51
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
52
|
Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 2012; 6:e1854. [PMID: 23145190 PMCID: PMC3493385 DOI: 10.1371/journal.pntd.0001854] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023] Open
Abstract
The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Samuel Minot
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
53
|
Lee I, Hendrix A, Kim J, Yoshimoto J, You YJ. Metabolic rate regulates L1 longevity in C. elegans. PLoS One 2012; 7:e44720. [PMID: 22970296 PMCID: PMC3435313 DOI: 10.1371/journal.pone.0044720] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022] Open
Abstract
Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1) and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK), as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.
Collapse
Affiliation(s)
- Inhwan Lee
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amber Hendrix
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeongho Kim
- Department of Biological Science, Inha University, Incheon, Korea
| | - Jennifer Yoshimoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Young-Jai You
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
54
|
Liu Q, Jones TI, Bachmann RA, Meghpara M, Rogowski L, Williams BD, Jones PL. C. elegans PAT-9 is a nuclear zinc finger protein critical for the assembly of muscle attachments. Cell Biosci 2012; 2:18. [PMID: 22616817 PMCID: PMC3419604 DOI: 10.1186/2045-3701-2-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022] Open
Abstract
Background Caenorhabditis elegans sarcomeres have been studied extensively utilizing both forward and reverse genetic techniques to provide insight into muscle development and the mechanisms behind muscle contraction. A previous genetic screen investigating early muscle development produced 13 independent mutant genes exhibiting a Pat (paralyzed and arrested elongation at the two-fold length of embryonic development) muscle phenotype. This study reports the identification and characterization of one of those genes, pat-9. Results Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19) as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP) experiments showed that PAT-9 is present on certain gene promoters. Conclusions We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s) of the muscle attachment sites.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Ave, B107 Chemical and Life Sciences Laboratory, Urbana, IL, 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Dalfó D, Michaelson D, Hubbard EJA. Sensory regulation of the C. elegans germline through TGF-β-dependent signaling in the niche. Curr Biol 2012; 22:712-9. [PMID: 22483938 DOI: 10.1016/j.cub.2012.02.064] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/16/2011] [Accepted: 02/23/2012] [Indexed: 01/16/2023]
Abstract
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumulate during larval stages to form an adult pool from which gametes are produced. Notch pathway signaling from the distal tip cell (DTC) niche to the germline maintains the progenitor pool [3-5], and the larval germline cell cycle is boosted by insulin/IGF-like receptor signaling [6]. Here we show that, independent of its role in the dauer decision, TGF-β regulates the balance of proliferation versus differentiation in the C. elegans germline in response to sensory cues that report population density and food abundance. Ciliated ASI sensory neurons are required for TGF-β-mediated expansion of the larval germline progenitor pool, and the TGF-β receptor pathway acts in the germline stem cell niche. TGF-β signaling thereby couples germline development to the quality of the environment, providing a novel cellular and molecular mechanism linking sensory experience of the environment to reproduction.
Collapse
Affiliation(s)
- Diana Dalfó
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Helen and Martin Kimmel Center for Stem Cell Biology, and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
56
|
Abstract
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.
Collapse
|
57
|
Hao Y, Xu N, Box AC, Schaefer L, Kannan K, Zhang Y, Florens L, Seidel C, Washburn MP, Wiegraebe W, Mak HY. Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex. PLoS Genet 2011; 7:e1002065. [PMID: 21573134 PMCID: PMC3088716 DOI: 10.1371/journal.pgen.1002065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/21/2011] [Indexed: 01/01/2023] Open
Abstract
Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1–dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response. Nitrates and phosphodiesterase inhibitors raise the intracellular level of cGMP, and they have been widely used to treat hypertension and erectile dysfunction. Although it is known that cGMP activates the cGMP-dependent protein kinase PKG, which in turn causes smooth muscle relaxation and other physiological responses, very few molecular targets of PKG have been identified. In addition, the long-term effects of sustained elevation of cGMP and PKG activation are not known. We study a family member of PKG called EGL-4 in the nematode C. elegans. Using a combination of unbiased forward genetic screen and proteomic analysis, we show that constitutively active EGL-4 alters gene expression in multiple tissues, which is achieved through activity-dependent recruitment of a conserved Class I histone deacetylase complex in the nucleus. Furthermore, we identify a novel EGL-4–responsive gene that encodes a putative secreted protein that modulates the egg laying rate of C. elegans. Taken together, our results uncover novel PKG targets in the nucleus that respond to sustained elevation of cGMP. Development of chemicals that modulate the activity of these PKG targets may differentiate or alleviate undesirable side-effects of existing drugs that manipulate cGMP level.
Collapse
Affiliation(s)
- Yan Hao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ningyi Xu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew C. Box
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laura Schaefer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kasthuri Kannan
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Winfried Wiegraebe
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
58
|
Narasimhan SD, Yen K, Bansal A, Kwon ES, Padmanabhan S, Tissenbaum HA. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 2011; 7:e1001377. [PMID: 21533078 PMCID: PMC3080858 DOI: 10.1371/journal.pgen.1001377] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/18/2011] [Indexed: 12/11/2022] Open
Abstract
The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.
Collapse
Affiliation(s)
- Sri Devi Narasimhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kelvin Yen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ankita Bansal
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eun-Soo Kwon
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Srivatsan Padmanabhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heidi A. Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
59
|
Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA (NEW YORK, N.Y.) 2011; 17:639-651. [PMID: 21343388 PMCID: PMC3062175 DOI: 10.1261/rna.2310111] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs after the second larval stage in response to environmental stimuli encountered during the first two larval stages. Dauer larvae are stress resistant and long lived, permitting survival in harsh conditions. When environmental conditions improve, dauer larvae re-enter development, and progress through two post-dauer larval stages to adulthood. Strikingly, all of these life history options (whether continuous or interrupted) involve an identical pattern and sequence of cell division and cell fates. To identify microRNAs with potential functions in buffering development in the context of C. elegans life history options, we used multiplex real-time PCR to assess the expression of 107 microRNAs throughout development in both continuous and interrupted life histories. We identified 17 microRNAs whose developmental profile of expression is affected by dauer life history and/or L1 diapause, compared to continuous development. Hence these microRNAs could function to regulate gene expression programs appropriate for different life history options in the developing worm.
Collapse
Affiliation(s)
- Xantha Karp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
60
|
Jensen VL, Simonsen KT, Lee YH, Park D, Riddle DL. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS One 2010; 5:e15902. [PMID: 21209831 PMCID: PMC3013133 DOI: 10.1371/journal.pone.0015902] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.
Collapse
Affiliation(s)
- Victor L. Jensen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karina T. Simonsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Yu-Hui Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donha Park
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald L. Riddle
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
61
|
Jensen VL, Bialas NJ, Bishop-Hurley SL, Molday LL, Kida K, Nguyen PAT, Blacque OE, Molday RS, Leroux MR, Riddle DL. Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25. PLoS Genet 2010; 6:e1001199. [PMID: 21124868 PMCID: PMC2991253 DOI: 10.1371/journal.pgen.1001199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/07/2010] [Indexed: 11/19/2022] Open
Abstract
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.
Collapse
Affiliation(s)
- Victor L. Jensen
- Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Nathan J. Bialas
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Sharon L. Bishop-Hurley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- CSIRO-Livestock Industries, Queensland Biosciences Precinct, Brisbane, Australia
| | - Laurie L. Molday
- Centre for Macular Research, University of British Columbia, Vancouver, Canada
| | - Katarzyna Kida
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Robert S. Molday
- Centre for Macular Research, University of British Columbia, Vancouver, Canada
| | - Michel R. Leroux
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Donald L. Riddle
- Medical Genetics, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
62
|
Fujiwara M, Teramoto T, Ishihara T, Ohshima Y, McIntire SL. A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans. PLoS Genet 2010; 6:e1001211. [PMID: 21124861 PMCID: PMC2991246 DOI: 10.1371/journal.pgen.1001211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/19/2010] [Indexed: 12/01/2022] Open
Abstract
Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species. Caenorhabditis elegans is a 1–2 mm long nematode. Its body size is controlled by sensory inputs; some mutants with defects in sensory perception grow into small size (20%–30% decrease in body volume), although the animals seem to feed normally. The EGL-4 cGMP-dependent protein kinase and the GCY-12 guanylyl cyclase act in sensory neurons to control body size downstream of sensory inputs. GCY-12 is localized to cilia, antenna-like cellular structures of sensory neurons. In the cilia, a number of signaling molecules are localized. Dysfunction of cilia is known to cause several human disorders such as Bardet-Biedl syndrome, illustrating the importance of these organelles. In this study, we identified a novel protein, CHB-3, involved in sensory-dependent body size regulation. Our analyses suggest that CHB-3 protein regulates the trafficking of GCY-12 from the cell bodies to the cilia. Without CHB-3 protein, GCY-12 fails to localize to cilia and body size is not controlled properly. Thus, the cilia are a special place for sensory information processing in body size regulation. Our analyses identified CHB-3 as a novel trafficking regulator of ciliary protein(s).
Collapse
Affiliation(s)
- Manabi Fujiwara
- Department of Biology, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
63
|
The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics 2010; 187:345-53. [PMID: 20980238 DOI: 10.1534/genetics.110.123992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between genes that regulate stage-specific cell fate decisions and those that regulate dauer formation promote the robustness of developmental outcomes to changing environmental conditions.
Collapse
|
64
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
65
|
Gumienny TL, MacNeil L, Zimmerman CM, Wang H, Chin L, Wrana JL, Padgett RW. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling. PLoS Genet 2010; 6:e1000963. [PMID: 20502686 PMCID: PMC2873917 DOI: 10.1371/journal.pgen.1000963] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/20/2010] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.
Collapse
Affiliation(s)
- Tina L. Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lesley MacNeil
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
| | - Cole M. Zimmerman
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Huang Wang
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lena Chin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jeffrey L. Wrana
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
| | - Richard W. Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
66
|
Park D, Estevez A, Riddle DL. Antagonistic Smad transcription factors control the dauer/non-dauer switch in C. elegans. Development 2010; 137:477-85. [PMID: 20081192 DOI: 10.1242/dev.043752] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C. elegans daf-8 gene encodes an R-Smad that is expressed in a subset of head neurons, the intestine, gonadal distal tip cells and the excretory cell. We found that DAF-8, which inhibits the DAF-3 Co-Smad, is associated with DAF-3 and the DAF-14 Smad in vivo and in vitro. Overexpression of daf-8 conferred a dauer-defective phenotype and suppressed constitutive dauer formation in daf-8 and daf-14 mutants. In contrast to mammalian systems described thus far, active DAF-3 drives a feedback regulatory loop that represses transcription of daf-7 (a TGFbeta ligand) and daf-8 by directly binding to their regulatory regions. Hence, DAF-8 and DAF-3 are mutually antagonistic. The feedback repression may reinforce the developmental switch by allowing DAF-3 to freely activate dauer transcription in target tissues, unless sufficiently inhibited by DAF-8 and DAF-14. In the adult, DAF-8 downregulates lag-2 expression in the distal tip cells, thus promoting germ line meiosis. This function does not involve DAF-3, thereby avoiding the feedback loop that functions in the dauer switch.
Collapse
Affiliation(s)
- Donha Park
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | | | | |
Collapse
|
67
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
68
|
Wang Y, Ezemaduka AN, Tang Y, Chang Z. Understanding the mechanism of the dormant dauer formation of C. elegans: from genetics to biochemistry. IUBMB Life 2009; 61:607-12. [PMID: 19472183 DOI: 10.1002/iub.211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dauer is a dormancy state that may occur at the end of developmental stage L1 or L2 of Caenorhabditis elegans when the environmental conditions are unfavorable (e.g., lack of food, high temperature, or overcrowding) for further growth. Dauer is a nonaging duration that does not affect the postdauer adult lifespan. Major molecular events would include the sensing of the environmental cues, the transduction of the signals into the cells, and the subsequent integration of the signals that result in the corresponding alteration of the metabolism and morphology of the organism. Genetics approach has been effectively used in identifying many of the so-called daf genes involved in dauer formation using C. elegans as the model. Nevertheless, biochemical studies at the protein and metabolic level has been lacking behind in understanding this important life phenomenon. This review focuses on the biochemical understanding so far achieved on dauer formation and dormancy in general, as well as important issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Yunbiao Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | | | | | | |
Collapse
|
69
|
Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J 2009; 28:2437-48. [PMID: 19609300 DOI: 10.1038/emboj.2009.194] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2-like dopamine receptors and the G protein Gi/o. The D2-like receptors work in both the octopaminergic neurons and the octopamine-responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine-mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.
Collapse
|
70
|
Padmanabhan S, Mukhopadhyay A, Narasimhan SD, Tesz G, Czech MP, Tissenbaum HA. A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 2009; 136:939-51. [PMID: 19249087 PMCID: PMC2707143 DOI: 10.1016/j.cell.2009.01.025] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/18/2008] [Accepted: 01/16/2009] [Indexed: 12/17/2022]
Abstract
The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in regulating life span, dauer, metabolism, and stress. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. An RNAi screen for serine/threonine protein phosphatases that counterbalance the effect of the kinases in the IIS pathway identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects IIS pathway-associated phenotypes including life span, dauer, stress resistance, and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56beta regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in regulating insulin signaling through AKT dephosphorylation, thereby having widespread implications in cancer and diabetes research.
Collapse
Affiliation(s)
- Srivatsan Padmanabhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Arnab Mukhopadhyay
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Sri Devi Narasimhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Gregory Tesz
- Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Heidi A. Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| |
Collapse
|
71
|
van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 2008; 180:1475-91. [PMID: 18832350 PMCID: PMC2581950 DOI: 10.1534/genetics.108.094771] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.
Collapse
|
72
|
A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008; 22:2535-49. [PMID: 18794350 DOI: 10.1101/gad.1678608] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) and transcription factors (TFs) are primary metazoan gene regulators. Whereas much attention has focused on finding the targets of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. Here, we present the first genome-scale Caenorhabditis elegans miRNA regulatory network that contains experimentally mapped transcriptional TF --> miRNA interactions, as well as computationally predicted post-transcriptional miRNA --> TF interactions. We find that this integrated miRNA network contains 23 miRNA <--> TF composite feedback loops in which a TF that controls a miRNA is itself regulated by that same miRNA. By rigorous network randomizations, we show that such loops occur more frequently than expected by chance and, hence, constitute a genuine network motif. Interestingly, miRNAs and TFs in such loops are heavily regulated and regulate many targets. This "high flux capacity" suggests that loops provide a mechanism of high information flow for the coordinate and adaptable control of miRNA and TF target regulons.
Collapse
|
73
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
74
|
Reiner DJ, Ailion M, Thomas JH, Meyer BJ. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling. Curr Biol 2008; 18:1101-9. [PMID: 18674914 PMCID: PMC3489285 DOI: 10.1016/j.cub.2008.06.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Different environmental stimuli, including exposure to dauer pheromone, food deprivation, and high temperature, can induce C. elegans larvae to enter the dauer stage, a developmentally arrested diapause state. Although molecular and cellular pathways responsible for detecting dauer pheromone and temperature have been defined in part, other sensory inputs are poorly understood, as are the mechanisms by which these diverse sensory inputs are integrated to achieve a consistent developmental outcome. RESULTS In this paper, we analyze a wild C. elegans strain isolated from a desert oasis. Unlike wild-type laboratory strains, the desert strain fails to respond to dauer pheromone at 25 degrees C, but it does respond at higher temperatures, suggesting a unique adaptation to the hot desert environment. We map this defect in dauer response to a mutation in the scd-2 gene, which, we show, encodes the nematode anaplastic lymphoma kinase (ALK) homolog, a proto-oncogene receptor tyrosine kinase. scd-2 acts in a genetic pathway shown here to include the HEN-1 ligand, the RTK adaptor SOC-1, and the MAP kinase SMA-5. The SCD-2 pathway modulates TGF-beta signaling, which mediates the response to dauer pheromone, but SCD-2 might mediate a nonpheromone sensory input, such as food. CONCLUSIONS Our studies identify a new sensory pathway controlling dauer formation and shed light on ALK signaling, integration of signaling pathways, and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- David J. Reiner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| | - Michael Ailion
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
| | - James H. Thomas
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
- Department of Genome Sciences University of Washington Seattle, WA 98195
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| |
Collapse
|
75
|
Greer ER, Perez CL, Van Gilst MR, Lee BH, Ashrafi K. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 2008; 8:118-31. [PMID: 18680713 PMCID: PMC2556218 DOI: 10.1016/j.cmet.2008.06.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/17/2008] [Accepted: 06/06/2008] [Indexed: 12/28/2022]
Abstract
A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.
Collapse
Affiliation(s)
- Elisabeth R. Greer
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Carissa L. Perez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Marc R. Van Gilst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Brian H. Lee
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Kaveh Ashrafi
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| |
Collapse
|
76
|
Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008; 105:7321-6. [PMID: 18477695 DOI: 10.1073/pnas.0802164105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid behavioral responses to oxygen are generated by specialized sensory neurons that sense hypoxia and hyperoxia. On a slower time scale, many cells respond to oxygen through the activity of the hypoxia-inducible transcription factor HIF-1. Here, we show that in the nematode Caenorhabditis elegans, prolonged growth in hypoxia alters the neuronal circuit for oxygen preference by activating the hif-1 pathway. Activation of hif-1 by hypoxia or by mutations in its negative regulator egl-9/prolyl hydroxylase shifts behavioral oxygen preferences to lower concentrations and eliminates a regulatory input from food. At a neuronal level, hif-1 activation transforms a distributed, regulated neuronal network for oxygen preference into a smaller, fixed network that is constitutively active. The hif-1 pathway acts both in neurons and in gonadal endocrine cells to regulate oxygen preference. These results suggest that physiological detection of hypoxia by multiple tissues provides adaptive information to neuronal circuits to modify behavior.
Collapse
|
77
|
Abstract
Modulation FOXO transcription factor activities can lead to a variety of cellular outputs resulting in changes in proliferation, apoptosis, differentiation and metabolic responses. Although FOXO proteins all contain an identical DNA-binding domain their cellular functions appear to be distinct, as exemplified by differences in the phenotype of Foxo1, Foxo3 and Foxo4 null mutant mice. While some of these differences may be attributable to the differential expression patterns of these transcription factors, many cells and tissues express several FOXO isoforms. Recently it has become clear that FOXO proteins can regulate transcriptional responses independently of direct DNA-binding. It has been demonstrated that FOXOs can associate with a variety of unrelated transcription factors, regulating activation or repression of diverse target genes. The complement of transcription factors expressed in a particular cell type is thus critical in determining the functional end point of FOXO activity. These interactions greatly expand the possibilities for FOXO-mediated regulation of transcriptional programmes. This review details currently described FOXO-binding partners and examines the role of these interactions in regulating cell fate decisions.
Collapse
Affiliation(s)
- K E van der Vos
- Molecular Immunology Lab, Department of Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
78
|
Zhang Y, Xu J, Puscau C, Kim Y, Wang X, Alam H, Hu PJ. Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Dev Biol 2008; 315:290-302. [PMID: 18241854 PMCID: PMC2350227 DOI: 10.1016/j.ydbio.2007.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals.
Collapse
Affiliation(s)
- Yanmei Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristina Puscau
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongsoon Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hena Alam
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick J. Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Hematology/Oncology, Department of Internal Medicine, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
79
|
Chen D, Riddle DL. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:26. [PMID: 18312672 PMCID: PMC2292151 DOI: 10.1186/1471-213x-8-26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/29/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND pha-4 encodes a forkhead box (FOX) A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE), comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. RESULTS Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. CONCLUSION Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.
Collapse
Affiliation(s)
- Di Chen
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Donald L Riddle
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
80
|
Jensen VL, Albert PS, Riddle DL. Caenorhabditis elegans SDF-9 enhances insulin/insulin-like signaling through interaction with DAF-2. Genetics 2007; 177:661-6. [PMID: 17660545 PMCID: PMC2013707 DOI: 10.1534/genetics.107.076703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SDF-9 is a modulator of Caenorhabditis elegans insulin/IGF-1 signaling that may interact directly with the DAF-2 receptor. SDF-9 is a tyrosine phosphatase-like protein that, when mutated, enhances many partial loss-of-function mutants in the dauer pathway except for the temperature-sensitive mutant daf-2(m41). We propose that SDF-9 stabilizes the active phosphorylated state of DAF-2 or acts as an adaptor protein to enhance insulin-like signaling.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
81
|
Inoue T, Ailion M, Poon S, Kim HK, Thomas JH, Sternberg PW. Genetic analysis of dauer formation in Caenorhabditis briggsae. Genetics 2007; 177:809-18. [PMID: 17660533 PMCID: PMC2034645 DOI: 10.1534/genetics.107.078857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to investigate the evolution of dauer formation in the genus Caenorhabditis at the molecular level, we isolated dauer-formation mutations in C. briggsae, a species closely related to the model organism C. elegans. We identified mutations in orthologs of C. elegans genes daf-2 (insulin receptor), daf-3 (Smad), and daf-4 (TGF-beta type 2 receptor), as well as genes required for formation of sensory cilia. Phenotypic analyses revealed that functions of these genes are conserved between C. elegans and C. briggsae. Analysis of C. briggsae mutations also revealed a significant difference between the two species in their responses to high temperatures (>26 degrees). C. elegans is strongly induced to form dauers at temperatures above 26 degrees, near the upper limit for growth of C. elegans. In contrast, C. briggsae, which is capable of growth at higher temperatures than C. elegans, lacks this response.
Collapse
Affiliation(s)
- Takao Inoue
- HHMI and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
82
|
Vermeirssen V, Barrasa MI, Hidalgo CA, Babon JAB, Sequerra R, Doucette-Stamm L, Barabási AL, Walhout AJ. Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Res 2007; 17:1061-71. [PMID: 17513831 PMCID: PMC1899117 DOI: 10.1101/gr.6148107] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription regulatory networks play a pivotal role in the development, function, and pathology of metazoan organisms. Such networks are comprised of protein-DNA interactions between transcription factors (TFs) and their target genes. An important question pertains to how the architecture of such networks relates to network functionality. Here, we show that a Caenorhabditis elegans core neuronal protein-DNA interaction network is organized into two TF modules. These modules contain TFs that bind to a relatively small number of target genes and are more systems specific than the TF hubs that connect the modules. Each module relates to different functional aspects of the network. One module contains TFs involved in reproduction and target genes that are expressed in neurons as well as in other tissues. The second module is enriched for paired homeodomain TFs and connects to target genes that are often exclusively neuronal. We find that paired homeodomain TFs are specifically expressed in C. elegans and mouse neurons, indicating that the neuronal function of paired homeodomains is evolutionarily conserved. Taken together, we show that a core neuronal C. elegans protein-DNA interaction network possesses TF modules that relate to different functional aspects of the complete network.
Collapse
Affiliation(s)
- Vanessa Vermeirssen
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - M. Inmaculada Barrasa
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - César A. Hidalgo
- Center for Complex Network Research, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jenny Aurielle B. Babon
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | - Albert-László Barabási
- Center for Complex Network Research, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Albertha J.M. Walhout
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Corresponding author.E-mail ; fax (508) 856-5460
| |
Collapse
|
83
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
84
|
Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI. A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol 2007; 4:e274. [PMID: 16903785 PMCID: PMC1540710 DOI: 10.1371/journal.pbio.0040274] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/16/2006] [Indexed: 11/19/2022] Open
Abstract
The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.
Collapse
Affiliation(s)
- Andy J Chang
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Nikolas Chronis
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - David S Karow
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Chemistry and Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Michael A Marletta
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Chemistry and Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Gumienny TL, MacNeil LT, Wang H, de Bono M, Wrana JL, Padgett RW. Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans. Curr Biol 2007; 17:159-64. [PMID: 17240342 DOI: 10.1016/j.cub.2006.11.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/04/2006] [Accepted: 11/13/2006] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.
Collapse
Affiliation(s)
- Tina L Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
86
|
Mukhopadhyay A, Tissenbaum HA. Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol 2006; 17:65-71. [PMID: 17187981 DOI: 10.1016/j.tcb.2006.12.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/21/2006] [Accepted: 12/13/2006] [Indexed: 11/16/2022]
Abstract
What is the relationship between reproduction and longevity? Evolutionary biology suggests that reproduction exacts a cost in somatic maintenance, a cost that reduces longevity. The frequent occurrence of this tradeoff between life span and fecundity, both due to experimental manipulations as well as natural variation, suggest that the mechanism might be conserved during evolution. Until recently, little was known about the mechanistic details of how reproduction might regulate life span. Here we discuss recent advances in our understanding of the regulation of life span by reproductive signaling, focusing on studies using Caenorhabditis elegans.
Collapse
Affiliation(s)
- Arnab Mukhopadhyay
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
87
|
Lans H, Jansen G. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans. Genetics 2006; 173:1287-99. [PMID: 16868120 PMCID: PMC1526693 DOI: 10.1534/genetics.106.058750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neurons early in development. Here we show that the same Ca2+/MAPK pathway promotes str-2 expression in the AWC and ASI neurons together with multiple cell-autonomous and noncell-autonomous G-protein-signaling pathways. In first-stage larvae and adult animals, signals mediated by the Galpha subunits ODR-3, GPA-2, GPA-5, and GPA-6 and a Ca2+/MAPK pathway involving the Ca2+ channel subunit UNC-36, the CaMKII UNC-43, and the MAPKK kinase NSY-1 induce strong str-2 expression. Cell-specific rescue experiments suggest that ODR-3 and the Ca2+/MAPK genes function in the AWC neurons, but that GPA-5 and GPA-6 function in the AWA and ADL neurons, respectively. In Dauer larvae, the same network of genes promotes strong str-2 expression in the ASI neurons, but ODR-3 functions in AWB and ASH and GPA-6 in AWB. Our results reveal a complex signaling network, encompassing signals from multiple cells, that controls the level of receptor gene expression at different developmental stages.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
88
|
Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stamm L, Reece-Hoyes JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJM. A gene-centered C. elegans protein-DNA interaction network. Cell 2006; 125:1193-205. [PMID: 16777607 DOI: 10.1016/j.cell.2006.04.038] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 02/27/2006] [Accepted: 04/12/2006] [Indexed: 11/16/2022]
Abstract
Transcription regulatory networks consist of physical and functional interactions between transcription factors (TFs) and their target genes. The systematic mapping of TF-target gene interactions has been pioneered in unicellular systems, using "TF-centered" methods (e.g., chromatin immunoprecipitation). However, metazoan systems are less amenable to such methods. Here, we used "gene-centered" high-throughput yeast one-hybrid (Y1H) assays to identify 283 interactions between 72 C. elegans digestive tract gene promoters and 117 proteins. The resulting protein-DNA interaction (PDI) network is highly connected and enriched for TFs that are expressed in the digestive tract. We provide functional annotations for approximately 10% of all worm TFs, many of which were previously uncharacterized, and find ten novel putative TFs, illustrating the power of a gene-centered approach. We provide additional in vivo evidence for multiple PDIs and illustrate how the PDI network provides insights into metazoan differential gene expression at a systems level.
Collapse
Affiliation(s)
- Bart Deplancke
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Estevez AO, Cowie RH, Gardner KL, Estevez M. Both insulin and calcium channel signaling are required for developmental regulation of serotonin synthesis in the chemosensory ADF neurons of Caenorhabditis elegans. Dev Biol 2006; 298:32-44. [PMID: 16860310 DOI: 10.1016/j.ydbio.2006.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Proper calcium channel and insulin signaling are essential for normal brain development. Leaner mice with a mutation in the P/Q-type voltage-gated calcium channel, Cacna1a, develop cerebellar atrophy and mutations in the homologous human gene are associated with increased migraine and seizure tendency. Similarly, abnormalities in insulin signaling are associated with abnormal brain growth and migraine tendency. Previously, we have shown that in the ADF chemosensory neurons of Caenorhabditis elegans UNC-2/Ca(2+) channel function affects TGF-beta-dependent developmental regulation of tryptophan hydroxylase, the rate-limiting enzyme in serotonin synthesis. Here we show that developmental expression of a tryptophan hydroxylase: :GFP reporter construct is similarly decreased by reduction-of-function mutations in the daf-2/insulin receptor. This decreased expression of tryptophan hydroxylase observed in both the daf-2 and unc-2 mutant backgrounds is suppressible either genetically by reduction-of-function mutations in the daf-16/forkhead transcription factor, an effector of the DAF-2/insulin receptor, or pharmacologically by the serotonin receptor antagonist cyproheptadine. Overall, these data suggest that both UNC-2 and DAF-2 function are required in the developmental regulation of DAF-16 and serotonin-dependent inhibition of tryptophan hydroxylase expression.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
90
|
Hu PJ, Xu J, Ruvkun G. Two membrane-associated tyrosine phosphatase homologs potentiate C. elegans AKT-1/PKB signaling. PLoS Genet 2006; 2:e99. [PMID: 16839187 PMCID: PMC1487177 DOI: 10.1371/journal.pgen.0020099] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 05/18/2006] [Indexed: 11/19/2022] Open
Abstract
Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. Insulin and insulin-like growth factor (IGF) signaling regulates critical physiological processes in a wide variety of multicellular organisms. In humans, dysregulation of IGF signaling underlies the pathogenesis of cancer and diabetes. In the nematode Caenorhabditis elegans, the DAF-2 insulin-like pathway regulates development, metabolism, and longevity. All known components of DAF-2 insulin-like signaling are structurally and functionally conserved in mammals, suggesting that insights gained from studying this pathway in C. elegans may shed light on pathogenetic mechanisms underlying cancer and diabetes. In this study, the authors describe a genetic screen designed to identify novel components of DAF-2 insulin-like signaling in C. elegans. They have characterized three genes that may encode parts of a novel multimolecular membrane-associated complex that potentiates DAF-2 insulin-like signaling in two neuroendocrine cells, the XXX cells. Two of these genes encode proteins similar to mammalian protein tyrosine phosphatases. These results suggest that protein tyrosine phosphatase–like molecules may transduce IGF signals in mammalian endocrine cells and highlight the role of endocrine circuits in the pathogenesis of cancer and diabetes.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology/Oncology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
91
|
Wang Y, Levy DE. C. elegans STAT cooperates with DAF-7/TGF-beta signaling to repress dauer formation. Curr Biol 2006; 16:89-94. [PMID: 16401427 DOI: 10.1016/j.cub.2005.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
The DAF-7/TGF-beta pathway in C. elegans interprets environmental signals relayed through amphid neurons and actively inhibits dauer formation during reproductive developmental growth . In metazoans, the STAT pathway interprets external stimuli through regulated tyrosine phosphorylation, nuclear translocation, and gene expression , but its importance for developmental commitment, particularly in conjunction with TGF-beta, remains largely unknown. Here, we report that the nematode STAT ortholog STA-1 accumulated in the nuclei of five head neuron pairs, three of which are amphid neurons involved in dauer formation . Moreover, sta-1 mutants showed a synthetic dauer phenotype with selected TGF-beta mutations. sta-1 deficiency was complemented by reconstitution with wild-type protein, but not with a tyrosine mutant. Canonical TGF-beta signaling involves the DAF-7/TGF-beta ligand activating the DAF-1/DAF-4 receptor pair to regulate the DAF-8/DAF-14 Smads . Interestingly, STA-1 functioned in the absence of DAF-7, DAF-4, and DAF-14, but it required DAF-1 and DAF-8. Additionally, STA-1 expression was induced by TGF-beta in a DAF-3-dependent manner, demonstrating a homeostatic negative feedback loop. These results highlight a role for activated STAT proteins in repression of dauer formation. They also raise the possibility of an unexpected function for DAF-1 and DAF-8 that is independent of their normal upstream activator, DAF-7.
Collapse
Affiliation(s)
- Yaming Wang
- Department of Pathology, Department of Microbiology, NYU Cancer Institute, New York University School of Medicine, 550 1st Avenue, New York, New York 10016, USA
| | | |
Collapse
|
92
|
Hristova M, Birse D, Hong Y, Ambros V. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Mol Cell Biol 2006; 25:11059-72. [PMID: 16314527 PMCID: PMC1316966 DOI: 10.1128/mcb.25.24.11059-11072.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare the mRNA abundance of C. elegans genes in wild-type animals to that in mutants with reduced or elevated lin-14 activity. Five of the candidate LIN-14 target genes identified by microarrays, including the insulin/insulin-like growth factor family gene ins-33, contain putative LIN-14 consensus sites in their upstream DNA sequences. Genetic analysis indicates that the developmental regulation of ins-33 mRNA involves the stage-specific repression of ins-33 transcription by LIN-14 via sequence-specific DNA binding. These results reinforce the conclusion that lin-14 encodes a novel class of transcription factor.
Collapse
Affiliation(s)
- Marta Hristova
- Dartmouth Medical School, Department of Genetics, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
93
|
Abstract
Genetic studies of behavior in the nematode Caenorhabditis elegans have provided an effective approach to investigate the molecular and cellular basis of nervous system function and development. Among the best studied behaviors is egg-laying, the process by which hermaphrodites deposit developing embryos into the environment. Egg-laying involves a simple motor program involving a small network of motorneurons and specialized smooth muscle cells, which is regulated by a variety of sensory stimuli. Analysis of egg-laying-defective mutants has provided insight into a number of conserved processes in nervous system development, including neurogenesis, cell migration, and synaptic patterning, as well as aspects of excitable cell signal transduction and neuromodulation.
Collapse
Affiliation(s)
- William F Schafer
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0349, USA.
| |
Collapse
|
94
|
Sassi HE, Renihan S, Spence AM, Cooperstock RL. Gene CATCHR--gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression. Nucleic Acids Res 2005; 33:e163. [PMID: 16254074 PMCID: PMC1270953 DOI: 10.1093/nar/gni164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression.
Collapse
Affiliation(s)
- Holly E. Sassi
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Stephanie Renihan
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Andrew M. Spence
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Ramona L. Cooperstock
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- To whom correspondence should be addressed. Tel: +1 416 946 7917; Fax: +1 416 978 6885;
| |
Collapse
|
95
|
Kim K, Colosimo ME, Yeung H, Sengupta P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 2005; 286:136-48. [PMID: 16143323 DOI: 10.1016/j.ydbio.2005.07.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 11/30/2022]
Abstract
Neuronal identities are specified by the combinatorial functions of activators and repressors of gene expression. Members of the well-conserved Olf/EBF (O/E) transcription factor family have been shown to play important roles in neuronal and non-neuronal development and differentiation. O/E proteins are highly expressed in the olfactory epithelium, and O/E binding sites have been identified upstream of olfactory genes. However, the roles of O/E proteins in sensory neuron development are unclear. Here we show that the O/E protein UNC-3 is required for subtype specification of the ASI chemosensory neurons in Caenorhabditis elegans. UNC-3 promotes an ASI identity by directly repressing the expression of alternate neuronal programs and by activating expression of ASI-specific genes including the daf-7 TGF-beta gene. Our results indicate that UNC-3 is a critical component of the transcription factor code that integrates cell-intrinsic developmental programs with external signals to specify sensory neuronal identity and suggest models for O/E protein functions in other systems.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
96
|
Aoyama Y, Urushiyama S, Yamada M, Kato C, Ide H, Higuchi S, Akiyama T, Shibuya H. MFB-1, an F-box-type ubiquitin ligase, regulates TGF-beta signalling. Genes Cells 2005; 9:1093-101. [PMID: 15507120 DOI: 10.1111/j.1365-2443.2004.00792.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TGF-beta signalling regulates cell growth, differentiation, morphogenesis and apoptosis. MAFbx/Atrogin-1 has been identified as a regulator for skeletal muscle atrophy and encodes an F-box-type E3 ubiquitin ligase. However, little is known about how MAFbx/Atrogin-1 regulates cellular signalling. Here, we identify and genetically characterize MFB-1, a MAFbx/Atrogin-1 homologue from Caenorhabditis elegans. The mfb-1 deletion mutant significantly enhanced the dauer constitutive (Daf-c) phenotype caused by mutations in the DAF-7/TGF-beta-like signalling pathway, but not the DAF-2/insulin receptor-like signalling pathway. Conversely, the Daf-c phenotypes of DAF-7 pathway mutants were partially suppressed by mfb-1 cDNA transgenes. Therefore, MFB-1 acts genetically downstream in the DAF-7 pathway. A mfb-1::GFP fusion was found to be expressed in the nervous system, hypodermis and intestine and overlapped expression of many DAF-7 pathway genes. We propose that MFB-1 is a novel F-box protein that negatively regulates dauer formation in concert with the DAF-7 signalling pathway in C. elegans.
Collapse
Affiliation(s)
- Yukako Aoyama
- Department of Molecular Cell Biology, Medical Research Institute, School of Biomedical Science and CREST, Japan Science and Technology Corporation, Tokyo Medical and Dental University, Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Massey HC, Castelletto ML, Bhopale VM, Schad GA, Lok JB. Sst-tgh-1 from Strongyloides stercoralis encodes a proposed ortholog of daf-7 in Caenorhabditis elegans. Mol Biochem Parasitol 2005; 142:116-20. [PMID: 15907565 DOI: 10.1016/j.molbiopara.2005.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Holman C Massey
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
98
|
Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin Cell Dev Biol 2005; 16:175-82. [PMID: 15797828 DOI: 10.1016/j.semcdb.2005.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nematode Caenorhabditis elegans represents an excellent model for studying many aspects of sterol function on the level of a whole organism. Recent studies show that especially two processes in the life cycle of the worm, dauer larva formation and molting, depend on sterols. In both cases, cholesterol or its derivatives seem to act as hormones rather than being structural components of the membrane. Investigations on C. elegans could provide information on the etiology of human diseases that display defects in the transport or metabolism of sterols.
Collapse
Affiliation(s)
- Eugeni V Entchev
- MPI for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
99
|
Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, Lee W, Kim YH, Kim K, Paik YK. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 2005; 433:541-5. [PMID: 15690045 DOI: 10.1038/nature03201] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 11/08/2004] [Indexed: 11/09/2022]
Abstract
Pheromones are cell type-specific signals used for communication between individuals of the same species. When faced with overcrowding or starvation, Caenorhabditis elegans secrete the pheromone daumone, which facilitates communication between individuals for adaptation to adverse environmental stimuli. Daumone signals C. elegans to enter the dauer stage, an enduring and non-ageing stage of the nematode life cycle with distinctive adaptive features and extended life. Because daumone is a key regulator of chemosensory processes in development and ageing, the chemical identification of daumone is important for elucidating features of the daumone-mediated signalling pathway. Here we report the isolation of natural daumone from C. elegans by large-scale purification, as well as the total chemical synthesis of daumone. We present the stereospecific chemical structure of purified daumone, a fatty acid derivative. We demonstrate that both natural and chemically synthesized daumones equally induce dauer larva formation in C. elegans (N2 strain) and certain dauer mutants, and also result in competition between food and daumone. These results should help to elucidate the daumone-mediated signalling pathway, which might in turn influence ageing and obesity research and the development of antinematodal drugs.
Collapse
Affiliation(s)
- Pan-Young Jeong
- Department of Biochemistry and Yonsei Proteome Research Center, Seoul 120-749, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Matyash V, Entchev EV, Mende F, Wilsch-Bräuninger M, Thiele C, Schmidt AW, Knölker HJ, Ward S, Kurzchalia TV. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol 2004; 2:e280. [PMID: 15383841 PMCID: PMC517820 DOI: 10.1371/journal.pbio.0020280] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/24/2004] [Indexed: 11/19/2022] Open
Abstract
Upon starvation or overcrowding, Caenorhabditis elegans interrupts its reproductive cycle and forms a specialised larva called dauer (enduring). This process is regulated by TGF-β and insulin-signalling pathways and is connected with the control of life span through the insulin pathway components DAF-2 and DAF-16. We found that replacing cholesterol with its methylated metabolite lophenol induced worms to form dauer larvae in the presence of food and low population density. Our data indicate that methylated sterols do not actively induce the dauer formation but rather that the reproductive growth requires a cholesterol-derived hormone that cannot be produced from methylated sterols. Using the effect of lophenol on growth, we have partially purified activity, named gamravali, which promotes the reproduction. In addition, the effect of lophenol allowed us to determine the role of sterols during dauer larva formation and longevity. In the absence of gamravali, the nuclear hormone receptor DAF-12 is activated and thereby initiates the dauer formation program. Active DAF-12 triggers in neurons the nuclear import of DAF-16, a forkhead domain transcription factor that contributes to dauer differentiation. This hormonal control of DAF-16 activation is, however, independent of insulin signalling and has no influence on life span. A sterol-derived activity is partially purified and shown to support reproductive growth under sterol-free conditions that normally induce dauer larva formation in nematodes
Collapse
Affiliation(s)
- Vitali Matyash
- 1Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Eugeni V Entchev
- 1Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Fanny Mende
- 1Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Christoph Thiele
- 1Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Arndt W Schmidt
- 2Institute of Organic Chemistry, Technical University of DresdenDresdenGermany
| | | | - Samuel Ward
- 3University of Arizona, TucsonArizonaUnited States of America
| | | |
Collapse
|