51
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
52
|
Selective COX-2 Inhibitor Etoricoxib's Liposomal Formulation Attenuates M2 Polarization of TAMs and Enhances its Anti-metastatic Potential. Pharm Res 2023; 40:551-566. [PMID: 36670330 DOI: 10.1007/s11095-022-03444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/20/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION COX-2 inhibition in pro-tumoral M2 polarization of Tumor-Associated Macrophages (TAMs) underscore the improved prognosis and response to cancer therapy. Thus, etoricoxib, a COX-2 inhibiting NSAID drug is highly effective against tumorigenesis, but its compromised solubility and associated hepatotoxicity, and cardiotoxicity limit its clinical translation. OBJECTIVE In view of the consequences, the proposed study entails the development of a liposomal formulation for etoricoxib and evaluates its anticancer potential. METHODS AND RESULT Etoricoxib loaded liposome was prepared by thin layer hydration method and characterized as a nearly monodisperse system with particle size (91.64 nm), zeta potential (-44.5 mV), drug loading (17.22%), and entrapment efficiency (94.76%). The developed formulation was administered subcutaneously into the orthotopic 4T1/Balb/c mice model. Its treatment significantly reduced tumor size and skewed M2 polarization of TAMs to a greater extent against free etoricoxib. Furthermore, Tumor tissues analyzed through immunoblotting study confirmed the reduction in Akt phosphorylation at Thr308 residue and pro-tumoral VEGF, MMP-9, and MMP-2 proteins; Moreover, histology studies and microCT analysis of bones revealed the enhanced anti-metastatic potential of etoricoxib delivered through developed formulation against free etoricoxib. CONCLUSION As an epilogue, the developed formulation efficiently delivers poorly soluble etoricoxib, enhances its therapeutic potential as an anti-tumor and anti-metastatic agent, and directs explorative research for clinical translation.
Collapse
|
53
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
54
|
Peyton SR, Platt MO, Cukierman E. Challenges and Opportunities Modeling the Dynamic Tumor Matrisome. BME FRONTIERS 2023; 4:0006. [PMID: 37849664 PMCID: PMC10521682 DOI: 10.34133/bmef.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 10/19/2023] Open
Abstract
We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.
Collapse
Affiliation(s)
- Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Manu O. Platt
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| |
Collapse
|
55
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
56
|
Bialek J, Yankulov S, Kawan F, Fornara P, Theil G. Role of Nivolumab in the Modulation of PD-1 and PD-L1 Expression in Papillary and Clear Cell Renal Carcinoma (RCC). Biomedicines 2022; 10:biomedicines10123244. [PMID: 36552000 PMCID: PMC9776360 DOI: 10.3390/biomedicines10123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The expression and cellular mechanisms of programmed cell death-1 protein (PD-1) and its ligands (PD-L1 and PD-L2) in renal cancer cells are not well known. Here, we aimed to investigate the response of renal carcinoma subtypes to the immune checkpoint inhibitor nivolumab and its impact on related signaling pathways. All cell lines analyzed (clear cell (cc)RCC (Caki-1, RCC31) and papillary (p)RCC (ACHN, RCC30)) expressed PD-1 and both ccRCC cell lines, and RCC30 expressed PD-L1. Nivolumab treatment at increasing doses led to increased PD-1 levels in analyzed cells and resulted in aggressive behavior of pRCC but diminished this behavior in ccRCC. The analysis of PD-1/PD-L1-associated signaling pathways demonstrated increased AKT activity in Caki-1 and RCC30 cells but decreased activity in ACHN and RCC31 cells, while ribosomal protein S6 remained largely unchanged. Androgen receptors are related to RCC and were predominantly increased in RCC30 cells, which were the only cells that formed nivolumab-dependent spheroids. Finally, all cell lines exhibited a complex response to nivolumab treatment. Since the pRCC cells responded with increased tumorigenicity and PD-1/PD-L1 levels while ccRCC tumorigenicity was diminished, further studies are needed to improve nivolumab-based therapy for renal carcinoma subtypes, especially the identification of response-involved molecular pathways.
Collapse
|
57
|
Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int J Mol Sci 2022; 23:ijms232415753. [PMID: 36555392 PMCID: PMC9779861 DOI: 10.3390/ijms232415753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Flavones are natural phytochemicals broadly distributed in our diet. Their anti-inflammatory properties provide unique opportunities to control the innate immune system and inflammation. Here, we review the role of flavones in chronic inflammation with an emphasis on their impact on the molecular mechanisms underlying inflammatory diseases including obesity and cancer. Flavones can influence the innate immune cell repertoire restoring the immune landscape. Flavones impinge on NF-κB, STAT, COX-2, or NLRP3 inflammasome pathways reestablishing immune homeostasis. Devoid of adverse side effects, flavones could present alternative opportunities for the treatment and prevention of chronic inflammation that contributes to obesity and cancer.
Collapse
|
58
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
59
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
60
|
Wang HC, Haung LY, Wang CJ, Chao YJ, Hou YC, Yen CJ, Shan YS. Tumor-associated macrophages promote resistance of hepatocellular carcinoma cells against sorafenib by activating CXCR2 signaling. J Biomed Sci 2022; 29:99. [PMID: 36411463 PMCID: PMC9677647 DOI: 10.1186/s12929-022-00881-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Sorafenib (SOR) is the first line treatment for advanced hepatocellular carcinoma (HCC), but resistance develops frequently. Tumor-associated macrophages (TAMs) have been reported to affect the progression of HCC. We therefore aimed to study the role of TAMs in promoting SOR resistance. METHODS Immunofluorescence staining for the M2 marker CD204 and the cancer stem cell (CSC) markers CD44 and CD133 was performed in paired HCC and adjacent noncancerous tissues and HCC tissues stratified by response of SOR treatment. HCC/U937 coculture system and cytokines were used to induce M2 polarization for studying the effects of M2 TAMs on CSC properties and apoptotic death of HCC cells after SOR treatment. RESULTS Higher expression of CD204, CD44, and CD133 was observed in patients with SOR nonresponse (SNR) than in those with SOR response (SR), suggesting that SNR is positively correlated to levels of CSCs and M2 TAMs. After coculture, M2 TAMs could increase the level of CSCs but decrease SOR-induced apoptosis. Incubation of HCC cells with coculture conditioned medium increased the formation of spheres that were resistant to SOR. Furthermore, CXCL1 and CXCL2 were found to be the potential paracrine factors released by M2 TAMs to upregulate SOR resistance in HCC cells. Treatment with CXCL1 and CXCL2 could increase HCC CSC activity but decrease SOR-induced apoptosis by affecting BCL-2 family gene expression. Using pharmacological inhibitors, CXCR2/ERK signaling was found to be critical to CXCL1- and CXCL2-mediated SOR resistance. CONCLUSION This study identified CXCL1, CXCL2, and their downstream CXCR2/ERK signaling as potential therapeutic targets to overcome SOR resistance in HCC.
Collapse
Affiliation(s)
- Hao-Chen Wang
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Lin-Ya Haung
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Chih-Jung Wang
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ying-Jui Chao
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ya-Chin Hou
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Chia-Jui Yen
- grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan ,grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| |
Collapse
|
61
|
Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for Chemoimmunotherapy Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5209-5227. [PMID: 36388877 PMCID: PMC9651025 DOI: 10.2147/ijn.s388075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits high recurrence and mortality rates because of the lack of effective treatment targets. Surgery and traditional chemotherapy are the primary treatment options. Immunotherapy shows high potential for treating various cancers but exhibits limited efficacy against TNBC as a monotherapy. Chemoimmunotherapy has broad prospects for applications for cancer treatment conferred through the synergistic immunomodulatory and anti-tumor effects of chemotherapy and immunotherapeutic strategies. However, improving the efficacy of synergistic therapy and reducing the side effects of multiple drugs remain to be the main challenges in chemoimmunotherapy against TNBC. Nanocarriers can target both cancer and immune cells, promote drug accumulation, and show minimal toxicity, making them ideal delivery systems for chemotherapeutic and immunotherapeutic agents. In this review, we introduce the immunomodulatory effects of chemotherapy and combined mechanisms of chemoimmunotherapy, followed by a summary of nanoparticle-mediated chemoimmunotherapeutic strategies used for treating TNBC. This up-to-date synthesis of relevant findings in the field merits contemplation, while considering avenues of investigation to enable advances in the field.
Collapse
Affiliation(s)
- Siyan Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lin Gu
- Breast Surgery, Jilin Province Tumor Hospital, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
62
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
63
|
Structure determinants defining the specificity of papain-like cysteine proteases. Comput Struct Biotechnol J 2022; 20:6552-6569. [DOI: 10.1016/j.csbj.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
|
64
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
65
|
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13:871076. [PMID: 36311748 PMCID: PMC9608329 DOI: 10.3389/fimmu.2022.871076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors originating in bones. Its high malignancy typically manifests in lung metastasis leading to high mortality. Although remarkable advances in surgical resection and neoadjuvant chemotherapy have lengthened life expectancy and greatly improved the survival rate among OS patients, no further breakthroughs have been achieved. It is challenging to treat patients with chemoresistant tumors and distant metastases. Recent studies have identified a compelling set of links between hypoxia and chemotherapy failure. Here, we review the evidence supporting the positive effects of hypoxia in the tumor microenvironment (TME). In addition, certain anticancer effects of immune checkpoint inhibitors have been demonstrated in OS preclinical models. Continued long-term observation in clinical trials is required. In the present review, we discuss the mutualistic effects of the TME in OS treatment and summarize the mechanisms of immunotherapy and their interaction with TME when used to treat OS. We also suggest that immunotherapy, a new comprehensive and potential antitumor approach that stimulates an immune response to eliminate tumor cells, may represent an innovative approach for the development of a novel treatment regimen for OS patients.
Collapse
|
66
|
Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang X, Li Z, Chai Y, Wang H, Hu X, Li N, Zhang Q, Cao X. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell 2022; 40:1207-1222.e10. [PMID: 36084651 DOI: 10.1016/j.ccell.2022.08.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
How glucose metabolism remodels pro-tumor functions of tumor-associated macrophages (TAMs) needs further investigation. Here we show that M2-like TAMs bear the highest individual capacity to take up intratumoral glucose. Their increased glucose uptake fuels hexosamine biosynthetic pathway-dependent O-GlcNAcylation to promote cancer metastasis and chemoresistance. Glucose metabolism promotes O-GlcNAcylation of the lysosome-encapsulated protease Cathepsin B at serine 210, mediated by lysosome-localized O-GlcNAc transferase (OGT), elevating mature Cathepsin B in macrophages and its secretion in the tumor microenvironment (TME). Loss of OGT in macrophages reduces O-GlcNAcylation and mature Cathepsin B in the TME and disrupts cancer metastasis and chemoresistance. Human TAMs with high OGT are positively correlated with Cathepsin B expression, and both levels predict chemotherapy response and prognosis of individuals with cancer. Our study reports the biological and potential clinical significance of glucose metabolism in tumor-promoting TAMs and reveals insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Qingzhu Shi
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yang Shi
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Wenwen Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xi Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiangjia Hu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China; Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
67
|
Hamel KM, King CT, Cavalier MB, Liimatta KQ, Rozanski GL, King TA, Lam M, Bingham GC, Byrne CE, Xing D, Collins-Burow BM, Burow ME, Belgodere JA, Bratton MR, Bunnell BA, Martin EC. Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells Dev 2022; 31:604-620. [PMID: 35579936 PMCID: PMC9595652 DOI: 10.1089/scd.2021.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
Abstract
Adipose tissue is characterized as an endocrine organ that acts as a source of hormones and paracrine factors. In diseases such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression. Young individuals with estrogen receptor-alpha positive (ER-α+) breast cancer (BC) have an increased resistance to endocrine therapies, suggesting that alternative estrogen signaling is activated within these cells. Despite this, the effects of stromal age on the endocrine response in BC are not well defined. To identify differences between young and aged ER-α+ breast tumors, RNA sequencing data were obtained from The Cancer Genome Atlas. Analysis revealed enrichment of matrix and paracrine factors in young (≤40 years old) patients compared to aged (≥65 years old) tumor samples. Adipose-derived stromal/stem cells (ASCs) from noncancerous lipoaspirate of young and aged donors were evaluated for alterations in matrix production and paracrine secreted factors to determine if the tumor stroma could alter estrogen signaling. Young and aged ASCs demonstrated comparable proliferation, differentiation, and matrix production, but exhibited differences in the expression levels of inflammatory cytokines (Interferon gamma, interleukin [IL]-8, IL-10, Tumor necrosis factor alpha, IL-2, and IL-6). Conditioned media (CM)-based experiments showed that young ASC donor age elevated endocrine response in ER-α+ BC cell lines. MCF-7 ER-α+ BC cell line treated with secreted factors from young ASCs had enhanced ER-α regulated genes (PGR and SDF-1) compared to MCF-7 cells treated with aged ASC CM. Western blot analysis demonstrated increased activation levels of p-ER ser-167 in the MCF-7 cell line treated with young ASC secreted factors. To determine if ER-α+ BC cells heightened the cytokine release in ASCs, ASCs were stimulated with MCF-7-derived CM. Results demonstrated no change in growth factors or cytokines when treated with the ER-α+ secretome. In contrast to ER-α+ CM, the ER-α negative MDA-MB-231 derived CM demonstrated increased stimulation of pro-inflammatory cytokines in ASCs. While there was no observed change in the release of selected paracrine factors, MCF-7 cells did induce matrix production and a pro-adipogenic lineage commitment. The adipogenesis was evident by increased collagen content through Sirius Red/Fast Green Collagen stain, lipid accumulation evident by Oil Red O stain, and significantly increased expression in PPARγ mRNA expression. The data from this study provide evidence suggesting more of a subtype-dependent than an age-dependent difference in stromal response to BC, suggesting that this signaling is not heightened by reciprocal signals from ER-α+ BC cell lines. These results are important in understanding the mechanisms of estrogen signaling and the dynamic and reciprocal nature of cancer cell-stromal cell crosstalk that can lead to tumor heterogeneity and variance in response to therapy.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maryn B. Cavalier
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace L. Rozanski
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Timothy A. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meggie Lam
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace C. Bingham
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C. Ethan Byrne
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Diensn Xing
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bridgette M. Collins-Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
68
|
Chen Z, Bian C, Huang J, Li X, Chen L, Xie X, Xia Y, Yin R, Wang J. Tumor-derived exosomal HOTAIRM1 regulates SPON2 in CAFs to promote progression of lung adenocarcinoma. Discov Oncol 2022; 13:92. [PMID: 36153414 PMCID: PMC9509512 DOI: 10.1007/s12672-022-00553-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE SPON2 is one of the extracellular matrix proteins, which is closely related to the progression of a variety of tumors including non-small cell lung cancer (NSCLC), but its upstream regulation mechanism remains unclear. Our research aims to find the specific regulatory pathway of SPON2 by exploring the potential crosstalk between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME) of NSCLC. METHODS We analyzed T1 lung adenocarcinoma samples from TCGA and screened extracellular matrix proteins that indicate poor prognosis. Expression level of SPON2 was verified by qPCR in clinical samples. The exosomes of NSCLC cell supernatant were extracted and identified by nanoparticle tracking analysis (NTA) and transmission electron microscope, western blots. The exosomes and CAFs were co-cultured, and cell migration and Matrigel invasion assay were used to evaluate the effect of CAFs on the migration and invasion of NSCLC cells. The interaction between LncRNA and miRNA was verified by Targetscan prediction, luciferase reporter assay, and RNA binding protein immunoprecipitation (RIP). RESULTS We found that the expression of SPON2 was up-regulated in clinical T1a stage NSCLC patients. The expression of lnc HOTAIRM1 (HOTAIRM1) in exosomes secreted by NSCLC tissues increased. After exosomal HOTAIRM1 entered CAFs, HOTAIRM1 can adsorb miR-328-5p to up-regulate the expression of SPON2 in CAFs. Up-regulation of SPON2 in CAFs could promote the migration and invasion of NSCLC cells. CONCLUSION Tumor-derived exosomal HOTAIRM1 can transfer into CAFs and competitively adsorb miR-328-5p, and regulate the SPON2 expression of CAFs cells, ultimately promote the progression of NSCLC. The discovery of this regulatory pathway can provide a new potential therapeutic target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Zhipeng Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chengyu Bian
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jingjing Huang
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xueying Xie
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yang Xia
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, China.
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
69
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
70
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
71
|
Hervás-Salcedo R, Martín-Antonio B. A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers (Basel) 2022; 14:3796. [PMID: 35954459 PMCID: PMC9367481 DOI: 10.3390/cancers14153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression. Understanding cell-cell interactions in the BM and their impact on MM proliferation and the performance of tumor surveillance will help in designing efficient anti-MM therapies. Here, we take a journey through the BM, describing the interactions of MM cells with cells of the non-hematological and hematological compartment to highlight their impact on MM progression and the development of novel MM treatments.
Collapse
Affiliation(s)
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz (IIS-FJD), University Autonomous of Madrid (UAM), 28040 Madrid, Spain
| |
Collapse
|
72
|
Tufail M, Cui J, Wu C. Breast cancer: molecular mechanisms of underlying resistance and therapeutic approaches. Am J Cancer Res 2022; 12:2920-2949. [PMID: 35968356 PMCID: PMC9360230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023] Open
Abstract
Breast cancer (BC) affects over 250,000 women in the US each year. Drug-resistant cancer cells are responsible for most breast cancer fatalities. Scientists are developing novel chemotherapeutic drugs and targeted therapy combinations to overcome cancer cell resistance. Combining drugs can reduce the chances of a tumor developing resistance to treatment. Clinical research has shown that combination chemotherapy enhances or improves survival, depending on the patient's response to treatment. Combination therapy is a highly successful supplemental cancer treatment. This review sheds light on intrinsic resistance to BC drugs and the importance of combination therapy for BC treatment. In addition to recurrence and metastasis of BC, the article discussed biomarkers for BC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi UniversityTaiyuan 030006, Shanxi, China
| | - Jia Cui
- Department of Microbiology, Changzhi Medical CollegeChangzhi 046000, Shanxi, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi UniversityTaiyuan 030006, Shanxi, China
| |
Collapse
|
73
|
Razzaghdoust A, Muhammadnejad S, Parvin M, Bahram B, Zangeneh M, Basiri A. Combination of T-DM1 and platinum-based chemotherapy in patient-derived xenograft models of muscle-invasive bladder cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:816-821. [PMID: 36033955 PMCID: PMC9392562 DOI: 10.22038/ijbms.2022.63509.14005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022]
Abstract
Objectives To assess the efficacy and safety of T-DM1, as an anti-HER2 antibody-drug conjugate (ADC), alone and in combination with two platinum-based chemotherapy regimens in patient-derived xenografts (PDXs) of muscle-invasive bladder cancer (MIBC) established in immunodeficient mice. Materials and Methods After treatment initiation, tumor size was measured twice a week. Percent of tumor growth inhibition (TGI) and tumor response rates were calculated as efficacy endpoints. To evaluate treatment toxicity, relative body weight (RBW) was calculated for each group. For comparison of TGIs between treatment groups, the Kruskal-Wallis test was used. Also, the significance of the overall response (OR) rate between placebo groups with treatment groups was analyzed using Fisher's exact test. Immunohistochemistry and fluorescence in situ hybridization techniques were used to evaluate the level of HER2 expression. Results Our data showed that T-DM1 alone induced a moderate antitumor activity. While chemotherapy regimens induced a slight TGI when administered alone, interestingly, they showed strong antitumor activity when administered combined with T-DM1. The OR rates were higher when T-DM1 was combined with chemotherapy regimens than T-DM1 alone. When compared with the placebo group, the OR rates of combination groups were statistically significant. Our data also showed that the administered dose of each drug was well tolerated in mice. Conclusion The combination of T-DM1 and platinum-based chemotherapy may represent a new treatment option for bladder tumors with even low HER2 expression, and could also provide substantial novel insight into tackling the challenges of MIBC management.
Collapse
Affiliation(s)
- Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Parvin
- Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Bahram
- Department of Oncology, Shohada-e-Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Zangeneh
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Abbas Basiri. Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-2122567222; Fax: +98-2122567282;
| |
Collapse
|
74
|
Franzén AS, Raftery MJ, Pecher G. Implications for Immunotherapy of Breast Cancer by Understanding the Microenvironment of a Solid Tumor. Cancers (Basel) 2022; 14:3178. [PMID: 35804950 PMCID: PMC9264853 DOI: 10.3390/cancers14133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is poorly immunogenic due to immunosuppressive mechanisms produced in part by the tumor microenvironment (TME). The TME is a peritumoral area containing significant quantities of (1) cancer-associated fibroblasts (CAF), (2) tumor-infiltrating lymphocytes (TIL) and (3) tumor-associated macrophages (TAM). This combination protects the tumor from effective immune responses. How these protective cell types are generated and how the changes in the developing tumor relate to these subsets is only partially understood. Immunotherapies targeting solid tumors have proven ineffective largely due to this protective TME barrier. Therefore, a better understanding of the interplay between the tumor, the tumor microenvironment and immune cells would both advance immunotherapeutic research and lead to more effective immunotherapies. This review will summarize the current understanding of the microenvironment of breast cancer giving implications for future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Gabriele Pecher
- Competence Center of Immuno-Oncology and Translational Cell Therapy, Department of Hematology, Oncology and Tumorimmunology, CCM, Charité-Universitätsmedizin Berlin, Berlin Institute of Health @ Charité, 10117 Berlin, Germany; (A.S.F.); (M.J.R.)
| |
Collapse
|
75
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
76
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
77
|
Rai M, Curley M, Coleman Z, Demontis F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022; 21:e13603. [PMID: 35349763 PMCID: PMC9124314 DOI: 10.1111/acel.13603] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Michelle Curley
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Zane Coleman
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Fabio Demontis
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| |
Collapse
|
78
|
Toupin N, Herroon MK, Thummel RP, Turro C, Podgorski I, Gibson H, Kodanko JJ. Metalloimmunotherapy with Rhodium and Ruthenium Complexes: Targeting Tumor-Associated Macrophages. Chemistry 2022; 28:e202104430. [PMID: 35235227 PMCID: PMC9541094 DOI: 10.1002/chem.202104430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/24/2022]
Abstract
Tumor associated macrophages (TAMs) suppress the cancer immune response and are a key target for immunotherapy. The effects of ruthenium and rhodium complexes on TAMs have not been well characterized. To address this gap in the field, a panel of 22 dirhodium and ruthenium complexes were screened against three subtypes of macrophages, triple-negative breast cancer and normal breast tissue cells. Experiments were carried out in 2D and biomimetic 3D co-culture experiments with and without irradiation with blue light. Leads were identified with cell-type-specific toxicity toward macrophage subtypes, cancer cells, or both. Experiments with 3D spheroids revealed complexes that sensitized the tumor models to the chemotherapeutic doxorubicin. Cell surface exposure of calreticulin, a known facilitator of immunogenic cell death (ICD), was increased upon treatment, along with a concomitant reduction in the M2-subtype classifier arginase. Our findings lay a strong foundation for the future development of ruthenium- and rhodium-based chemotherapies targeting TAMs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Mackenzie K Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| |
Collapse
|
79
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
80
|
Araujo AM, Abaurrea A, Azcoaga P, López-Velazco JI, Manzano S, Rodriguez J, Rezola R, Egia-Mendikute L, Valdés-Mora F, Flores JM, Jenkins L, Pulido L, Osorio-Querejeta I, Fernández-Nogueira P, Ferrari N, Viera C, Martín-Martín N, Tzankov A, Eppenberger-Castori S, Alvarez-Lopez I, Urruticoechea A, Bragado P, Coleman N, Palazón A, Carracedo A, Gallego-Ortega D, Calvo F, Isacke CM, Caffarel MM, Lawrie CH. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest 2022; 132:e148667. [PMID: 35192545 PMCID: PMC8970678 DOI: 10.1172/jci148667] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.
Collapse
Affiliation(s)
| | | | - Peio Azcoaga
- Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Sara Manzano
- Biodonostia Health Research Institute, San Sebastian, Spain
| | - Javier Rodriguez
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - Ricardo Rezola
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Leire Egia-Mendikute
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Fátima Valdés-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children’s Cancer Institute, Sydney, New South Wales, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juana M. Flores
- Department of Animal Medicine and Surgery, Complutense University of Madrid, Madrid, Spain
| | - Liam Jenkins
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Pulido
- Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine and
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Nicola Ferrari
- Tumour Microenvironment Lab, The Institute of Cancer Research, London, United Kingdom
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | | | - Isabel Alvarez-Lopez
- Biodonostia Health Research Institute, San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Asís Palazón
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - David Gallego-Ortega
- Tumour Development Laboratory, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, New South Wales, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
- Tumour Microenvironment Lab, The Institute of Cancer Research, London, United Kingdom
| | - Clare M. Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - María M. Caffarel
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Charles H. Lawrie
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
81
|
Malier M, Gharzeddine K, Laverriere MH, Decaens T, Roth G, Millet A. [Tumor-associated macrophages: New targets to thwart 5-FU chemoresistance in colorectal cancers?]. Med Sci (Paris) 2022; 38:243-245. [PMID: 35333158 DOI: 10.1051/medsci/2022017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marie Malier
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Équipe de mécanobiologie, immunité et cancer, Institut pour l'avancée des biosciences
| | - Khaldoun Gharzeddine
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Équipe de mécanobiologie, immunité et cancer, Institut pour l'avancée des biosciences
| | - Marie-Hélène Laverriere
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Équipe de mécanobiologie, immunité et cancer, Institut pour l'avancée des biosciences - Département d'analyse cytologique et pathologique, CHU Grenoble Alpes, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Service d'hépato-gastro-entérologie, CHU Grenoble Alpes, Grenoble, France
| | - Gael Roth
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Équipe de mécanobiologie, immunité et cancer, Institut pour l'avancée des biosciences - Service d'hépato-gastro-entérologie, CHU Grenoble Alpes, Grenoble, France
| | - Arnaud Millet
- Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'avancée des biosciences, Boulevard de la Chantourne, 38700 La Tronche, France - Équipe de mécanobiologie, immunité et cancer, Institut pour l'avancée des biosciences - Service d'hépato-gastro-entérologie, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
82
|
Imran KM, Nagai-Singer MA, Brock RM, Alinezhadbalalami N, Davalos RV, Allen IC. Exploration of Novel Pathways Underlying Irreversible Electroporation Induced Anti-Tumor Immunity in Pancreatic Cancer. Front Oncol 2022; 12:853779. [PMID: 35372046 PMCID: PMC8972192 DOI: 10.3389/fonc.2022.853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Nastaran Alinezhadbalalami
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
83
|
Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. Int J Mol Sci 2022; 23:3218. [PMID: 35328639 PMCID: PMC8951452 DOI: 10.3390/ijms23063218] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-associated neutrophils display many roles during cancer progression. Several tumor microenvironment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment and functional polarization, while simultaneously neutrophils are active stimulators of the TME by secreting factors that affect immune interactions and subsequently tumor progression. Successful immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lymphocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade therapies, by displaying lymphocyte suppressive properties. The identification and characterization of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and the identification of the major TME-derived factors of neutrophil polarization would allow us to harness the full potential of neutrophils as complementary targets in anticancer precision therapies.
Collapse
Affiliation(s)
| | | | | | | | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.R.); (P.V.-C.); (Z.N.M.); (R.S.)
| |
Collapse
|
84
|
Ma K, Chen X, Liu W, Chen S, Yang C, Yang J. CTSB is a negative prognostic biomarker and therapeutic target associated with immune cells infiltration and immunosuppression in gliomas. Sci Rep 2022; 12:4295. [PMID: 35277559 PMCID: PMC8917123 DOI: 10.1038/s41598-022-08346-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Previous researches have demonstrated the meaning of CTSB for the progress of several tumors, whereas few clues about its immunological characteristic in gliomas. Here we systematically explored its biologic features and clinical significance for gliomas. 699 glioma cases of TCGA and 325 glioma cases of CGGA were respectively included as training and validating cohorts. R software was used for data analysis and mapping. We found that CTSB was remarkably highly-expressed for HGG, IDH wild type, 1p19q non-codeletion type, MGMT promoter unmethylation type and mesenchymal gliomas. CTSB could specifically and sensitively indicate mesenchymal glioma. Upregulated CTSB was an independent hazard correlated with poor survival. CTSB-related biological processes in gliomas chiefly concentrated on immunoreaction and inflammation response. Then we proved that CTSB positively related to most inflammatory metagenes except IgG, including HCK, LCK, MHC II, STAT1 and IFN. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of CTSB, especially for TAMs, MDSCs and Tregs. In conclusion, CTSB is closely related to the malignant pathological subtypes, worse prognosis, immune cells infiltration and immunosuppression of gliomas, which make it a promising biomarker and potential target in the diagnosis, treatment and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
85
|
Li H, Luo F, Jiang X, Zhang W, Xiang T, Pan Q, Cai L, Zhao J, Weng D, Li Y, Dai Y, Sun F, Yang C, Huang Y, Yang J, Tang Y, Han Y, He M, Zhang Y, Song L, Xia JC. CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J Immunother Cancer 2022; 10:jitc-2021-004029. [PMID: 35277458 PMCID: PMC8919471 DOI: 10.1136/jitc-2021-004029] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/28/2022] Open
Abstract
Background Platinum resistance is a major challenge in the clinical treatment of advanced ovarian cancer (OC). Accumulating evidence shows that the tumor-promotive M2 macrophage is linked to the limiting chemotherapy efficacy of multiple malignancies including OC. Circular RNAs (circRNAs) are a novel class of non-coding RNAs which function as the critical regulator in biological process of cancer. However, their impact on macrophage polarization and chemoresistance of OC remain unclear. Methods Platinum-resistant circRNAs were screened using circRNA deep sequencing and validated using in situ hybridization in OC tissues with or without platinum resistance. The role of circITGB6 in inducing cisplatin (CDDP) resistance was evaluated by clone formation, immunofluorescence and annexin V assays in vitro, and by intraperitoneal tumor model in vivo. The mechanism underlying circITGB6-mediated tumor-associated macrophage (TAM) polarization into M2 phenotype was investigated using RNA pull-down, luciferase reporter, electrophoretic mobility shift, RNA binding protein immunoprecipitation (RIP), ELISA and immunofluorescence assays. Results We identified that a novel circRNA, circITGB6, robustly elevated in tumor tissues and serums from patients with OC with platinum resistance, was correlated with poor prognosis. circITGB6 overexpression promoted an M2 macrophage-dependent CDDP resistance in both vivo and vitro. Mechanistic research determined that circITGB6 directly interacted with IGF2BP2 and FGF9 mRNA to form a circITGB6/IGF2BP2/FGF9 RNA–protein ternary complex in the cytoplasm, thereby stabilizing FGF9 mRNA and inducing polarization of TAMs toward M2 phenotype. Importantly, blocking M2 macrophage polarization with an antisense oligonucleotide targeting circITGB6 markedly reversed the circITGB6-induced CDDP resistance of OC in vivo. Conclusions This study reveals a novel mechanism for platinum resistance in OC and demonstrates that circITGB6 may serve as a potential prognostic marker and a therapeutic target for patients with OC.
Collapse
Affiliation(s)
- Han Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fan Luo
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyu Jiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weijing Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Xiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiuzhong Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liming Cai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Desheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Fengze Sun
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chaopin Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jieying Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yulong Han
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mian He
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yanna Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Libing Song
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
86
|
Wei S, Liu W, Xu M, Qin H, Liu C, Zhang R, Zhou S, Li E, Liu Z, Wang Q. Cathepsin F and Fibulin-1 as novel diagnostic biomarkers for brain metastasis of non-small cell lung cancer. Br J Cancer 2022; 126:1795-1805. [PMID: 35217799 PMCID: PMC9174239 DOI: 10.1038/s41416-022-01744-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Background The lack of non-invasive methods for detection of early micro-metastasis is a major cause of the poor prognosis of non-small cell lung cancer (NSCLC) brain metastasis (BM) patients. Herein, we aimed to identify circulating biomarkers based on proteomics for the early diagnosis and monitoring of patients with NSCLC BM. Methods Upregulated proteins were detected by secretory proteomics in the animal-derived high brain metastatic lung cancer cell line. A well-designed study composed of three independent cohorts was then performed to verify these blood-based protein biomarkers: the serum discovery and verification cohorts (n = 80; n = 459), and the tissue verification cohort (n = 76). Logistic regression was used to develop a diagnostic biomarker panel. Model validation cohort (n = 160) was used to verify the stability of the constructed predictive model. Changes in serum Cathepsin F (CTSF) levels of patients were tracked to monitor the treatment response. Progression-free survival (PFS) and overall survival (OS) were analysed to assess their prognostic relevance. Results CTSF and Fibulin-1 (FBLN1) levels were specifically upregulated in sera and tissues of patients with NSCLC BM compared with NSCLC without BM and primary brain tumour. The combined diagnostic performance of CTSF and FBLN1 was superior to their individual ones. CTSF serum changes were found to reflect the therapeutic response of patients with NSCLC BM and the trends of progression were detected earlier than the magnetic resonance imaging changes. Elevated expression of CTSF in NSCLC BM tissues was associated with poor PFS, and was found to be an independent prognostic factor. Conclusions We report a novel blood-based biomarker panel for early diagnosis, monitoring of therapeutic response, and prognostic evaluation of patients with NSCLC BM.
Collapse
Affiliation(s)
- Song Wei
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.,Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mingxin Xu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Chang Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Sihai Zhou
- Department of Urology Surgery, The Second Hospital, Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Zhiyu Liu
- Department of Urology Surgery, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
87
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
88
|
Lee-Rueckert M, Lappalainen J, Kovanen PT, Escola-Gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022; 9:777822. [PMID: 35237673 PMCID: PMC8882850 DOI: 10.3389/fcvm.2022.777822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.
Collapse
Affiliation(s)
| | | | - Petri T. Kovanen
- Wihuri Research Institute, Helsinki, Finland
- *Correspondence: Petri T. Kovanen
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Joan Carles Escola-Gil
| |
Collapse
|
89
|
Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
90
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
91
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
92
|
Bai Z, Wang X, Zhang Z. Long Noncoding RNA LIFR-AS1: A New Player in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1590815. [PMID: 35071590 PMCID: PMC8776453 DOI: 10.1155/2022/1590815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022]
Abstract
Emerging evidence has indicated that aberrantly expressed long noncoding RNAs (lncRNAs) play a vital role in various biological processes associated with tumorigenesis. Leukemia inhibitory factor receptor antisense RNA1 (LIFR-AS1) is a recently identified lncRNA transcribed in an antisense manner from the LIFR gene located on human chromosome 5p13.1. LIFR-AS1 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms. Its expression level is related to the clinicopathological characteristics of tumors and plays a key role in tumor occurrence and development. In this review, we summarize the role of LIFR-AS1 in the development and progression of different cancers and highlight the potential for LIFR-AS1 to serve as a biomarker and therapeutic target for a variety of human cancers.
Collapse
Affiliation(s)
- Zhiqun Bai
- The First Affiliated Hospital of China Medical University, Department of Ultrasonic Diagnosis, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| | - Xuemei Wang
- The First Affiliated Hospital of China Medical University, Department of Ultrasonic Diagnosis, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| | - Zhen Zhang
- The First Affiliated Hospital of China Medical University, Department of Ultrasonic Diagnosis, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| |
Collapse
|
93
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
94
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
95
|
Malier M, Gharzeddine K, Laverriere MH, Marsili S, Thomas F, Decaens T, Roth G, Millet A. Hypoxia Drives Dihydropyrimidine Dehydrogenase Expression in Macrophages and Confers Chemoresistance in Colorectal Cancer. Cancer Res 2021; 81:5963-5976. [PMID: 34645611 PMCID: PMC9397622 DOI: 10.1158/0008-5472.can-21-1572] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
Colorectal adenocarcinoma is a leading cause of death worldwide, and immune infiltration in colorectal tumors has been recognized recently as an important pathophysiologic event. In this context, tumor-associated macrophages (TAM) have been related to chemoresistance to 5-fluorouracil (5-FU), the first-line chemotherapeutic agent used in treating colorectal cancers. Nevertheless, the details of this chemoresistance mechanism are still poorly elucidated. In the current study, we report that macrophages specifically overexpress dihydropyrimidine dehydrogenase (DPD) in hypoxia, leading to macrophage-induced chemoresistance to 5-FU via inactivation of the drug. Hypoxia-induced macrophage DPD expression was controlled by HIF2α. TAMs constituted the main contributors to DPD activity in human colorectal primary or secondary tumors, while cancer cells did not express significant levels of DPD. In addition, contrary to humans, macrophages in mice do not express DPD. Together, these findings shed light on the role of TAMs in promoting chemoresistance in colorectal cancers and identify potential new therapeutic targets. SIGNIFICANCE: Hypoxia induces HIF2α-mediated overexpression of dihydropyrimidine dehydrogenase in TAMs, leading to chemoresistance to 5-FU in colon cancers.
Collapse
Affiliation(s)
- Marie Malier
- Team Mechanobiology, Immunity and Cancer, Institute for Advanced Biosciences Inserm 1209 – UMR CNRS 5309, Grenoble, France.,Grenoble Alpes University, Grenoble, France.,Department of Hepatogastroenterology, University Hospital Grenoble-Alpes, Grenoble, France
| | - Khaldoun Gharzeddine
- Team Mechanobiology, Immunity and Cancer, Institute for Advanced Biosciences Inserm 1209 – UMR CNRS 5309, Grenoble, France.,Grenoble Alpes University, Grenoble, France.,Research Department, University Hospital Grenoble-Alpes, Grenoble, France
| | - Marie-Hélène Laverriere
- Team Mechanobiology, Immunity and Cancer, Institute for Advanced Biosciences Inserm 1209 – UMR CNRS 5309, Grenoble, France.,Grenoble Alpes University, Grenoble, France.,Department of Pathological Anatomy and Cytology, University Hospital Grenoble-Alpes, Grenoble, France
| | - Sabrina Marsili
- CRCT Inserm U037, Toulouse University 3, Toulouse, France.,Claudius Regaud Institute, IUCT-Oncopole, Toulouse, France
| | - Fabienne Thomas
- CRCT Inserm U037, Toulouse University 3, Toulouse, France.,Claudius Regaud Institute, IUCT-Oncopole, Toulouse, France
| | - Thomas Decaens
- Grenoble Alpes University, Grenoble, France.,Department of Hepatogastroenterology, University Hospital Grenoble-Alpes, Grenoble, France.,Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences UMR Inserm 1209 – CNRS 5309, Grenoble, France
| | - Gael Roth
- Team Mechanobiology, Immunity and Cancer, Institute for Advanced Biosciences Inserm 1209 – UMR CNRS 5309, Grenoble, France.,Grenoble Alpes University, Grenoble, France.,Department of Hepatogastroenterology, University Hospital Grenoble-Alpes, Grenoble, France
| | - Arnaud Millet
- Team Mechanobiology, Immunity and Cancer, Institute for Advanced Biosciences Inserm 1209 – UMR CNRS 5309, Grenoble, France.,Grenoble Alpes University, Grenoble, France.,Department of Hepatogastroenterology, University Hospital Grenoble-Alpes, Grenoble, France.,Corresponding Author: Arnaud Millet, Institute for Advanced Biosciences, Grenoble 38000, France. Phone: 33-6-66-88-34-82; E-mail:
| |
Collapse
|
96
|
Jang SD, Song J, Kim HA, Im CN, Khawar IA, Park JK, Kuh HJ. Anti-Cancer Activity Profiling of Chemotherapeutic Agents in 3D Co-Cultures of Pancreatic Tumor Spheroids with Cancer-Associated Fibroblasts and Macrophages. Cancers (Basel) 2021; 13:5955. [PMID: 34885065 PMCID: PMC8656537 DOI: 10.3390/cancers13235955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Activated pancreatic stellate cells (aPSCs) and M2 macrophages modulate tumor progression and therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC) via epithelial-mesenchymal transition (EMT). Here, our aim was to analyze the anti-invasion effects of anti-cancer agents where EMT-inducing cancer-stroma interaction occurs under three-dimensional (3D) culture conditions. We used microfluidic channel chips to co-culture pancreatic tumor spheroids (TSs) with aPSCs and THP-1-derived M2 macrophages (M2 THP-1 cells) embedded in type I collagen. Under stromal cell co-culture conditions, PANC-1 TSs displayed elevated expression of EMT-related proteins and increased invasion and migration. When PANC-1 TSs were exposed to gemcitabine, 5-fluorouracil, oxaliplatin, or paclitaxel, 30-50% cells were found unaffected, with no significant changes in the dose-response profiles under stromal cell co-culture conditions. This indicated intrinsic resistance to these drugs and no further induction of drug resistance by stromal cells. Paclitaxel had a significant anti-invasion effect; in contrast, oxaliplatin did not show such effect despite its specific cytotoxicity in M2 THP-1 cells. Overall, our findings demonstrate that the TS-stroma co-culture model of PDAC is useful for activity profiling of anti-cancer agents against cancer and stromal cells, and analyzing the relationship between anti-stromal activity and anti-invasion effects.
Collapse
Affiliation(s)
- So-Dam Jang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeeyeun Song
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Ah Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Nim Im
- Graduate Program for Future Medical Research Leaders, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Iftikhar Ali Khawar
- Graduate Program for Future Medical Research Leaders, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
97
|
Riaz N, Burugu S, Cheng AS, Leung SCY, Gao D, Nielsen TO. Prognostic Significance of CSF-1R Expression in Early Invasive Breast Cancer. Cancers (Basel) 2021; 13:5769. [PMID: 34830923 PMCID: PMC8616299 DOI: 10.3390/cancers13225769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor-1 receptor (CSF-1R) signaling promotes an immune suppressive microenvironment enriched in M2 macrophages. Given that CSF-1R inhibitors are under investigation in clinical trials, including in breast cancer, CSF-1R expression and association with immune biomarkers could identify patients who derive greater benefit from combination with immunotherapies. TIMER2.0 and bc-GenExMiner v4.7 were used to assess the correlation of CSF1R mRNA with immune infiltrates and prognosis. Following a prespecified training-validation approach, an optimized immunohistochemistry assay was applied to assess CSF-1R on carcinoma cells and macrophages on breast cancer tissue microarray series representing 2384 patients, coupled to comprehensive clinicopathological, biomarker, and outcome data. Significant positive correlations were observed between CSF1R mRNA and immune infiltrates. High carcinoma CSF-1R correlated with grade 3 tumors >2 cm, hormone receptor negativity, high Ki67, immune checkpoint biomarkers, and macrophages expressing CSF-1R and CD163. High carcinoma CSF-1R was significantly associated with poor survival in univariate and multivariate analyses. Adverse prognostic associations were retained in ER+ cases regardless of the presence of CD8+ T cells. CSF-1R+ macrophages were not prognostic. High carcinoma CSF-1R is associated with aggressive breast cancer biology and poor prognosis, particularly in ER+ cases, and identifies patients in whom biomarker-directed CSF-1R therapies may yield superior therapeutic responses.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan
| | - Samantha Burugu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Angela S. Cheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Samuel C. Y. Leung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| |
Collapse
|
98
|
Klemm F, Möckl A, Salamero-Boix A, Alekseeva T, Schäffer A, Schulz M, Niesel K, Maas RR, Groth M, Elie BT, Bowman RL, Hegi ME, Daniel RT, Zeiner PS, Zinke J, Harter PN, Plate KH, Joyce JA, Sevenich L. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. NATURE CANCER 2021; 2:1086-1101. [PMID: 35121879 DOI: 10.1038/s43018-021-00254-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.
Collapse
Affiliation(s)
- Florian Klemm
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Aylin Möckl
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anna Salamero-Boix
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Groth
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benelita T Elie
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monika E Hegi
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pia S Zeiner
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Zinke
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
99
|
Reis-Sobreiro M, Teixeira da Mota A, Jardim C, Serre K. Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells 2021; 10:2364. [PMID: 34572013 PMCID: PMC8464913 DOI: 10.3390/cells10092364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Macrophages are found in all tissues and display outstanding functional diversity. From embryo to birth and throughout adult life, they play critical roles in development, homeostasis, tissue repair, immunity, and, importantly, in the control of cancer growth. In this review, we will briefly detail the multi-functional, protumoral, and antitumoral roles of macrophages in the tumor microenvironment. Our objective is to focus on the ever-growing therapeutic opportunities, with promising preclinical and clinical results developed in recent years, to modulate the contribution of macrophages in oncologic diseases. While the majority of cancer immunotherapies target T cells, we believe that macrophages have a promising therapeutic potential as tumoricidal effectors and in mobilizing their surroundings towards antitumor immunity to efficiently limit cancer progression.
Collapse
Affiliation(s)
| | | | | | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.R.-S.); (A.T.d.M.); (C.J.)
| |
Collapse
|
100
|
Cheng Y, Song S, Wu P, Lyu B, Qin M, Sun Y, Sun A, Mu L, Xu F, Zhang L, Wang J, Zhang Q. Tumor Associated Macrophages and TAMs-Based Anti-Tumor Nanomedicines. Adv Healthc Mater 2021; 10:e2100590. [PMID: 34292673 DOI: 10.1002/adhm.202100590] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Indexed: 12/14/2022]
Abstract
As an important part of tumor microenvironment, tumor associated macrophages (TAMs) play a vital role in the occurrence, development, invasion, and metastasis of many malignant tumors and can significantly promote the formation of tumor blood vessels and lymphatic vessels, hence TAMs are greatly associated with poor prognosis. The research on nanomedicine has achieved huge progress, and nano-drugs have been widely utilized to treat various diseases through different mechanisms. Therefore, developing nano-drugs that are based on TAMs-associated anti-tumor mechanisms to effectively suppress tumor growth is expected to be a promising research filed. This paper introduces relevant information about TAMs in terms of their origin, and their roles in tumor genesis, development and metastasis. Furthermore, TAMs-related anti-tumor nano-drugs are summarized. Specifically, a wide range of nano-drugs targeting at TAMs are introduced, and categorized according to their therapeutic mechanisms toward tumors. Additionally, various nano delivery platforms using TAMs as cell carriers which aim at inhibiting tumor growth are reviewed. These two parts elucidate that the exploration of nanomedicine is essential to the study on TAMs-related anti-tumor strategies. This review is also intended to provide novel ideas for in-depth investigation on anti-tumor molecular mechanisms and nano-drug delivery systems based on TAMs.
Collapse
Affiliation(s)
- Yuxi Cheng
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Siyang Song
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Peiyao Wu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China
| | - Bochen Lyu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Yanan Sun
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Aning Sun
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Limin Mu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Fei Xu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Lu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|