51
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
52
|
Xiong X, Li W, Nam J, Qu M, Kay SA, Ma K. The actin cytoskeleton-MRTF/SRF cascade transduces cellular physical niche cues to entrain the circadian clock. J Cell Sci 2022; 135:jcs260094. [PMID: 36093830 PMCID: PMC10658898 DOI: 10.1242/jcs.260094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The circadian clock is entrained to daily environmental cues. Integrin-linked signaling via actin cytoskeleton dynamics transduces physical niche cues from the extracellular matrix to myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated transcription. The actin cytoskeleton organization and SRF-MRTF activity display diurnal oscillations. By interrogating disparate upstream events in the actin cytoskeleton-MRTF-A/SRF signaling cascade, we show that this pathway transduces extracellular niche cues to modulate circadian clock function. Pharmacological inhibition of MRTF-A/SRF by disrupting actin polymerization or blocking the ROCK kinase induced period lengthening with augmented clock amplitude, and genetic loss of function of Srf or Mrtfa mimicked the effects of treatment with actin-depolymerizing agents. In contrast, actin polymerization shortened circadian clock period and attenuated clock amplitude. Moreover, interfering with the cell-matrix interaction through blockade of integrin, inhibition of focal adhesion kinase (FAK, encoded by Ptk2) or attenuating matrix rigidity reduced the period length while enhancing amplitude. Mechanistically, we identified that the core clock repressors Per2, Nr1d1 and Nfil3 are direct transcriptional targets of MRTF-A/SRF in mediating actin dynamics-induced clock response. Collectively, our findings defined an integrin-actin cytoskeleton-MRTF/SRF pathway in linking clock entrainment with extracellular cues that might facilitate cellular adaptation to the physical niche environment.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Weini Li
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jin Nam
- Department of Bioengineering, University of California at Riverside, Riverside, CA 92521, USA
| | - Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
53
|
Rho/SRF Inhibitor Modulates Mitochondrial Functions. Int J Mol Sci 2022; 23:ijms231911536. [PMID: 36232837 PMCID: PMC9570101 DOI: 10.3390/ijms231911536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
CCG-1423 is a Rho A pathway inhibitor that has been reported to inhibit Rho/SRF-mediated transcriptional regulation. Serum response factor and its cofactors, which include ternary complex factors and myocardin-related transcription factors, regulate various cellular functions. In this study, we observed that CCG-1423 modulates the mitochondrial functions. The effect of this small molecule drug was determined by measuring mitochondrial function using an XFe96 Analyzer and an Oxygraph 2k (O2k) high-resolution respirometer. CCG-1423 treatment significantly reduced oxidative phosphorylation in a dose-dependent manner. However, CCG-1423 increased the glycolytic rate. We also observed that histone 4 at lysine-16 underwent hyperacetylation with the treatment of this drug. Immunolabeling with F-actin and MitoTracker revealed the alteration in the actin cytoskeleton and mitochondria. Taken together, our findings highlight a critical role of CCG-1423 in inhibiting the transcription of SRF/p49 and PGC-1α, β, resulting in the downregulation of mitochondrial genes, leading to the repression of mitochondrial oxidative phosphorylation and overall ATP reduction. This study provides a better understanding of the effects of CCG-1423 on mitochondria, which may be useful for the assessment of the potential clinical application of CCG-1423 and its derivatives.
Collapse
|
54
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
55
|
Regulation of nuclear actin levels and MRTF/SRF target gene expression during PC6.3 cell differentiation. Exp Cell Res 2022; 420:113356. [PMID: 36122768 DOI: 10.1016/j.yexcr.2022.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.
Collapse
|
56
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
57
|
Xi Y, LaCanna R, Ma HY, N'Diaye EN, Gierke S, Caplazi P, Sagolla M, Huang Z, Lucio L, Arlantico A, Jeet S, Brightbill H, Emson C, Wong A, Morshead KB, DePianto DJ, Roose-Girma M, Yu C, Tam L, Jia G, Ramalingam TR, Marsters S, Ashkenazi A, Kim SH, Kelly R, Wu S, Wolters PJ, Feldstein AE, Vander Heiden JA, Ding N. A WISP1 antibody inhibits MRTF signaling to prevent the progression of established liver fibrosis. Cell Metab 2022; 34:1377-1393.e8. [PMID: 35987202 DOI: 10.1016/j.cmet.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.
Collapse
Affiliation(s)
- Ying Xi
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Laura Lucio
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Katrina B Morshead
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Daryle J DePianto
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Guiquan Jia
- Department of Biomarker Discovery, Genentech, South San Francisco, CA, USA
| | | | - Scot Marsters
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Si Hyun Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ryan Kelly
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Shuang Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
58
|
Drake KA, Chaney C, Patel M, Das A, Bittencourt J, Cohn M, Carroll TJ. Transcription Factors YAP/TAZ and SRF Cooperate To Specify Renal Myofibroblasts in the Developing Mouse Kidney. J Am Soc Nephrol 2022; 33:1694-1707. [PMID: 35918150 PMCID: PMC9529188 DOI: 10.1681/asn.2021121559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The embryonic renal stroma consists of multiple molecularly distinct cell subpopulations, the functional significance of which is largely unknown. Previous work has demonstrated that the transcription factors YAP and TAZ play roles in the development and morphogenesis of the nephrons, collecting ducts, and nephron progenitor cells. METHODS In embryonic mouse kidneys, we identified a subpopulation of stromal cells with enriched activity in YAP and TAZ. To evaluate the function of these cell types, we genetically ablated both Yap and Taz from the stromal progenitor population and examined how gene activity and development of YAP/TAZ mutant kidneys are affected over a developmental time course. RESULTS We found that YAP and TAZ are active in a subset of renal interstitium and that stromal-specific coablation of YAP/TAZ disrupts cortical fibroblast, pericyte, and myofibroblast development, with secondary effects on peritubular capillary differentiation. We also demonstrated that the transcription factor SRF cooperates with YAP/TAZ to drive expression of at least a subset of renal myofibroblast target genes and to specify myofibroblasts but not cortical fibroblasts or pericytes. CONCLUSIONS These findings reveal a critical role for YAP/TAZ in specific embryonic stromal cells and suggest that interaction with cofactors, such as SRF, influence the expression of cell type-specific target genes, thus driving stromal heterogeneity. Further, this work reveals functional roles for renal stroma heterogeneity in creating unique microenvironments that influence the differentiation and maintenance of the renal parenchyma.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher Chaney
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohita Patel
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amrita Das
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Julia Bittencourt
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Martin Cohn
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Gainesville, Florida
| | - Thomas J Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
59
|
Yao L, Rathnakar BH, Kwon HR, Sakashita H, Kim JH, Rackley A, Tomasek JJ, Berry WL, Olson LE. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep 2022; 40:111192. [PMID: 35977484 PMCID: PMC9423027 DOI: 10.1016/j.celrep.2022.111192] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblasts differentiate into myofibroblasts by acquiring new contractile function. This is important for tissue repair, but it also contributes to organ fibrosis. Platelet-derived growth factor (PDGF) promotes tissue repair and fibrosis, but the relationship between PDGF and myofibroblasts is unclear. Using mice with lineage tracing linked to PDGF receptor α (PDGFRα) gene mutations, we examine cell fates during skin wound healing. Elevated PDGFRα signaling increases proliferation but unexpectedly delays the fibroblast-to-myofibroblast transition, suggesting that PDGFRα must be downregulated for myofibroblast differentiation. In contrast, deletion of PDGFRα decreases proliferation and myofibroblast differentiation by reducing serum response factor (SRF) nuclear localization. Consequences of SRF deletion resemble PDGFRα deletion, but deletion of two SRF coactivators, MRTFA and MRTFB, specifically eliminates myofibroblasts. Our findings suggest a scenario where PDGFRα signaling initially supports proliferation of fibroblast progenitors to expand their number during early wound healing but, later, PDGFRα downregulation facilitates fibroblast differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Bharath H Rathnakar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang H Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex Rackley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
60
|
RNA sequencing reveals dynamic expression of spleen lncRNAs and mRNAs in Beagle dogs infected by Toxocara canis. Parasit Vectors 2022; 15:279. [PMID: 35927758 PMCID: PMC9351231 DOI: 10.1186/s13071-022-05380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Toxocara canis is a cosmopolitan parasite with a significant adverse impact on the health of humans and animals. The spleen is a major immune organ that plays essential roles in protecting the host against various infections. However, its role in T. canis infection has not received much attention. METHODS We performed sequencing-based transcriptome profiling of long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression in the spleen of Beagle puppies at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi). Deep sequencing of RNAs isolated from the spleen of six puppies (three infected and three control) at each time point after infection was conducted. RESULTS Our analysis revealed 614 differentially expressed (DE) lncRNAs and 262 DEmRNAs at 24 hpi; 726 DElncRNAs and 878 DEmRNAs at 96 hpi; and 686 DElncRNAs and 504 DEmRNAs at 36 dpi. Of those, 35 DElncRNA transcripts and 11 DEmRNAs were detected at all three time points post-infection. Many DE genes were enriched in immune response, such as ifit1, ifit2 and rorc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that some genes (e.g. prkx and tnfrsf11a) were involved in the T cell receptor signaling pathway, calcium signaling pathway, Ras signaling pathway and NF-κB signaling pathway. CONCLUSIONS The findings of this study show marked alterations in the expression profiles of spleen lncRNAs and mRNAs, with possible implications in the pathophysiology of toxocariasis.
Collapse
|
61
|
Sundby LJ, Southern WM, Hawbaker KM, Trujillo JM, Perrin BJ, Ervasti JM. Nucleotide- and Protein-Dependent Functions of Actg1. Mol Biol Cell 2022; 33:ar77. [PMID: 35594181 PMCID: PMC9582642 DOI: 10.1091/mbc.e22-02-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
Cytoplasmic β- and γ-actin proteins are 99% identical but support unique organismal functions. The cytoplasmic actin nucleotide sequences Actb and Actg1, respectively, are more divergent but still 89% similar. Actb-/- mice are embryonic lethal and Actb-/- cells fail to proliferate, but editing the Actb gene to express γ-actin (Actbc-g) resulted in none of the overt phenotypes of the knockout revealing protein-independent functions for Actb. To determine if Actg1 has a protein-independent function, we crossed Actbc-g and Actg1-/- mice to generate the bG/0 line, where the only cytoplasmic actin expressed is γ-actin from Actbc-g. The bG/0 mice were viable but showed a survival defect despite expressing γ-actin protein at levels no different from bG/gG with normal survival. A unique myopathy phenotype was also observed in bG/0 mice. We conclude that impaired survival and myopathy in bG/0 mice are due to loss of Actg1 nucleotide-dependent function(s). On the other hand, the bG/0 genotype rescued functions impaired by Actg1-/-, including cell proliferation and auditory function, suggesting a role for γ-actin protein in both fibroblasts and hearing. Together, these results identify nucleotide-dependent functions for Actg1 while implicating γ-actin protein in more cell-/tissue-specific functions.
Collapse
Affiliation(s)
- Lauren J. Sundby
- Program in Molecular, Cellular, Developmental Biology, and Genetics, and
| | - William M. Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Katelin M. Hawbaker
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022
| | - Jesús M. Trujillo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Benjamin J. Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
62
|
Uetaki M, Onishi N, Oki Y, Shimizu T, Sugihara E, Sampetrean O, Watanabe T, Yanagi H, Suda K, Fujii H, Kano K, Saya H, Nobusue H. Regulatory roles of fibronectin and integrin α5 in reorganization of the actin cytoskeleton and completion of adipogenesis. Mol Biol Cell 2022; 33:ar78. [PMID: 35704469 PMCID: PMC9582638 DOI: 10.1091/mbc.e21-12-0609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator–activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.
Collapse
Affiliation(s)
- Megumi Uetaki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University, Toyoake, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hisano Yanagi
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kiyoshi Suda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hiroya Fujii
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| |
Collapse
|
63
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
64
|
Orlich MM, Diéguez-Hurtado R, Muehlfriedel R, Sothilingam V, Wolburg H, Oender CE, Woelffing P, Betsholtz C, Gaengel K, Seeliger M, Adams RH, Nordheim A. Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circ Res 2022; 131:308-327. [PMID: 35862101 PMCID: PMC9348820 DOI: 10.1161/circresaha.122.321109] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts.
Collapse
Affiliation(s)
- Michael M. Orlich
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
- Now with Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden (M.M.O.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Regine Muehlfriedel
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Hartwig Wolburg
- Department of General Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, University Clinic Tuebingen (UKT), Germany. (H.W.)
| | - Cansu Ebru Oender
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Pascal Woelffing
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Mathias Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
| |
Collapse
|
65
|
Aloisio FM, Barber DL. Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification. Stem Cell Reports 2022; 17:1318-1333. [PMID: 35658973 PMCID: PMC9214060 DOI: 10.1016/j.stemcr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Mouse embryonic stem cells (mESCs), a model for differentiation into primed epiblast-like cells (EpiLCs), have revealed transcriptional and epigenetic control of early embryonic development. The control and significance of morphological changes, however, remain less defined. We show marked changes in morphology and actin architectures during differentiation that depend on Arp2/3 complex but not formin activity. Inhibiting Arp2/3 complex activity pharmacologically or genetically does not block exit from naive pluripotency, but attenuates increases in EpiLC markers. We find that inhibiting Arp2/3 complex activity delays formative pluripotency and causes globally defective lineage specification as indicated by RNA sequencing, with significant effects on TBX3-depedendent transcriptional programs. We also identify two previously unreported indicators of mESC differentiation, namely, MRTF and FHL2, which have inverse Arp2/3 complex-dependent nuclear translocation. Our findings on Arp2/3 complex activity in differentiation and the established role of formins in EMT indicate that these two actin nucleators regulate distinct modes of epithelial plasticity.
Collapse
Affiliation(s)
- Francesca M Aloisio
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| |
Collapse
|
66
|
Tabuchi A, Ihara D. SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System. Neurochem Res 2022; 47:2545-2557. [PMID: 35668335 DOI: 10.1007/s11064-022-03632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Serum response factor (SRF) is a representative transcription factor that plays crucial roles in various biological phenomena by regulating immediate early genes (IEGs) and genes related to cell morphology and motility, among others. Over the years, the signal transduction pathways activating SRF have been clarified and SRF-target genes have been identified. In this overview, we initially briefly summarize the basic biology of SRF and its cofactors, ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF). Progress in the generation of nervous system-specific knockout (KO) or genetically modified mice as well as genetic analyses over the last few decades has not only identified novel SRF-target genes but also highlighted the neurochemical importance of SRF and its cofactors. Therefore, here we next present the phenotypes of mice with nervous system-specific KO of SRF or its cofactors by depicting recent findings associated with brain development, plasticity, epilepsy, stress response, and drug addiction, all of which result from function or dysfunction of the SRF axis. Last, we develop a hypothesis regarding the possible involvement of SRF and its cofactors in human neurological disorders including neurodegenerative, psychiatric, and neurodevelopmental diseases. This overview should deepen our understanding, highlight promising future directions for developing novel therapeutic strategies, and lead to illumination of the mechanisms underlying higher brain functions based on neuronal structure and function.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
67
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
68
|
The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Commun Biol 2022; 5:456. [PMID: 35550602 PMCID: PMC9098460 DOI: 10.1038/s42003-022-03406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ. PREP1 depletion upsets the nuclear membrane protein stoichiometry and renders nuclei soft. Intriguingly, these cells display fortified actomyosin network with bigger focal adhesion complexes resulting in greater traction forces at the substratum. Despite the high traction, YAP-TAZ translocation is impaired indicating disrupted mechanotransduction. Our data demonstrate mechanosignaling upstream of YAP-TAZ and suggest the existence of a transcriptional mechanism actively regulating nuclear membrane homeostasis and signal transduction through the active engagement/disengagement of the cell from the extracellular matrix. The transcription factor PREP1 binds to promoter regions of SUN1, SUN2 and LAP2 genes and promotes nuclear stiffness, and its depletion results in impaired mechanotransduction.
Collapse
|
69
|
SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci 2022; 79:278. [PMID: 35505150 PMCID: PMC9064851 DOI: 10.1007/s00018-022-04291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.
Collapse
|
70
|
Kuchler O, Gerlach J, Vomhof T, Hettich J, Steinmetz J, Gebhardt JCM, Michaelis J, Knöll B. Single-molecule tracking (SMT) and localization of SRF and MRTF transcription factors during neuronal stimulation and differentiation. Open Biol 2022; 12:210383. [PMID: 35537478 PMCID: PMC9090491 DOI: 10.1098/rsob.210383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cells, proteins encoded by the same gene do not all behave uniformly but engage in functional subpopulations induced by spatial or temporal segregation. While conventional microscopy has limitations in revealing such spatial and temporal diversity, single-molecule tracking (SMT) microscopy circumvented this problem and allows for high-resolution imaging and quantification of dynamic single-molecule properties. Particularly in the nucleus, SMT has identified specific DNA residence times of transcription factors (TFs), DNA-bound TF fractions and positions of transcriptional hot-spots upon cell stimulation. By contrast to cell stimulation, SMT has not been employed to follow dynamic TF changes along stages of cell differentiation. Herein, we analysed the serum response factor (SRF), a TF involved in the differentiation of many cell types to study nuclear single-molecule dynamics in neuronal differentiation. Our data in living mouse hippocampal neurons show dynamic changes in SRF DNA residence time and SRF DNA-bound fraction between the stages of adhesion, neurite growth and neurite differentiation in axon and dendrites. Using TALM (tracking and localization microscopy), we identified nuclear positions of SRF clusters and observed changes in their numbers and size during differentiation. Furthermore, we show that the SRF cofactor MRTF-A (myocardin-related TF or MKL1) responds to cell activation by enhancing the long-bound DNA fraction. Finally, a first SMT colocalization study of two proteins was performed in living cells showing enhanced SRF/MRTF-A colocalization upon stimulation. In summary, SMT revealed modulation of dynamic TF properties during cell stimulation and differentiation.
Collapse
Affiliation(s)
- Oliver Kuchler
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jule Gerlach
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julia Steinmetz
- Department of Statistics, TU Dortmund University, August-Schmidt Straße 1, 44227 Dortmund, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
71
|
Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H, Garcia MA, Yerra L, Palovics R, Yang AC, Hahn O, Lu N, Shuken SR, Haney MS, Lehallier B, Iyer M, Luo J, Zetterberg H, Keller A, Zuchero JB, Wyss-Coray T. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 2022; 605:509-515. [PMID: 35545674 PMCID: PMC9377328 DOI: 10.1038/s41586-022-04722-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022]
Abstract
Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.
Collapse
Affiliation(s)
- Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Correspondence to or
| | - Fabian Kern
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, Saarbrücken, Germany
| | - Achint Kaur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Saket Myneni
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Allison R. Morningstar
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Miguel A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lakshmi Yerra
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew C. Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Steven R. Shuken
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Michael s. Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jian Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Andreas Keller
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Correspondence to or
| |
Collapse
|
72
|
Hari-Gupta Y, Fili N, dos Santos Á, Cook AW, Gough RE, Reed HCW, Wang L, Aaron J, Venit T, Wait E, Grosse-Berkenbusch A, Gebhardt JCM, Percipalle P, Chew TL, Martin-Fernandez M, Toseland CP. Myosin VI regulates the spatial organisation of mammalian transcription initiation. Nat Commun 2022; 13:1346. [PMID: 35292632 PMCID: PMC8924246 DOI: 10.1038/s41467-022-28962-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.
Collapse
Affiliation(s)
- Yukti Hari-Gupta
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK ,grid.83440.3b0000000121901201Present Address: MRC LMCB, University College London, London, UK
| | - Natalia Fili
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK ,grid.36511.300000 0004 0420 4262Present Address: School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Ália dos Santos
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Alexander W. Cook
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Rosemarie E. Gough
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Hannah C. W. Reed
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Lin Wang
- grid.76978.370000 0001 2296 6998Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, UK
| | - Jesse Aaron
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | - Tomas Venit
- grid.440573.10000 0004 1755 5934Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Eric Wait
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | | | | | - Piergiorgio Percipalle
- grid.440573.10000 0004 1755 5934Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates ,grid.10548.380000 0004 1936 9377Department of Molecular Bioscience, The Wenner Gren Institute, Stockholm University, Stockholm, SE Sweden
| | - Teng-Leong Chew
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | - Marisa Martin-Fernandez
- grid.76978.370000 0001 2296 6998Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, UK
| | - Christopher P. Toseland
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
73
|
Dessay M, Couture E, Maaroufi H, Fournier F, Gagnon E, Droit A, Brown JP, Michou L. Attenuated clinical and osteoclastic phenotypes of Paget's disease of bone linked to the p.Pro392Leu/SQSTM1 mutation by a rare variant in the DOCK6 gene. BMC Med Genomics 2022; 15:41. [PMID: 35241069 PMCID: PMC8895793 DOI: 10.1186/s12920-022-01198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background We identified two families with Paget's disease of bone (PDB) linked to the p.Pro392Leu mutation within the SQSTM1 gene displaying a possible digenism. This study aimed at identifying this second genetic variant cosegregating with the p.Pro392Leu mutation and at characterizing its impact on the clinical and cellular phenotypes of PDB. Methods Whole exome sequencing was performed in one patient per family and two healthy controls. We compared clinical characteristics of PDB in 14 relatives from the two families. The osteoclastic phenotype was compared in in vitro differentiated osteoclasts from 31 participants carrying the DOCK6 and/or SQSTM1 variants. Tridimensional models of SQSTM1 and DOCK6 proteins were generated to evaluate the impact of these variants on their stability and flexibility. Statistical analyses were performed with Graphpad prism. Results Whole-exome sequencing allowed us to identify the p.Val45Ile missense variant in the DOCK6 gene in patients. In both families, the mean age at PDB diagnosis was delayed in pagetic patients carrier of the p.Val45Ile variant alone compared to those carrying the p.Pro392Leu mutation alone (67 vs. 44 years, P = 0.03). Although both p.Val45Ile and p.Pro392Leu variants gave rise to a pagetic phenotype of osteoclast versus healthy controls, the p.Val45Ile variant was found to attenuate the severity of the osteoclastic phenotype of PDB caused by the p.Pro392Leu mutation when both variants were present. The DOCK6 mRNA expression was higher in carriers of the p.Val45Ile variant than in pagetic patients without any mutations and healthy controls. Structural bioinformatics analyses suggested that the p.Pro392Leu mutation might rigidify the UBA domain and thus decrease its possible intramolecular interaction with a novel domain, the serum response factor–transcription factor (SRF-TF)-like domain, whereas the p.Val45Ile variant may decrease SRF-TF-like activity. Conclusion The p.Val45Ile variant may attenuate the severity of the clinical phenotype of PDB in patient carriers of both variants. In vitro, the rare variant of the DOCK6 may have a modifier effect on the p.Pro392Leu mutation, possibly via its effect on the SRF-TF-like. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01198-9.
Collapse
Affiliation(s)
- Mariam Dessay
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Emile Couture
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Frédéric Fournier
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Edith Gagnon
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Jacques P Brown
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.,Department of Medicine, Université Laval, Quebec, QC, Canada
| | - Laëtitia Michou
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada. .,Department of Medicine, Université Laval, Quebec, QC, Canada. .,Department of Rheumatology-R4774, CHU de Québec-Université Laval, 2705 boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
74
|
Dinsmore CJ, Soriano P. Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. eLife 2022; 11:e75106. [PMID: 35044299 PMCID: PMC8806183 DOI: 10.7554/elife.75106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the ternary complex factors (TCFs) and myocardin-related transcription factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in SrfaI allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous SrfaI/aI mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Philippe Soriano
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
75
|
Alerasool N, Leng H, Lin ZY, Gingras AC, Taipale M. Identification and functional characterization of transcriptional activators in human cells. Mol Cell 2022; 82:677-695.e7. [PMID: 35016035 DOI: 10.1016/j.molcel.2021.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.
Collapse
Affiliation(s)
- Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - He Leng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
76
|
Trivlidis J, Aloufi N, Al-Habeeb F, Nair P, Azuelos I, Eidelman DH, Baglole CJ. HuR drives lung fibroblast differentiation but not metabolic reprogramming in response to TGF-β and hypoxia. Respir Res 2021; 22:323. [PMID: 34963461 PMCID: PMC8715577 DOI: 10.1186/s12931-021-01916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-β1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). Methods Primary HLFs were cultured in the presence (or absence) of TGF-β1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. Results Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFβ1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-β1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. Conclusions Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-β. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.
Collapse
|
77
|
Schreier B, Dubourg V, Hübschmann S, Rabe S, Mildenberger S, Gekle M. Synergy of epidermal growth factor (EGFR) and angiotensin II (AT1R) receptor determines composition and temporal pattern of transcriptome variation. Cell Mol Life Sci 2021; 79:57. [PMID: 34921637 PMCID: PMC8738452 DOI: 10.1007/s00018-021-04065-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
The tyrosine kinase receptor EGFR and the G-protein-coupled receptor AT1R induce essential cellular responses, in part via receptor crosstalk with an unknown role in nuclear information transfer and transcription regulation. We investigated whether this crosstalk results in linear, EGFR-mediated nuclear signalling or in parallel, synergistic information transfer leading to qualitative and temporal variations, relevant for gene expression and environment interaction. AT1R and EGFR synergistically activate SRF via the ERK1/2-TCF and actin-MRTF pathways. Synergism, comprised of switch-like and graded single cell response, converges on the transcription factors AP1 and EGR, resulting in synergistic transcriptome alterations, in qualitative (over-additive number of genes), quantitative (over-additive expression changes of individual genes) and temporal (more late onset and prolonged expressed genes) terms. Gene ontology and IPA® pathway analysis indicate prolonged cell stress (e.g. hypoxia-like) and dysregulated vascular biology. Synergism occurs during separate but simultaneous activation of both receptors and during AT1R-induced EGFR transactivation. EGFR and AT1R synergistically regulate gene expression in qualitative, quantitative and temporal terms with (patho)physiological relevance, extending the importance of EGFR-AT1R crosstalk beyond cytoplasmic signalling.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany
| | - Stefanie Hübschmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle (Saale), Germany.
| |
Collapse
|
78
|
Marco S, Neilson M, Moore M, Perez-Garcia A, Hall H, Mitchell L, Lilla S, Blanco GR, Hedley A, Zanivan S, Norman JC. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat Commun 2021; 12:6829. [PMID: 34819513 PMCID: PMC8613289 DOI: 10.1038/s41467-021-26839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
Collapse
Affiliation(s)
- Sergi Marco
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | | | - Arantxa Perez-Garcia
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Holly Hall
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Ann Hedley
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Jim C Norman
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
79
|
Martin-Cofreces NB, Sanchez-Madrid F, Roda-Navarro P. Editorial: Cytoskeleton Dynamics as Master Regulator of Organelle Reorganization and Intracellular Signaling for Cell-Cell Competition. Front Cell Dev Biol 2021; 9:782559. [PMID: 34778278 PMCID: PMC8581440 DOI: 10.3389/fcell.2021.782559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Noa B Martin-Cofreces
- Department of Immunology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sanchez-Madrid
- Department of Immunology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (Imas12), Madrid, Spain
| |
Collapse
|
80
|
Liu ZZ(G, Taiyab A, West-Mays JA. MMP9 Differentially Regulates Proteins Involved in Actin Polymerization and Cell Migration during TGF-β-Induced EMT in the Lens. Int J Mol Sci 2021; 22:ijms222111988. [PMID: 34769418 PMCID: PMC8584335 DOI: 10.3390/ijms222111988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-β)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-β-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (β-actin) (ACTB) mRNA between the lenses of TGF-β-overexpressing (TGF-βtg) mice and TGF-βtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-β-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-β. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-β-induced EMT in the lens.
Collapse
Affiliation(s)
| | | | - Judith A. West-Mays
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 26237); Fax: +1-(905)-525-7400
| |
Collapse
|
81
|
McGarry DJ, Armstrong G, Castino G, Mason S, Clark W, Shaw R, McGarry L, Blyth K, Olson MF. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours. Cancer Lett 2021; 519:226-236. [PMID: 34314753 DOI: 10.1016/j.canlet.2021.07.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/09/2023]
Abstract
The Molecule Interacting with CasL 1 (MICAL1) monooxygenase has emerged as an important regulator of cytoskeleton organization via actin oxidation. Although filamentous actin (F-actin) increases MICAL1 monooxygenase activity, hydrogen peroxide (H2O2) is also generated in the absence of F-actin, suggesting that diffusible H2O2 might have additional functions. MICAL1 gene disruption by CRISPR/Cas9 in MDA MB 231 human breast cancer cells knocked out (KO) protein expression, which affected F-actin organization, cell size and motility. Transcriptomic profiling revealed that MICAL1 deletion significantly affected the expression of over 700 genes, with the majority being reduced in their expression levels. In addition, the absolute magnitudes of reduced gene expression were significantly greater than the magnitudes of increased gene expression. Gene set enrichment analysis (GSEA) identified receptor regulator activity as the most significant negatively enriched molecular function gene set. The prominent influence exerted by MICAL1 on F-actin structures was also associated with changes in the expression of several serum-response factor (SRF) regulated genes in KO cells. Moreover, MICAL1 disruption attenuated breast cancer tumour growth in vivo. Elevated MICAL1 gene expression was observed in invasive breast cancer samples from human patients relative to normal tissue, while MICAL1 amplification or point mutations were associated with reduced progression free survival. Collectively, these results demonstrate that MICAL1 gene disruption altered cytoskeleton organization, cell morphology and migration, gene expression, and impaired tumour growth in an orthotopic in vivo breast cancer model, suggesting that pharmacological MICAL1 inhibition could have therapeutic benefits for cancer patients.
Collapse
Affiliation(s)
- David J McGarry
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Garett Armstrong
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Giovanni Castino
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Susan Mason
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
82
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
83
|
Betts CA, Jagannath A, van Westering TLE, Bowerman M, Banerjee S, Meng J, Falzarano MS, Cravo L, McClorey G, Meijboom KE, Bhomra A, Lim WF, Rinaldi C, Counsell JR, Chwalenia K, O'Donovan E, Saleh AF, Gait MJ, Morgan JE, Ferlini A, Foster RG, Wood MJ. Dystrophin involvement in peripheral circadian SRF signalling. Life Sci Alliance 2021; 4:4/10/e202101014. [PMID: 34389686 PMCID: PMC8363758 DOI: 10.26508/lsa.202101014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.
Collapse
Affiliation(s)
- Corinne A Betts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Melissa Bowerman
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,School of Medicine, Keele University, Staffordshire, Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Subhashis Banerjee
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Maria Sofia Falzarano
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Lara Cravo
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | | | - Amarjit Bhomra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Elizabeth O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Amer F Saleh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.,Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jennifer E Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Matthew Ja Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
84
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
85
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
86
|
Nucleocytoplasmic Shuttling of the Mechanosensitive Transcription Factors MRTF and YAP /TAZ. Methods Mol Biol 2021; 2299:197-216. [PMID: 34028745 DOI: 10.1007/978-1-0716-1382-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myocardin-related transcription factor (MRTF) and the paralogous Hippo pathway effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcriptional co-activators that play pivotal roles in myofibroblast generation and activation, and thus the pathogenesis of organ fibrosis. They are regulated by a variety of chemical and mechanical fibrogenic stimuli, primarily at the level of their nucleocytoplasmic shuttling. In this chapter we describe the tools and protocols that allow for exact, quantitative, and automated determination and analysis of the nucleocytoplasmic distribution of endogenous or heterologously expressed MRTF and YAP/TAZ, measured in large cell populations. Dynamic monitoring of nucleocytoplasmic ratios of transcription factors is a novel and important approach, suitable to address both the structural requirements and the regulatory mechanisms underlying transcription factor traffic and the consequent reprogramming of gene expression during fibrogenesis.
Collapse
|
87
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
88
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
89
|
Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells 2021; 10:cells10071794. [PMID: 34359963 PMCID: PMC8304203 DOI: 10.3390/cells10071794] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.
Collapse
|
90
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
91
|
Zhang Z, Chen B, Zhu Y, Zhang T, Yuan Y, Zhang X, Xu Y. The Jumonji Domain-Containing Histone Demethylase Homolog 1D/lysine Demethylase 7A (JHDM1D/KDM7A) Is an Epigenetic Activator of RHOJ Transcription in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:664375. [PMID: 34249916 PMCID: PMC8262595 DOI: 10.3389/fcell.2021.664375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The small GTPase RHOJ is a key regulator of breast cancer metastasis by promoting cell migration and invasion. The prometastatic stimulus TGF-β activates RHOJ transcription via megakaryocytic leukemia 1 (MKL1). The underlying epigenetic mechanism is not clear. Here, we report that MKL1 deficiency led to disrupted assembly of the RNA polymerase II preinitiation complex on the RHOJ promoter in breast cancer cells. This could be partially explained by histone H3K9/H3K27 methylation status. Further analysis confirmed that the H3K9/H3K27 dual demethylase JHDM1D/KDM7A was essential for TGF-β-induced RHOJ transcription in breast cancer cells. MKL1 interacted with and recruited KDM7A to the RHOJ promoter to cooperatively activate RHOJ transcription. KDM7A knockdown attenuated migration and invasion of breast cancer cells in vitro and mitigated the growth and metastasis of breast cancer cells in nude mice. KDM7A expression level, either singularly or in combination with that of RHOJ, could be used to predict prognosis in breast cancer patients. Of interest, KDM7A appeared to be a direct transcriptional target of TGF-β signaling. A SMAD2/SMAD4 complex bound to the KDM7A promoter and mediated TGF-β-induced KDM7A transcription. In conclusion, our data unveil a novel epigenetic mechanism whereby TGF-β regulates the transcription of the prometastatic small GTPase RHOJ. Screening for small-molecule inhibitors of KDM7A may yield effective therapeutic solutions to treat malignant breast cancers.
Collapse
Affiliation(s)
- Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Baoyu Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoling Zhang
- School of Medicine, Nanchang University, Nanchang, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
92
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
93
|
Kong M, Zhang Y, Song M, Cong W, Gao C, Zhang J, Han S, Tu Q, Ma X. Myocardin‑related transcription factor A nuclear translocation contributes to mechanical overload‑induced nucleus pulposus fibrosis in rats with intervertebral disc degeneration. Int J Mol Med 2021; 48:123. [PMID: 33982787 PMCID: PMC8121555 DOI: 10.3892/ijmm.2021.4956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/16/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported that the Ras homolog family member A (RhoA)/myocardin‑related transcription factor A (MRTF‑A) nuclear translocation axis positively regulates fibrogenesis induced by mechanical forces in various organ systems. The aim of the present study was to determine whether this signaling pathway was involved in the pathogenesis of nucleus pulposus (NP) fibrosis induced by mechanical overload during the progression of intervertebral disc degeneration (IVDD) and to confirm the alleviating effect of an MRTF‑A inhibitor in the treatment of IVDD. NP cells (NPCs) were cultured on substrates of different stiffness (2.9 and 41.7 KPa), which mimicked normal and overloaded microenvironments, and were treated with an inhibitor of MRTF‑A nuclear import, CCG‑1423. In addition, bipedal rats were established by clipping the forelimbs of rats at 1 month and gradually elevating the feeding trough, and in order to establish a long‑term overload‑induced model of IVDD, and their intervertebral discs were injected with CCG‑1423 in situ. Cell viability was determined by Cell Counting Kit‑8 assay, and protein expression was determined by western blotting, immunofluorescence and immunohistochemical staining. The results demonstrated that the viability of NPCs was not affected by the application of force or the inhibitor. In NPCs cultured on stiff matrices, MRTF‑A was mostly localized in the nucleus, and the expression levels of fibrotic proteins, including type I collagen, connective tissue growth factor and α‑smooth muscle cell actin, were upregulated compared with those in NPCs cultured on soft matrices. The levels of these proteins were reduced by CCG‑1423 treatment. In rats, 6 months of upright posture activated MRTF‑A nuclear‑cytoplasmic trafficking and fibrogenesis in the NP and induced IVDD; these effects were alleviated by CCG‑1423 treatment. In conclusion, the results of the present study demonstrated that the RhoA/MRTF‑A translocation pathway may promote mechanical overload‑induced fibrogenic activity in NP tissue and partially elucidated the molecular mechanisms underlying the occurrence of IVDD.
Collapse
Affiliation(s)
- Meng Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Yiran Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Mengxiong Song
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Changtong Gao
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital, Qing'dao, Shandong 266000, P.R. China
| | - Jiajun Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Qihao Tu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| |
Collapse
|
94
|
Sivasudhan E, Blake N, Lu ZL, Meng J, Rong R. Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:642443. [PMID: 33869193 PMCID: PMC8047153 DOI: 10.3389/fcell.2021.642443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Epidemiological data consistently rank hepatocellular carcinoma (HCC) as one of the leading causes of cancer-related deaths worldwide, often posing severe economic burden on health care. While the molecular etiopathogenesis associated with genetic and epigenetic modifications has been extensively explored, the biological influence of the emerging field of epitranscriptomics and its associated aberrant RNA modifications on tumorigenesis is a largely unexplored territory with immense potential for discovering new therapeutic approaches. In particular, the underlying cellular mechanisms of different hallmarks of hepatocarcinogenesis that are governed by the complex dynamics of m6A RNA methylation demand further investigation. In this review, we reveal the up-to-date knowledge on the mechanistic and functional link between m6A RNA methylation and pathogenesis of HCC.
Collapse
Affiliation(s)
- Enakshi Sivasudhan
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil Blake
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zhi-Liang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
95
|
Liu L, Zhao Q, Kong M, Mao L, Yang Y, Xu Y. Myocardin-related transcription factor A (MRTF-A) regulates integrin beta 2 transcription to promote macrophage infiltration and cardiac hypertrophy in mice. Cardiovasc Res 2021; 118:844-858. [PMID: 33752236 DOI: 10.1093/cvr/cvab110] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/19/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Macrophage-mediated inflammatory response represents a key pathophysiological process in a host of cardiovascular diseases including heart failure. Regardless of etiology, heart failure is invariably preceded by cardiac hypertrophy. In the present study we investigated the effect of macrophage-specific deletion of myocardin-related transcription factor A (MRTF-A) on cardiac hypertrophy and the underlying mechanism. METHODS AND RESULTS We report that when subjected to transverse aortic constriction (TAC), macrophage MRTF-A conditional knockout (CKO) mice developed a less severe phenotype of cardiac hypertrophy compared to wild type (WT) littermates and were partially protected from the loss of heart function. In addition, there was less extensive cardiac fibrosis in the CKO mice than WT mice following the TAC procedure. Further analysis revealed that cardiac inflammation, as assessed by levels of pro-inflammatory cytokines and chemokines, was dampened in CKO mice paralleling reduced infiltration of macrophages in the heart. Mechanistically, MRTF-A deficiency attenuated the expression of integrin beta 2 (ITGB2/CD18) in macrophage thereby disrupting adhesion of macrophages to vascular endothelial cells. MRTF-A was recruited by Sp1 to the ITGB2 promoter and cooperated with Sp1 to activate ITGB2 transcription in macrophages. Administration of a CD18 blocking antibody attenuated TAC induced cardiac hypertrophy in mice. Interaction between MRTF-A and the histone demethylase KDM3A likely contributed to IGTB2 transcription and consequently adhesion of macrophages to endothelial cells. CONCLUSIONS Our data suggest that MRTF-A may regulate macrophage trafficking and contribute to the pathogenesis of cardiac hypertrophy by activating ITGB2 transcription.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory of Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
96
|
Sanghani A, Kafetzis KN, Sato Y, Elboraie S, Fajardo-Sanchez J, Harashima H, Tagalakis AD, Yu-Wai-Man C. Novel PEGylated Lipid Nanoparticles Have a High Encapsulation Efficiency and Effectively Deliver MRTF-B siRNA in Conjunctival Fibroblasts. Pharmaceutics 2021; 13:382. [PMID: 33805660 PMCID: PMC7998417 DOI: 10.3390/pharmaceutics13030382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
The master regulator of the fibrosis cascade is the myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics. In the past, inhibitors and small interfering RNAs (siRNAs) targeting the MRTF-B gene have been deployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest challenge in implementing siRNA therapeutics is the method of delivery. In this study, we utilised the novel, pH-sensitive, cationic lipid CL4H6, which has previously demonstrated potent targeting of hepatocytes and endosomal escape, to safely and efficiently deliver an MRTF-B siRNA into human conjunctival fibroblasts. We prepared two lipid nanoparticle (LNP) formulations, incorporating targeting cleavable peptide cY in one of them, and measured their physicochemical properties and silencing effect in human conjunctival fibroblasts. Both proved to be non-cytotoxic at a concentration of 50 nM and effectively silenced the MRTF-B gene in vitro, with the targeting cleavable peptide not affecting the silencing efficiency [LNP with cY: 62.1% and 81.5% versus LNP without cY: 77.7% and 80.2%, at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09), respectively]. On the other hand, the addition of the targeting cleavable peptide significantly increased the encapsulation efficiency of the LNPs from 92.5% to 99.3% (p = 0.0005). In a 3D fibroblast-populated collagen matrix model, both LNP formulations significantly decreased fibroblast contraction after a single transfection. We conclude that the novel PEGylated CL4H6-MRTF-B siRNA-loaded LNPs represent a promising therapeutic approach to prevent conjunctival fibrosis after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Amisha Sanghani
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | | | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (Y.S.); (H.H.)
| | - Salsabil Elboraie
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK; (K.N.K.); (S.E.)
| | - Julia Fajardo-Sanchez
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (Y.S.); (H.H.)
| | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (A.S.); (J.F.-S.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
97
|
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. J Biol Chem 2021; 296:100543. [PMID: 33722605 PMCID: PMC8079280 DOI: 10.1016/j.jbc.2021.100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Myocardin-related transcription factor A (MRTFA) is a coactivator of serum response factor, a transcription factor that participates in several critical cellular functions including cell growth and apoptosis. MRTFA couples transcriptional regulation to actin cytoskeleton dynamics, and the transcriptional targets of the MRTFA–serum response factor complex include genes encoding cytoskeletal proteins as well as immediate early genes. Previous work has shown that MRTFA promotes the differentiation of many cell types, including various types of muscle cells and hematopoietic cells, and MRTFA's interactions with other protein partners broaden its cellular roles. However, despite being first identified as part of the recurrent t(1;22) chromosomal translocation in acute megakaryoblastic leukemia, the mechanisms by which MRTFA functions in malignant hematopoiesis have yet to be defined. In this review, we provide an in-depth examination of the structure, regulation, and known functions of MRTFA with a focus on hematopoiesis. We conclude by identifying areas of study that merit further investigation.
Collapse
Affiliation(s)
- Fiona Reed
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shannon T Larsuel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Madeline Y Mayday
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
98
|
Kepser LJ, Khudayberdiev S, Hinojosa LS, Macchi C, Ruscica M, Marcello E, Culmsee C, Grosse R, Rust MB. Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Sci Rep 2021; 11:4789. [PMID: 33637797 PMCID: PMC7910472 DOI: 10.1038/s41598-021-84213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Recent studies identified cyclase-associated proteins (CAPs) as important regulators of actin dynamics that control assembly and disassembly of actin filaments (F-actin). While these studies significantly advanced our knowledge of their molecular functions, the physiological relevance of CAPs largely remained elusive. Gene targeting in mice implicated CAP2 in heart physiology and skeletal muscle development. Heart defects in CAP2 mutant mice were associated with altered activity of serum response factor (SRF), a transcription factor involved in multiple biological processes including heart function, but also skeletal muscle development. By exploiting mouse embryonic fibroblasts (MEFs) from CAP2 mutant mice, we aimed at deciphering the CAP2-dependent mechanism relevant for SRF activity. Reporter assays and mRNA quantification by qPCR revealed reduced SRF-dependent gene expression in mutant MEFs. Reduced SRF activity in CAP2 mutant MEFs was associated with altered actin turnover, a shift in the actin equilibrium towards monomeric actin (G-actin) as well as and reduced nuclear levels of myocardin-related transcription factor A (MRTF-A), a transcriptional SRF coactivator that is shuttled out of the nucleus and, hence, inhibited upon G-actin binding. Moreover, pharmacological actin manipulation with jasplakinolide restored MRTF-A distribution in mutant MEFs. Our data are in line with a model in which CAP2 controls the MRTF-SRF pathway in an actin-dependent manner. While MRTF-A localization and SRF activity was impaired under basal conditions, serum stimulation induced nuclear MRTF-A translocation and SRF activity in mutant MEFs similar to controls. In summary, our data revealed that in MEFs CAP2 controls basal MRTF-A localization and SRF activity, while it was dispensable for serum-induced nuclear MRTF-A translocation and SRF stimulation.
Collapse
Affiliation(s)
- Lara-Jane Kepser
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Laura Soto Hinojosa
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Robert Grosse
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany.
| |
Collapse
|
99
|
Sprenkeler EGG, Guenther C, Faisal I, Kuijpers TW, Fagerholm SC. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Front Immunol 2021; 12:615477. [PMID: 33692789 PMCID: PMC7938309 DOI: 10.3389/fimmu.2021.615477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
100
|
Zhao B, Grosse R. Optogenetic Control of Myocardin-Related Transcription Factor A Subcellular Localization and Transcriptional Activity Steers Membrane Blebbing and Invasive Cancer Cell Motility. Adv Biol (Weinh) 2021; 5:e2000208. [PMID: 34028209 DOI: 10.1002/adbi.202000208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Indexed: 11/12/2022]
Abstract
The myocardin-related transcription factor A (MRTF-A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin-dependent manner. In turn, MRTF-A is crucial for many actin-dependent processes including adhesion, migration, and contractility and has emerged as a novel target for anti-tumor strategies. MRTF-A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N-terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF-A nuclear localization by blue light using the light-oxygen-voltage-sensing domain 2-domain based system LEXY (light-inducible nuclear export system). It is found that light-regulated nuclear export of MRTF-A occurs within 10-20 min. Importantly, MRTF-A-LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light-regulation of MRTF-A-LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF-A subcellular localization determines subsequent cytoskeletal dynamics such as non-apoptotic plasma membrane blebbing as well as invasive tumor-cell migration through 3D collagen matrix. This data demonstrates robust optogenetic regulation of MRTF as a powerful tool to control SRF-dependent transcription as well as cell motile behavior.
Collapse
Affiliation(s)
- Bing Zhao
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| |
Collapse
|