune-deficient mice. RESULTS In this site, transplanted islets are engrafted as clusters and function to reverse streptozotocin-induced diabetes in mice. Importantly, transplanted islets can be visualized by computed tomography and are easily retrievable, and allograft rejection is preventable by blockade of costimulatory signals. Of much importance, the efficiency of islet transplantation in this site is superior to the liver, in which hyperglycemia of diabetic recipient mice is ameliorated after transplantation of 200 syngeneic islets (the islet number yielded from 1 mouse pancreas) to the ISWAT but not to the liver. Furthermore, human islets transplanted in this particular site function to reverse diabetes in immune-deficient mice. CONCLUSIONS Thus, the ISWAT is superior to the liver as the site of islet transplantation, which may lead to improved outcome of clinical islet transplantation.
Collapse
|
73
|
Acquisition of Dynamic Function in Human Stem Cell-Derived β Cells. Stem Cell Reports 2019; 12:351-365. [PMID: 30661993 PMCID: PMC6372986 DOI: 10.1016/j.stemcr.2018.12.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human pluripotent stem cell (hPSC) differentiation protocols have generated insulin-producing cells resembling pancreatic β cells. While these stem cell-derived β (SC-β) cells are capable of undergoing glucose-stimulated insulin secretion (GSIS), insulin secretion per cell remains low compared with islets and cells lack dynamic insulin release. Herein, we report a differentiation strategy focused on modulating transforming growth factor β (TGF-β) signaling, controlling cellular cluster size, and using an enriched serum-free media to generate SC-β cells that express β cell markers and undergo GSIS with first- and second-phase dynamic insulin secretion. Transplantation of these cells into mice greatly improves glucose tolerance. These results reveal that specific time frames for inhibiting and permitting TGF-β signaling are required during SC-β cell differentiation to achieve dynamic function. The capacity of these cells to undergo GSIS with dynamic insulin release makes them a promising cell source for diabetes cellular therapy. Development of differentiation protocol to β-like cells with enhanced function TGF-β signaling promotes acquisition of dynamic function in maturing β-like cells Transplanted cells rapidly restore glucose tolerance in mice
Collapse
|
74
|
Gan J, Wang Y, Zhou X. Stem cell transplantation for the treatment of patients with type 1 diabetes mellitus: A meta-analysis. Exp Ther Med 2018; 16:4479-4492. [PMID: 30542397 PMCID: PMC6257425 DOI: 10.3892/etm.2018.6769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
The efficacy of stem cell (SC) transplantation in patients with type 1 diabetes mellitus (T1DM) has remained to be fully elucidated. In the present study, a systematic review and meta-analysis was performed to determine the clinical outcomes. Electronic databases, including PubMed, MEDLINE, WanFang and the Cochrane Library were screened for relevant studies published until January 13, 2018. The references of retrieved papers, systematic reviews and trial registries were manually screened for additional papers. Two authors were involved in screening the titles in order to select eligible studies, extract data and assess the risk of bias. Studies were pooled using a random-effects model as well as the Begg's funnel plot and subgroup analysis was performed using Stata 14.0 software. A total of 47 studies were retrieved for detailed evaluation, of which 22 met the inclusion criteria. No substantial publication bias was identified. The meta-analysis revealed that SC therapy increased C-peptide levels when compared with placebo treatment in randomized-controlled trials [RCT; standardized mean difference (SMD), 0.93; 95% confidence interval (CI) 0.23-1.63] and self-controlled trials (SMD, 0.66; 95% CI, -0.22 to 1.54). An analysis demonstrated that SC therapy was more efficient at reducing the glycated hemoglobin level compared with the control group in RCTs (SMD, 0.56; 95% CI; 0.06-1.06; and SMD, 1.63; 95% CI, 0.92-2.34, respectively). The graphs demonstrated that SC transplantation resulted in a reduction of insulin requirement. Furthermore, subgroup analyses revealed that patient age, medical history and the SC injection dose may be sources of the heterogeneity observed. The greatest benefit of SC transplantation was seen in patients aged ≥18 years or a medical history of <3 months. In addition, the SC injection dose of ≥107 IU/kg/day was more effective than <107 IU/kg/day when the cellular composition included mesenchymal SCs and hematopoietic SCs. In conclusion, SC therapy represents an efficient option for patients with T1DM. This systematic review was registered at the International prospective register of systematic reviews (no. 42018093930).
Collapse
Affiliation(s)
- Jiadi Gan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingjin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
75
|
Welsch CA, Rust WL, Csete M. Concise Review: Lessons Learned from Islet Transplant Clinical Trials in Developing Stem Cell Therapies for Type 1 Diabetes. Stem Cells Transl Med 2018; 8:209-214. [PMID: 30417988 PMCID: PMC6392394 DOI: 10.1002/sctm.18-0156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
We examined data and patterns in clinical islet transplant studies registered on ClinicalTrials.gov (CTgov) for treatment of type 1 diabetes (T1D), with a goal of extracting insights to apply in the design of a pluripotent stem cell‐derived islet therapy. Clinical islet transplantation, as a cell therapy (rather than solid organ transplant) is a unique precedent for stem cell‐based islet therapies. Registration activity shows that the field is not growing significantly, and newer registrations suggest that the reasons for stagnation include need for a more optimal site of infusion/transplantation, and especially a need for better immune protective strategies to advance a more effective and durable therapy for T1D. stem cells translational medicine2019;8:209&214
Collapse
Affiliation(s)
| | | | - Marie Csete
- Seraxis Inc., Germantown, Maryland, USA.,Caltech Medical Engineering, Pasadena, California, USA.,Department of Anesthesiology, USC Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
76
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
77
|
|
78
|
Staels W, Verdonck Y, Heremans Y, Leuckx G, De Groef S, Heirman C, de Koning E, Gysemans C, Thielemans K, Baeyens L, Heimberg H, De Leu N. Vegf-A mRNA transfection as a novel approach to improve mouse and human islet graft revascularisation. Diabetologia 2018; 61:1804-1810. [PMID: 29789879 DOI: 10.1007/s00125-018-4646-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment. METHODS Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice. RESULTS At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 μl [n = 7] in VEGF vs 0.0178 ± 0.0021 μl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 μl [n = 4] in GFP [p < 0.001]). CONCLUSIONS/INTERPRETATION Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.
Collapse
Affiliation(s)
- Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Department of Paediatrics, Division of Paediatric Endocrinology, Ghent University, Ghent, Belgium
| | - Yannick Verdonck
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gunter Leuckx
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sofie De Groef
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eelco de Koning
- Department of Medicine, Section of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Baeyens
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Endocrinology, UZ Brussel, Brussels, Belgium.
- Department of Endocrinology, ASZ Aalst, Aalst, Belgium.
| |
Collapse
|
79
|
Nagaya M, Katsumata Y, Arai Y, Umeki I, Nakano K, Kasai Y, Hasegawa K, Okamoto K, Itazaki S, Matsunari H, Watanabe M, Umeyama K, Nagashima H. Effectiveness of bioengineered islet cell sheets for the treatment of diabetes mellitus. J Surg Res 2018; 227:119-129. [PMID: 29804843 DOI: 10.1016/j.jss.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The present study aimed to evaluate whether bioengineered mouse islet cell sheets can be used for the treatment of diabetes mellitus. METHODS Isolated mouse pancreatic islets were dispersed, and cells were plated on temperature-responsive culture plates coated with iMatrix-551. On day 3 of culture, the sheets were detached from the plates and used for further analysis or transplantation. The following parameters were assessed: (1) morphology, (2) expression of β-cell-specific transcription factors and other islet-related proteins, (3) methylation level of the pancreatic duodenal homeobox-1 (Pdx-1) promoter, as determined by bisulfite sequencing, and (4) levels of serum glucose after transplantation of one or two islet cell sheets into the abdominal cavity of streptozotocin-induced diabetic severe combined immunodeficiency mice. RESULTS From each mouse, we recovered approximately 233.3 ± 12.5 islets and 1.4 ± 0.1 × 105 cells after dispersion. We estimate that approximately 68.2% of the cells were lost during dispersion. The viability of recovered single cells was 91.3 ± 0.9%. The engineered islet cell sheets were stable, but the messenger RNA levels of various β-cell-specific transcription factors were significantly lower than those of primary islets, whereas Pdx-1 promoter methylation and the expression of NeuroD, Pdx-1, and glucagon proteins were similar between sheets and islets. Moreover, transplantation of islet cell sheets did not revert serum hyperglycemia in any of the recipient mice. CONCLUSIONS Engineering effective islet cell sheets require further research efforts, as the currently produced sheets remain functionally inferior compared with primary islets.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Department of Immunology, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Yuki Katsumata
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshikazu Arai
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ikuma Umeki
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuri Kasai
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazutoshi Okamoto
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shiori Itazaki
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
80
|
Expansion of transplanted islets in mice by co-transplantation with adipose tissue-derived mesenchymal stem cells. Heliyon 2018; 4:e00632. [PMID: 29872765 PMCID: PMC5986537 DOI: 10.1016/j.heliyon.2018.e00632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
The shortage of donor islets is a significant obstacle for widespread clinical application of pancreatic islet transplantation. To investigate whether adipose tissue-derived mesenchymal stem cells (ADSCs) induce expansion of transplanted islets, we performed co-transplantation experiments in a mouse model. Streptozotosin (STZ)-induced diabetic mice transplanted with 50 syngeneic islets remained hyperglycemic. However, hyperglycemia was ameliorated gradually when 50 islets were co-transplanted with ADSCs but not separately grafted into the contralateral kidney. Insulin and proinsulin contents of 120-day grafts containing 50 islets co-transplanted with ADSCs were significantly increased compared with those of 50 isolated islets. The Ki67-positive ratios in islets of the naïve pancreas, at 30 and 120 days grafts were 0.23%, 2.12%, and 1.52%, respectively. Ki67-positive cells were predominantly Pdx1+ and insulin+ cells. These results demonstrate that co-transplantation with ADSCs induces proliferation of transplanted islets in mice, suggesting a potential solution for the low efficiency of islet transplantation.
Collapse
|
81
|
Rattananinsruang P, Dechsukhum C, Leeanansaksiri W. Establishment of Insulin-Producing Cells From Human Embryonic Stem Cells Underhypoxic Condition for Cell Based Therapy. Front Cell Dev Biol 2018; 6:49. [PMID: 29868580 PMCID: PMC5962719 DOI: 10.3389/fcell.2018.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a group of diseases characterized by abnormally high levels of glucose in the blood stream. In developing a potential therapy for diabetic patients, pancreatic cells transplantation has drawn great attention. However, the hinder of cell transplantation for diabetes treatment is insufficient sources of insulin-producing cells. Therefore, new cell based therapy need to be developed. In this regard, human embryonic stem cells (hESCs) may serve as good candidates for this based on their capability of differentiation into various cell types. In this study, we designed a new differentiation protocol that can generate hESC-derived insulin-producing cells (hES-DIPCs) in a hypoxic condition. We also emphasized on the induction of definitive endoderm during embryoid bodies (EBs) formation. After induction of hESCs differentiation into insulin-producing cells (IPCs), the cells obtained from the cultures exhibited pancreas-related genes such as Pdx1, Ngn3, Nkx6.1, GLUT2, and insulin. These cells also showed positive for DTZ-stained cellular clusters and contained ability of insulin secretion in a glucose-dependent manner. After achievement to generated functional hES-DIPCs in vitro, some of the hES-DIPCs were then encapsulated named encapsulated hES-DIPCs. The data showed that the encapsulated cells could possess the function of insulin secretion in a time-dependent manner. The hES-DIPCs and encapsulated hES-DIPCs were then separately transplanted into STZ-induced diabetic mice. The findings showed the significant blood glucose levels regulation capacity and declination of IL-1β concentration in all transplanted mice. These results indicated that both hES-DIPCs and encapsulated hES-DIPCs contained the ability to sustain hyperglycemia condition as well as decrease inflammatory cytokine level in vivo. The findings of this study may apply for generation of a large number of hES-DIPCs in vitro. In addition, the implication of this work is therapeutic value in type I diabetes treatment in the future. The application for type II diabetes treatment remain to be investigated.
Collapse
Affiliation(s)
- Piyaporn Rattananinsruang
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chavaboon Dechsukhum
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilairat Leeanansaksiri
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
82
|
Gebe JA, Preisinger A, Gooden MD, D'Amico LA, Vernon RB. Local, Controlled Release In Vivo of Vascular Endothelial Growth Factor Within a Subcutaneous Scaffolded Islet Implant Reduces Early Islet Necrosis and Improves Performance of the Graft. Cell Transplant 2018; 27:531-541. [PMID: 29756517 PMCID: PMC6038045 DOI: 10.1177/0963689718754562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet transplantation remains the only alternative to daily insulin therapy for control of type 1 diabetes (T1D) in humans. To avoid the drawbacks of intrahepatic islet transplantation, we are developing a scaffolded islet implant to transplant islets into nonhepatic sites. The implant test bed, sized for mice, consists of a limited (2-mm) thickness, large-pore polymeric sponge scaffold perforated with peripheral cavities that contain islets suspended in a collagen hydrogel. A central cavity in the scaffold holds a 2-mm diameter alginate sphere for controlled release of the angiogenic cytokine vascular endothelial growth factor ( VEGF). Host microvessels readily penetrate the scaffold and collagen gel to vascularize the islets. Here, we evaluate the performance of the implant in a subcutaneous (SC) graft site. Implants incorporating 500 syngeneic islets reversed streptozotocin-induced diabetes in mice approximately 30 d after SC placement. Controlled release of a modest quantity (20 ng) of VEGF within the implant significantly reduced the time to normoglycemia compared to control implants lacking VEGF. Investigation of underlying causes for this effect revealed that inclusion of 20 ng of VEGF in the implants significantly reduced central necrosis of islets 24 h after grafting and increased implant vascularization (measured 12 d after grafting). Collectively, our results demonstrate (1) that the scaffolded islet implant design can reverse diabetes in SC sites in the absence of prevascularization of the graft site and (2) that relatively low quantities of VEGF, delivered by controlled release within the implant, can be a useful approach to limit islet stress after grafting.
Collapse
Affiliation(s)
- John A Gebe
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anton Preisinger
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D Gooden
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Leonard A D'Amico
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,2 Cancer Immunotherapy Trials, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert B Vernon
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
83
|
Kim DS, Song L, Wang J, Wu H, Gou W, Cui W, Kim JS, Wang H. Carbon Monoxide Inhibits Islet Apoptosis via Induction of Autophagy. Antioxid Redox Signal 2018; 28:1309-1322. [PMID: 28826228 PMCID: PMC5905947 DOI: 10.1089/ars.2016.6979] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM Carbon monoxide (CO) functions as a therapeutic molecule in various disease models because of its anti-inflammatory and antiapoptotic properties. We investigated the capacity of CO to reduce hypoxia-induced islet cell death and dysfunction in human and mouse models. RESULTS Culturing islets in CO-saturated medium protected them from hypoxia-induced apoptosis and preserved β cell function by suppressing expression of proapoptotic (Bim, PARP, Cas-3), proinflammatory (TNF-α), and endoplasmic reticulum (ER) stress (glucose-regulated protein 94, grp94, CHOP) proteins. The prosurvival effects of CO on islets were attenuated when autophagy was blocked by specific inhibitors or when either ATG7 or ATG16L1, two essential factors for autophagy, was downregulated by siRNA. In vivo, CO exposure reduced both inflammation and cell death in grafts immediately after transplantation, and enhanced long-term graft survival of CO-treated human and mouse islet grafts in streptozotocin-induced diabetic non-obese diabetic severe combined immunodeficiency (NOD-SCID) or C57BL/6 recipients. INNOVATION These findings underline that pretreatment with CO protects islets from hypoxia and stress-induced cell death via upregulation of ATG16L1-mediated autophagy. CONCLUSION Our results suggested that CO exposure may provide an effective means to enhance survival of grafts in clinical islet cell transplantation, and may be beneficial in other diseases in which inflammation and cell death pose impediments to achieving optimal therapeutic effects. Antioxid. Redox Signal. 28, 1309-1322.
Collapse
Affiliation(s)
- Do-Sung Kim
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Lili Song
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Jingjing Wang
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Hongju Wu
- 2 Department of Medicine, Tulane University , New Orleans, Louisiana
| | - Wenyu Gou
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Wanxing Cui
- 3 Medstar Georgetown University Hospital , Washington DC
| | - Jae-Sung Kim
- 4 Department of Surgery, University of Florida , Gainesville, Florida
| | - Hongjun Wang
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
84
|
Khatri R, Hussmann B, Rawat D, Gürol AO, Linn T. Intraportal Transplantation of Pancreatic Islets in Mouse Model. J Vis Exp 2018. [PMID: 29782007 DOI: 10.3791/57559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pancreatic islet transplantation to reduce hyperglycemia is highly successful in rodents with chemically-induced diabetes. The most common transplantation site in experimental islet transplantation is the kidney capsule. However, as less is known about the interaction of pancreatic islets with blood constituents, it also makes sense to utilize the portal vein approach in experimental islet transplantation. This protocol demonstrates an intraportal islet transplantation technique in NMRI nude mice. Streptozotocin (180 mg/kg) is injected intraperitoneally to induce hyperglycemia in recipient mice. They are considered as diabetic at a non-fasting blood glucose level greater than 20 mmol/L. One day prior to transplantation, mouse pancreatic islets are isolated from the donor pancreas by collagenase digestion; a minimum of 350 islets are utilized per diabetic recipient. Depending upon the islet isolation yield, two or more donor mice are utilized per recipient. After overnight culture at 37 °C, islets are administered into the recipient liver via the portal vein. After surgery, the mice are protected in red Makrolon houses and observed until are awake. This protocol maintains glycemic control for 120 days in syngeneic mice and 15 days in allogeneic mice.
Collapse
Affiliation(s)
| | | | - Divya Rawat
- Third Medical Department, Clinical Research Lab
| | - Ali Osman Gürol
- Istanbul University Department of Immunology, Institute of Experimental Medicine (DETAE)
| | - Thomas Linn
- Third Medical Department, Clinical Research Lab;
| |
Collapse
|
85
|
Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell transplantation and future development. Islets 2018; 10:80-94. [PMID: 29394145 PMCID: PMC5895174 DOI: 10.1080/19382014.2018.1428511] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.
Collapse
Affiliation(s)
- Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| |
Collapse
|
86
|
Wang P, Goodwill PW, Pandit P, Gaudet J, Ross A, Wang J, Yu E, Hensley DW, Doyle TC, Contag CH, Conolly S, Moore A. Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models. Quant Imaging Med Surg 2018; 8:114-122. [PMID: 29675353 DOI: 10.21037/qims.2018.02.06] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Islet transplantation (Tx) represents the most promising therapy to restore normoglycemia in type 1 diabetes (T1D) patients to date. As significant islet loss has been observed after the procedure, there is an urgent need for developing strategies for monitoring transplanted islet grafts. In this report we describe for the first time the application of magnetic particle imaging (MPI) for monitoring transplanted islets in the liver and under the kidney capsule in experimental animals. Methods Pancreatic islets isolated from Papio hamadryas were labeled with superparamagnetic iron oxides (SPIOs) and used for either islet phantoms or Tx in the liver or under the kidney capsule of NOD scid mice. MPI was used to image and quantify islet phantoms and islet transplanted experimental animals post-mortem at 1 and 14 days after Tx. Magnetic resonance imaging (MRI) was used to confirm the presence of labeled islets in the liver and under the kidney capsule 1 day after Tx. Results MPI of labeled islet phantoms confirmed linear correlation between the number of islets and the MPI signal (R2=0.988). Post-mortem MPI performed on day 1 after Tx showed high signal contrast in the liver and under the kidney capsule. Quantitation of the signal supports islet loss over time, which is normally observed 2 weeks after Tx. No MPI signal was observed in control animals. In vivo MRI confirmed the presence of labeled islets/islet clusters in liver parenchyma and under the kidney capsule one day after Tx. Conclusions Here we demonstrate that MPI can be used for quantitative detection of labeled pancreatic islets in the liver and under the kidney capsule of experimental animals. We believe that MPI, a modality with no depth attenuation and zero background tissue signal could be a suitable method for imaging transplanted islet grafts.
Collapse
Affiliation(s)
- Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Precision Health Program, Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Patrick W Goodwill
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA.,Magnetic Insight, Inc., Alameda, CA, USA
| | | | | | - Alana Ross
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elaine Yu
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Daniel W Hensley
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Timothy C Doyle
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Steven Conolly
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Precision Health Program, Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
87
|
Magdaleno AL, Vengrove MA. Islet Cell Transplant: Successful Survival Through two Pregnancies. AACE Clin Case Rep 2018. [DOI: 10.4158/ep171956.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
88
|
Abstract
Much progress has been made in type 1 diabetes research. Biological replacement of islet function has been achieved with pancreas transplantation and with islet transplantation. In the future, human embryonic stem cells and/or induced pluripotent stem cells may offer a potentially unlimited source of cells for islet replacement. Another potential strategy is to induce robust beta cell replication so that regeneration of islets can be achieved. Immune interventions are being studied with the hope of arresting the type 1 diabetes disease process to either prevent the disease or help preserve beta cell function. Mechanical replacement of islet cell function involves the use of glucose sensor-controlled insulin infusion systems. As all of these avenues are pursued, headlines often overstate the case, thus hyping any given advance, which provides enormous hope for patients and families seeking a cure for type 1 diabetes. Often, however, it is an animal study or a pilot trial that is being described. The reality is that translation to successful trials in human beings may not be readily achievable. This article discusses both the hype and the hopes in type 1 diabetes research.
Collapse
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue - Suite 3054, Miami, FL, 33136, USA.
| |
Collapse
|
89
|
Lee EM, Jung JI, Alam Z, Yi HG, Kim H, Choi JW, Hurh S, Kim YJ, Jeong JC, Yang J, Oh KH, Kim HC, Lee BC, Choi I, Cho DW, Ahn C. Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. Xenotransplantation 2018; 25:e12378. [DOI: 10.1111/xen.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Eun Mi Lee
- Graduate School of Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Ji-In Jung
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Zahid Alam
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Hee-Gyeong Yi
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Heejin Kim
- Interdisciplinary Program in Bioengineering; Graduate School; Seoul National University; Seoul Korea
| | - Jin Woo Choi
- Interdisciplinary Program in Bioengineering; Graduate School; Seoul National University; Seoul Korea
| | - Sunghoon Hurh
- Center for Medical Innovation; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Young June Kim
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
| | - Jong Cheol Jeong
- Department of Nephrology; Ajou University School of Medicine; Suwon Gyeonggi-do Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
- Department of Surgery; Seoul National University Hospital; Seoul Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering; Seoul National University College of Medicine; Seoul Korea
| | - Byeong Chun Lee
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
- Department of Theriogenology and Biotechnology; College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Inho Choi
- Department of Pharmaceutical Engineering; College of Life and Health Sciences; Hoseo University; Asan Chungcheongnam-do Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongsangbuk-do Korea
| | - Curie Ahn
- Designed Animal & Transplantation Research Institute; Institute of Green Bio Science & Technology; Seoul National University; Pyeongchang Gangwon-do Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
90
|
Jiao A, Li F, Zhang C, Lv W, Chen B, Zhang J. Simulated Cholinergic Reinnervation of β (INS-1) Cells: Antidiabetic Utility of Heterotypic Pseudoislets Containing β Cell and Cholinergic Cell. Int J Endocrinol 2018; 2018:1505307. [PMID: 29755519 PMCID: PMC5884158 DOI: 10.1155/2018/1505307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cholinergic neurons can functionally support pancreatic islets in controlling blood sugar levels. However, in islet transplantation, the level of cholinergic reinnervation is significantly lower compared to orthotopic pancreatic islets. This abnormal reinnervation affects the survival and function of islet grafts. In this study, the cholinergic reinnervation of beta cells was simulated by 2D and 3D coculture of INS-1 and NG108-15 cells. In 2D culture conditions, 20 mM glucose induced a 1.24-fold increase (p < 0.0001) in insulin secretion from the coculture group, while in the 3D culture condition, a 1.78-fold increase (p < 0.0001) in insulin secretion from heterotypic pseudoislet group was observed. Glucose-stimulated insulin secretion (GSIS) from 2D INS-1 cells showed minimal changes when compared to 3D structures. E-cadherin expressed in INS-1 and NG108-15 cells was the key adhesion molecule for the formation of heterotypic pseudoislets. NG108-15 cells hardly affected the proliferation of INS-1 cells in vitro. Heterotypic pseudoislet transplantation recipient mice reverted to normoglycemic levels faster and had a greater blood glucose clearance compared to INS-1 pseudoislet recipient mice. In conclusion, cholinergic cells can promote insulin-secreting cells to function better in vitro and in vivo and E-cadherin plays an important role in the formation of heterotypic pseudoislets.
Collapse
Affiliation(s)
- Ao Jiao
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Feng Li
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wu Lv
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Baomin Chen
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jialin Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
91
|
Yu F, Wei R, Yang J, Liu J, Yang K, Wang H, Mu Y, Hong T. FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res 2017; 362:227-234. [PMID: 29157981 DOI: 10.1016/j.yexcr.2017.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
92
|
Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 2017; 19 Suppl 1:137-146. [PMID: 28880477 DOI: 10.1111/dom.13027] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Blood glucose homeostasis requires a constant communication between insulin-secreting and insulin-sensitive cells. A wide variety of circulating factors, including hormones, cytokines and chemokines work together to orchestrate the systemic response of metabolic organs to changes in the nutritional state. Failure in the coordination between these organs can lead to a rise in blood glucose levels and to the appearance of metabolic disorders such as diabetes mellitus. Exosomes are small extracellular vesicles (EVs) that are produced via the endosomal pathway and are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that these EVs play a central role in cell-to-cell communication. The interest in exosomes exploded when they were found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. In this review, we will first outline the mechanisms governing the biogenesis, the cargo upload and the release of exosomes by donor cells as well as the uptake by recipient cells. We will then summarize the studies that support the novel concept that miRNAs and other exosomal cargo components are new important vehicles for metabolic organ cross-talk.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
93
|
Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 2017; 114:9337-9342. [PMID: 28814629 DOI: 10.1073/pnas.1619216114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. STUDIES Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206+MHCII-(M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.
Collapse
|
94
|
Sood V, Bhansali A, Mittal BR, Singh B, Marwaha N, Jain A, Khandelwal N. Autologous bone marrow derived stem cell therapy in patients with type 2 diabetes mellitus - defining adequate administration methods. World J Diabetes 2017; 8:381-389. [PMID: 28751962 PMCID: PMC5507836 DOI: 10.4239/wjd.v8.i7.381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To carry out randomized trial for evaluating effects of autologous bone marrow derived stem cell therapy (ABMSCT) through different routes.
METHODS Bone marrow aspirate was taken from the iliac crest of patients. Bone marrow mononuclear cells were separated and purified using centrifugation. These cells were then infused in a total of 21 patients comprising three groups of 7 patients each. Cells were infused into the superior pancreaticoduodenal artery (Group I), splenic artery (Group II) and through the peripheral intravenous route (Group III). Another group of 7 patients acted as controls and a sham procedure was carried out on them (Group IV). The cells were labelled with the PET tracer F18-FDG to see their homing and in vivo distribution. Data for clinical outcome was expressed as mean ± SE. All other data was expressed as mean ± SD. Baseline and post treatment data was compared at the end of six months, using paired t-test. Cases and controls data were analyzed using independent t-test. A probability (P) value of < 0.05 was regarded as statistically significant. Measures of clinical outcome were taken as the change or improvement in the following parameters: (1) C-peptide assay; (2) HOMA-IR and HOMA-B; (3) reduction in Insulin dose; subjects who showed reduction of insulin requirement of more than 50% from baseline requirement were regarded as responders; and (4) reduction in HbA1c.
RESULTS All the patients, after being advised for healthy lifestyle changes, were evaluated at periodical intervals and at the end of 6 mo. The changes in body weight, body mass index, waist circumference and percentage of body fat in all groups were not significantly different at the end of this period. The results of intra-group comparison before and after ABMSCT at the end of six months duration was as follows: (1) the area under C-peptide response curve was increased at the end of 6 mo however the difference remained statistically non-significant (P values for fasting C-peptide were 0.973, 0.103, 0.263 and 0.287 respectively and the P values for stimulated C-peptide were 0.989, 0.395, 0.325 and 0.408 respectively for groups I to IV); (2) the Insulin sensitivity indices of HOMA IR and HOMA B also did not show any significant differences (P values for HOMA IR were 0.368, 0.223, 0.918 and 0.895 respectively and P values for HOMA B were 0.183, 0.664, 0.206 and 0.618 respectively for groups I to IV); (3) Group Ishowed a significant reduction in Insulin dose requirement (P < 0.01). Group II patients also achieved a significant reduction in Insulin dosages (P = 0.01). The Group I and Group II patients together constituted the targeted group wherein the feeding arteries to pancreas were used for infusing stem cells. Group III, which was the intravenous group, showed a non-significant reduction in Insulin dose requirement (P = 0.137). Group IV patients which comprised the control arm also showed a significant reduction in Insulin dosages at the end of six months (P < 0.05); and (4) there was a non-significant change in the Hb A1c levels at the end of 6 mo across all groups (P = 0.355, P = 0.351, P = 0.999 and P = 0.408 respectively for groups I to IV).
CONCLUSION Targeted route showed a significant reduction in Insulin requirement at the end of six months of study period whereas the intravenous group failed to show reduction.
Collapse
|
95
|
Omami M, McGarrigle JJ, Reedy M, Isa D, Ghani S, Marchese E, Bochenek MA, Longi M, Xing Y, Joshi I, Wang Y, Oberholzer J. Islet Microencapsulation: Strategies and Clinical Status in Diabetes. Curr Diab Rep 2017; 17:47. [PMID: 28523592 DOI: 10.1007/s11892-017-0877-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. RECENT FINDINGS Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.
Collapse
Affiliation(s)
- Mustafa Omami
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - James J McGarrigle
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA.
| | - Mick Reedy
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Douglas Isa
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Sofia Ghani
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Enza Marchese
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Matthew A Bochenek
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maha Longi
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Yuan Xing
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Joshi
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Yong Wang
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - José Oberholzer
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
96
|
The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation 2017; 101:e112-e119. [PMID: 28207637 DOI: 10.1097/tp.0000000000001663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia. Here, we describe the design and efficacy of a novel prevascularized, subcutaneously implanted, retrievable poly (D,L-lactide-co-ε-caprolactone) scaffold. METHOD Three dosages of rat islets, that is, 400, 800, and 1200, were implanted in immune compromised mice to test the efficacy (n = 5). Islet transplantation under the kidney capsule served as control (n = 5). The efficacy was determined by nonfasting blood glucose measurements and glucose tolerance tests. RESULTS Transplantation of 800 (n = 5) and 1200 islets (n = 5) into the scaffold reversed diabetes in respectively 80 and 100% of the mice within 6.8 to 18.5 days posttransplant. The marginal dose of 400 islets (n = 5) induced normoglycemia in 20%. The glucose tolerance test showed major improvement of the glucose clearance in the scaffold groups compared to diabetic controls. However, the kidney capsule was slightly more efficacious because all 800 (n = 5) and 1200 islets (n = 5) recipients and 40% of the 400 islets (n = 5) recipients became normoglycemic within 8 days. Removal of the scaffolds or kidney grafts resulted in immediate return to hyperglycemia. Normoglycemia was not achieved with 1200 islets in the unmodified skin group. CONCLUSIONS Our findings demonstrate that the prevascularized poly (D,L-lactide-co-ε-caprolactone) scaffold maintains viability and function of islets in the subcutaneous site.
Collapse
|
97
|
Foster GA, García AJ. Bio-synthetic materials for immunomodulation of islet transplants. Adv Drug Deliv Rev 2017; 114:266-271. [PMID: 28532691 PMCID: PMC5581997 DOI: 10.1016/j.addr.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Clinical islet transplantation is an effective therapy in restoring physiological glycemic control in type 1 diabetics. However, allogeneic islets derived from cadaveric sources elicit immune responses that result in acute and chronic islet destruction. To prevent immune destruction of islets, transplant recipients require lifelong delivery of immunosuppressive drugs, which are associated with debilitating side effects. Biomaterial-based strategies to eliminate the need for immunosuppressive drugs are an emerging therapy for improving islet transplantation. In this context, two main approaches have been used: 1) encapsulation of islets to prevent infiltration and contact of immune cells, and 2) local release of immunomodulatory molecules from biomaterial systems that suppress local immunity. Synthetic biomaterials provide excellent control over material properties, molecule presentation, and therapeutic release, and thus, are an emerging platform for immunomodulation to facilitate islet transplantation. This review highlights various synthetic biomaterial-based strategies for preventing immune rejection of islet allografts.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
98
|
Skuk D, Tremblay JP. Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:232-240. [PMID: 28573152 PMCID: PMC5447384 DOI: 10.1016/j.omtm.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023]
Abstract
Cell therapy could be useful for the treatment of myopathies. A problem observed in mice, with different results and interpretations, is a significant death among the transplanted cells. We analyzed this problem in non-human primates, the animal model more similar to humans. Autologous or allogeneic myoblasts (with or without a reporter gene) were proliferated in vitro, labeled with [14C]thymidine, and intramuscularly injected in macaques. Some monkeys were immunosuppressed for long-term follow-up. Cell-grafted regions were biopsied at different intervals and analyzed by radiolabel quantification and histology. Most radiolabel was lost during the first week after injection, regardless of whether the cells were allogeneic or autologous, the culture conditions, and the use or not of immunosuppression. There was no significant difference between 1 hr and 1 day post-transplantation, a significant decrease between days 1 and 3 (45% to 83%), a significant decrease between days 3 and 7 (80% to 92%), and no significant differences between 7 days and 3 weeks. Our results confirmed in non-human primates a progressive and significant death of the grafted myoblasts during the first week after administration, relatively similar to some observations in mice but with different kinetics.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| |
Collapse
|
99
|
Rawal S, Harrington S, Williams SJ, Ramachandran K, Stehno-Bittel L. Long-term cryopreservation of reaggregated pancreatic islets resulting in successful transplantation in rats. Cryobiology 2017; 76:41-50. [PMID: 28483491 DOI: 10.1016/j.cryobiol.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Preservation of pancreatic islets for long-term storage of islets used for transplantation or research has long been a goal. Unfortunately, few studies on long-term islet cryopreservation (1 month and longer) have reported positive outcomes in terms of islet yield, survival and function. In general, single cells have been shown to tolerate the cryopreservation procedure better than tissues/multicellular structures like islets. Thus, we optimized a method to cryopreserve single islet cells and, after thawing, reaggregated them into islet spheroids. Cryopreserved (CP) single human islet cells formed spheroids efficiently within 3-5 days after thawing. Approximately 79% of islet cells were recovered following the single-cell cryopreservation protocol. Viability after long-term cryopreservation (4 weeks or more) was significantly higher in the CP islet cell spheroids (97.4 ± 0.4%) compared to CP native islets (14.6 ± 0.4%). Moreover, CP islet cell spheroids had excellent viability even after weeks in culture (88.5 ± 1.6%). Metabolic activity was 4-5 times higher in CP islet cell spheroids than CP native islets at 24 and 48 h after thawing. Diabetic rats transplanted with CP islet cell spheroids were normoglycemic for 10 months, identical to diabetic rats transplanted with fresh islets. However, the animals receiving fresh islets required a higher volume of transplanted tissue to achieve normoglycemia compared to those transplanted with CP islet cell spheroids. By cryopreserving single cells instead of intact islets, we achieved highly viable and functional islets after thawing that required lower tissue volumes to reverse diabetes in rats.
Collapse
Affiliation(s)
- Sonia Rawal
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Stephen Harrington
- Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA; University of Kansas, 1450 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - S Janette Williams
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA
| | | | - Lisa Stehno-Bittel
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA.
| |
Collapse
|
100
|
Barba-Gutierrez DA, Daneri-Navarro A, Villagomez-Mendez JJA, Kanamune J, Robles-Murillo AK, Sanchez-Enriquez S, Villafan-Bernal JR, Rivas-Carrillo JD. Facilitated Engraftment of Isolated Islets Coated With Expanded Vascular Endothelial Cells for Islet Transplantation. Transplant Proc 2016; 48:669-72. [PMID: 27110026 DOI: 10.1016/j.transproceed.2016.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. METHODS We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. RESULTS Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. CONCLUSIONS We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements.
Collapse
Affiliation(s)
- D Alonso Barba-Gutierrez
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - A Daneri-Navarro
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Jesus Alejandro Villagomez-Mendez
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Kanamune
- Department of Organ Reconstruction, Field of Clinical Application, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | | - S Sanchez-Enriquez
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Rafael Villafan-Bernal
- Department of Surgery, Center of Health Sciences, Autonomous University of Aguascalientes, Mexico
| | - J D Rivas-Carrillo
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico.
| |
Collapse
|