51
|
Kew V, Wills M, Reeves M. HCMV activation of ERK-MAPK drives a multi-factorial response promoting the survival of infected myeloid progenitors. JOURNAL OF MOLECULAR BIOCHEMISTRY 2017; 6:13-25. [PMID: 28491825 PMCID: PMC5421601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viral binding and entry provides the first trigger of a cell death response and thus how human cytomegalovirus (HCMV) evades this - particularly during latent infection where a very limited pattern of gene expression is observed - is less well understood. It has been demonstrated that the activation of cellular signalling pathways upon virus binding promotes the survival of latently infected cells by the activation of cell encoded anti-apoptotic responses. In CD34+ cells, a major site of HCMV latency, ERK signalling is important for survival and we now show that the activation of this pathway impacts on multiple aspects of cell death pathways. The data illustrate that HCMV infection triggers activation of pro-apoptotic Bak which is then countered through multiple ERK-dependent functions. Specifically, ERK promotes ELK1 mediated transcription of the key survival molecule MCL-1, along with a concomitant decrease of the pro-apoptotic BIM and PUMA proteins. Finally, we show that the elimination of ELK-1 from CD34+ cells results in elevated Bak activation in response to viral infection, resulting in cell death. Taken together, these data begin to shed light on the poly-functional response elicited by HCMV via ERK-MAPK to promote cell survival.
Collapse
Affiliation(s)
- Verity Kew
- Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark Wills
- Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Matthew Reeves
- UCL Institute of Immunity & Transplantation, Royal Free Hospital, London, UK
| |
Collapse
|
52
|
Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R. SRF Co-factors Control the Balance between Cell Proliferation and Contractility. Mol Cell 2016; 64:1048-1061. [PMID: 27867007 PMCID: PMC5179500 DOI: 10.1016/j.molcel.2016.10.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The ERK-regulated ternary complex factors (TCFs) act with the transcription factor serum response factor (SRF) to activate mitogen-induced transcription. However, the extent of their involvement in the immediate-early transcriptional response, and their wider functional significance, has remained unclear. We show that, in MEFs, TCF inactivation significantly inhibits over 60% of TPA-inducible gene transcription and impairs cell proliferation. Using integrated SRF ChIP-seq and Hi-C data, we identified over 700 TCF-dependent SRF direct target genes involved in signaling, transcription, and proliferation. These also include a significant number of cytoskeletal gene targets for the Rho-regulated myocardin-related transcription factor (MRTF) SRF cofactor family. The TCFs act as general antagonists of MRTF-dependent SRF target gene expression, competing directly with the MRTFs for access to SRF. As a result, TCF-deficient MEFs exhibit hypercontractile and pro-invasive behavior. Thus, competition between TCFs and MRTFs for SRF determines the balance between antagonistic proliferative and contractile programs of gene expression.
Collapse
Affiliation(s)
- Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Cyril Esnault
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.
| |
Collapse
|
53
|
Campbell LE, Langlais PR, Day SE, Coletta RL, Benjamin TR, De Filippis EA, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Identification of Novel Changes in Human Skeletal Muscle Proteome After Roux-en-Y Gastric Bypass Surgery. Diabetes 2016; 65:2724-31. [PMID: 27207528 PMCID: PMC5001187 DOI: 10.2337/db16-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms of metabolic improvements after Roux-en-Y gastric bypass (RYGB) surgery are not entirely clear. Therefore, the aim of our study was to investigate the role of obesity and RYGB on the human skeletal muscle proteome. Basal muscle biopsies were obtained from seven obese (BMI >40 kg/m(2)) female subjects (45.1 ± 3.6 years) pre- and 3 months post-RYGB, and euglycemic-hyperinsulinemic clamps were used to assess insulin sensitivity. Four age-matched (48.5 ± 4.7 years) lean (BMI <25 kg/m(2)) females served as control subjects. We performed quantitative mass spectrometry and microarray analyses on protein and RNA isolated from the muscle biopsies. Significant improvements in fasting plasma glucose (104.2 ± 7.8 vs. 86.7 ± 3.1 mg/dL) and BMI (42.1 ± 2.2 vs. 35.3 ± 1.8 kg/m(2)) were demonstrated in the pre- versus post-RYGB, both P < 0.05. Proteomic analysis identified 2,877 quantifiable proteins. Of these, 395 proteins were significantly altered in obesity before surgery, and 280 proteins differed significantly post-RYGB. Post-RYGB, 49 proteins were returned to normal levels after surgery. KEGG pathway analysis revealed a decreased abundance in ribosomal and oxidative phosphorylation proteins in obesity, and a normalization of ribosomal proteins post-RYGB. The transcriptomic data confirmed the normalization of the ribosomal proteins. Our results provide evidence that obesity and RYGB have a dynamic effect on the skeletal muscle proteome.
Collapse
Affiliation(s)
| | | | - Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Richard L Coletta
- School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | | | | | - Lawrence J Mandarino
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | - Dawn K Coletta
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
54
|
Naiya G, Raha P, Mondal MK, Pal U, Saha R, Chaudhuri S, Batabyal S, Kumar Pal S, Bhattacharyya D, Maiti NC, Roy S. Conformational selection underpins recognition of multiple DNA sequences by proteins and consequent functional actions. Phys Chem Chem Phys 2016; 18:21618-28. [PMID: 27426617 DOI: 10.1039/c6cp03278h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recognition of multiple functional DNA sequences by a DNA-binding protein occurs widely in nature. The physico-chemical basis of this phenomenon is not well-understood. The E. coli gal repressor, a gene regulatory protein, binds two homologous but non-identical sixteen basepair sequences in the gal operon and interacts by protein-protein interaction to regulate gene expression. The two sites have nearly equal affinities for the Gal repressor. Spectroscopic studies of the Gal repressor bound to these two different DNA sequences detected significant conformational differences between them. Comprehensive single base-substitution and binding measurements were carried out on the two sequences to understand the nature of the two protein-DNA interfaces. Magnitudes of basepair-protein interaction energy show significant variation between homologous positions of the two DNA sequences. Magnitudes of variation are such that when summed over the whole sequence they largely cancel each other out, thus producing nearly equal net affinity. Modeling suggests significant alterations in the protein-DNA interface in the two complexes, which are consistent with conformational adaptation of the protein to different DNA sequences. The functional role of the two sequences was studied by substitution of one site by the other and vice versa. In both cases, substitution reduces repression in vivo. This suggests that naturally occurring DNA sequence variations play functional roles beyond merely acting as high-affinity anchoring points. We propose that two different pre-existing conformations in the conformational ensemble of the free protein are selected by two different DNA sequences for efficient sequence read-out and the conformational difference of the bound proteins leads to different functional roles.
Collapse
Affiliation(s)
- Gitashri Naiya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kawahara T, Shareef HK, Aljarah AK, Ide H, Li Y, Kashiwagi E, Netto GJ, Zheng Y, Miyamoto H. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget 2016; 6:29860-76. [PMID: 26342199 PMCID: PMC4745768 DOI: 10.18632/oncotarget.5007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022] Open
Abstract
Little is known about biological significance of ELK1, a transcriptional factor that activates downstream targets including c-fos proto-oncogene, in bladder cancer. Recent preclinical evidence also suggests the involvement of androgen receptor (AR) signaling in bladder cancer progression. In this study, we aim to investigate the functions of ELK1 in bladder cancer growth and their regulation by AR signals. Immunohistochemistry in bladder tumor specimens showed that the levels of phospho-ELK1 (p-ELK1) expression were significantly elevated in urothelial neoplasms, compared with non-neoplastic urothelium tissues, and were also correlated with AR positivity. Patients with p-ELK1-positive non-muscle-invasive and muscle-invasive tumors had significantly higher risks for tumor recurrence and progression, respectively. In AR-positive bladder cancer cell lines, dihydrotestosterone treatment increased ELK1 expression (mRNA, protein) and its nuclear translocation, ELK1 transcriptional activity, and c-fos expression, which was restored by an anti-androgen hydroxyflutamide. ELK1 silencing via short hairpin RNA (shRNA) resulted in decreases in cell viability/colony formation, and cell migration/invasion as well as an increase in apoptosis. Importantly, ELK1 appears to require activated AR to regulate bladder cancer cell proliferation, but not cell migration. Androgen also failed to significantly induce AR transactivation in ELK1-knockdown cells. In accordance with our in vitro findings, ELK1-shRNA expression considerably retarded tumor formation as well as its growth in xenograft-bearing male mice. Our results suggest that ELK1 plays an important role in bladder tumorigenesis and cancer progression, which is further induced by AR activation. Accordingly, ELK1 inhibition, together with AR inactivation, has the potential of being a therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Babylon College of Science for Women, Babylon, Iraq
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Baghdad College of Science, Baghdad, Iraq
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J Netto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
56
|
Buffet C, Catelli MG, Hecale-Perlemoine K, Bricaire L, Garcia C, Gallet-Dierick A, Rodriguez S, Cormier F, Groussin L. Dual Specificity Phosphatase 5, a Specific Negative Regulator of ERK Signaling, Is Induced by Serum Response Factor and Elk-1 Transcription Factor. PLoS One 2015; 10:e0145484. [PMID: 26691724 PMCID: PMC4687125 DOI: 10.1371/journal.pone.0145484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Serum stimulation of mammalian cells induces, via the MAPK pathway, the nuclear protein DUSP5 (dual-specificity phosphatase 5), which specifically interacts with and inactivates the ERK1/2 MAP kinases. However, molecular mechanisms underlying DUSP5 induction are not well known. Here, we found that the DUSP5 mRNA induction depends on a transcriptional regulation by the MAPK pathway, without any modification of the mRNA stability. Two contiguous CArG boxes that bind serum response factor (SRF) were found in a 1 Kb promoter region, as well as several E twenty-six transcription factor family binding sites (EBS). These sites potentially bind Elk-1, a transcription factor activated by ERK1/2. Using wild type or mutated DUSP5 promoter reporters, we demonstrated that SRF plays a crucial role in serum induction of DUSP5 promoter activity, the proximal CArG box being important for SRF binding in vitro and in living cells. Moreover, in vitro and in vivo binding data of Elk-1 to the same promoter region further demonstrate a role for Elk-1 in the transcriptional regulation of DUSP5. SRF and Elk-1 form a ternary complex (Elk-1-SRF-DNA) on DUSP5 promoter, consequently providing a link to an important negative feedback tightly regulating phosphorylated ERK levels.
Collapse
Affiliation(s)
- Camille Buffet
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Maria-Grazia Catelli
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Karine Hecale-Perlemoine
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Léopoldine Bricaire
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Camille Garcia
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Anne Gallet-Dierick
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Stéphanie Rodriguez
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Françoise Cormier
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Lionel Groussin
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
- Department of Endocrinology, Cochin Hospital, Paris, France
- * E-mail:
| |
Collapse
|
57
|
Larsen S, Kawamoto S, Tanuma SI, Uchiumi F. The hematopoietic regulator, ELF-1, enhances the transcriptional response to Interferon-β of the OAS1 anti-viral gene. Sci Rep 2015; 5:17497. [PMID: 26643049 PMCID: PMC4672336 DOI: 10.1038/srep17497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Interferon (IFN) therapy is effective in treating cancers, haematological and virus induced diseases. The classical Jak/Stat pathway of IFN signal transduction leading to changes in transcriptional activity is well established but alone does not explain the whole spectrum of cellular responses to IFN. Gene promoters contain cis-acting sequences that allow precise and contextual binding of transcription factors, which control gene expression. Using the transcriptional response to IFN as a starting point we report a high frequency of tandem GGAA motifs in the proximal promoters of Interferon stimulated genes, suggesting a key regulatory action. Utilizing the well-characterized anti-viral gene, OAS1, as an example Interferon stimulated gene promoter containing such a duplicated GGAA motif, we have demonstrated a regulatory role of this promoter in response to IFN by mutation analysis. Furthermore, we identified ELF-1 as a direct binding factor at this motif. Additionally, recruitment of RB1 and SP1 factors to the promoter following IFN stimulation is shown. ELF-1 overexpression enhanced and knockdown of ELF-1 inhibited full activation of OAS1 by IFN stimulation. Collectively, ELF-1 binds an important duplicated GGAA cis-acting element at the OAS1 promoter and in cooperation with RB1 and SP1 recruitment contributes to regulation in response to IFN stimulation.
Collapse
Affiliation(s)
- Steven Larsen
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shota Kawamoto
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sei-ichi Tanuma
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fumiaki Uchiumi
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
58
|
Chen X, Ji Z, Webber A, Sharrocks AD. Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst Forkhead transcription factors. Nucleic Acids Res 2015; 44:1566-78. [PMID: 26578569 PMCID: PMC4770209 DOI: 10.1093/nar/gkv1120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/14/2015] [Indexed: 01/19/2023] Open
Abstract
Transcription factors belonging to the same transcription factor families contain very similar DNA binding domains and hence have the potential to bind to related DNA sequences. However, subtle differences in binding specificities can be detected in vitro with the potential to direct specific responses in vivo. Here, we have examined the binding properties of three Forkhead (FOX) transcription factors, FOXK2, FOXO3 and FOXJ3 in vivo. Extensive overlap in chromatin binding is observed, although underlying differential DNA binding specificity can dictate the recruitment of FOXK2 and FOXJ3 to chromatin. However, functionally, FOXO3-dependent gene regulation is generally mediated not through uniquely bound regions but through regions occupied by both FOXK2 and FOXO3 where both factors play a regulatory role. Our data point to a model whereby FOX transcription factors control gene expression through dynamically binding and generating partial occupancy of the same site rather than mutually exclusive binding derived by stable binding of individual FOX proteins.
Collapse
Affiliation(s)
- Xi Chen
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Zongling Ji
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Aaron Webber
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
59
|
Chamorro-Jorganes A, Lee MY, Araldi E, Landskroner-Eiger S, Fernández-Fuertes M, Sahraei M, Quiles Del Rey M, van Solingen C, Yu J, Fernández-Hernando C, Sessa WC, Suárez Y. VEGF-Induced Expression of miR-17-92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circ Res 2015; 118:38-47. [PMID: 26472816 PMCID: PMC4703066 DOI: 10.1161/circresaha.115.307408] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023]
Abstract
Supplemental Digital Content is available in the text. Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17–92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor–induced endothelial cell (EC) functions is unclear and its regulation is unknown.
Collapse
Affiliation(s)
- Aránzazu Chamorro-Jorganes
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Monica Y Lee
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Elisa Araldi
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Shira Landskroner-Eiger
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Marta Fernández-Fuertes
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Mahnaz Sahraei
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Maria Quiles Del Rey
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Coen van Solingen
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Jun Yu
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Carlos Fernández-Hernando
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.)
| | - Yajaira Suárez
- From the Vascular Biology and Therapeutics Program (A.C.-J., M.Y.L., E.A., M.F.-F., M.S., J.Y., C.F.-H., W.C.S., Y.S.), Section of Comparative Medicine (A.C.-J., E.A., M.F.-F., M.S., M.Q.R., C.F.-H., Y.S.), Departments of Pathology (A.C.-J., E.A., M.F.-F., M.S., C.F.-H., Y.S.); Pharmacology (M.Y.L., S.L.-E., W.C.S.), and Internal Medicine, Section of Cardiovascular Medicine (J.Y.), Yale University School of Medicine, New Haven, CT; and Department of Medicine, New York University School of Medicine (C.S.).
| |
Collapse
|
60
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
61
|
Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife 2015; 4. [PMID: 26146939 PMCID: PMC4548209 DOI: 10.7554/elife.06942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformation-specific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gain-of-function in congenital heart disease.
Collapse
Affiliation(s)
- Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Nicole Schonrock
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Tram Doan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Danielle de Jong
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Antoine Bondue
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Gurpreet Kaur
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Hananeh Fonoudi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Chiann-Mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Merridee A Wouters
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Plachta
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
62
|
Aguilar-Martinez E, Morrisroe C, Sharrocks AD. The ubiquitin ligase UBE3A dampens ERK pathway signalling in HPV E6 transformed HeLa cells. PLoS One 2015; 10:e0119366. [PMID: 25815718 PMCID: PMC4376912 DOI: 10.1371/journal.pone.0119366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/13/2015] [Indexed: 11/23/2022] Open
Abstract
Signalling through the ERK MAP kinase pathway plays an important role in many biological processes and it is often deregulated in disease states such as cancer. One major effect of MAP kinase signalling is to promote gene expression through the phosphorylation and activation of transcription factors like ELK1. ELK1 in turn controls the activity of immediate-early genes such as FOS. Here we have used ELK1 activation in HeLa cells as a read out to conduct a genome-wide siRNA screen to identify negative regulators of ERK-mediated immediate-early gene activation. One of the candidates that we identified was the E3 ubiquitin ligase UBE3A/E6-AP. Reductions in UBE3A levels cause increased basal levels of ERK activity, a loss of growth factor-mediated ERK activation and concomitant defects in immediate-early gene expression. Thus, UBE3A acts to dampen down basal level ERK activation and to prime the pathway for growth factor-mediated activation. Mechanistically, we demonstrate that UBE3A functions in HeLa cells through its binding partner, HPV18 E6 protein and the E6 target protein p53. Loss of either E6 or p53 blocks the effect of UBE3A depletion on ERK pathway signalling, indicating that in the context of oncogenic viral protein expression, UBE3A plays an important role in negating the consequences of p53 activation on ERK pathway signalling.
Collapse
Affiliation(s)
- Elisa Aguilar-Martinez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Claire Morrisroe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Rössler OG, Glatzel D, Thiel G. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors. Exp Cell Res 2015; 332:116-27. [PMID: 25645941 DOI: 10.1016/j.yexcr.2015.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1.
Collapse
Affiliation(s)
- Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany
| | - Daniel Glatzel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, D-66421 Homburg, Germany.
| |
Collapse
|
64
|
Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet JN, Kellis M, Mukherjee S, Sinha S, Hartemink AJ, West AE, Jarvis ED. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 2014; 346:1256780. [PMID: 25504732 DOI: 10.1126/science.1256780] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.
Collapse
Affiliation(s)
- Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| | - Andreas R Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Blatti
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James M Ward
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jean-Nicoles Audet
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | | | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
65
|
Kim HR, Lee HN, Lim K, Surh YJ, Na HK. 15-Deoxy-Δ12,14-prostaglandin J2 induces expression of 15-hydroxyprostaglandin dehydrogenase through Elk-1 activation in human breast cancer MDA-MB-231 cells. Mutat Res 2014; 768:6-15. [PMID: 25773924 DOI: 10.1016/j.mrfmmm.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Overproduction of prostaglandin E2 (PGE2) has been reported to be implicated in carcinogenesis. The intracellular level of PGE2 is maintained not only by its biosynthesis, but also by inactivation/degradation. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme that catalyzes the conversion of oncogenic PGE2 to a biologically inactive keto metabolite. In the present study, we demonstrate that 15-deoxy-Δ(12,14)-prostaglandin J2 (15 d-PGJ2), one of the terminal products of cyclooxygenase-2, updregulates the expression and the activity of 15-PGDH in human breast cancer MDA-MB-231 cells. By using deletion constructs of the 15-PGDH promoter, we have found that E-twenty six (Ets) is the most essential determinant for 15-PGDH induction. 15 d-PGJ2 induced phosphorylation of Elk-1, one of Ets transcription factor family members, in the nucleus. Knockdown of Elk-1 abolished the ability of 15 d-PGJ2 to upregulate 15-PGDH expression. Furthermore, 15 d-PGJ2-mediated activation of Elk-1 was found to be dependent on activation of extracellular-signal related kinase (ERK) 1/2. Treatment of U0126, a pharmacological inhibitor of MEK1/2-ERK, abolished phosphorylation and DNA binding of Elk-1 as well as 15-PGDH induction in 15 d-PGJ2-treated MDA-MB-231 cells. Moreover, 15 d-PGJ2 generated reactive oxygen species (ROS), which contribute to the expression of 15-PGDH as well as phosphorylation of ERK1/2 and Elk-1. 15 d-PGJ2 inhibited the migration of MDA-MB-231 cells, which was attenuated by transient transfection with 15-PGDH siRNA. Taken together, these findings suggest that 15 d-PGJ2 induces the expression of 15-PGDH through ROS-mediated activation of ERK1/2 and subsequently Elk-1 in the MDA-MB-231 cells, which may contribute to tumor suppressive activity of this cyclopentenone prostaglandin.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Ha-Na Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea.
| |
Collapse
|
66
|
Cadet JL, Brannock C, Jayanthi S, Krasnova IN. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 2014; 51:696-717. [PMID: 24939695 PMCID: PMC4359351 DOI: 10.1007/s12035-014-8776-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023]
Abstract
Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | | | |
Collapse
|
67
|
Abstract
Esnault and colleagues (pp. 943-958) take a genomics approach to investigate the role of SRF (serum response factor) in the serum response of fibroblasts. The well-established dual role of SRF with alternative cofactors and responsiveness to two signaling pathways is illustrated at the genome-wide level, yet new insight comes from this global picture.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
68
|
Thiel G, Müller I, Rössler OG. Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol 2014; 388:10-9. [PMID: 24631481 DOI: 10.1016/j.mce.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Egr-1 and the related zinc finger transcription factors Egr-2, Egr-3, and Egr-4 are stimulated by many extracellular signaling molecules and represent a convergence point for intracellular signaling cascades. Egr-1 expression is induced in insulinoma cells and pancreatic β-cells following stimulation with either glucose, or pregnenolone sulfate. Moreover, stimulation of Gαq and Gαs-coupled receptors enhances EGR-1 gene transcription. Functional studies revealed that Egr transcription factors control insulin biosynthesis via regulation of Pdx-1 expression. Glucose homeostasis and pancreatic islet size are regulated by Egr transcription factors, indicating that these proteins control central physiological parameters regulated by pancreatic β-cells. In addition, Egr-1 is an integral part of the insulin receptor signaling cascade in insulin-responsive tissues and influences insulin resistance.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | - Isabelle Müller
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
69
|
Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014; 28:943-58. [PMID: 24732378 PMCID: PMC4018493 DOI: 10.1101/gad.239327.114] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
Abstract
The transcription factor SRF (serum response factor) recruits two families of coactivators, the MRTFs (myocardin-related transcription factors) and the TCFs (ternary complex factors), to couple gene transcription to growth factor signaling. Here we investigated the role of the SRF network in the immediate transcriptional response of fibroblasts to serum stimulation. SRF recruited its cofactors in a gene-specific manner, and virtually all MRTF binding was directed by SRF. Much of SRF DNA binding was serum-inducible, reflecting a requirement for MRTF-SRF complex formation in nucleosome displacement. We identified 960 serum-responsive SRF target genes, which were mostly MRTF-controlled, as assessed by MRTF chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) and/or sensitivity to MRTF-linked signals. MRTF activation facilitates RNA polymerase II (Pol II) recruitment or promoter escape according to gene context. MRTF targets encode regulators of the cytoskeleton, transcription, and cell growth, underpinning the role of SRF in cytoskeletal dynamics and mechanosensing. Finally, we show that specific activation of either MRTFs or TCFs can reset the circadian clock.
Collapse
Affiliation(s)
| | | | | | - Phil East
- Bioinformatics and Biostatistics Group
| | | | - Nik Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
70
|
Xie L. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics 2014; 15:301. [PMID: 24758171 PMCID: PMC4023608 DOI: 10.1186/1471-2164-15-301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serum response factor (SRF) is a widely expressed transcription factor involved in multiple regulatory programs. It is believed that SRF can toggle between disparate programs of gene expression through association with different cofactors. However, the direct evidence as to how these factors function on a genome-wide level is still lacking. RESULTS In the present study, I explored the functions of SRF and its representative cofactors, megakaryoblastic leukemia 1/2 (MKL1/2) and ETS-domain protein 4 (ELK4), during fungal infection challenge in macrophages. The knockdown study, combined with gene expression array analysis, revealed that MKL1/2 regulated SRF-dependent genes were related to actin cytoskeleton organization, while ELK4 regulated SRF-dependent genes were related to external stimulus responses. Subsequent chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) suggested that many of these regulations were mediated directly in cis. CONCLUSIONS I conclude that SRF utilizes MKL1/2 to fulfill steady state cellular functions, including cytoskeletal organization, and utilizes ELK4 to facilitate acute responses to external infection. Together, these findings indicate that SRF, along with its two cofactors, are important players in both cellular homeostasis and stress responses in macrophages.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
71
|
WDR5, ASH2L, and RBBP5 control the efficiency of FOS transcript processing. Cell Mol Biol Lett 2014; 19:215-32. [PMID: 24715476 PMCID: PMC6275726 DOI: 10.2478/s11658-014-0190-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/31/2014] [Indexed: 01/03/2023] Open
Abstract
H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
Collapse
|
72
|
Site-specific association with host and viral chromatin by Kaposi's sarcoma-associated herpesvirus LANA and its reversal during lytic reactivation. J Virol 2014; 88:6762-77. [PMID: 24696474 DOI: 10.1128/jvi.00268-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and LBS2) on viral DNA and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here, we have examined LANA interactions with host chromatin on a genome-wide scale using chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LANA-binding site 1 (LBS1) motif in KSHV DNA. Comparison of the ChIP-seq profile with whole-transcriptome (high-throughput sequencing of RNA transcripts [RNA-seq]) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression. IMPORTANCE Here, we employ complementary genome-wide analyses to evaluate the distribution of the highly abundant latency-associated nuclear antigen, LANA, on the host genome and its impact on host gene expression during KSHV latent infection. Combined, ChIP-seq and RNA-seq reveal that LANA accumulates at active gene promoters that harbor specific short DNA sequences that are highly reminiscent of its cognate binding sites in the virus genome. Unexpectedly, we found that such association does not lead to remodeling of global host transcription during latency. We also report for the first time that LANA's ability to bind host and viral chromatin is highly dynamic and is disrupted in cells undergoing an extensive lytic reactivation. This therefore suggests that the association of LANA to chromatin during a productive infection cycle is controlled by a new regulatory mechanism.
Collapse
|
73
|
Zahoor Z, Lockyer AE, Davies AJ, Kirk RS, Emery AM, Rollinson D, Jones CS, Noble LR, Walker AJ. Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products. PLoS One 2014; 9:e93215. [PMID: 24663063 PMCID: PMC3963999 DOI: 10.1371/journal.pone.0093215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs) that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml) for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host.
Collapse
Affiliation(s)
- Zahida Zahoor
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - Anne E. Lockyer
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Angela J. Davies
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratory, Natural History Museum, London, United Kingdom
| | - Catherine S. Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Leslie R. Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Science, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
74
|
Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown. J Virol 2014; 88:6003-11. [PMID: 24623429 DOI: 10.1128/jvi.00501-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Herpesvirus capsid morphogenesis occurs in the nucleus, while final maturation takes place in the cytosol, requiring translocation of capsids through the nuclear envelope. The nuclear egress complex, consisting of homologs of herpes simplex virus pUL31 and pUL34, is required for efficient nuclear egress via primary envelopment and de-envelopment. Recently, we described an alternative mode of nuclear escape by fragmentation of the nuclear envelope induced by replication-competent pUL31 and pUL34 deletion mutants of the alphaherpesvirus pseudorabies virus (PrV), which had been selected by serial passaging in cell culture. Both passaged viruses carry congruent mutations in seven genes, including UL46, which encodes one of the major tegument proteins. Herpesvirus pUL46 homologs have recently been shown to activate the PI3K-Akt and ERK1/2 signaling pathways, which are involved in regulation of mitosis and apoptosis. Since in uninfected cells fragmentation of the nuclear envelope occurs during mitosis and apoptosis, we analyzed whether pUL46 of PrV is involved in signaling events impairing the integrity of the nuclear envelope. We show here that PrV pUL46 is able to induce phosphorylation of ERK1/2 and, thus, expression of ERK1/2 target genes but fails to activate the PI3K-Akt pathway. Deletion of UL46 from PrV-ΔUL34Pass and PrV-ΔUL31Pass or replacement by wild-type UL46 resulted in enhanced nuclear envelope breakdown, indicating that the mutations in pUL46 may limit the extent of NEBD. Thus, although pUL46 induces ERK1/2 phosphorylation, controlling the integrity of the nuclear envelope is independent of the ERK1/2 signaling pathway. IMPORTANCE Herpesvirus nucleocapsids can leave the nucleus by regulated, vesicle-mediated transport through the nuclear envelope, designated nuclear egress, or by inducing nuclear envelope breakdown (NEBD). The viral proteins involved in NEBD are unknown. We show here that the pseudorabies virus tegument protein pUL46 induces the ERK1/2 signaling pathway and modulates NEBD. However, these two processes are independent and ERK1/2 signaling induced by pUL46 is not involved in herpesvirus-induced NEBD.
Collapse
|
75
|
Sillivan SE, Whittard JD, Jacobs MM, Ren Y, Mazloom AR, Caputi FF, Horvath M, Keller E, Ma’ayan A, Pan YX, Chiang LW, Hurd YL. ELK1 transcription factor linked to dysregulated striatal mu opioid receptor signaling network and OPRM1 polymorphism in human heroin abusers. Biol Psychiatry 2013; 74:511-9. [PMID: 23702428 PMCID: PMC4070524 DOI: 10.1016/j.biopsych.2013.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abuse of heroin and prescription opiate medications has grown to disturbing levels. Opioids mediate their effects through mu opioid receptors (MOR), but minimal information exists regarding MOR-related striatal signaling relevant to the human condition. The striatum is a structure central to reward and habitual behavior and neurobiological changes in this region are thought to underlie the pathophysiology of addiction disorders. METHODS We examined molecular mechanisms related to MOR in postmortem human brain striatal specimens from a homogenous European Caucasian population of heroin abusers and control subjects and in an animal model of heroin self-administration. Expression of ets-like kinase 1 (ELK1) was examined in relation to polymorphism of the MOR gene OPRM1 and drug history. RESULTS A characteristic feature of heroin abusers was decreased expression of MOR and extracellular regulated kinase signaling networks, concomitant with dysregulation of the downstream transcription factor ELK1. Striatal ELK1 in heroin abusers associated with the polymorphism rs2075572 in OPRM1 in a genotype dose-dependent manner and correlated with documented history of heroin use, an effect reproduced in an animal model that emphasizes a direct relationship between repeated heroin exposure and ELK1 dysregulation. A central role of ELK1 was evidenced by an unbiased whole transcriptome microarray that revealed ~20% of downregulated genes in human heroin abusers are ELK1 targets. Using chromatin immune precipitation, we confirmed decreased ELK1 promoter occupancy of the target gene Use1. CONCLUSIONS ELK1 is a potential key transcriptional regulatory factor in striatal disturbances associated with heroin abuse and relevant to genetic mutation of OPRM1.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - John D. Whittard
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Michelle M. Jacobs
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Yanhua Ren
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Amin R. Mazloom
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Francesca F. Caputi
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Monika Horvath
- Department of Forensic Medicine, Uppsala University, Uppsala, Sweden
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Eva Keller
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| | - Ying-Xian Pan
- Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | | | - Yasmin L. Hurd
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|
76
|
Bruck T, Yanuka O, Benvenisty N. Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-Linked ELK-1 gene. Cell Rep 2013; 4:262-70. [PMID: 23871667 DOI: 10.1016/j.celrep.2013.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 06/02/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
Abstract
Female human pluripotent stem cells show vast heterogeneity regarding the status of X chromosome inactivation. By comparing the gene expression profile of cells with two active X chromosomes (XaXa cells) to that of cells with only one active X chromosome (XaXi cells), a set of autosomal genes was shown to be overexpressed in the XaXa cells. Among these genes, we found significant enrichment for genes regulated by the X-linked transcription factor ELK-1. Comparison of the phenotype of XaXa and XaXi cells demonstrated differences in programmed cell death and differentiation, implying some growth disadvantage of the XaXa cells. Interestingly, ELK-1-overexpressing cells mimicked the phenotype of XaXa cells, whereas knockdown of ELK-1 with small hairpin RNA mimicked the phenotype of XaXi cells. When cultured at low oxygen levels, these cellular differences were considerably weakened. Our analysis implies a role of ELK-1 in the differences between pluripotent stem cells with distinct X chromosome inactivation statuses.
Collapse
Affiliation(s)
- Tal Bruck
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
77
|
Göke J, Chan YS, Yan J, Vingron M, Ng HH. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 2013; 50:844-55. [PMID: 23727019 DOI: 10.1016/j.molcel.2013.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023]
Abstract
The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signal-transduction cascade is one of the key pathways regulating proliferation and differentiation in development and disease. ERK signaling is required for human embryonic stem cells' (hESCs') self-renewing property. Here, we studied the convergence of the ERK signaling cascade at the DNA by mapping genome-wide kinase-chromatin interactions for ERK2 in hESCs. We observed that ERK2 binding occurs near noncoding genes and histone, cell-cycle, metabolism, and pluripotency-associated genes. We find that the transcription factor ELK1 is essential in hESCs and that ERK2 co-occupies promoters bound by ELK1. Strikingly, promoters bound by ELK1 without ERK2 are occupied by Polycomb group proteins that repress genes involved in lineage commitment. In summary, we propose a model wherein extracellular-signaling-stimulated proliferation and intrinsic repression of differentiation are integrated to maintain the identity of hESCs.
Collapse
Affiliation(s)
- Jonathan Göke
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | |
Collapse
|
78
|
Patki M, Chari V, Sivakumaran S, Gonit M, Trumbly R, Ratnam M. The ETS domain transcription factor ELK1 directs a critical component of growth signaling by the androgen receptor in prostate cancer cells. J Biol Chem 2013; 288:11047-65. [PMID: 23426362 DOI: 10.1074/jbc.m112.438473] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is essential for diverse aspects of prostate development and function. Molecular mechanisms by which prostate cancer (PC) cells redirect AR signaling to genes that primarily support growth are unclear. A systematic search for critical AR-tethering proteins led to ELK1, an ETS transcription factor of the ternary complex factor subfamily. Although genetically redundant, ELK1 was obligatory for AR-dependent growth and clonogenic survival in both hormone-dependent PC and castration-recurrent PC cells but not for AR-negative cell growth. AR required ELK1 to up-regulate a major subset of its target genes that was strongly and primarily enriched for cell growth functions. AR functioned as a coactivator of ELK1 by association through its A/B domain, bypassing the classical mechanism of ELK1 activation by phosphorylation and without inducing ternary complex target genes. The ELK1-AR synergy per se was ligand-independent, although it required ligand for nuclear localization of AR as targeting the AR A/B domain to the nucleus recapitulated the action of hormone; accordingly, Casodex was a poor antagonist of the synergy. ELK3, the closest substitute for ELK1 in structure/function and genome recognition, did not interact with AR. ELK1 thus directs selective and sustained gene induction that is a substantial and critical component of growth signaling by AR in PC cells. The ELK1-AR interaction offers a functionally tumor-selective drug target.
Collapse
Affiliation(s)
- Mugdha Patki
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201-2013, USA
| | | | | | | | | | | |
Collapse
|
79
|
Odrowaz Z, Sharrocks AD. The ETS transcription factors ELK1 and GABPA regulate different gene networks to control MCF10A breast epithelial cell migration. PLoS One 2012; 7:e49892. [PMID: 23284628 PMCID: PMC3527487 DOI: 10.1371/journal.pone.0049892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/29/2022] Open
Abstract
Members of the ETS transcription factor family often target the same binding regions and hence have the potential to regulate the same genes and downstream biological processes. However, individual family members also preferentially bind to other genomic regions, thus providing the potential for controlling distinct transcriptional programmes and generating specific biological effects. The ETS transcription factor ELK1 controls cell migration in breast epithelial cells through targeting a cohort of genes, independently from another family member GABPA, and therefore achieves biological specificity. Here, we demonstrate that GABPA also controls cell migration in breast epithelial cells. However, GABPA controls the expression of a different network of target genes to ELK1. Both direct and indirect target genes for GABPA are identified and amongst the direct targets we confirm the importance of RAC1 and KIF20A for cell migration. Therefore, although ELK1 and GABPA ultimately control the same biological process, they do so by regulating different cohorts of target genes associated with cytoskeletal functions and cell migration control.
Collapse
Affiliation(s)
- Zaneta Odrowaz
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
80
|
Khozoie C, Borland MG, Zhu B, Baek S, John S, Hager GL, Shah YM, Gonzalez FJ, Peters JM. Analysis of the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) cistrome reveals novel co-regulatory role of ATF4. BMC Genomics 2012; 13:665. [PMID: 23176727 PMCID: PMC3556323 DOI: 10.1186/1471-2164-13-665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The present study coupled expression profiling with chromatin immunoprecipitation sequencing (ChIP-seq) to examine peroxisome proliferator-activated receptor-β/δ (PPARβ/δ)-dependent regulation of gene expression in mouse keratinocytes, a cell type that expresses PPARβ/δ in high concentration. RESULTS Microarray analysis elucidated eight different types of regulation that modulated PPARβ/δ-dependent gene expression of 612 genes ranging from repression or activation without an exogenous ligand, repression or activation with an exogenous ligand, or a combination of these effects. Bioinformatic analysis of ChIP-seq data demonstrated promoter occupancy of PPARβ/δ for some of these genes, and also identified the presence of other transcription factor binding sites in close proximity to PPARβ/δ bound to chromatin. For some types of regulation, ATF4 is required for ligand-dependent induction of PPARβ/δ target genes. CONCLUSIONS PPARβ/δ regulates constitutive expression of genes in keratinocytes, thus suggesting the presence of one or more endogenous ligands. The diversity in the types of gene regulation carried out by PPARβ/δ is consistent with dynamic binding and interactions with chromatin and indicates the presence of complex regulatory networks in cells expressing high levels of this nuclear receptor such as keratinocytes. Results from these studies are the first to demonstrate that differences in DNA binding of other transcription factors can directly influence the transcriptional activity of PPARβ/δ.
Collapse
Affiliation(s)
- Combiz Khozoie
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael G Borland
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
- Present address: Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
- Present address: Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yatrik M Shah
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20892, USA
- Present address: Department of Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
81
|
Pallai R, Bhaskar A, Sodi V, Rice LM. Ets1 and Elk1 transcription factors regulate cancerous inhibitor of protein phosphatase 2A expression in cervical and endometrial carcinoma cells. Transcription 2012; 3:323-35. [PMID: 23117818 DOI: 10.4161/trns.22518] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as a proto-oncogene that is overexpressed in various types of human cancers. CIP2A acts by inhibiting protein phosphatase 2A-dependent destabilization of c-Myc, resulting in increased cell proliferation. Here, we have characterized the proximal promoter region of the human CIP2A gene in cervical, endometrial and liver carcinoma cells. The 5' flanking minimal proximal promoter of the CIP2A gene consists of putative binding sites for Ets1 and Elk1 in forward and reverse orientations. Here, we show that Ets1 and Elk1 binding is essential for CIP2A basal expression in several urogenital cancer cell lines. Interestingly, both Ets1 and Elk1 are required together for CIP2A expression, as siRNA knockdown of Ets1 and Elk1 together decreased CIP2A gene transcription, whereas knockdown of Ets1 or Elk1 alone had no effect. Moreover, ectopic expression of Ets1 and Elk1 together increased CIP2A expression. To gain physiological significance of the Ets1 and Elk1 regulation we observed, a panel of matched human cervical carcinoma samples was analyzed for the expression of CIP2A and Ets1 and/or Elk1. We found a direct correlation between the levels of CIP2A and the levels of Ets1 and Elk1. Our results suggest that the binding of Ets1 and Elk1 together to the proximal CIP2A promoter is absolutely required for CIP2A expression in cervical, endometrial and liver carcinoma cell lines. Thus, different factors regulate CIP2A expression in a cell-type specific manner. As previous work has shown a requirement for only Ets1 in prostate and gastric carcinomas, our results now indicate that CIP2A regulation is more complex than previously determined.
Collapse
Affiliation(s)
- Rajash Pallai
- Department of Cancer Signaling and Cell Cycle, Venenum Biodesign, L.L.C, Hamilton, NJ, USA
| | | | | | | |
Collapse
|
82
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
83
|
The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol 2012; 33:227-36. [PMID: 23109430 DOI: 10.1128/mcb.00881-12] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are nearly 50 forkhead (FOX) transcription factors encoded in the human genome and, due to sharing a common DNA binding domain, they are all thought to bind to similar DNA sequences. It is therefore unclear how these transcription factors are targeted to specific chromatin regions to elicit specific biological effects. Here, we used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate the genome-wide chromatin binding mechanisms used by the forkhead transcription factor FOXM1. In keeping with its previous association with cell cycle control, we demonstrate that FOXM1 binds and regulates a group of genes which are mainly involved in controlling late cell cycle events in the G(2) and M phases. However, rather than being recruited through canonical RYAAAYA forkhead binding motifs, FOXM1 binding is directed via CHR (cell cycle genes homology region) elements. FOXM1 binds these elements through protein-protein interactions with the MMB transcriptional activator complex. Thus, we have uncovered a novel and unexpected mode of chromatin binding of a FOX transcription factor that allows it to specifically control cell cycle-dependent gene expression.
Collapse
|
84
|
Selective requirement for Mediator MED23 in Ras-active lung cancer. Proc Natl Acad Sci U S A 2012; 109:E2813-22. [PMID: 22988093 DOI: 10.1073/pnas.1204311109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
K-RAS-activating mutations occur frequently in non-small cell lung cancer, leading to aberrant activation of the Ras-MAPK signaling pathway that contributes to the malignant phenotype. However, the development of Ras-targeted therapeutics remains challenging. Here, we show that MED23, a component of the multisubunit Mediator complex that is known to integrate signaling and gene activities, is selectively important for Ras-active lung cancer. By screening a large panel of human lung cancer cell lines with or without a Ras mutation, we found that Med23 RNAi specifically inhibits the proliferation and tumorigenicity of lung cancer cells with hyperactive Ras activity. Med23 deficiency in fibroblasts selectively inhibited the oncogenic transformation induced by Ras but not by c-Myc. The transcription factor ELK1, which is phosphorylated by MAPK for relaying Ras signaling to MED23, also was required for the Ras-driven oncogenesis. Transcriptome analysis revealed that MED23 and ELK1 co-regulate a common set of target genes enriched in regulating cell-cycle and -proliferation functions to support the Ras dependency. Furthermore, MED23 was up-regulated by Ras transformation in correlation with the strength of Ras signaling as indicated by the ELK1 phosphorylation level and was found to be overexpressed in both Ras-mutated lung cancer cell lines and primary tumor samples. Remarkably, lower Med23 expression predicted better survival in Ras-active lung cancer patients and xenograft mice. Collectively, our findings demonstrate a critical role for MED23 in enabling the "Ras-addiction" of lung carcinogenesis, thus providing a vulnerable target for the treatment of Ras-active lung cancer.
Collapse
|
85
|
Kornacker K, Rye MB, Håndstad T, Drabløs F. The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding. BMC Bioinformatics 2012; 13:176. [PMID: 22827163 PMCID: PMC3480842 DOI: 10.1186/1471-2105-13-176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-Seq) is the most frequently used method to identify the binding sites of transcription factors. Active binding sites can be seen as peaks in enrichment profiles when the sequencing reads are mapped to a reference genome. However, the profiles are normally noisy, making it challenging to identify all significantly enriched regions in a reliable way and with an acceptable false discovery rate. Results We present the Triform algorithm, an improved approach to automatic peak finding in ChIP-Seq enrichment profiles for transcription factors. The method uses model-free statistics to identify peak-like distributions of sequencing reads, taking advantage of improved peak definition in combination with known characteristics of ChIP-Seq data. Conclusions Triform outperforms several existing methods in the identification of representative peak profiles in curated benchmark data sets. We also show that Triform in many cases is able to identify peaks that are more consistent with biological function, compared with other methods. Finally, we show that Triform can be used to generate novel information on transcription factor binding in repeat regions, which represents a particular challenge in many ChIP-Seq experiments. The Triform algorithm has been implemented in R, and is available via http://tare.medisin.ntnu.no/triform.
Collapse
Affiliation(s)
- Karl Kornacker
- Division of Sensory Biophysics, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
86
|
Maston GA, Landt SG, Snyder M, Green MR. Characterization of enhancer function from genome-wide analyses. Annu Rev Genomics Hum Genet 2012; 13:29-57. [PMID: 22703170 DOI: 10.1146/annurev-genom-090711-163723] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been a recent surge in the use of genome-wide methodologies to identify and annotate the transcriptional regulatory elements in the human genome. Here we review some of these methodologies and the conceptual insights about transcription regulation that have been gained from the use of genome-wide studies. It has become clear that the binding of transcription factors is itself a highly regulated process, and binding does not always appear to have functional consequences. Numerous properties have now been associated with regulatory elements that may be useful in their identification. Several aspects of enhancer function have been shown to be more widespread than was previously appreciated, including the highly combinatorial nature of transcription factor binding, the postinitiation regulation of many target genes, and the binding of enhancers at early stages to maintain their competence during development. Going forward, the integration of multiple genome-wide data sets should become a standard approach to elucidate higher-order regulatory interactions.
Collapse
Affiliation(s)
- Glenn A Maston
- Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
87
|
Hollenhorst PC. RAS/ERK pathway transcriptional regulation through ETS/AP-1 binding sites. Small GTPases 2012; 3:154-8. [PMID: 22653334 DOI: 10.4161/sgtp.19630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The RAS/RAF/MEK/ERK signaling pathway is activated by mutation in many cancers. Neighboring ETS and AP-1 DNA binding sequences can act as response elements for transcriptional activation by this pathway. ERK phosphorylation of an ETS transcription factor is one mechanism of activating the RAS/ERK gene expression program that can promote cancer cell phenotypes such as proliferation, invasion, and metastasis. Recent genome-wide mapping of ETS proteins over-expressed by chromosomal rearrangement in prostate cancer reveals a second mechanism for activation of this gene expression program. An oncogenic subset of ETS transcription factors can activate RAS/ERK target genes even in the absence of RAS/ERK pathway activation by binding ETS/AP-1 sequences. Thus, regulation of cancer cell invasion and metastasis via ETS/AP-1 sequence elements depends on which ETS protein is bound, and the status of the RAS/ERK pathway. This commentary will focus on what is known about the selectivity of ETS/AP-1 sequences for different ETS transcription factors and the transcriptional consequences of ETS protein selection.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
88
|
Immediate-early gene activation by the MAPK pathways: what do and don't we know? Biochem Soc Trans 2012; 40:58-66. [PMID: 22260666 DOI: 10.1042/bst20110636] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The study of IE (immediate-early) gene activation mechanisms has provided numerous paradigms for how transcription is controlled in response to extracellular signalling. Many of the findings have been derived from investigating one of the IE genes, FOS, and the models extrapolated to regulatory mechanisms for other IE genes. However, whereas the overall principles of activation appear similar, recent evidence suggests that the underlying mechanistic details may differ depending on cell type, cellular stimulus and IE gene under investigation. In the present paper, we review recent advances in our understanding of IE gene transcription, chiefly focusing on FOS and its activation by ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway signalling. We highlight important fundamental regulatory principles, but also illustrate the gaps in our current knowledge and the potential danger in making assumptions based on extrapolation from disparate studies.
Collapse
|
89
|
Odrowaz Z, Sharrocks AD. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet 2012; 8:e1002694. [PMID: 22589737 PMCID: PMC3349735 DOI: 10.1371/journal.pgen.1002694] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/22/2012] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled. One of the major outstanding questions in eukaryotic gene regulation is how transcription factors with seemingly very similar DNA binding specificities elicit specific biological responses. The ETS transcription factor family provides a paradigm for investigating this phenomenon. Here, we have focused on the ETS transcription factor ELK1, and by combining genome-wide binding analysis coupled with gene expression analysis we have dissected two distinct gene regulatory activities for this transcription factor. In each of these regulatory modes, ELK1 exhibits distinct DNA binding characteristics which correlate with either positive or negative transcriptional activities and give rise to functionally distinct gene expression programmes. We demonstrate a novel function for ELK1 in controlling cell migration through one of these regulatory modes. Thus, we have demonstrated a clear link between the types of regulatory region bound by a transcription factor and its ability to control gene expression (i.e. in a positive or negative manner) and the functional downstream consequences of its target gene cohort. This work has implications for understanding how members of other multi-protein transcription factor families might function to generate different downstream functional consequences through engaging with different types of regulatory regions.
Collapse
Affiliation(s)
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
90
|
Fowler KD, Kuchroo VK, Chakraborty AK. A model for how signal duration can determine distinct outcomes of gene transcription programs. PLoS One 2012; 7:e33018. [PMID: 22427931 PMCID: PMC3302786 DOI: 10.1371/journal.pone.0033018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/03/2012] [Indexed: 11/19/2022] Open
Abstract
The reason why IL-6 induces a pro-inflammatory response, while IL-10 induces an anti-inflammatory response, despite both cytokines activating the same transcription factor, STAT3, is not well understood. It is known that IL-6 induces a transient STAT3 signal and that IL-10 induces a sustained STAT3 signal due to the STAT3-induced inhibitor SOCS3's ability to bind to the IL-6R and not the IL-10R. We sought to develop a general transcriptional network that is capable of translating sustained signals into one response, while translating transient signals into a second response. The general structure of such a network is that the transcription factor STAT3 can induce both an inflammatory response and an anti-inflammatory response by inducing two different genes. The anti-inflammatory gene can bind to and inhibit the inflammatory gene's production and the inflammatory gene can bind to its own promoter and induce its own transcription in the absence of the signal. One prediction that can be made from such a network is that in SOCS3-/- mice, where IL-6 induces a sustained STAT3 signal, that IL-6 would act as an anti-inflammatory cytokine, which has indeed been observed experimentally in the literature.
Collapse
Affiliation(s)
- Kevin D. Fowler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
91
|
Uchiumi F, Miyazaki S, Tanuma SI. [Biological functions of the duplicated GGAA-motifs in various human promoter regions]. YAKUGAKU ZASSHI 2011; 131:1787-800. [PMID: 22129877 DOI: 10.1248/yakushi.131.1787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription is one of the most fundamental cellular functions and is an enzyme-complex mediated reaction that converts DNA sequences into mRNA. TATA-box is known to be an important motif for transcription. However, there are majority of promoters that have no TATA-box. They are called as TATA-less promoters and possess other elements that determine the transcription start site (TSS) of the genes. Multiple protein factors including ETS family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ETS binding motifs play important roles in regulation of various promoters. Here, we propose that the duplication and multiplication of the GGAA motifs are responsible for the initiation of transcription from TATA-less promoters.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | |
Collapse
|
92
|
The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol 2011; 32:385-98. [PMID: 22083952 DOI: 10.1128/mcb.05504-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcriptional control circuitry in eukaryotic cells is complex and is orchestrated by combinatorially acting transcription factors. Forkhead transcription factors often function in concert with heterotypic transcription factors to specify distinct transcriptional programs. Here, we demonstrate that FOXK2 participates in combinatorial transcriptional control with the AP-1 transcription factor. FOXK2 binding regions are widespread throughout the genome and are often coassociated with AP-1 binding motifs. FOXK2 acts to promote AP-1-dependent gene expression changes in response to activation of the AP-1 pathway. In this context, FOXK2 is required for the efficient recruitment of AP-1 to chromatin. Thus, we have uncovered an important new molecular mechanism that controls AP-1-dependent gene expression.
Collapse
|
93
|
Thiel G, Rössler OG. Immediate-early transcriptional response to angiotensin II in human adrenocortical cells. Endocrinology 2011; 152:4211-23. [PMID: 21914770 DOI: 10.1210/en.2011-1243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiotensin II binds to the angiotensin II receptors type 1 (AT1 receptors) in adrenocortical cells and triggers an intracellular signaling cascade leading to changes in the gene expression pattern. Here, we show that stimulation with angiotensin II induces the expression of biologically active early growth response (Egr)-1, a zinc finger transcription factor, in human H295R adrenocortical cells. Expression of a dominant-negative mutant of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, prevented Egr-1 expression in angiotensin II-stimulated H295R cells, indicating that Ets-like protein-1 (Elk-1) or related ternary complex factors connect the intracellular signaling cascade elicited by activation of AT1 receptors with transcription of the Egr-1 gene. These data were corroborated by the fact that angiotensin II stimulation increased the transcription activation potential of Elk-1. In addition, activator protein-1 transcriptional activity was significantly elevated in angiotensin II-treated H295R cells. Expression of c-Jun and c-Fos was increased as well as the transcription activation potential of c-Fos. Expression of a dominant-negative mutant of Elk-1 reduced c-Fos expression in angiotensin II-stimulated adrenocortical cells, suggesting that the serum response element within the c-Fos promoter functions as an angiotensin II-response element. Expression of a dominant-negative mutant of c-Jun reduced activator protein-1 activity in angiotensin II-stimulated adrenocortical cells and reduced the up-regulation of c-Jun after angiotensin II stimulation. Thus, c-Jun regulates its own expression in adrenocortical cells. Together, the data show that angiotensin II stimulation activates the transcription factors Egr-1, Elk-1, c-Jun, and c-Fos in adrenocortical cells, leading to stimulus-dependent changes in the gene expression pattern.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | | |
Collapse
|
94
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
95
|
Kossenkov AV, Vachani A, Chang C, Nichols C, Billouin S, Horng W, Rom WN, Albelda SM, Showe MK, Showe LC. Resection of non-small cell lung cancers reverses tumor-induced gene expression changes in the peripheral immune system. Clin Cancer Res 2011; 17:5867-77. [PMID: 21807633 DOI: 10.1158/1078-0432.ccr-11-0737] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the interactions of non-small cell lung cancer (NSCLC) tumors with the immune system at the level of mRNA and microRNA (miRNA) expression and to define expression signatures that characterize the presence of a malignant tumor versus a nonmalignant nodule. EXPERIMENTAL DESIGN We have examined the changes of both mRNA and miRNA expression levels in peripheral blood mononuclear cells (PBMC) between paired samples collected from NSCLC patients before and after tumor removal using Illumina gene expression arrays. RESULTS We found that malignant tumor removal significantly changes expression of more than 3,000 protein-coding genes, especially genes in pathways associated with suppression of the innate immune response, including natural killer cell signaling and apoptosis-associated ceramide signaling. Binding sites for the ETS domain transcription factors ELK1, ELK4, and SPI1 were enriched in promoter regions of genes upregulated in the presence of a tumor. Additional important regulators included five miRNAs expressed at significantly higher levels before tumor removal. Repressed protein-coding targets of those miRNAs included many transcription factors, several involved in immunologically important pathways. Although there was a significant overlap in the effects of malignant tumors and benign lung nodules on PBMC gene expression, we identified one gene panel which indicates a tumor or nodule presence and a second panel that can distinguish malignant from nonmalignant nodules. CONCLUSIONS A tumor presence in the lung influences mRNA and miRNA expression in PBMC and this influence is reversed by tumor removal. These results suggest that PBMC gene expression signatures could be used for lung cancer diagnosis.
Collapse
|
96
|
Piva F, Giulietti M, Baldelli L, Nardi B, Bellantuono C, Armeni T, Saccucci F, Principato G. Bioinformatic analyses to select phenotype affecting polymorphisms in HTR2C gene. Hum Psychopharmacol 2011; 26:365-72. [PMID: 21717509 DOI: 10.1002/hup.1214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/13/2011] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Single nucleotide polymorphisms (SNPs) in serotonin related genes influence mental disorders, responses to pharmacological and psychotherapeutic treatments. In planning association studies, researchers that want to investigate new SNPs have to select some among a large number of candidates. Our aim is to guide researchers in the selection of the most likely phenotype affecting polymorphisms. Here, we studied serotonin receptor 2C (HTR2C) SNPs because, till now, only relatively few of about 2000 are investigated. METHODS We used the most updated and assessed bioinformatic tools to predict which variations can give rise to biological effects among 2450 HTR2C SNPs. RESULTS We suggest 48 SNPs that are worth considering in future association studies in the field of psychiatry, psychology and pharmacogenomics. Moreover, our analyses point out the biological level probably affected, such as transcription, splicing, miRNA regulation and protein structure, thus allowing to suggest future molecular investigations. CONCLUSIONS Although few association studies are available in literature, their results are in agreement with our predictions, showing that our selection methods can help to guide future association studies.
Collapse
Affiliation(s)
- Francesco Piva
- Department of Biochemistry, Biology and Genetics, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Zhang X, Gamble MJ, Stadler S, Cherrington BD, Causey CP, Thompson PR, Roberson MS, Kraus WL, Coonrod SA. Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells. PLoS Genet 2011; 7:e1002112. [PMID: 21655091 PMCID: PMC3107201 DOI: 10.1371/journal.pgen.1002112] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/13/2011] [Indexed: 11/19/2022] Open
Abstract
Peptidylarginine deiminase IV (PADI4) catalyzes the conversion of positively charged arginine and methylarginine residues to neutrally charged citrulline, and this activity has been linked to the repression of a limited number of target genes. To broaden our knowledge of the regulatory potential of PADI4, we utilized chromatin immunoprecipitation coupled with promoter tiling array (ChIP-chip) analysis to more comprehensively investigate the range of PADI4 target genes across the genome in MCF-7 breast cancer cells. Results showed that PADI4 is enriched in gene promoter regions near transcription start sites (TSSs); and, surprisingly, this pattern of binding is primarily associated with actively transcribed genes. Computational analysis found potential binding sites for Elk-1, a member of the ETS oncogene family, to be highly enriched around PADI4 binding sites; and coimmunoprecipitation analysis then confirmed that Elk-1 physically associates with PADI4. To better understand how PADI4 may facilitate gene transactivation, we then show that PADI4 interacts with Elk-1 at the c-Fos promoter and that, following Epidermal Growth Factor (EGF) stimulation, PADI4 catalytic activity facilitates Elk-1 phosphorylation, histone H4 acetylation, and c-Fos transcriptional activation. These results define a novel role for PADI4 as a transcription factor co-activator.
Collapse
Affiliation(s)
- Xuesen Zhang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Matthew J. Gamble
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sonja Stadler
- Laboratory of Chromatin Biology, Rockefeller University, New York, New York, United States of America
| | - Brian D. Cherrington
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Corey P. Causey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Paul R. Thompson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Mark S. Roberson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - W. Lee Kraus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (WLK); (SAC)
| | - Scott A. Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (WLK); (SAC)
| |
Collapse
|
98
|
Galbraith MD, Espinosa JM. Lessons on transcriptional control from the serum response network. Curr Opin Genet Dev 2011; 21:160-6. [PMID: 21316215 DOI: 10.1016/j.gde.2011.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Response to environmental stimuli is critical for cell survival and function and requires high fidelity signal transduction into the nucleus to facilitate the coordinated transcriptional regulation of appropriate gene networks. The cellular response to mitogenic stimuli provides an excellent paradigm to decipher the mechanisms mediating precise gene expression control at the transcriptional level. Here we review recent advances in our understanding of this so-called serum response network, which illuminate novel aspects of nuclear signaling mechanisms, combinatorial control by DNA binding proteins and regulation of RNA polymerase II (RNAPII) elongation.
Collapse
Affiliation(s)
- Matthew D Galbraith
- Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, CO, United States
| | | |
Collapse
|
99
|
Wells T, Rough K, Carter DA. Transcription Mapping of Embryonic Rat Brain Reveals EGR-1 Induction in SOX2 Neural Progenitor Cells. Front Mol Neurosci 2011; 4:6. [PMID: 21629823 PMCID: PMC3099308 DOI: 10.3389/fnmol.2011.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 01/04/2023] Open
Abstract
Neuronal expression of the early growth response-1 (EGR-1; NGFI-A/Zif268) transcription factor has been extensively studied in the adult mammalian brain and linked to aspects of mature physiological/behavioral function. In contrast, this factor has not been studied in detail in the embryonic brain. Here, we used a fluorescent protein-encoding Egr-1 transgene to map the cellular distribution of Egr-1 transcription in embryonic rat brain. We identified a novel, widely distributed population of GFP(+) cells, characterized as a precursor/stem cell phenotype by co-localization with SOX2/nestin/vimentin/S-100β and exclusion from other known cellular markers including DCX/BLBP/TBR2/NURR1. At both E18 and E20, these cells were located across the developing brain but concentrated in the subplate and intermediate zones. The transgene was also highly expressed in developing (NeuN(+)) striatal neurons. The authentic expression pattern that we observed for the rEgr-1 transgene sequence indicates that restriction to neuronal/precursor cells is largely driven by proximal 5(') sequence. Deletion of conserved Egr-1 silencer (neuron restrictive silencer factor) elements did not markedly alter transcriptional activity in transfected cells; this is consistent with a dominant role for positive factors in the control of cell-specific Egr-1 expression. Induction of Egr-1 in a population of SOX2(+) cells indicates a co-incidence of extrinsic (EGR-1) and cell-intrinsic (SOX2) cellular signals that may form a novel level of progenitor cell regulation. The wide distribution of EGR-1 signaling in SOX2(+) cells suggests an organizational role during late embryonic brain development.
Collapse
Affiliation(s)
- Timothy Wells
- School of Biosciences, Cardiff University Cardiff, Wales, UK
| | | | | |
Collapse
|
100
|
Evans EL, Saxton J, Shelton SJ, Begitt A, Holliday ND, Hipskind RA, Shaw PE. Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Res 2011; 39:6390-402. [PMID: 21543455 PMCID: PMC3159454 DOI: 10.1093/nar/gkr266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin–proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs.
Collapse
Affiliation(s)
- Emma L Evans
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|