51
|
Martínez de Paz A, Josefowicz SZ. Signaling-to-chromatin pathways in the immune system. Immunol Rev 2021; 300:37-53. [PMID: 33644906 PMCID: PMC8548991 DOI: 10.1111/imr.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven Zvi Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
52
|
Feng J, Xu X, Fan X, Yi Q, Tang L. BAF57/SMARCE1 Interacting with Splicing Factor SRSF1 Regulates Mechanical Stress-Induced Alternative Splicing of Cyclin D1. Genes (Basel) 2021; 12:306. [PMID: 33670012 PMCID: PMC7927079 DOI: 10.3390/genes12020306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Cyclin D1 regulates cyclin-dependent protein kinase activity of the cell cycle, and cyclin D1 alternative splicing generates a cyclin D1b isoform, acting as a mediator of aberrant cellular proliferation. As alternative splicing processes are sensitive to mechanical stimuli, whether the alternative splicing of cyclin D1 is regulated by mechanical stress and what kinds of factors may act as the regulator of mechano-induced alternative splicing remain unknown. Methods: The alternative splicing of Cyclin D1 was examined using reverse transcription polymerase chain reaction (RT-PCR) in osteoblast cell lines and keratinocyte cells loaded by a cyclic stretch. The expression of splicing factors and switching defective/sucrose non-fermenting (SWI/SNF) complex subunits were detected in stretched cells using real-time quantitative PCR (RT-qPCR). The protein interaction was tested by co-immunoprecipitation assay (Co-IP). Results:Cyclin D1 expression decreased with its splice variant upregulated in stretched cells. Serine/arginine-rich splicing factor 1 (SRSF1) and SWI/SNF complex subunit Brahma-related gene-1-associated factor 57 (BAF57), also named SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (SMARCE1), could respond to mechanical stimuli. Overexpression and knockdown experiments indicated the BAF57/SMARCE1 is probably a critical factor regulating the alternative splicing of cyclin D1. Co-IP showed an interaction between BAF57/SMARCE1 and SRSF1, implying a possible underlying mechanism of the regulator role of BAF57/SMARCE1 in the splicing process of cyclin D1. Conclusions: The splicing factor SRSF1 and BAF57/SMARCE1 are possibly responsible for the mechanical stress-induced alternative splicing of cyclin D1.
Collapse
Affiliation(s)
- Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 401120, China;
| | - Qian Yi
- Department of Physiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China;
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
| |
Collapse
|
53
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
54
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
55
|
Shi Y, Shi Q, Shen Q, Zhang Q, Cao X. Dicer-independent snRNA/snoRNA-derived nuclear RNA 3 regulates tumor-associated macrophage function by epigenetically repressing inducible nitric oxide synthase transcription. Cancer Commun (Lond) 2021; 41:140-153. [PMID: 33455092 PMCID: PMC7896748 DOI: 10.1002/cac2.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) extensively mediate gene-specific chromatin regulation in lower organisms. As a dominant type of functional sRNAs in mature mammals, microRNAs mainly regulate gene expression at post-transcription level in the cytoplasm. Currently, whether there exists a type of nuclear-localized sRNAs mediating gene-specific epigenetic regulation in mature mammalian cells remains largely unclear. Here, we profiled sRNAs enriched in the nucleus and investigated their function in mediating gene-specific epigenetic regulation in anti-tumor immunity. METHODS We established cytoplasmic and nuclear transcriptomes of sRNAs of dendritic cells (DCs) using high-throughput sequencing. Transcription abundances of sRNAs and mRNAs were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. The associations between sRNAs and Argonaute (AGO) proteins were detected by RNA immunoprecipitation analysis. Synthesized sRNAs and locked nucleic acid (LNA) -modified sRNA inhibitors were used to screen the function of sRNAs in innate immune cells. The effect of sRNA on the enrichment of either chromatin remodeler or histone modification at the gene promoter was analyzed by chromatin immunoprecipitation (ChIP)-qPCR assay. Chromatin accessibility qPCR assay was used to detect the accessibility of gene promoters. A B16 melanoma-bearing mouse model was established to determine the function of sRNAs in tumor-associated macrophages (TAMs) and their effect on tumor growth. RESULTS We identified a new class of nucleus-localized sRNAs, named snRNA/snoRNA-derived nuclear RNAs (sdnRNAs). Some sdnRNAs were Dicer-independent and had no association with Argonaute proteins. sdnRNA-3, the most abundant Dicer-independent sdnRNAs identified in our analysis, was selected as a representative to examine the biological function of sdnRNAs. sdnRNA-3 selectively inhibited the transcription of Nos2 in macrophages during innate immune response by repressing the chromatin accessibility at Nos2 gene promoter. sdnRNA-3 promoted the enrichments of repressive chromatin-remodeling regulator Mi-2β and the repressive histone modification H3K27me3 at Nos2 gene promoter. In the B16 melanoma mouse model, we found higher expression of sdnRNA-3 in M2 TAMs than M1 TAMs and DCs. Transfer of sdnRNA-3-silenced macrophages inhibited tumor growth with increased expression of inducible nitric oxide synthase (iNOS) in TAMs. CONCLUSIONS Our results demonstrated that the sdnRNA-3 repressed the transcription of Nos2 by repressing chromatin accessibility at the promoter, providing new insights into the regulation of macrophage function in tumor immunity.
Collapse
Affiliation(s)
- Yang Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qingzhu Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Xuetao Cao
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
- Department of ImmunologyInstitute of Basic Medical ResearchChinese Academy of Medical SciencesBeijing100005P. R. China
| |
Collapse
|
56
|
Martins-Ferreira R, Leal B, Costa PP, Ballestar E. Microglial innate memory and epigenetic reprogramming in neurological disorders. Prog Neurobiol 2020; 200:101971. [PMID: 33309803 DOI: 10.1016/j.pneurobio.2020.101971] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
Microglia are myeloid-derived cells recognized as brain-resident macrophages. They act as the first and main line of immune defense in the central nervous system (CNS). Microglia have high phenotypic plasticity and are essential for regulating healthy brain homeostasis, and their dysregulation underlies the onset and progression of several CNS pathologies through impaired inflammatory responses. Aberrant microglial activation, following an inflammatory insult, is associated with epigenetic dysregulation in various CNS pathologies. Emerging data suggest that certain stimuli to myeloid cells determine enhanced or attenuated responses to subsequent stimuli. These phenomena, generally termed innate immune memory (IIM), are highly dependent on epigenetic reprogramming. Microglial priming has been reported in several neurological diseases and corresponds to a state of increased permissiveness or exacerbated response, promoted by continuous exposure to a chronic pro-inflammatory environment. In this article, we provide extensive evidence of these epigenetic-mediated phenomena under neurological conditions and discuss their contribution to pathogenesis and their clinical implications, including those concerning potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain; Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Barbara Leal
- Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo Pinho Costa
- Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
57
|
Sawada Y, Gallo RL. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J Invest Dermatol 2020; 141:1157-1166. [PMID: 33256976 DOI: 10.1016/j.jid.2020.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
This review is intended to illuminate the emerging understanding of epigenetic modifications that regulate both adaptive and innate immunity in the skin. Host defense of the epidermis and dermis involves the interplay of many cell types to enable homeostasis; tolerance to the external environment; and appropriate response to transient microbial, chemical, and physical insults. To understand this process, the study of cutaneous immunology has focused on immune responses that reflect both adaptive learned and genetically programmed innate defense systems. However, recent advances have begun to reveal that epigenetic modifications of chromatin structure also have a major influence on the skin immune system. This deeper understanding of how enzymatic changes in chromatin structure can modify the skin immune system and may explain how environmental exposures during life, and the microbiome, lead to both short-term and long-term changes in cutaneous allergic and other inflammatory processes. Understanding the mechanisms responsible for alterations in gene and chromatin structure within skin immunocytes could provide key insights into the pathogenesis of inflammatory skin diseases that have thus far evaded understanding by dermatologists.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
58
|
Nast R, Choepak T, Lüder CGK. Epigenetic Control of IFN-γ Host Responses During Infection With Toxoplasma gondii. Front Immunol 2020; 11:581241. [PMID: 33072127 PMCID: PMC7544956 DOI: 10.3389/fimmu.2020.581241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023] Open
Abstract
Host defense against the human pathogen Toxoplasma gondii depends on secretion of interferon (IFN)-γ and subsequent activation of monocytic cells to combat intracellular parasites. Previous studies have shown that T. gondii evades IFN-γ-mediated immunity by secreting the effector TgIST into the host cell where it binds to STAT1, strengthens its DNA binding activity and recruits the Mi-2/NuRD complex to STAT1-responsive promoters. Here we investigated the impact of the host chromatin environment on parasite interference with IFN-γ-induced gene expression. Luciferase reporters under control of primary and secondary IFN-γ response promoters were only inhibited by T. gondii when they were stably integrated into the host genome but not when expressed from a plasmid vector. Absence of CpG islands upstream and/or downstream of the transcriptional start site allowed more vigorous up-regulation by IFN-γ as compared to CpG-rich promoters. Remarkably, it also favored parasite interference with IFN-γ-induced gene expression indicating that nucleosome occupancy at IFN-γ-responsive promoters is important. Promoter DNA of IFN-γ-responsive genes remained largely non-methylated in T. gondii-infected cells, and inhibition of DNA methylation did not impact parasite interference with host responses. IFN-γ up-regulated histone marks H4ac, H3K9ac, and H3K4me3 but down-regulated H3S10p at primary and secondary response promoters. Infection with T. gondii abolished histone modification, whereas total nuclear activities of histone acetyl transferases and histone deacetylases were not altered. Taken together, our study reveals a critical impact of the host chromatin landscape at IFN-γ-activated promoters on their inhibition by T. gondii with a comprehensive blockade of histone modifications at parasite-inactivated promoters.
Collapse
Affiliation(s)
- Roswitha Nast
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Tenzin Choepak
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
59
|
Leão FB, Vaughn LS, Bhatt D, Liao W, Maloney D, Carvalho BC, Oliveira L, Ghosh S, Silva AM. Toll-like Receptor (TLR)-induced Rasgef1b expression in macrophages is regulated by NF-κB through its proximal promoter. Int J Biochem Cell Biol 2020; 127:105840. [PMID: 32866686 DOI: 10.1016/j.biocel.2020.105840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Abstract
Ras Guanine Exchange Factor (RasGEF) domain family member 1b is encoded by a Toll-like receptor (TLR)-inducible gene expressed in macrophages, but transcriptional mechanisms that govern its expression are still unknown. Here, we have functionally characterized the 5' flanking Rasgef1b sequence and analyzed its transcriptional activation. We have identified that the inflammation-responsive promoter is contained within a short sequence (-183 to +119) surrounding the transcriptional start site. The promoter sequence is evolutionarily conserved and harbors a cluster of five NF-κB binding sites. Luciferase reporter gene assay showed that the promoter is responsive to TLR activation and RelA or cRel, but not RelB, transcription factors. Besides, site-directed mutagenesis showed that the κB binding sites are required for maximal promoter activation induced by LPS. Analysis by Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that the promoter is located in an accessible chromatin region. More important, Chromatin Immunoprecipitation sequencing (ChIP-seq) showed that RelA is recruited to the promoter region upon LPS stimulation of bone marrow-derived macrophages. Finally, studies with Rela-deficient macrophages or pharmacological inhibition by Bay11-7082 showed that NF-κB is required for optimal Rasgef1b expression induced by TLR agonists. Our data provide evidence of the regulatory mechanism mediated by NF-κB that facilitates Rasgef1b expression after TLR activation in macrophages.
Collapse
Affiliation(s)
- Felipe B Leão
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lauren S Vaughn
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Dev Bhatt
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | | | - Brener C Carvalho
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo Oliveira
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
60
|
Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, Fang M, Xu Y. Transcriptional Activation of Matricellular Protein Spondin2 (SPON2) by BRG1 in Vascular Endothelial Cells Promotes Macrophage Chemotaxis. Front Cell Dev Biol 2020; 8:794. [PMID: 32974343 PMCID: PMC7461951 DOI: 10.3389/fcell.2020.00794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
The matricellular protein SPON2 plays diverse roles in the development of cardiovascular diseases. SPON2 is expressed in endothelial cells, but its transcription regulation in the context of atherogenesis remains incompletely appreciated. Here we report that SPON2 expression was up-regulated by pro-atherogenic stimuli (oxLDL and TNF-α) in vascular endothelia cells. In addition, endothelial SPON2 was elevated in Apoe–/– mice fed on a Western diet compared to the control mice. Induction of SPON2 in endothelial cells by pro-atherogenic stimuli was mediated by BRG1, a chromatin remodeling protein, both in vitro and in vivo. Further analysis revealed that BRG1 interacted with the sequence-specific transcription factor Egr-1 to activate SPON2 transcription. BRG1 contributed to SPON2 trans-activation by modulating chromatin structure surrounding the SPON2 promoter. Functionally, activation of SPON2 transcription by the Egr-1/BRG1 complex provided chemoattractive cues for macrophage trafficking. SPON2 depletion abrogated the ability of BRG1 or Egr-1 to stimulate endothelial derived chemoattractive cue for macrophage migration. On the contrary, recombinant SPON2 rescued endothelial chemo-attractability in the absence of BRG1 or Egr-1. In conclusion, our data have identified a novel transcriptional cascade in endothelial cells that may potentially promote macrophage recruitment and vascular inflammation leading to atherogenesis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China.,Department of Cardiology, Kaifeng People's Hospital, Kaifeng, China
| | - Yuanyuan Zhang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanjiang Hu
- Department of Cardiothoracic Surgery, Liyang People's Hospital, Liyang, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational Institute, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
61
|
Chang Z, Zhao G, Zhao Y, Lu H, Xiong W, Liang W, Sun J, Wang H, Zhu T, Rom O, Guo Y, Fan Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Arterioscler Thromb Vasc Biol 2020; 40:2494-2507. [PMID: 32787523 DOI: 10.1161/atvbaha.120.314955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.
Collapse
Affiliation(s)
- Ziyi Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Metabolism and Endocrinology (Z.C.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenhao Xiong
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jinjian Sun
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Cardiovascular Medicine (J.S.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Tianqing Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanbo Fan
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Bo Yang
- Department of Cardiac Surgery (B.Y.), University of Michigan Medical Center, Ann Arbor
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor (J.D.L.)
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
62
|
Zhou Q, Zhang Y, Wang B, Zhou W, Bi Y, Huai W, Chen X, Chen Y, Liu Z, Liu X, Zhan Z. KDM2B promotes IL-6 production and inflammatory responses through Brg1-mediated chromatin remodeling. Cell Mol Immunol 2020; 17:834-842. [PMID: 31197256 PMCID: PMC7395766 DOI: 10.1038/s41423-019-0251-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
IL-6 plays important and pleiotropic roles in infection and inflammatory diseases, and its production needs to be tightly regulated. However, the epigenetic mechanism underlying Il6 gene transcription remains to be fully elucidated. Here, we report that lysine-specific demethylase 2b (KDM2B), which demethylates H3K4me3 and H3K36me2, is required in macrophages and dendritic cells for the induction of IL-6 but not TNF-α, IL-1, and IFN-β. Compared to wild-type mice, KDM2B-deficient mice were more resistant to endotoxin shock and colitis, with a less severe inflammatory pathogenesis phenotype and decreased IL-6 production in sera. KDM2B selectively bound the Il6 promoter but did not alter histone demethylation; instead, KDM2B interacted with Brahma-related gene 1 (Brg1), the core ATPase subunit of SWI/SNF chromatin remodeling complexes, to facilitate chromatin accessibility of the Il6 promoter. Furthermore, KDM2B directly recruited RNA Polymerase II to further initiate and promote Il6 transcription. Thus, our finding identifies a novel nonclassical function of KDM2B in gene-specific transcription initiation and enhancement of Il6 independent of its demethylase activity and adds new insight into the specific epigenetic modification mechanism of inflammatory immune responses.
Collapse
Affiliation(s)
- Qingqing Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Yunkai Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Bo Wang
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Wenhui Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Yong Bi
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, 200081, Shanghai, China
| | - Wanwan Huai
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xi Chen
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yihan Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Zhongmin Liu
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| | - Zhenzhen Zhan
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, 200081, Shanghai, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
63
|
MNase Profiling of Promoter Chromatin in Salmonella typhimurium-Stimulated GM12878 Cells Reveals Dynamic and Response-Specific Nucleosome Architecture. G3-GENES GENOMES GENETICS 2020; 10:2171-2178. [PMID: 32404364 PMCID: PMC7341138 DOI: 10.1534/g3.120.401266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleosome is the primary unit of chromatin structure and commonly imputed as a regulator of nuclear events, although the exact mechanisms remain unclear. Recent studies have shown that certain nucleosomes can have different sensitivities to micrococcal nuclease (MNase) digestion, resulting in the release of populations of nucleosomes dependent on the concentration of MNase. Mapping MNase sensitivity of nucleosomes at transcription start sites genome-wide reveals an important functional nucleosome organization that correlates with gene expression levels and transcription factor binding. In order to understand nucleosome distribution and sensitivity dynamics during a robust genome response, we mapped nucleosome position and sensitivity using multiple concentrations of MNase. We used the innate immune response as a model system to understand chromatin-mediated regulation. Herein we demonstrate that stimulation of a human lymphoblastoid cell line (GM12878) with heat-killed Salmonella typhimurium (HKST) results in changes in nucleosome sensitivity to MNase. We show that the HKST response alters the sensitivity of -1 nucleosomes at highly expressed promoters. Finally, we correlate the increased sensitivity with response-specific transcription factor binding. These results indicate that nucleosome sensitivity dynamics reflect the cellular response to HKST and pave the way for further studies that will deepen our understanding of the specificity of genome response.
Collapse
|
64
|
Yen WF, Sharma R, Cols M, Lau CM, Chaudhry A, Chowdhury P, Yewdell WT, Vaidyanathan B, Sun A, Coffre M, Pucella JN, Chen CC, Jasin M, Sun JC, Rudensky AY, Koralov SB, Chaudhuri J. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep 2020; 27:1472-1486.e5. [PMID: 31042474 PMCID: PMC6527137 DOI: 10.1016/j.celrep.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
The immunoglobulin heavy chain (Igh) locus features a dynamic chromatin landscape to promote class switch recombination (CSR), yet the mechanisms that regulate this landscape remain poorly understood. CHD4, a component of the chromatin remodeling NuRD complex, directly binds H3K9me3, an epigenetic mark present at the Igh locus during CSR. We find that CHD4 is essential for early B cell development but is dispensable for the homeostatic maintenance of mature, naive B cells. However, loss of CHD4 in mature B cells impairs CSR because of suboptimal targeting of AID to the Igh locus. Additionally, we find that CHD4 represses p53 expression to promote B cell proliferation. This work reveals distinct roles for CHD4 in B cell development and CSR and links the H3K9me3 epigenetic mark with AID recruitment to the Igh locus. Yen et al. demonstrate that CHD4, a component of the NuRD remodeling complex, is essential for early B cell development, represses p53 expression in mature B cells, and influences the recruitment of AID to DNA during class switch recombination.
Collapse
Affiliation(s)
- Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Joseph N Pucella
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Chun-Chin Chen
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
65
|
Wosika V, Pelet S. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun 2020; 11:3171. [PMID: 32576833 PMCID: PMC7311541 DOI: 10.1038/s41467-020-16943-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Precise regulation of gene expression in response to environmental changes is crucial for cell survival, adaptation and proliferation. In eukaryotic cells, extracellular signal integration is often carried out by Mitogen-Activated Protein Kinases (MAPK). Despite a robust MAPK signaling activity, downstream gene expression can display a great variability between single cells. Using a live mRNA reporter, here we monitor the dynamics of transcription in Saccharomyces cerevisiae upon hyper-osmotic shock. We find that the transient activity of the MAPK Hog1 opens a temporal window where stress-response genes can be activated. We show that the first minutes of Hog1 activity are essential to control the activation of a promoter. Chromatin repression on a locus slows down this transition and contributes to the variability in gene expression, while binding of transcription factors increases the level of transcription. However, soon after Hog1 activity peaks, negative regulators promote chromatin closure of the locus and transcription progressively stops.
Collapse
Affiliation(s)
- Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
66
|
Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases. Viruses 2020; 12:v12050505. [PMID: 32375305 PMCID: PMC7290378 DOI: 10.3390/v12050505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is often the first clinically relevant pathogen encountered in life, with nearly all children infected by two years of age. Many studies have also linked early-life severe respiratory viral infection with more pathogenic immune responses later in life that lead to pulmonary diseases like childhood asthma. This phenomenon is thought to occur through long-term immune system alterations following early-life respiratory viral infection and may include local responses such as unresolved inflammation and/or direct structural or developmental modifications within the lung. Furthermore, systemic responses that could impact the bone marrow progenitors may be a significant cause of long-term alterations, through inflammatory mediators and shifts in metabolic profiles. Among these alterations may be changes in transcriptional and epigenetic programs that drive persistent modifications throughout life, leaving the immune system poised toward pathogenic responses upon secondary insult. This review will focus on early-life severe RSV infection and long-term alterations. Understanding these mechanisms will not only lead to better treatment options to limit initial RSV infection severity but also protect against the development of childhood asthma linked to severe respiratory viral infections.
Collapse
|
67
|
Ma Q, Shi C, Su C, Liu Y. Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chem 2020; 325:126866. [PMID: 32387982 DOI: 10.1016/j.foodchem.2020.126866] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
In order to clarify the ethylene dependent salt response mechanism in wheat, 2-week-old wheat seedlings of cultivar 'Qingmai 6' treated with water, sodium chloride (NaCl), NaCl and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and NaCl and ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) were collected and analyzed by transcriptional sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. At least 1140 proteins and 73,401 genes were identified, and proteins including ribosomal proteins (RPs), nucleoside diphosphate kinases (CDPKs), transaldolases (TALs), beta-glucosidases (BGLUs), phosphoenlpyruvate carboxylases (PEPCs), superoxide dismutases (SODs), and 6-phosphogluconate dehydrogenases (6-PGDHs) were significantly differently expressed. These genes and proteins revealed that ethylene dependent salt response through RPs activation, chaperones synthesis, the reactive oxygen species (ROS) scavenging, and carbohydrate metabolites pathway. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of ethylene regualted salt response.
Collapse
Affiliation(s)
- Qian Ma
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changhai Shi
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunxue Su
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiguo Liu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
68
|
Geigges M, Arekatla G, Paro R. Priming exposures to lipopolysaccharides do not affect the induction of Polycomb target genes upon re-exposure. PLoS One 2020; 15:e0231498. [PMID: 32287290 PMCID: PMC7156044 DOI: 10.1371/journal.pone.0231498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
The Polycomb group (PcG) proteins are chromatin factors underlying the process of transcriptional memory to preserve developmental decisions and keep cellular identities. However, not only developmental signals need to be memorized and thus maintained during the life of an organism. For host protection against pathogens, also a memory of previous exposures to an immunogenic stimulus is crucial to mount a more protective immune response upon re-exposure. The antigen-specific adaptive immunity in vertebrates is an example of such a memory to previous immunogenic stimulation. Recently, adaptive characteristics were also attributed to innate immunity, which was classically seen to lack memory. However, the mechanistic details of an adaptive innate immune response are yet to be fully understood and chromatin-based epigenetic mechanisms seem to play an important role in this phenomenon. Possibly, PcG proteins can contribute to such an epigenetic innate immune memory. In this study, we analyzed whether the PcG system can mediate a transcriptional memory of exposure to lipopolysaccharides (LPS). To this end, various forms of LPS pre-treatment were applied to reporter cells and expression kinetics of PcG target genes were analyzed after a second LPS exposure. Neither single nor multiple LPS pre-treatment affected the induction of endogenous LPS-responsive transcripts upon re-exposure. Altogether, our extensive analyses did not provide any evidence for a PcG system-mediated memory of LPS stimulation.
Collapse
Affiliation(s)
- Marco Geigges
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
| | - Geethika Arekatla
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
69
|
Zhang SC, Wang MY, Feng JR, Chang Y, Ji SR, Wu Y. Reversible promoter methylation determines fluctuating expression of acute phase proteins. eLife 2020; 9:51317. [PMID: 32223889 PMCID: PMC7136028 DOI: 10.7554/elife.51317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major human APR, that is C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-β and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-β that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.
Collapse
Affiliation(s)
- Shi-Chao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Rui Feng
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
70
|
Oruba A, Saccani S, van Essen D. Role of cell-type specific nucleosome positioning in inducible activation of mammalian promoters. Nat Commun 2020; 11:1075. [PMID: 32103026 PMCID: PMC7044431 DOI: 10.1038/s41467-020-14950-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
The organization of nucleosomes across functional genomic elements represents a critical layer of control. Here, we present a strategy for high-resolution nucleosome profiling at selected genomic features, and use this to analyse dynamic nucleosome positioning at inducible and cell-type-specific mammalian promoters. We find that nucleosome patterning at inducible promoters frequently resembles that at active promoters, even before stimulus-driven activation. Accordingly, the nucleosome profile at many inactive inducible promoters is sufficient to predict cell-type-specific responsiveness. Induction of gene expression is generally not associated with major changes to nucleosome patterning, and a subset of inducible promoters can be activated without stable nucleosome depletion from their transcription start sites. These promoters are generally dependent on remodelling enzymes for their inducible activation, and exhibit transient nucleosome depletion only at alleles undergoing transcription initiation. Together, these data reveal how the responsiveness of inducible promoters to activating stimuli is linked to cell-type-specific nucleosome patterning. Nucleosome organisation plays important roles in regulating functional genomic elements. Here, the authors use high-resolution profiling to analyse dynamic nucleosome positioning at inducible and cell-type-specific promoters, providing a global view of chromatin architecture at inducible promoters.
Collapse
Affiliation(s)
- Agata Oruba
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany
| | - Simona Saccani
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany. .,Institute for Research on Cancer & Aging, Nice (IRCAN), 28 Avenue Valombrose, Nice, 06107, France.
| | - Dominic van Essen
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany. .,Institute for Research on Cancer & Aging, Nice (IRCAN), 28 Avenue Valombrose, Nice, 06107, France.
| |
Collapse
|
71
|
Wu S, Wang J, Li J, Li F. microRNA-21 Aggravates Lipopolysaccharide-Induced Inflammation in MH7A Cells Through Targeting SNF5. Inflammation 2020; 43:441-454. [DOI: 10.1007/s10753-019-01117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
72
|
Gatchalian J, Liao J, Maxwell MB, Hargreaves DC. Control of Stimulus-Dependent Responses in Macrophages by SWI/SNF Chromatin Remodeling Complexes. Trends Immunol 2020; 41:126-140. [PMID: 31928914 PMCID: PMC6995420 DOI: 10.1016/j.it.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingwen Liao
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
73
|
Woznicki JA, Flood P, Bustamante-Garrido M, Stamou P, Moloney G, Fanning A, Zulquernain SA, McCarthy J, Shanahan F, Melgar S, Nally K. Human BCL-G regulates secretion of inflammatory chemokines but is dispensable for induction of apoptosis by IFN-γ and TNF-α in intestinal epithelial cells. Cell Death Dis 2020; 11:68. [PMID: 31988296 PMCID: PMC6985252 DOI: 10.1038/s41419-020-2263-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Proteins of the BCL-2 family are evolutionarily conserved modulators of apoptosis that function as sensors of cellular integrity. Over the past three decades multiple BCL-2 family members have been identified, many of which are now fully incorporated into regulatory networks governing the mitochondrial apoptotic pathway. For some, however, an exact role in cell death signalling remains unclear. One such ‘orphan’ BCL-2 family member is BCL-G (or BCL2L14). In this study we analysed gastrointestinal expression of human BCL-G in health and disease states, and investigated its contribution to inflammation-induced tissue damage by exposing intestinal epithelial cells (IEC) to IFN-γ and TNF-α, two pro-inflammatory mediators associated with gut immunopathology. We found that both BCL-G splice variants — BCL-GS (short) and BCL-GL (long) — were highly expressed in healthy gut tissue, and that their mRNA levels decreased in active inflammatory bowel diseases (for BCL-GS) and colorectal cancer (for BCL-GS/L). In vitro studies revealed that IFN-γ and TNF-α synergised to upregulate BCL-GS/L and to trigger apoptosis in colonic epithelial cell lines and primary human colonic organoids. Using RNAi, we showed that synergistic induction of IEC death was STAT1-dependent while optimal expression of BCL-GS/L required STAT1, NF-κB/p65 and SWI/SNF-associated chromatin remodellers BRM and BRG1. To test the direct contribution of BCL-G to the effects of IFN-γ and TNF-α on epithelial cells, we used RNAi- and CRISPR/Cas9-based perturbations in parallel with isoform-specific overexpression of BCL-G, and found that BCL-G was dispensable for Th1 cytokine-induced apoptosis of human IEC. Instead, we discovered that depletion of BCL-G differentially affected secretion of inflammatory chemokines CCL5 and CCL20, thus uncovering a non-apoptotic immunoregulatory function of this BCL-2 family member. Taken together, our data indicate that BCL-G may be involved in shaping immune responses in the human gut in health and disease states through regulation of chemokine secretion rather than intestinal apoptosis.
Collapse
Affiliation(s)
| | - Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Gerry Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Syed Akbar Zulquernain
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - Jane McCarthy
- Department of Gastroenterology, Mercy University Hospital, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
74
|
Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. ANNUAL REVIEW OF PATHOLOGY 2020; 15:123-147. [PMID: 31530089 PMCID: PMC7176483 DOI: 10.1146/annurev-pathmechdis-012418-012718] [Citation(s) in RCA: 1320] [Impact Index Per Article: 264.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are a diverse set of cells present in all body compartments. This diversity is imprinted by their ontogenetic origin (embryonal versus adult bone marrow-derived cells); the organ context; by their activation or deactivation by various signals in the contexts of microbial invasion, tissue damage, and metabolic derangement; and by polarization of adaptive T cell responses. Classic adaptive responses of macrophages include tolerance, priming, and a wide spectrum of activation states, including M1, M2, or M2-like. Moreover, macrophages can retain long-term imprinting of microbial encounters (trained innate immunity). Single-cell analysis of mononuclear phagocytes in health and disease has added a new dimension to our understanding of the diversity of macrophage differentiation and activation. Epigenetic landscapes, transcription factors, and microRNA networks underlie the adaptability of macrophages to different environmental cues. Macrophage plasticity, an essential component of chronic inflammation, and its involvement in diverse human diseases, most notably cancer, is discussed here as a paradigm.
Collapse
Affiliation(s)
- Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
- Humanitas University, 20090 Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
75
|
Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol 2019; 44:101324. [PMID: 31676122 DOI: 10.1016/j.smim.2019.101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IL-10 is a critical immunoregulatory cytokine expressed in virtually all immune cell types. Maintaining a delicate balance between effective immune response and tolerance requires meticulous and dynamic control of IL-10 expression both epigenetically and transcriptionally. In this Review, we describe the epigenetic mechanisms controlling IL-10 expression, including chromatin remodeling, 3D chromatin loops, histone modification and DNA methylation. We discuss the role of transcription factors in directing chromatin modifications, with a special highlight on the emerging concept of pioneer transcription factors in setting up the chromatin landscape in T helper cells for IL-10 induction. Besides summarizing the recent progress on transcriptional regulation in specialized IL-10 producers such as type 1 regulatory T cells, regulatory B cells and regulatory innate lymphoid cells, we also discuss common transcriptional mechanisms for IL-10 regulation that are shared with other IL-10 producing cells.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
76
|
Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 2019; 17:36-49. [PMID: 31664225 PMCID: PMC6952359 DOI: 10.1038/s41423-019-0315-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/28/2019] [Indexed: 02/05/2023] Open
Abstract
Macrophages are crucial members of the innate immune response and important regulators. The differentiation and activation of macrophages require the timely regulation of gene expression, which depends on the interaction of a variety of factors, including transcription factors and epigenetic modifications. Epigenetic changes also give macrophages the ability to switch rapidly between cellular programs, indicating the ability of epigenetic mechanisms to affect phenotype plasticity. In this review, we focus on key epigenetic events associated with macrophage fate, highlighting events related to the maintenance of tissue homeostasis, responses to different stimuli and the formation of innate immune memory. Further understanding of the epigenetic regulation of macrophages will be helpful for maintaining tissue integrity, preventing chronic inflammatory diseases and developing therapies to enhance host defense.
Collapse
Affiliation(s)
- Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
77
|
Gupta SC, Awasthee N, Rai V, Chava S, Gunda V, Challagundla KB. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochim Biophys Acta Rev Cancer 2019; 1873:188316. [PMID: 31639408 DOI: 10.1016/j.bbcan.2019.188316] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
Abstract
The regulation of the pleiotropic transcription factor, nuclear factor-κB (NF-κB) by miRNAs and proteins is extensively studied. More recently, the NF-κB signaling was also reported to be regulated by several long non-coding RNAs (lncRNAs) that constitute the major portion of the noncoding component of the human genome. The common NF-κB associated lncRNAs include NKILA, HOTAIR, MALAT1, ANRIL, Lethe, MIR31HG, and PACER. The lncRNA and NF-κB signaling crosstalk during cancer and other diseases such as cardiomyopathy, celiac disease, cerebral infarction, chronic kidney disease, diabetes mellitus, Kawasaki disease, pregnancy loss, and rheumatoid arthritis. Some NF-κB related lncRNAs can affect gene expression without modulating NF-κB signaling. Most of the lncRNAs with a potential to modulate NF-κB signaling are regulated by NF-κB itself suggesting a feedback regulation. The discovery of lncRNAs have provided a new type of regulation for the NF-κB signaling and thus could be explored for therapeutic interventions. The manner in which lncRNA and NF-κB crosstalk affects human pathophysiology is discussed in this review. The challenges associated with the therapeutic interventions of this crosstalk are also discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Srinivas Chava
- Department of Biochemistry & Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B Challagundla
- Department of Biochemistry & Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
78
|
Liu X, Lu Y, Zhu J, Liu M, Xie M, Ye M, Li M, Wang S, Ming Z, Tong Q, Liu F, Zhou R. A Long Noncoding RNA, Antisense IL-7, Promotes Inflammatory Gene Transcription through Facilitating Histone Acetylation and Switch/Sucrose Nonfermentable Chromatin Remodeling. THE JOURNAL OF IMMUNOLOGY 2019; 203:1548-1559. [PMID: 31383742 DOI: 10.4049/jimmunol.1900256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs are important regulators of gene expression in innate immune responses. Antisense IL-7 (IL-7-AS) is a newly discovered long noncoding RNA in human and mouse that has been reported to regulate the expression of IL-6. However, the potential function of IL-7-AS in innate immune system is not fully understood. In this study, we found that the expression of IL-7-AS is primarily dependent on the NF-κB and MAPK signaling pathways in macrophages and intestinal epithelial cells. Functionally, IL-7-AS promotes the expression of several inflammatory genes, including CCL2, CCL5, CCL7, and IL-6, in cells in response to LPS. Specifically, IL-7-AS physically interacts with p300 to regulate histone acetylation levels around the promoter regions of these gene loci. Moreover, IL-7-AS and p300 complex modulate the assembly of SWI/SNF complex to the promoters. IL-7-AS regulates chemotaxis activity of monocytes to intestine epithelial cells with involvement of CCL2. Therefore, our data indicate a new promoting role for NF-κB/MAPK-responsive IL-7-AS in the transcriptional regulation of inflammatory genes in the innate immune system although modulation of histone acetylation around the promoters of related genes.
Collapse
Affiliation(s)
- Xu Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.,Department of Biochemistry and Molecular Biology, Medical College, Hubei Minzu University, Enshi 445000, Hubei, People's Republic of China
| | - Yajing Lu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.,Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei, People's Republic of China
| | - Jie Zhu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Mingjia Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Minghong Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Mengling Ye
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Mingxuan Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Shuhong Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Qiang Tong
- Department of Gastrointestinal Surgery Section, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China; and
| | - Feng Liu
- School of Computer Sciences, Wuhan University, Wuhan 430072, Hubei, People's Republic of China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China;
| |
Collapse
|
79
|
Liu L, Mao L, Xu Y, Wu X. Endothelial-specific deletion of Brahma-related gene 1 (BRG1) assuages unilateral ureteral obstruction induced renal injury in mice. Biochem Biophys Res Commun 2019; 517:244-252. [PMID: 31349970 DOI: 10.1016/j.bbrc.2019.07.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023]
Abstract
Renal homeostasis is regulated by the interplay among different cell types in the kidneys including endothelial cells. In the present study we investigated the phenotypic regulation of endothelial cells by BRG1, a chromatin remodeling protein, in a mouse model of obstructive nephropathy (ON). We report that endothelial-specific deletion of BRG1 attenuated renal inflammation induced by unilateral ureteral tract obstruction (UUO) in mice, as evidenced by down-regulation of pro-inflammatory cytokines and diminished infiltration of immune cells. Moreover, endothelial BRG1 deficiency suppressed UUO-induced renal fibrosis in mice as measured by expression of pro-fibrogenic genes, picrosirius red staining of collagenous tissues, and quantification of hydroxylproline levels. Mechanistically, BRG1 activated the transcription of adhesion molecules and chemokines in endothelial cells by recruiting histone modifying enzymes leading to macrophage adhesion and chemotaxis. In conclusion, we propose that epigenetic regulation of endothelial function by BRG1 may play an active role in ON pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
80
|
Peeters JGC, Vastert SJ, van Wijk F, van Loosdregt J. Review: Enhancers in Autoimmune Arthritis: Implications and Therapeutic Potential. Arthritis Rheumatol 2019; 69:1925-1936. [PMID: 28666076 PMCID: PMC5659109 DOI: 10.1002/art.40194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Janneke G C Peeters
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
81
|
Rodriguez RM, Suarez-Alvarez B, Lopez-Larrea C. Therapeutic Epigenetic Reprogramming of Trained Immunity in Myeloid Cells. Trends Immunol 2019; 40:66-80. [PMID: 30595189 DOI: 10.1016/j.it.2018.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
Infiltrating and tissue-resident myeloid cells are essential regulators of innate and adaptive immunity. During inflammation, and in response to microbial products, these cells can adapt to microenvironmental conditions and acquire specialized functions, including phagocytosis and the production of proinflammatory cytokines. Such myeloid plasticity is driven, in part, by epigenetic dynamics that can sustain stable phenotypes after activation, and which may lead to maladaptive cell polarization states associated with inflammation and autoimmunity. Here, we review recent reports describing epigenetic mechanisms linked to such polarization states and innate immune memory (tolerance and training) in monocyte and macrophage lineages. We discuss how these mechanisms might be targeted to develop putative immunomodulatory tools that might be used to treat a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- R M Rodriguez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - B Suarez-Alvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| | - C Lopez-Larrea
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| |
Collapse
|
82
|
Xu W, Zhao Q, Wu M, Fang M, Xu Y. MKL1 mediates TNF-α induced pro-inflammatory transcription by bridging the crosstalk between BRG1 and WDR5. J Biomed Res 2019; 33:164-172. [PMID: 29109331 PMCID: PMC6551423 DOI: 10.7555/jbr.32.20170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a cytokine that can potently stimulate the synthesis of a range of pro-inflammatory mediators in macrophages. The underlying epigenetic mechanism, however, is underexplored. Here we report that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) is associated with a histone H3K4 methyltransferase activity. Re-ChIP assay suggests that MKL1 interacts with and recruits WDR5, a component of the COMPASS complex responsible for H3K4 methylation, to the promoter regions of pro-inflammatory genes in macrophages treated with TNF-α. WDR5 enhances the ability of MKL1 to stimulate the promoter activities of pro-inflammatory genes. In contrast, silencing of WDR5 attenuates TNF-α induced production of pro-inflammatory mediators and erases the H3K4 methylation from the gene promoters. Of interest, the chromatin remodeling protein BRG1 also plays an essential role in maintaining H3K4 methylation on MKL1 target promoters by interacting with WDR5. MKL1 knockdown disrupts the interaction between BRG1 and WDR5. Together, our data illustrate a role for MKL1 in moderating the crosstalk between BRG1 and WDR5 to activate TNF-α induced pro-inflammatory transcription in macrophages.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Medicine, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu 211800, China
| | - Quanyi Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mingming Fang
- Department of Medicine, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu 211800, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
83
|
Sun L, Yuan Y, Chen J, Ma C, Xu Y. Brahma related gene 1 (BRG1) regulates breast cancer cell migration and invasion by activating MUC1 transcription. Biochem Biophys Res Commun 2019; 511:536-543. [DOI: 10.1016/j.bbrc.2019.02.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
84
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
85
|
|
86
|
Zhang Y, Yuan Y, Li Z, Chen H, Fang M, Xiao P, Xu Y. An interaction between BRG1 and histone modifying enzymes mediates lipopolysaccharide-induced proinflammatory cytokines in vascular endothelial cells. J Cell Biochem 2019; 120:13216-13225. [PMID: 30891798 DOI: 10.1002/jcb.28595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Vascular inflammation is the culprit for a host of human diseases. The underlying mechanism, however, is not definitively elucidated. In the present study, we investigated the interplay between different epigenetic factors during lipopolysaccharide (LPS) induced synthesis of proinflammatory cytokines in cultured vascular endothelial cells. We report that in response to LPS treatment, NF-κB was deplored to its target promoters along with the chromatin remodeling protein BRG1. Paralleling these changes trimethylated H3K9 became erased from while trimethylated H3K4 started to accumulate on the NF-κB target promoters. Further analysis revealed that LPS stimulation resulted in sequential recruitment of the H3K9 tri-demethylase JMJD2A and the H3K4 trimethyltransferase SET1A to the NF-κB target promoters. JMJD2A mediated-H3K9 demethylation served as a prerequisite for SET1A to bind to the NF-κB target promoters. Both JMJD2A and SET1A were essential for LPS-induced transactivation of proinflammatory cytokines by sustaining the binding of NF-κB. Of key importance, BRG1 coordinated the sequential recruit of and the interplay between JMJD2A and SET1A. In conclusion, our data unveil a novel epigenetic mechanism that contributes to LPS-induced vascular inflammation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Affiliated Hospital to Hainan Medical University, Haikou, China
| | - Yibiao Yuan
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huan Chen
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, Sir Run Run Hospital Affiliated to Nanjing MedicalUniversity, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
87
|
Emerging Principles of Gene Expression Programs and Their Regulation. Mol Cell 2019; 71:389-397. [PMID: 30075140 DOI: 10.1016/j.molcel.2018.07.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
Many mechanisms contribute to regulation of gene expression to ensure coordinated cellular behaviors and fate decisions. Transcriptional responses to external signals can consist of many hundreds of genes that can be parsed into different categories based on kinetics of induction, cell-type and signal specificity, and duration of the response. Here we discuss the structure of transcription programs and suggest a basic framework to categorize gene expression programs based on characteristics related to their control mechanisms. We also discuss possible evolutionary implications of this framework.
Collapse
|
88
|
Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe 2019; 25:13-26. [PMID: 30629914 DOI: 10.1016/j.chom.2018.12.006] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunological memory is an important evolutionary trait that improves host survival upon reinfection. Memory is a characteristic recognized within both the innate and adaptive arms of the immune system. Although the mechanisms and properties through which innate and adaptive immune memory are induced are distinct, they collude to improve host defense to pathogens. Here, we propose that innate immune memory, or "trained immunity," is a primitive form of adaptation in host defense, resulting from chromatin structure rearrangement, which provides an increased but non-specific response to reinfection. In contrast, adaptive immune memory is more advanced, with increased magnitude of response mediated through epigenetic changes, as well as specificity mediated by gene recombination. An integrative model of immune memory is important for broad understanding of host defense, and for identifying the most effective approaches to modulate it for the benefit of patients with infections and immune-mediated diseases.
Collapse
|
89
|
Kunze FA, Bauer M, Komuczki J, Lanzinger M, Gunasekera K, Hopp AK, Lehmann M, Becher B, Müller A, Hottiger MO. ARTD1 in Myeloid Cells Controls the IL-12/18-IFN-γ Axis in a Model of Sterile Sepsis, Chronic Bacterial Infection, and Cancer. THE JOURNAL OF IMMUNOLOGY 2019; 202:1406-1416. [PMID: 30674576 DOI: 10.4049/jimmunol.1801107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Mice deficient for ADP-ribosyltransferase diphteria toxin-like 1 (ARTD1) are protected against microbially induced inflammation. To address the contribution of ARTD1 to inflammation specifically in myeloid cells, we generated an Artd1ΔMyel mouse strain with conditional ARTD1 deficiency in myeloid lineages and examined the strain in three disease models. We found that ARTD1, but not its enzymatic activity, enhanced the transcriptional activation of distinct LPS-induced genes that included IL-12, TNF-α, and IL-6 in primary bone marrow-derived macrophages and LPS-induced IL-12/18-IFN-γ signaling in Artd1ΔMyel mice. The loss of Artd1 in myeloid cells also reduced the TH1 response to Helicobacter pylori and impaired immune control of the bacteria. Furthermore, Artd1ΔMyel mice failed to control tumor growth in a s.c. MC-38 model of colon cancer, which could be attributed to reduced TH1 and CD8 responses. Together, these data provide strong evidence for a cell-intrinsic role of ARTD1 in myeloid cells that is independent of its enzymatic activity and promotes type I immunity by promoting IL-12/18 expression.
Collapse
Affiliation(s)
- Friedrich A Kunze
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland.,Molecular Life Science Ph.D. Program of the Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Michael Bauer
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland.,Cancer Biology Ph.D. Program of the Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Juliana Komuczki
- Molecular Life Science Ph.D. Program of the Life Science Zurich Graduate School, 8057 Zurich, Switzerland.,Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; and
| | - Margit Lanzinger
- Molecular Life Science Ph.D. Program of the Life Science Zurich Graduate School, 8057 Zurich, Switzerland.,Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; and
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland.,Molecular Life Science Ph.D. Program of the Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Mareike Lehmann
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland.,Comprehensive Pneumology Center, Ludwig Maximilian University, University Hospital Grosshadern, and Helmholtz Center Munich, 81377 Munich, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; and
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
90
|
Choi H, Magyar CE, Nervina JM, Tetradis S. Different duration of parathyroid hormone exposure distinctively regulates primary response genes Nurr1 and RANKL in osteoblasts. PLoS One 2018; 13:e0208514. [PMID: 30576321 PMCID: PMC6303058 DOI: 10.1371/journal.pone.0208514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Parathyroid hormone (PTH) exerts dual effects, anabolic or catabolic, on bone when administrated intermittently or continuously, via mechanisms that remain largely unknown. PTH binding to cells induces PTH-responsive genes including primary response genes (PRGs). PRGs are rapidly induced without the need for de novo protein synthesis, thereby playing pivotal roles in directing subsequent molecular responses. In this study, to understand the role of PRGs in mediating osteoblastic cellular responses to PTH, we investigated whether various durations of PTH differentially induce PRGs in primary osteoblasts and MC3T3-E1. Nurr1 and RANKL, PRGs known for their anabolic and catabolic roles in bone metabolism respectively, presented distinctive transient vs. sustained induction kinetics. Corroborating their roles, maximum induction of Nurr1 was sufficiently achieved by brief PTH in as little as 30 minutes and continued beyond that, while maximum induction of RANKL was achieved only by prolonged PTH over 4 hours. Our data suggested distinctive regulatory mechanisms for Nurr1 and RANKL: PKA-mediated chromatin rearrangement for transcriptional regulation of both PRGs and ERK-mediated transcriptional regulation for RANKL but not Nurr1. Lastly, we classified PRGs into two groups based on the induction kinetics: The group that required brief PTH for maximum induction included Nur77, cox-2, and Nurr1, all of which are reported to play roles in bone formation. The other group that required prolonged PTH for maximum induction included IL-6 and RANKL, which play roles in bone resorption. Together, our data suggested the crucial role of PRG groups in mediating differential osteoblastic cellular responses to intermittent vs. continuous PTH. Continued research into the regulatory mechanisms of PKA and ERK for PRGs will help us better understand the molecular mechanisms underlying the dual effects of PTH, thereby optimizing the current therapeutic use of PTH for osteoporosis.
Collapse
Affiliation(s)
- Hyewon Choi
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Clara E. Magyar
- Center for Pathology Research Services, Department of Pathology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jeanne M. Nervina
- College of Dentistry, New York University, New York, New York, United States of America
| | - Sotirios Tetradis
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
91
|
Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 2018; 125:6-17. [DOI: 10.1016/j.yjmcc.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
92
|
Vergadi E, Vaporidi K, Tsatsanis C. Regulation of Endotoxin Tolerance and Compensatory Anti-inflammatory Response Syndrome by Non-coding RNAs. Front Immunol 2018; 9:2705. [PMID: 30515175 PMCID: PMC6255943 DOI: 10.3389/fimmu.2018.02705] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The onset and the termination of innate immune response must be tightly regulated to maintain homeostasis and prevent excessive inflammation, which can be detrimental to the organism, particularly in the context of sepsis. Endotoxin tolerance and compensatory anti-inflammatory response syndrome (CARS) describe a state of hypo-responsiveness characterized by reduced capacity of myeloid cells to respond to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide (LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed as “innate immune training”, is required that leads to both modifications of the intracellular components of TLR signaling and also to alterations in extracellular soluble mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579, miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2, THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid cell tolerance is not only regulated by intracellular mediators but is also affected by other TLR-independent soluble signals that often achieve their effect via modulation of intracellular ncRNAs. In this article, we review recent evidence on the role of different ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate their impact on immune system homeostasis.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Heraklion, Greece.,Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
93
|
Lan J, Sun L, Xu F, Liu L, Hu F, Song D, Hou Z, Wu W, Luo X, Wang J, Yuan X, Hu J, Wang G. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res 2018; 79:146-158. [PMID: 30401711 DOI: 10.1158/0008-5472.can-18-0014] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/03/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
Clinical and experimental evidence has shown that tumor-associated macrophages promote cancer initiation and progression. However, the macrophage-derived molecular determinants that regulate colorectal cancer metastasis have not been fully characterized. Here, we demonstrate that M2 macrophage-regulated colorectal cancer cells' migration and invasion is dependent upon M2 macrophage-derived exosomes (MDE). MDE displayed a high expression level of miR-21-5p and miR-155-5p, and MDE-mediated colorectal cancer cells' migration and invasion depended on these two miRNAs. Mechanistically, miR-21-5p and miR-155-5p were transferred to colorectal cancer cells by MDE and bound to the BRG1 coding sequence, downregulating expression of BRG1, which has been identified as a key factor promoting the colorectal cancer metastasis, yet is downregulated in metastatic colorectal cancer cells. Collectively, these findings show that M2 macrophages induce colorectal cancer cells' migration and invasion and provide significant plasticity of BRG1 expression in response to tumor microenvironments during malignant progression. This dynamic and reciprocal cross-talk between colorectal cancer cells and M2 macrophages provides a new opportunity for the treatment of metastatic colorectal cancer. SIGNIFICANCE: These findings report a functional role for miRNA-containing exosomes derived from M2 macrophages in regulating migration and invasion of colorectal cancer cells.
Collapse
Affiliation(s)
- Jingqin Lan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenlin Hou
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Immunology, Basic of Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
94
|
Huang M, Wang H, Hu X, Cao X. lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology 2018; 8:e1518628. [PMID: 30546959 DOI: 10.1080/2162402x.2018.1518628] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one type of cancers whose carcinogenesis and progression are closely related to chronic inflammation. Identifying the molecular mechanisms for inflammation-related HCC progression will contribute to improve the efficacy of current therapeutics for HCC patients. Many kinds of epigenetic factors, including long non-coding RNAs (lncRNAs), have been discovered to be important in HCC growth and metastasis. However, how the lncRNAs promote HCC progression and what's the application of lncRNA silencing in vivo in suppressing HCC remain to be further investigated. Here, we found that lncRNA metastasis associated lung adenocarcinoma transcript1 (MALAT1) was upregulated in HCC tumor tissues, and knockdown of MALAT1 suppressed proliferation, cell cycle and invasion of HCC cells in response to lipopolysaccharide (LPS) stimulation. Knockdown of MALAT1 significantly inhibited LPS-induced pro-inflammatory mediators IL-6 and CXCL8 expression in HCC cells, which could be restored by overexpressing MALAT1. Mechanistically, MALAT1 recruited Brahma-related gene 1 (BRG1), a catalytic subunit of chromatin remodeling complex switching/sucrose non-fermentable (SWI/SNF), to the promoter region of IL-6 and CXCL8, and thus facilitated NF-κB to induce the expression of these inflammatory factors. Importantly, in vivo silencing of MALAT1 in HCC tissues inhibited growth of HCC xenografts, and also suppressed the expression of pro-inflammatory factors in HCC tissues accordingly. Our results demonstrate that MALAT1 promotes HCC progression by binding BRG1 to epigenetically enhance inflammatory response in HCC tissues, and silencing of MALAT1 may be a potential approach to the treatment of HCC.
Collapse
Affiliation(s)
- Mingyan Huang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China
| | - Huamin Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing China
| | - Xiang Hu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai China.,National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou China.,College of Life Science, Nankai University, Tianjin China
| |
Collapse
|
95
|
Angiotensin II induced CSF1 transcription is mediated by a crosstalk between different epigenetic factors in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:1-11. [PMID: 30317027 DOI: 10.1016/j.bbagrm.2018.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Endothelium-derived colony stimulating factor (CSF1) plays a key role in a range of human pathologies. Angiotensin II (Ang II) has been documented to stimulate CSF1 transcription although the underlying epigenetic mechanism remains unclear. Here we report that induction of CSF1 transcription by Ang II in vascular endothelial cells paralleled alterations of signature histone modifications surrounding the CSF1 promoter. Specifically, ChIP assays indicated that there was a simultaneous up-regulation of both acetylated H3 and trimethylated H3K4, indicative of transcriptional activation, and down-regulation of dimethyl H3K9, implicated in transcriptional repression, surrounding the proximal CSF1 promoter. Further analysis revealed that silencing of brahma related gene 1 (BRG1), a chromatin remodeling protein, abrogated CSF1 induction by Ang II. In the meantime, BRG1 silencing erased H3 acetylation and H3K4 trimethylation and restored H3K9 dimethylation. Mechanistically, BRG1 interacted with and recruited SET1A, a histone H3K4 methyltransferase, and JMJD1A, a histone H3K9 demethylase, to the CSF1 promoter to alter chromatin structure thereby promoting CSF1 trans-activation in response to Ang II stimulation. Knockdown of either SET1A or JMJD1A blocked CSF1 induction by Ang II. Finally, we demonstrate that the crosstalk between BRG1 and histone modifying enzymes was mediated by the transcription factor AP-1. In conclusion, our data unveil a novel epigenetic mechanism whereby a BRG1-centered complex mediates transcriptional activation of CSF1 by Ang II in vascular endothelial cells.
Collapse
|
96
|
Zhang X, Liu S, Weng X, Zeng S, Yu L, Guo J, Xu Y. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int J Cardiol 2018; 269:250-258. [PMID: 30049497 DOI: 10.1016/j.ijcard.2018.07.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increased neutrophil infiltration and the ensuing inflammatory response represent a hallmark event in cardiac ischemia-reperfusion injury (IRI). It remains poorly defined how the epigenetic machinery contributes to this process. METHODS AND RESULTS Here we report that mice with endothelial specific deletion of brahma related gene 1 (BRG1), a chromatin remodeling protein, exhibited amelioration when subjected to cardiac ischemia-reperfusion as evidenced by a reduction in infarct size as well as better recovery of heart function. Endothelial BRG1 deficiency also attenuated cardiac fibrosis following IRI when compared to wild type littermates. Interestingly, ablation of BRG1 in the endothelium suppressed neutrophil infiltration and down-regulated the levels of pro-inflammatory mediators in the heart following IRI. Further studies revealed that BRG1 activated the transcription of PODOCALYXIN (PODXL), an L-SELECTIN ligand crucial for neutrophil adhesion, in vascular endothelial cells in response to hypoxia-reoxygenation (HR). BRG1 knockdown by small interfering RNA abrogated HR-induced PODXL expression and blocked the adhesion of neutrophils to endothelial cells. Mechanistically, BRG1 alters the chromatin structure surrounding the PODXL promoter by interacting with JMJD2B, a histone H3K9 demethylase. Depletion of JMJD2B abrogated PODXL induction by HR and inhibited the adhesion of neutrophils to endothelial cells. CONCLUSION Our data suggest that trans-activation of PODXL by the BRG1-JMJD2B complex in endothelial cells may promote neutrophil infiltration and consequently the pathogenesis of cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xinyu Weng
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Sheng Zeng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
97
|
Seeley JJ, Baker RG, Mohamed G, Bruns T, Hayden MS, Deshmukh SD, Freedberg DE, Ghosh S. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature 2018; 559:114-119. [PMID: 29950719 PMCID: PMC6044474 DOI: 10.1038/s41586-018-0253-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
Prolonged exposure to microbial products, e.g. lipopolysaccharide (LPS),
can induce a form of innate immune memory that blunts subsequent responses to
unrelated pathogens (“LPS tolerance”). Sepsis, which continues
to have a high mortality rate, is a dysregulated, systemic immune response to
disseminated infection. In some patients, this results in a period of
immunosuppression (“immunoparalysis”)1 with reduced inflammatory cytokine
output2, increased
secondary infection3, and
increased risk of organ failure and mortality4. LPS tolerance recapitulates several key features of
sepsis-associated immunosuppression5. Although various epigenetic changes have been observed in
tolerized macrophages6–8, the molecular basis for
tolerance, immunoparalysis, and other forms of innate immune memory has remained
unclear. Here, we performed a screen for tolerance-associated microRNAs (miRNAs)
and identified miR-221/222 as regulators of the functional reprogramming of
macrophages during LPS tolerization. Prolonged stimulation with LPS in mice
leads to Increased expression of miR-221/222, which regulates brahma-related
gene 1 (Brg1) causing transcriptional silencing of a subset of
inflammatory genes that depend on SWI/SNF- (SWItch/Sucrose
Non-Fermentable) and STAT- (signal transducer and activator of
transcription) mediated chromatin remodeling, and promotes tolerance. In sepsis
patients, increased miR-221/222 expression correlates with immunoparalysis and
increased organ damage. Hence our results show that specific microRNAs can
regulate macrophage tolerization and may serve as biomarkers of immunoparalysis
and poor prognosis in sepsis patients.
Collapse
Affiliation(s)
- John J Seeley
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Rebecca G Baker
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ghait Mohamed
- The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Matthew S Hayden
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sachin D Deshmukh
- The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Daniel E Freedberg
- Department of Medicine, Division of Digestive & Liver Disease, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
98
|
Tyssowski KM, DeStefino NR, Cho JH, Dunn CJ, Poston RG, Carty CE, Jones RD, Chang SM, Romeo P, Wurzelmann MK, Ward JM, Andermann ML, Saha RN, Dudek SM, Gray JM. Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron 2018; 98:530-546.e11. [PMID: 29681534 PMCID: PMC5934296 DOI: 10.1016/j.neuron.2018.04.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Cho
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carissa J Dunn
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA
| | - Robert G Poston
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA
| | - Crista E Carty
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Richard D Jones
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah M Chang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Palmyra Romeo
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mary K Wurzelmann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ramendra N Saha
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
99
|
Liu X, Ren S, Ge C, Cheng K, Li X, Zhao RC. Sca1+Lin−CD117− Mouse Bone Marrow-Derived Mesenchymal Stem Cells Regulate Immature Dendritic Cell Maturation by Inhibiting TLR4-IRF8 Signaling Via the Notch-RBP-J Pathway. Stem Cells Dev 2018; 27:556-565. [DOI: 10.1089/scd.2017.0235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xingxia Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shaoda Ren
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Chaozhuo Ge
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kai Cheng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaojing Li
- School of Pharmacy, Liaocheng University, Liaocheng, People's Republic of China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
100
|
Khoyratty TE, Udalova IA. Diverse mechanisms of IRF5 action in inflammatory responses. Int J Biochem Cell Biol 2018; 99:38-42. [PMID: 29578052 DOI: 10.1016/j.biocel.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 10/25/2022]
Abstract
Interferon regulatory factor 5 (IRF5) is a key signal-dependent transcription factor in myeloid cells. Its expression is induced by granulocyte-macrophage colony stimulating factor and interferon-gamma. IRF5 protein is further activated in response to stimulation, translocating to the nucleus where it mediates inflammatory responses. IRF5 is capable of both the up-regulation of pro-inflammatory genes and repressing anti-inflammatory mediators, thus polarising macrophages to a pro-inflammatory phenotype. We discuss IRF5 interactions with a wide range of transcriptional regulators that give rise to its diverse effects at the level of chromatin.
Collapse
Affiliation(s)
- Tariq E Khoyratty
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|