51
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
52
|
Dudek M, Angelucci C, Pathiranage D, Wang P, Mallikarjun V, Lawless C, Swift J, Kadler KE, Boot-Handford RP, Hoyland JA, Lamande SR, Bateman JF, Meng QJ. Circadian time series proteomics reveals daily dynamics in cartilage physiology. Osteoarthritis Cartilage 2021; 29:739-749. [PMID: 33610821 PMCID: PMC8113022 DOI: 10.1016/j.joca.2021.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage in joints such as the hip and knee experiences repeated phases of heavy loading and low load recovery during the 24-h day/night cycle. Our previous work has shown 24 h rhythmic changes in gene expression at transcript level between night and day in wild type mouse cartilage which is lost in a circadian clock knock-out mouse model. However, it remains unknown to what extent circadian rhythms also regulate protein level gene expression in this matrix rich tissue. METHODS We investigated daily changes of protein abundance in mouse femoral head articular cartilage by performing a 48-h time-series LC-MS/MS analysis. RESULTS Out of the 1,177 proteins we identified across all time points, 145 proteins showed rhythmic changes in their abundance within the femoral head cartilage. Among these were molecules that have been implicated in key cartilage functions, including CTGF, MATN1, PAI-1 and PLOD1 & 2. Pathway analysis revealed that protein synthesis, cytoskeleton and glucose metabolism exhibited time-of-day dependent functions. Analysis of published cartilage proteomics datasets revealed that a significant portion of rhythmic proteins were dysregulated in osteoarthritis and/or ageing. CONCLUSIONS Our circadian proteomics study reveals that articular cartilage is a much more dynamic tissue than previously thought, with chondrocytes driving circadian rhythms not only in gene transcription but also in protein abundance. Our results clearly call for the consideration of circadian timing mechanisms not only in cartilage biology, but also in the pathogenesis, treatment strategies and biomarker detection in osteoarthritis.
Collapse
Affiliation(s)
- M Dudek
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - C Angelucci
- Murdoch Children's Research Institute and University of Melbourne, Parkville, Victoria, Australia
| | - D Pathiranage
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - P Wang
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - V Mallikarjun
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - C Lawless
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - J Swift
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K E Kadler
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - R P Boot-Handford
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - J A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - S R Lamande
- Murdoch Children's Research Institute and University of Melbourne, Parkville, Victoria, Australia
| | - J F Bateman
- Murdoch Children's Research Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Q-J Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
53
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
54
|
Shyrokova EY, Prassolov VS, Spirin PV. The Role of the MCTS1 and DENR Proteins in Regulating the Mechanisms Associated with Malignant Cell Transformation. Acta Naturae 2021; 13:98-105. [PMID: 34377560 PMCID: PMC8327141 DOI: 10.32607/actanaturae.11181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.
Collapse
Affiliation(s)
- E. Y. Shyrokova
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| |
Collapse
|
55
|
Yi JS, Díaz NM, D'Souza S, Buhr ED. The molecular clockwork of mammalian cells. Semin Cell Dev Biol 2021; 126:87-96. [PMID: 33810978 DOI: 10.1016/j.semcdb.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Most organisms contain self-sustained circadian clocks. These clocks can be synchronized by environmental stimuli, but can also oscillate indefinitely in isolation. In mammals this is true at the molecular level for the majority of cell types that have been examined. A core set of "clock genes" form a transcriptional/translational feedback loop (TTFL) which repeats with a period of approximately 24 h. The exact mechanism of the TTFL differs slightly in various cell types, but all involve similar family members of the core cohort of clock genes. The clock has many outputs which are unique for different tissues. Cells in diverse tissues will convert the timing signals provided by the TTFL into uniquely orchestrated transcriptional oscillations of many clock-controlled genes and cellular processes.
Collapse
Affiliation(s)
- Jonathan S Yi
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Nicolás M Díaz
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Shane D'Souza
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
56
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
57
|
Abstract
The circadian clock protein REVERBα is proposed to be a key regulator of liver metabolism. We now show that REVERBα action is critically dependent on metabolic state. Using transgenic mouse models, we show that the true role of REVERBα is to buffer against aberrant responses to metabolic perturbation, rather than confer rhythmic regulation to programs of lipid synthesis and storage, as has been thought previously. Thus, in the case of liver metabolism, the clock does not so much drive rhythmic processes, as provide protection against mistimed feeding cues. Understanding how the clock is coupled to metabolism is critical for understanding metabolic disease and the impacts of circadian disruptors such as shift work and 24-h lifestyles. The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα−/− mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity.
Collapse
|
58
|
Chowdhury D, Wang C, Lu A, Zhu H. Identifying Transcription Factor Combinations to Modulate Circadian Rhythms by Leveraging Virtual Knockouts on Transcription Networks. iScience 2020; 23:101490. [PMID: 32920484 PMCID: PMC7492989 DOI: 10.1016/j.isci.2020.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
Abstract
The mammalian circadian systems consist of indigenous, self-sustained 24-h rhythm generators. They comprise many genes, molecules, and regulators. To decode their systematic controls, a robust computational approach was employed. It integrates transcription-factor-occupancy and time-series gene-expression data as input. The model equations were constructed and solved to determine the transcriptional regulatory logics in the mouse transcriptome network. This hypothesizes to explore the underlying mechanisms of combinatorial transcriptional regulations for circadian rhythms in mouse. We reconstructed the quantitative transcriptional-regulatory networks for circadian gene regulation at a dynamic scale. Transcriptional-simulations with virtually knocked-out mutants were performed to estimate their influence on networks. The potential transcriptional-regulators-combinations modulating the circadian rhythms were identified. Of them, CLOCK/CRY1 double knockout preserves the highest modulating capacity. Our quantitative framework offers a quick, robust, and physiologically relevant way to characterize the druggable targets to modulate the circadian rhythms at a dynamic scale effectively.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Aiping Lu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hailong Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
59
|
Crosby P, Partch CL. New insights into non-transcriptional regulation of mammalian core clock proteins. J Cell Sci 2020; 133:133/18/jcs241174. [PMID: 32934011 DOI: 10.1242/jcs.241174] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian circadian rhythms drive ∼24 h periodicity in a wide range of cellular processes, temporally coordinating physiology and behaviour within an organism, and synchronising this with the external day-night cycle. The canonical model for this timekeeping consists of a delayed negative-feedback loop, containing transcriptional activator complex CLOCK-BMAL1 (BMAL1 is also known as ARNTL) and repressors period 1, 2 and 3 (PER1, PER2 and PER3) and cryptochrome 1 and 2 (CRY1 and CRY2), along with a number of accessory factors. Although the broad strokes of this system are defined, the exact molecular mechanisms by which these proteins generate a self-sustained rhythm with such periodicity and fidelity remains a topic of much research. Recent studies have identified prominent roles for a number of crucial post-transcriptional, translational and, particularly, post-translational events within the mammalian circadian oscillator, providing an increasingly complex understanding of the activities and interactions of the core clock proteins. In this Review, we highlight such contemporary work on non-transcriptional events and set it within our current understanding of cellular circadian timekeeping.
Collapse
Affiliation(s)
- Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
60
|
Adekunle DA, Wang ET. Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-Seq. Nucleic Acids Res 2020; 48:5859-5872. [PMID: 32421779 PMCID: PMC7293051 DOI: 10.1093/nar/gkaa334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Subcellular organization of RNAs and proteins is critical for cell function, but we still lack global maps and conceptual frameworks for how these molecules are localized in cells and tissues. Here, we introduce ATLAS-Seq, which generates transcriptomes and proteomes from detergent-free tissue lysates fractionated across a sucrose gradient. Proteomic analysis of fractions confirmed separation of subcellular compartments. Unexpectedly, RNAs tended to co-sediment with other RNAs in similar protein complexes, cellular compartments, or with similar biological functions. With the exception of those encoding secreted proteins, most RNAs sedimented differently than their encoded protein counterparts. To identify RNA binding proteins potentially driving these patterns, we correlated their sedimentation profiles to all RNAs, confirming known interactions and predicting new associations. Hundreds of alternative RNA isoforms exhibited distinct sedimentation patterns across the gradient, despite sharing most of their coding sequence. These observations suggest that transcriptomes can be organized into networks of co-segregating mRNAs encoding functionally related proteins and provide insights into the establishment and maintenance of subcellular organization.
Collapse
Affiliation(s)
- Danielle A Adekunle
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA.,Department of Biology, Massachusetts Institute of Technology, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA
| |
Collapse
|
61
|
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM, Fox JEM, Hong H, Shankar A, Wheeler EC, Ramsey KM, MacDonald PE, Yeo GW, Bass J. A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 2020; 34:1089-1105. [PMID: 32616519 PMCID: PMC7397853 DOI: 10.1101/gad.338178.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in Clock-/- and Bmal1-/- β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in β-cell function across the sleep/wake cycle.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick E MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
62
|
Arpat AB, Liechti A, De Matos M, Dreos R, Janich P, Gatfield D. Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res 2020; 30:985-999. [PMID: 32703885 PMCID: PMC7397865 DOI: 10.1101/gr.257741.119] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
Abstract
Translation initiation is the major regulatory step defining the rate of protein production from an mRNA. Meanwhile, the impact of nonuniform ribosomal elongation rates is largely unknown. Using a modified ribosome profiling protocol based on footprints from two closely packed ribosomes (disomes), we have mapped ribosomal collisions transcriptome-wide in mouse liver. We uncover that the stacking of an elongating onto a paused ribosome occurs frequently and scales with translation rate, trapping ∼10% of translating ribosomes in the disome state. A distinct class of pause sites is indicative of deterministic pausing signals. Pause site association with specific amino acids, peptide motifs, and nascent polypeptide structure is suggestive of programmed pausing as a widespread mechanism associated with protein folding. Evolutionary conservation at disome sites indicates functional relevance of translational pausing. Collectively, our disome profiling approach allows unique insights into gene regulation occurring at the step of translation elongation.
Collapse
Affiliation(s)
- Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Angélica Liechti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Peggy Janich
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
63
|
Castelo-Szekely V, Gatfield D. Emerging Roles of Translational Control in Circadian Timekeeping. J Mol Biol 2020; 432:3483-3497. [PMID: 32246961 DOI: 10.1016/j.jmb.2020.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023]
Abstract
A large part of mammalian physiology and behaviour shows regular daily variations. This temporal organisation is driven by the activity of an endogenous circadian clock, whose molecular basis consists of diurnal waves in gene expression. Circadian transcription is the major driver of these rhythms, yet post-transcriptional mechanisms, some of which occur in response to systemic cues and in a tissue-specific fashion, have central roles in ultimately establishing the oscillatory gene expression programme as well. Regulatory control that occurs at the level of translation is emerging as an important player in the generation and modulation of protein accumulation rhythms. As a mechanism, translation lies at a privileged position to integrate genetically encoded rhythmic signals with other, external and internal stimuli, including nutrient-derived cues. In this review, we summarise our current knowledge of how diurnal control of translation affects both bulk protein levels and gene-specific protein biosynthesis. We discuss mechanisms of regulation, in particular with regard to the complex interplay between circadian cycles and feeding/fasting cycles, as well as emerging roles for upstream open reading frames in clock control.
Collapse
Affiliation(s)
- Violeta Castelo-Szekely
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
64
|
Shi Y, Wu J, Zhong T, Zhu W, She G, Tang H, Du W, Ye BC, Qi N. Upstream ORFs Prevent MAVS Spontaneous Aggregation and Regulate Innate Immune Homeostasis. iScience 2020; 23:101059. [PMID: 32339989 PMCID: PMC7190755 DOI: 10.1016/j.isci.2020.101059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 11/24/2022] Open
Abstract
The monomer-to-filament transition of MAVS is essential for the RIG-I/MDA5-mediated antiviral signaling. In quiescent cells, monomeric MAVS is under strict regulation for preventing its spontaneous aggregation, which would result in dysregulated interferon (IFN-α/β) production and autoimmune diseases like systemic lupus erythematosus. However, the detailed mechanism by which MAVS is kept from spontaneous aggregation remains largely unclear. Here, we show that upstream open reading frames (uORFs) within the MAVS transcripts exert a post-transcriptional regulation for preventing MAVS spontaneous aggregation and auto-activation. Mechanistically, we demonstrate that uORFs are cis-acting elements initiating leaky ribosome scanning of the downstream ORF codons, thereby repressing the full-length MAVS translation. We further uncover that endogenous MAVS generated from the uORF-deprived transcript spontaneously aggregates, triggering the Nix-mediated mitophagic clearance of damaged mitochondria and aggregated MAVS. Our findings reveal the uORF-mediated quantity and quality control of MAVS, which prevents aberrant protein aggregation and maintains innate immune homeostasis. uORFs are safety checks preventing MAVS spontaneous aggregation and auto-activation uORFs exert the quantity and quality control of MAVS Spontaneously aggregated MAVS induces an antiviral state in quiescent cells Nix mediates the cargo selection and mitophagic clearance of MAVS aggregates
Collapse
Affiliation(s)
- Yuheng Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tiansheng Zhong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenting Zhu
- Materials Interfaces Center Institute of Advanced Materials Science and Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guolan She
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
65
|
Tuck AC, Rankova A, Arpat AB, Liechti LA, Hess D, Iesmantavicius V, Castelo-Szekely V, Gatfield D, Bühler M. Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Mol Cell 2020; 77:1222-1236.e13. [PMID: 32048998 PMCID: PMC7083229 DOI: 10.1016/j.molcel.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.
Collapse
Affiliation(s)
- Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
66
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|
67
|
Bowazolo C, Tse SPK, Beauchemin M, Lo SCL, Rivoal J, Morse D. Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135430. [PMID: 31818571 DOI: 10.1016/j.scitotenv.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Protein levels were assessed in the dinoflagellate Lingulodinium polyedra over the course of a diurnal cycle using a label-free LC-MS/MS approach. Roughly 1700 proteins were quantitated in a triplicate dataset over a daily period, and 13 were found to show significant rhythmic changes. Included among the proteins found to be most abundant at night were the two bioluminescence proteins, luciferase and luciferin binding protein, as well as a proliferating cell nuclear protein involved in the nightly DNA replication. Aconitase and a pyrophosphate fructose-6-phosphate-1-phosphotransferase were also found to be more abundant at night, suggestive of an increased ability to generate ATP by glucose catabolism when photosynthesis does not occur. Among the proteins more abundant during the day were found a 2-epi-5-epi-valiolone synthase, potentially involved in synthesis of mycosporin-like amino acids that can act as a "microbial sunscreen", and an enzyme synthesizing vitamin B6 which is known to protect against oxidative stress. A lactate oxidoreductase was also found to be more abundant during the day, perhaps to counteract the pH changes due to carbon fixation by facilitating conversion of pyruvate to lactate. This unbiased proteomic approach reveals novel insights into the daily metabolic changes of this dinoflagellate. Furthermore, the observation that only a limited number of proteins vary support a model where metabolic flux through pathways can be controlled by variations in a select few, possibly rate limiting, steps. Data are available via ProteomeXchange with identifier PXD006994.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mathieu Beauchemin
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Samuel C-L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean Rivoal
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
68
|
Sinturel F, Petrenko V, Dibner C. Circadian Clocks Make Metabolism Run. J Mol Biol 2020; 432:3680-3699. [PMID: 31996313 DOI: 10.1016/j.jmb.2020.01.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms adapt to the 24-h cycle of the Earth's rotation by anticipating the time of the day through light-dark cycles. The internal time-keeping system of the circadian clocks has been developed to ensure this anticipation. The circadian system governs the rhythmicity of nearly all physiological and behavioral processes in mammals. In this review, we summarize current knowledge stemming from rodent and human studies on the tight interconnection between the circadian system and metabolism in the body. In particular, we highlight recent advances emphasizing the roles of the peripheral clocks located in the metabolic organs in regulating glucose, lipid, and protein homeostasis at the organismal and cellular levels. Experimental disruption of circadian system in rodents is associated with various metabolic disturbance phenotypes. Similarly, perturbation of the clockwork in humans is linked to the development of metabolic diseases. We discuss recent studies that reveal roles of the circadian system in the temporal coordination of metabolism under physiological conditions and in the development of human pathologies.
Collapse
Affiliation(s)
- Flore Sinturel
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Volodymyr Petrenko
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
69
|
Affiliation(s)
- Thomas P Burris
- Center for Clinical Pharmacology, Washington University and St. Louis College of Pharmacy, St. Louis, MO, USA.
| |
Collapse
|
70
|
Circadian control of the secretory pathway maintains collagen homeostasis. Nat Cell Biol 2020; 22:74-86. [DOI: 10.1038/s41556-019-0441-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
|
71
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
72
|
Michel AM, Kiniry SJ, O'Connor PBF, Mullan JP, Baranov PV. GWIPS-viz: 2018 update. Nucleic Acids Res 2019; 46:D823-D830. [PMID: 28977460 PMCID: PMC5753223 DOI: 10.1093/nar/gkx790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
The GWIPS-viz browser (http://gwips.ucc.ie/) is an on-line genome browser which is tailored for exploring ribosome profiling (Ribo-seq) data. Since its publication in 2014, GWIPS-viz provides Ribo-seq data for an additional 14 genomes bringing the current total to 23. The integration of new Ribo-seq data has been automated thereby increasing the number of available tracks to 1792, a 10-fold increase in the last three years. The increase is particularly substantial for data derived from human sources. Following user requests, we added the functionality to download these tracks in bigWig format. We also incorporated new types of data (e.g. TCP-seq) as well as auxiliary tracks from other sources that help with the interpretation of Ribo-seq data. Improvements in the visualization of the data have been carried out particularly for bacterial genomes where the Ribo-seq data are now shown in a strand specific manner. For higher eukaryotic datasets, we provide characteristics of individual datasets using the RUST program which includes the triplet periodicity, sequencing biases and relative inferred A-site dwell times. This information can be used for assessing the quality of Ribo-seq datasets. To improve the power of the signal, we aggregate Ribo-seq data from several studies into Global aggregate tracks for each genome.
Collapse
Affiliation(s)
- Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - James P Mullan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
73
|
Li JJ, Chew GL, Biggin MD. Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes. Genome Biol 2019; 20:162. [PMID: 31399036 PMCID: PMC6689182 DOI: 10.1186/s13059-019-1761-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background General translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood. Results Here, we show that these sequence features specify 42–81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25–60 nucleotide segments within mRNA 5′ regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5′ regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA. Conclusions Our work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell. Electronic supplementary material The online version of this article (10.1186/s13059-019-1761-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyi Jessica Li
- Department of Statistics, Department of Biomathematics, and Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Guo-Liang Chew
- Computational Biology Program, Public Health Sciences and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Mark Douglas Biggin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94708, USA.
| |
Collapse
|
74
|
Walton ZE, Brooks RC, Dang CV. mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB. Bioessays 2019; 41:e1800265. [PMID: 31157925 PMCID: PMC6730656 DOI: 10.1002/bies.201800265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/18/2019] [Indexed: 02/04/2023]
Abstract
Acidity, generated in hypoxia or hypermetabolic states, perturbs homeostasis and is a feature of solid tumors. That acid peripherally disperses lysosomes is a three-decade-old observation, yet one little understood or appreciated. However, recent work has recognized the inhibitory impact this spatial redistribution has on mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of metabolism. This finding argues for a paradigm shift in localization of mTORC1 activator Ras homolog enriched in brain (RHEB), a conclusion several others have now independently reached. Thus, mTORC1, known to sense amino acids, mitogens, and energy to restrict biosynthesis to times of adequate resources, also senses pH and, via dampened mTOR-governed synthesis of clock proteins, regulates the circadian clock to achieve concerted responses to metabolic stress. While this may allow cancer to endure metabolic deprivation, immune cell mTOR signaling likewise exhibits pH sensitivity, suggesting that suppression of antitumor immune function by solid tumor acidity may additionally fuel cancers, an obstacle potentially reversible through therapeutic pH manipulation.
Collapse
Affiliation(s)
| | | | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017
- The Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
75
|
Castelo-Szekely V, De Matos M, Tusup M, Pascolo S, Ule J, Gatfield D. Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucleic Acids Res 2019; 47:5193-5209. [PMID: 30982898 PMCID: PMC6547434 DOI: 10.1093/nar/gkz261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023] Open
Abstract
The non-canonical initiation factor DENR promotes translation reinitiation on mRNAs harbouring upstream open reading frames (uORFs). Moreover, DENR depletion shortens circadian period in mouse fibroblasts, suggesting involvement of uORF usage and reinitiation in clock regulation. To identify DENR-regulated translation events transcriptome-wide and, in particular, specific core clock transcripts affected by this mechanism, we have used ribosome profiling in DENR-deficient NIH3T3 cells. We uncovered 240 transcripts with altered translation rate, and used linear regression analysis to extract 5' UTR features predictive of DENR dependence. Among core clock genes, we identified Clock as a DENR target. Using Clock 5' UTR mutants, we mapped the specific uORF through which DENR acts to regulate CLOCK protein biosynthesis. Notably, these experiments revealed an alternative downstream start codon, likely representing the bona fide CLOCK N-terminus. Our findings provide insights into uORF-mediated translational regulation that can regulate the mammalian circadian clock and gene expression at large.
Collapse
Affiliation(s)
- Violeta Castelo-Szekely
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Jernej Ule
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| |
Collapse
|
76
|
Pickard A, Chang J, Alachkar N, Calverley B, Garva R, Arvan P, Meng QJ, Kadler KE. Preservation of circadian rhythms by the protein folding chaperone, BiP. FASEB J 2019; 33:7479-7489. [PMID: 30888851 PMCID: PMC6529331 DOI: 10.1096/fj.201802366rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.-Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.
Collapse
Affiliation(s)
- Adam Pickard
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nissrin Alachkar
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- School of Mathematics, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Ben Calverley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- School of Mathematics, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
77
|
Rodriguez CM, Chun SY, Mills RE, Todd PK. Translation of upstream open reading frames in a model of neuronal differentiation. BMC Genomics 2019; 20:391. [PMID: 31109297 PMCID: PMC6528255 DOI: 10.1186/s12864-019-5775-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) initiate translation within mRNA 5' leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5' leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. RESULTS Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes, including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However, CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation. CONCLUSION This work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sang Y Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
78
|
Paatela E, Munson D, Kikyo N. Circadian Regulation in Tissue Regeneration. Int J Mol Sci 2019; 20:ijms20092263. [PMID: 31071906 PMCID: PMC6539890 DOI: 10.3390/ijms20092263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms regulate over 40% of protein-coding genes in at least one organ in the body through mechanisms tied to the central circadian clock and to cell-intrinsic auto-regulatory feedback loops. Distinct diurnal differences in regulation of regeneration have been found in several organs, including skin, intestinal, and hematopoietic systems. Each regenerating system contains a complex network of cell types with different circadian mechanisms contributing to regeneration. In this review, we elucidate circadian regeneration mechanisms in the three representative systems. We also suggest circadian regulation of global translational activity as an understudied global regulator of regenerative capacity. A more detailed understanding of the molecular mechanisms underlying circadian regulation of tissue regeneration would accelerate the development of new regenerative therapies.
Collapse
Affiliation(s)
- Ellen Paatela
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Dane Munson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
79
|
Ingolia NT, Hussmann JA, Weissman JS. Ribosome Profiling: Global Views of Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032698. [PMID: 30037969 DOI: 10.1101/cshperspect.a032698] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The translation of messenger RNA (mRNA) into protein and the folding of the resulting protein into an active form are prerequisites for virtually every cellular process and represent the single largest investment of energy by cells. Ribosome profiling-based approaches have revolutionized our ability to monitor every step of protein synthesis in vivo, allowing one to measure the rate of protein synthesis across the proteome, annotate the protein coding capacity of genomes, monitor localized protein synthesis, and explore cotranslational folding and targeting. The rich and quantitative nature of ribosome profiling data provides an unprecedented opportunity to explore and model complex cellular processes. New analytical techniques and improved experimental protocols will provide a deeper understanding of the factors controlling translation speed and its impact on protein function and cell physiology as well as the role of ribosomal RNA and mRNA modifications in regulating translation.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| |
Collapse
|
80
|
Mauvoisin D. Circadian rhythms and proteomics: It's all about posttranslational modifications! WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1450. [PMID: 31034157 DOI: 10.1002/wsbm.1450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The circadian clock is a molecular endogenous timekeeping system and allows organisms to adjust their physiology and behavior to the geophysical time. Organized hierarchically, the master clock in the suprachiasmatic nuclei, coordinates peripheral clocks, via direct, or indirect signals. In peripheral organs, such as the liver, the circadian clock coordinates gene expression, notably metabolic gene expression, from transcriptional to posttranslational level. The metabolism in return feeds back on the molecular circadian clock via posttranslational-based mechanisms. During the last two decades, circadian gene expression studies have mostly been relying primarily on genomics or transcriptomics approaches and transcriptome analyses of multiple organs/tissues have revealed that the majority of protein-coding genes display circadian rhythms in a tissue specific manner. More recently, new advances in mass spectrometry offered circadian proteomics new perspectives, that is, the possibilities of performing large scale proteomic studies at cellular and subcellular levels, but also at the posttranslational modification level. With important implications in metabolic health, cell signaling has been shown to be highly relevant to circadian rhythms. Moreover, comprehensive characterization studies of posttranslational modifications are emerging and as a result, cell signaling processes are expected to be more deeply characterized and understood in the coming years with the use of proteomics. This review summarizes the work studying diurnally rhythmic or circadian gene expression performed at the protein level. Based on the knowledge brought by circadian proteomics studies, this review will also discuss the role of posttranslational modification events as an important link between the molecular circadian clock and metabolic regulation. This article is categorized under: Laboratory Methods and Technologies > Proteomics Methods Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Signaling.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
81
|
Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season. Nat Ecol Evol 2019; 3:845-852. [PMID: 30962562 DOI: 10.1038/s41559-019-0866-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/07/2019] [Indexed: 02/03/2023]
Abstract
To cope with seasonal environmental changes, animals adapt their physiology and behaviour in response to photoperiod. However, the molecular mechanisms underlying these adaptive changes are not completely understood. Here, using genome-wide expression analysis, we show that an uncharacterized long noncoding RNA (lncRNA), LDAIR, is strongly regulated by photoperiod in Japanese medaka fish (Oryzias latipes). Numerous transcripts and signalling pathways are activated during the transition from short- to long-day conditions; however, LDAIR is one of the first genes to be induced and its expression shows a robust daily rhythm under long-day conditions. Transcriptome analysis of LDAIR knockout fish reveals that the LDAIR locus regulates a gene neighbourhood, including corticotropin releasing hormone receptor 2, which is involved in the stress response. Behavioural analysis of LDAIR knockout fish demonstrates that LDAIR affects self-protective behaviours under long-day conditions. Therefore, we propose that photoperiodic regulation of corticotropin releasing hormone receptor 2 by LDAIR modulates adaptive behaviours to seasonal environmental changes.
Collapse
|
82
|
Egorov AA, Sakharova EA, Anisimova AS, Dmitriev SE, Gladyshev VN, Kulakovskiy IV. svist4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinformatics 2019; 20:113. [PMID: 30841857 PMCID: PMC6404320 DOI: 10.1186/s12859-019-2706-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High-throughput sequencing often provides a foundation for experimental analyses in the life sciences. For many such methods, an intermediate layer of bioinformatics data analysis is the genomic signal track constructed by short read mapping to a particular genome assembly. There are many software tools to visualize genomic tracks in a web browser or with a stand-alone graphical user interface. However, there are only few command-line applications suitable for automated usage or production of publication-ready visualizations. RESULTS Here we present svist4get, a command-line tool for customizable generation of publication-quality figures based on data from genomic signal tracks. Similarly to generic genome browser software, svist4get visualizes signal tracks at a given genomic location and is able to aggregate data from several tracks on a single plot along with the transcriptome annotation. The resulting plots can be saved as the vector or high-resolution bitmap images. We demonstrate practical use cases of svist4get for Ribo-Seq and RNA-Seq data. CONCLUSIONS svist4get is implemented in Python 3 and runs on Linux. The command-line interface of svist4get allows for easy integration into bioinformatics pipelines in a console environment. Extra customization is possible through configuration files and Python API. For convenience, svist4get is provided as pypi package. The source code is available at https://bitbucket.org/artegorov/svist4get/.
Collapse
Affiliation(s)
- Artyom A Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia. .,Department of Medical Physics, Faculty of Physics, Lomonosov Moscow State University, Leninskiye gory 1-2, Moscow, 119991, Russia.
| | - Ekaterina A Sakharova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991, Russia
| | - Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye gory 1-73, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye gory 1-73, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ivan V Kulakovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye gory 1, Moscow, 119234, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991, Russia. .,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia. .,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
83
|
Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB, Donald CL, Lopez-Clavijo AF, Rudge S, Pinnick K, Chang WH, Wing PAC, Brown R, Qin X, Simmonds P, Baumert TF, Ray D, Loudon A, Balfe P, Wakelam M, Butterworth S, Kohl A, Jopling CL, Zitzmann N, McKeating JA. The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat Commun 2019; 10:377. [PMID: 30670689 PMCID: PMC6343007 DOI: 10.1038/s41467-019-08299-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Michelle Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Simon Rudge
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Katherine Pinnick
- Oxford Centre for Diabetes Endocrinology Metabolism, University of Oxford, Oxford OX3 9DU, UK
| | - Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ryan Brown
- Department of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France
| | - David Ray
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew Loudon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Peter Balfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NT, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
84
|
Abstract
We recently demonstrated that the circadian clock component CRY2 is an essential cofactor in the SCFFBXL3-mediated ubiquitination of c-MYC. Because our demonstration that CRY2 recruits phosphorylated substrates to SCFFBXL3 was unexpected, we investigated the scope of this role by searching for additional substrates of FBXL3 that require CRY1 or CRY2 as cofactors. Here, we describe an affinity purification mass spectrometry (APMS) screen through which we identified more than one hundred potential substrates of SCFFBXL3+CRY1/2, including the cell cycle regulated Tousled-like kinase, TLK2. Both CRY1 and CRY2 recruit TLK2 to SCFFBXL3, and TLK2 kinase activity is required for this interaction. Overexpression or genetic deletion of CRY1 and/or CRY2 decreases or enhances TLK2 protein abundance, respectively. These findings reinforce the idea that CRYs function as co-factors for SCFFBXL3, provide a resource of potential substrates, and establish a molecular connection between the circadian and cell cycle oscillators via CRY-modulated turnover of TLK2.
Collapse
|
85
|
Zhao J, Qin B, Nikolay R, Spahn CMT, Zhang G. Translatomics: The Global View of Translation. Int J Mol Sci 2019; 20:ijms20010212. [PMID: 30626072 PMCID: PMC6337585 DOI: 10.3390/ijms20010212] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
In all kingdoms of life, proteins are synthesized by ribosomes in a process referred to as translation. The amplitude of translational regulation exceeds the sum of transcription, mRNA degradation and protein degradation. Therefore, it is essential to investigate translation in a global scale. Like the other “omics”-methods, translatomics investigates the totality of the components in the translation process, including but not limited to translating mRNAs, ribosomes, tRNAs, regulatory RNAs and nascent polypeptide chains. Technical advances in recent years have brought breakthroughs in the investigation of these components at global scale, both for their composition and dynamics. These methods have been applied in a rapidly increasing number of studies to reveal multifaceted aspects of translation control. The process of translation is not restricted to the conversion of mRNA coding sequences into polypeptide chains, it also controls the composition of the proteome in a delicate and responsive way. Therefore, translatomics has extended its unique and innovative power to many fields including proteomics, cancer research, bacterial stress response, biological rhythmicity and plant biology. Rational design in translation can enhance recombinant protein production for thousands of times. This brief review summarizes the main state-of-the-art methods of translatomics, highlights recent discoveries made in this field and introduces applications of translatomics on basic biological and biomedical research.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
86
|
Podkolodnaya OV, Tverdokhleb NN, Podkolodnyy NL. Detection and analysis of dynamic patterns of diurnal expression of mammalian genes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study is to identify and analyze patterns of the diurnal dynamics of the expression of genes that differ in the shape of the curve. It can be expected that the similarity of the patterns of daily expression (shape of the curve) of genes is a reflection of the synchronization of gene expression by common external and internal signals or participation in similar biological processes. Different signals that have daily dynamics (light, activity, nutrition, stress, temperature, etc.) can affect different levels of expression regulation, which can be manifested in various forms of patterns of daily gene expression. In our research, we used experimental data on gene expression at the level of translation (ribosome profling) in the liver and kidney of a mouse (GSE67305 and GSE81283). To identify genes with a daily rhythm of expression, we used a oneway analysis of variance. To identify similarinshape curves of the daily dynamics of gene expression, we propose an approach based on cluster analysis. The distance between the genes was calculated by aligning the phases and fnding the maximum crosscorrelation between the patterns of the daily expression of these genes by the cyclic shift. This approach allowed us to identify genes that have not only expression patterns with a single maximum (sinusoidal, asymmetrical, shifted to the left or right, pulsed), but also complex composite signals with several extremes. As a result, the groups of genes united by the similarity of the shape of the daily expression curve without regard to their phase characteristics were identifed. GO enrichment analysis of groups of genes with sharply different patterns of daily expression (sinusoidal and pulsed) in the mouse kidneys and liver showed that the group of genes with a sinusoidal pattern was more associated with regulation of circadian rhythm and metabolism. The group of genes with a pulsed pattern is largely associated with the protective functions of the organism, which require the quick response. Thus, our studies have confrmed the effectiveness of the proposed approach to the analysis of the diurnal dynamics of gene expression. The identifed dynamic patterns of diurnal expression are important for the further study of complex circadian regulation, synchronization and interaction of biological processes with diurnal dynamics in mammals.
Collapse
Affiliation(s)
| | - N. N. Tverdokhleb
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - N. L. Podkolodnyy
- Institute of Cytology and Genetics, SB RAS; Institute of Computational Mathematics and Mathematical Geophysics, SB RAS
| |
Collapse
|
87
|
Identification and Characterization of Transcripts Regulated by Circadian Alternative Polyadenylation in Mouse Liver. G3-GENES GENOMES GENETICS 2018; 8:3539-3548. [PMID: 30181259 PMCID: PMC6222568 DOI: 10.1534/g3.118.200559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver, approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression. Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 3′-ends of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct usage preference between proximal and distal sites and use proximal sites more frequently. Circadian APA transcripts also harbor longer 3′UTRs, making them more susceptible to post-transcriptional regulation. Overall, our study serves as a platform to ultimately understand the mechanisms of circadian APA regulation.
Collapse
|
88
|
Ezagouri S, Asher G. Circadian control of mitochondrial dynamics and functions. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
89
|
Hellen CUT. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032656. [PMID: 29735640 DOI: 10.1101/cshperspect.a032656] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/eRF3-guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density-regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read-through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203
| |
Collapse
|
90
|
Grabowski P, Kustatscher G, Rappsilber J. Epigenetic Variability Confounds Transcriptome but Not Proteome Profiling for Coexpression-based Gene Function Prediction. Mol Cell Proteomics 2018; 17:2082-2090. [PMID: 30042154 PMCID: PMC6210221 DOI: 10.1074/mcp.ra118.000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Genes are often coexpressed with their genomic neighbors, even if these are functionally unrelated. For small expression changes driven by genetic variation within the same cell type, non-functional mRNA coexpression is not propagated to the protein level. However, it is unclear if protein levels are also buffered against any non-functional mRNA coexpression accompanying large, regulated changes in the gene expression program, such as those occurring during cell differentiation. Here, we address this question by analyzing mRNA and protein expression changes for housekeeping genes across 20 mouse tissues. We find that a large proportion of mRNA coexpression is indeed non-functional and does not lead to coexpressed proteins. Chromosomal proximity of genes explains a proportion of this nonfunctional mRNA coexpression. However, the main driver of non-functional mRNA coexpression across mouse tissues is epigenetic similarity. Both factors together provide an explanation for why monitoring protein coexpression outperforms mRNA coexpression data in gene function prediction. Furthermore, this suggests that housekeeping genes translocating during evolution within genomic subcompartments might maintain their broad expression pattern.
Collapse
Affiliation(s)
- Piotr Grabowski
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Georg Kustatscher
- §Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; .,§Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
91
|
Iuchi H, Sugimoto M, Tomita M. MICOP: Maximal information coefficient-based oscillation prediction to detect biological rhythms in proteomics data. BMC Bioinformatics 2018; 19:249. [PMID: 29954316 PMCID: PMC6025708 DOI: 10.1186/s12859-018-2257-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian rhythms comprise oscillating molecular interactions, the disruption of the homeostasis of which would cause various disorders. To understand this phenomenon systematically, an accurate technique to identify oscillating molecules among omics datasets must be developed; however, this is still impeded by many difficulties, such as experimental noise and attenuated amplitude. RESULTS To address these issues, we developed a new algorithm named Maximal Information Coefficient-based Oscillation Prediction (MICOP), a sine curve-matching method. The performance of MICOP in labeling oscillation or non-oscillation was compared with four reported methods using Mathews correlation coefficient (MCC) values. The numerical experiments were performed with time-series data with (1) mimicking of molecular oscillation decay, (2) high noise and low sampling frequency and (3) one-cycle data. The first experiment revealed that MICOP could accurately identify the rhythmicity of decaying molecular oscillation (MCC > 0.7). The second experiment revealed that MICOP was robust against high-level noise (MCC > 0.8) even upon the use of low-sampling-frequency data. The third experiment revealed that MICOP could accurately identify the rhythmicity of noisy one-cycle data (MCC > 0.8). As an application, we utilized MICOP to analyze time-series proteome data of mouse liver. MICOP identified that novel oscillating candidates numbered 14 and 30 for C57BL/6 and C57BL/6 J, respectively. CONCLUSIONS In this paper, we presented MICOP, which is an MIC-based algorithm, for predicting periodic patterns in large-scale time-resolved protein expression profiles. The performance test using artificially generated simulation data revealed that the performance of MICOP for decaying data was superior to that of the existing widely used methods. It can reveal novel findings from time-series data and may contribute to biologically significant results. This study suggests that MICOP is an ideal approach for detecting and characterizing oscillations in time-resolved omics data sets.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan. .,Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Shinjuku, Tokyo, 160-0022, Japan.
| | - Masaru Tomita
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan.,Department of Environment and Information Studies, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
92
|
Green CB. Circadian Posttranscriptional Regulatory Mechanisms in Mammals. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030692. [PMID: 28778869 DOI: 10.1101/cshperspect.a030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The circadian clock drives rhythms in the levels of thousands of proteins in the mammalian cell, arising in part from rhythmic transcriptional regulation of the genes that encode them. However, recent evidence has shown that posttranscriptional processes also play a major role in generating the rhythmic protein makeup and ultimately the rhythmic physiology of the cell. Regulation of steps throughout the life of the messenger RNA (mRNA), ranging from initial mRNA processing and export from the nucleus to extensive control of translation and degradation in the cytosol have been shown to be important for producing the final rhythms in protein levels critical for proper circadian rhythmicity. These findings will be reviewed here.
Collapse
Affiliation(s)
- Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
93
|
Lim CS, T. Wardell SJ, Kleffmann T, Brown CM. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res 2018; 46:4575-4591. [PMID: 29684192 PMCID: PMC5961209 DOI: 10.1093/nar/gky282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Introns in mRNA leaders are common in complex eukaryotes, but often overlooked. These introns are spliced out before translation, leaving exon-exon junctions in the mRNA leaders (leader EEJs). Our multi-omic approach shows that the number of leader EEJs inversely correlates with the main protein translation, as does the number of upstream open reading frames (uORFs). Across the five species studied, the lowest levels of translation were observed for mRNAs with both leader EEJs and uORFs (29%). This class of mRNAs also have ribosome footprints on uORFs, with strong triplet periodicity indicating uORF translation. Furthermore, the positions of both leader EEJ and uORF are conserved between human and mouse. Thus, the uORF, in combination with leader EEJ predicts lower expression for nearly one-third of eukaryotic proteins.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J T. Wardell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
94
|
Walton ZE, Altman BJ, Brooks RC, Dang CV. Circadian Clock's Cancer Connections. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zandra E. Walton
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian J. Altman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebekah C. Brooks
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
95
|
Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, Valášek LS. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev 2018; 42:165-192. [PMID: 29281028 PMCID: PMC5972666 DOI: 10.1093/femsre/fux059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| |
Collapse
|
96
|
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res 2017; 45:10948-10968. [PMID: 28981723 PMCID: PMC5737393 DOI: 10.1093/nar/gkx805] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream—in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3–40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3’s impact on translational control in eukaryotic cells.
Collapse
Affiliation(s)
- Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Zuzana Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| |
Collapse
|
97
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
98
|
Abstract
In most organisms, gene expression over the course of the day is under the control of the circadian clock. The canonical clock operates as a gene expression circuit that is controlled at the level of transcription, and transcriptional control is also a major clock output. However, rhythmic transcription cannot explain all the observed rhythms in protein accumulation. Although it is clear that rhythmic gene expression also involves RNA processing and protein turnover, until two years ago little was known in any eukaryote about diel dynamics of mRNA translation into protein. A recent series of studies in animals and plants demonstrated that diel cycles of translation efficiency are widespread across the tree of life and its transcriptomes. There are surprising parallels between the patterns of diel translation in mammals and plants. For example, ribosomal proteins and mitochondrial proteins are under translational control in mouse liver, human tissue culture, and Arabidopsis seedlings. In contrast, the way in which the circadian clock, light-dark changes, and other environmental factors such as nutritional signals interact to drive the cycles of translation may differ between organisms. Further investigation is needed to identify the signaling pathways, biochemical mechanisms, RNA sequence features, and the physiological implications of diel translation.
Collapse
Affiliation(s)
- Sarah Catherine Mills
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Ramya Enganti
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Albrecht G von Arnim
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA.,b UT-ORNL Graduate School of Genome Science and Technology , The University of Tennessee , Knoxville , TN , USA
| |
Collapse
|
99
|
Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB. Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 2017; 32:380-393. [PMID: 29098954 PMCID: PMC5692188 DOI: 10.1177/0748730417728663] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
Collapse
Affiliation(s)
- Michael E Hughes
- 1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine C Abruzzi
- 2 Department of Biology and Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts, USA
| | - Ravi Allada
- 3 Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Ron Anafi
- 4 Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Alaaddin Bulak Arpat
- 5 Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland.,6 Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gad Asher
- 7 Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Baldi
- 8 Institute for Genomics and Bioinformatics, University of California, Irvine, USA
| | | | | | - Justin Blau
- 11 Department of Biology, New York University, New York, USA
| | - Steve Brown
- 12 Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| | - M Fernanda Ceriani
- 13 Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Zheng Chen
- 14 Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, USA
| | - Joanna C Chiu
- 15 Department of Entomology and Nematology, University of California, Davis, USA
| | - Juergen Cox
- 16 Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander M Crowell
- 17 Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jason P DeBruyne
- 18 Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Derk-Jan Dijk
- 19 Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Luciano DiTacchio
- 20 The University of Kansas Medical Center, University of Kansas, Kansas City, USA
| | - Francis J Doyle
- 21 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, USA
| | - Giles E Duffield
- 22 Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jay C Dunlap
- 17 Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kristin Eckel-Mahan
- 23 Institute of Molecular Medicine, McGovern Medical School, UT Health Houston, Houston, Texas, USA
| | - Karyn A Esser
- 24 Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Garret A FitzGerald
- 25 Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Daniel B Forger
- 26 Department of Mathematics, University of Michigan, Ann Arbor, USA
| | - Lauren J Francey
- 27 Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ying-Hui Fu
- 28 Kavli Institute for Fundamental Neuroscience, Weill Institute of Neuroscience, Department of Neurology, University of California, San Francisco, USA
| | - Frédéric Gachon
- 29 Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - David Gatfield
- 5 Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Paul de Goede
- 30 Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, the Netherlands
| | - Susan S Golden
- 31 Center for Circadian Biology and Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Carla Green
- 32 Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, USA
| | - John Harer
- 33 Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Stacey Harmer
- 34 Department of Plant Biology, University of California, Davis, USA
| | - Jeff Haspel
- 1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael H Hastings
- 35 Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Hanspeter Herzel
- 36 Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Germany
| | - Erik D Herzog
- 37 Department of Biology, Washington University in St. Louis, Missouri, USA
| | - Christy Hoffmann
- 1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christian Hong
- 27 Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacob J Hughey
- 38 Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer M Hurley
- 39 Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Carl Johnson
- 41 Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Steve A Kay
- 42 Department of Cell and Molecular Biology, The Scripps Research Institute, University of California, San Diego, La Jolla, USA
| | - Nobuya Koike
- 43 Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Japan
| | - Karl Kornacker
- 44 Division of Sensory Biophysics, The Ohio State University, Columbus, USA
| | - Achim Kramer
- 45 Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Germany
| | - Katja Lamia
- 46 Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Tanya Leise
- 47 Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts, USA
| | - Scott A Lewis
- 1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jiajia Li
- 1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,48 Department of Biology, University of Missouri-St. Louis, USA
| | - Xiaodong Li
- 49 Department of Cell Biology, College of Life Sciences at Wuhan University, China
| | - Andrew C Liu
- 50 Department of Biological Sciences, University of Memphis, Tennessee, USA
| | - Jennifer J Loros
- 51 Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Tami A Martino
- 52 Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jerome S Menet
- 10 Department of Biology, Texas A&M University, College Station, USA
| | - Martha Merrow
- 53 Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - Andrew J Millar
- 54 SynthSys and School of Biological Sciences, University of Edinburgh, UK
| | - Todd Mockler
- 55 Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Felix Naef
- 56 The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Emi Nagoshi
- 57 Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Michael N Nitabach
- 58 Department of Cellular and Molecular Physiology, Department of Genetics, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maria Olmedo
- 59 Department of Genetics, University of Seville, Spain
| | - Dmitri A Nusinow
- 55 Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Louis J Ptáček
- 60 Department of Neurology, University of California, San Francisco, USA
| | - David Rand
- 61 Warwick Systems Biology and Mathematics Institute, University of Warwick, Conventry, UK
| | - Akhilesh B Reddy
- 62 The Francis Crick Institute, London, UK, and UCL Institute of Neurology, Queen Square, London, UK
| | - Maria S Robles
- 53 Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - Till Roenneberg
- 53 Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - Michael Rosbash
- 2 Department of Biology and Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts, USA
| | - Marc D Ruben
- 27 Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Samuel S C Rund
- 63 Centre for Immunity, Infection and Evolution, University of Edinburgh, UK
| | - Aziz Sancar
- 64 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, USA
| | - Paolo Sassone-Corsi
- 65 Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, USA
| | - Amita Sehgal
- 66 Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Scott Sherrill-Mix
- 67 Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debra J Skene
- 68 Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kai-Florian Storch
- 69 Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Joseph S Takahashi
- 70 Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, USA
| | - Hiroki R Ueda
- 71 Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Han Wang
- 72 Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
| | - Charles Weitz
- 73 Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pål O Westermark
- 74 Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Herman Wijnen
- 75 Biological Sciences and Institute for Life Sciences, University of Southampton, UK
| | - Ying Xu
- 76 Cam-Su GRC, Soochow University, Suzhou, China
| | - Gang Wu
- 27 Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Seung-Hee Yoo
- 14 Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, USA
| | - Michael Young
- 77 Laboratory of Genetics, Rockefeller University, New York, New York, USA
| | | | - Tomasz Zielinski
- 54 SynthSys and School of Biological Sciences, University of Edinburgh, UK
| | - John B Hogenesch
- 27 Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
100
|
Hronová V, Mohammad MP, Wagner S, Pánek J, Gunišová S, Zeman J, Poncová K, Valášek LS. Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells? RNA Biol 2017; 14:1660-1667. [PMID: 28745933 DOI: 10.1080/15476286.2017.1353863] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reinitiation after translation of short upstream ORFs (uORFs) represents one of the means of regulation of gene expression on the mRNA-specific level in response to changing environmental conditions. Over the years it has been shown-mainly in budding yeast-that its efficiency depends on cis-acting features occurring in sequences flanking reinitiation-permissive uORFs, the nature of their coding sequences, as well as protein factors acting in trans. We earlier demonstrated that the first two uORFs from the reinitiation-regulated yeast GCN4 mRNA leader carry specific structural elements in their 5' sequences that interact with the translation initiation factor eIF3 to prevent full ribosomal recycling post their translation. Actually, this interaction turned out to be instrumental in stabilizing the mRNA·40S post-termination complex, which is thus capable to eventually resume scanning and reinitiate on the next AUG start site downstream. Recently, we also provided important in vivo evidence strongly supporting the long-standing idea that to stimulate reinitiation, eIF3 has to remain bound to ribosomes elongating these uORFs until their stop codon has been reached. Here we examined the importance of eIF3 and sequences flanking uORF1 of the human functional homolog of yeast GCN4, ATF4, in stimulation of efficient reinitiation. We revealed that the molecular basis of the reinitiation mechanism is conserved between yeasts and humans.
Collapse
Affiliation(s)
- Vladislava Hronová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic.,b Department of Genetics and Microbiology, Faculty of Science , Charles University in Prague , Vinicna, Prague , the Czech Republic
| | - Mahabub Pasha Mohammad
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Susan Wagner
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Josef Pánek
- c Laboratory of Bioinformatics , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Stanislava Gunišová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Jakub Zeman
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Kristýna Poncová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Leoš Shivaya Valášek
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| |
Collapse
|