51
|
Coureaud G, Thomas-Danguin T, Sandoz JC, Wilson DA. Biological constraints on configural odour mixture perception. J Exp Biol 2022; 225:274695. [PMID: 35285471 PMCID: PMC8996812 DOI: 10.1242/jeb.242274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Team Sensory Neuroethology (ENES), CNRS/INSERM/UCBL1/UJM, 69500 Lyon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, Team Flavor, Food Oral Processing and Perception, INRAE, CNRS, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine and Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA
| |
Collapse
|
52
|
Lafon G, Geng H, Avarguès-Weber A, Buatois A, Massou I, Giurfa M. The Neural Signature of Visual Learning Under Restrictive Virtual-Reality Conditions. Front Behav Neurosci 2022; 16:846076. [PMID: 35250505 PMCID: PMC8888666 DOI: 10.3389/fnbeh.2022.846076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022] Open
Abstract
Honey bees are reputed for their remarkable visual learning and navigation capabilities. These capacities can be studied in virtual reality (VR) environments, which allow studying performances of tethered animals in stationary flight or walk under full control of the sensory environment. Here, we used a 2D VR setup in which a tethered bee walking stationary under restrictive closed-loop conditions learned to discriminate vertical rectangles differing in color and reinforcing outcome. Closed-loop conditions restricted stimulus control to lateral displacements. Consistently with prior VR analyses, bees learned to discriminate the trained stimuli. Ex vivo analyses on the brains of learners and non-learners showed that successful learning led to a downregulation of three immediate early genes in the main regions of the visual circuit, the optic lobes (OLs) and the calyces of the mushroom bodies (MBs). While Egr1 was downregulated in the OLs, Hr38 and kakusei were coincidently downregulated in the calyces of the MBs. Our work thus reveals that color discrimination learning induced a neural signature distributed along the sequential pathway of color processing that is consistent with an inhibitory trace. This trace may relate to the motor patterns required to solve the discrimination task, which are different from those underlying pathfinding in 3D VR scenarios allowing for navigation and exploratory learning and which lead to IEG upregulation.
Collapse
Affiliation(s)
- Gregory Lafon
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Haiyang Geng
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aurore Avarguès-Weber
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Alexis Buatois
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Isabelle Massou
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Institut Universitaire de France, Paris, France
| |
Collapse
|
53
|
Visual learning in a virtual reality environment upregulates immediate early gene expression in the mushroom bodies of honey bees. Commun Biol 2022; 5:130. [PMID: 35165405 PMCID: PMC8844430 DOI: 10.1038/s42003-022-03075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/26/2022] [Indexed: 11/08/2022] Open
Abstract
Free-flying bees learn efficiently to solve numerous visual tasks. Yet, the neural underpinnings of this capacity remain unexplored. We used a 3D virtual reality (VR) environment to study visual learning and determine if it leads to changes in immediate early gene (IEG) expression in specific areas of the bee brain. We focused on kakusei, Hr38 and Egr1, three IEGs that have been related to bee foraging and orientation, and compared their relative expression in the calyces of the mushroom bodies, the optic lobes and the rest of the brain after color discrimination learning. Bees learned to discriminate virtual stimuli displaying different colors and retained the information learned. Successful learners exhibited Egr1 upregulation only in the calyces of the mushroom bodies, thus uncovering a privileged involvement of these brain regions in associative color learning and the usefulness of Egr1 as a marker of neural activity induced by this phenomenon.
Collapse
|
54
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
55
|
Perl CD, Johansen ZB, Moradinour Z, Guiraud M, Restrepo CE, Wen Jie V, Miettinen A, Baird E. Heatwave-Like Events During Development Are Sufficient to Impair Bumblebee Worker Responses to Sensory Stimuli. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.776830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heatwaves are increasingly common globally and are known to have detrimental impacts on animal morphology and behaviour. These impacts can be severe, especially if heatwaves occur during development, even on animals that can regulate the temperature of their developing young. The onset and duration of heatwaves are stochastic and therefore may affect all or only part of development. In the heterothermic bumblebee Bombus terrestris, elevated temperatures over the entirety of development cause morphological changes in adults, despite their capability to regulate brood temperature. However, the effects of heatwaves that occur during a short period of development are unclear. We test the impact of elevated developmental temperature during the latter fraction of development on the behaviour and morphology of adult worker B. terrestris. We show that exposure to elevated temperature over a portion of late development is sufficient to impair the initial behavioural responses of workers to various sensory stimuli. Despite this, exposure to elevated temperatures during a period of development did not have any significant impact on body or organ size. The negative effect of elevated developmental temperatures was independent of the exposure time, which lasted from 11–20 days at the end of the workers’ developmental period. Thus, heat stress in bumblebees can manifest without morphological indicators and impair critical behavioural responses to relevant sensory stimuli, even if only present for a short period of time at the end of development. This has important implications for our understanding of deleterious climactic events and how we measure indicators of stress in pollinators.
Collapse
|
56
|
Pisokas I, Rössler W, Webb B, Zeil J, Narendra A. Anesthesia disrupts distance, but not direction, of path integration memory. Curr Biol 2021; 32:445-452.e4. [PMID: 34852215 DOI: 10.1016/j.cub.2021.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Solitary foraging insects, such as ants, maintain an estimate of the direction and distance to their starting location as they move away from it, in a process known as path integration. This estimate, commonly known as the "home vector," is updated continuously as the ant moves1-4 and is reset as soon as it enters its nest,5 yet ants prevented from returning to their nest can still use their home vector when released several hours later.6,7 This conjunction of fast update and long persistence of the home vector memory does not directly map to existing accounts of short-, mid-, and long-term memory;2,8-12 hence, the substrate of this memory remains unknown. Chill-coma anesthesia13-15 has previously been shown to affect associative memory retention in fruit flies14,16 and honeybees.9,17,18 We investigate the nature of path integration memory by anesthetizing ants after they have accumulated home vector information and testing if the memory persists on recovery. We show that after anesthesia the memory of the distance ants have traveled is degraded, but the memory of the direction is retained. We also show that this is consistent with models of path integration that maintain the memory in a redundant Cartesian coordinate system and with the hypothesis that chill-coma produces a proportional reduction of the memory, rather than a subtractive reduction or increase of noise. The observed effect is not compatible with a memory based on recurrent circuit activity and points toward an activity-dependent molecular process as the basis of path integration memory.
Collapse
Affiliation(s)
- Ioannis Pisokas
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
57
|
Howard SR, Dyer AG, Garcia JE, Giurfa M, Reser DH, Rosa MGP, Avarguès-Weber A. Naïve and Experienced Honeybee Foragers Learn Normally Configured Flowers More Easily Than Non-configured or Highly Contrasted Flowers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiosperms have evolved to attract and/or deter specific pollinators. Flowers provide signals and cues such as scent, colour, size, pattern, and shape, which allow certain pollinators to more easily find and visit the same type of flower. Over evolutionary time, bees and angiosperms have co-evolved resulting in flowers being more attractive to bee vision and preferences, and allowing bees to recognise specific flower traits to make decisions on where to forage. Here we tested whether bees are instinctively tuned to process flower shape by training both flower-experienced and flower-naïve honeybee foragers to discriminate between pictures of two different flower species when images were either normally configured flowers or flowers which were scrambled in terms of spatial configuration. We also tested whether increasing picture contrast, to make flower features more salient, would improve or impair performance. We used four flower conditions: (i) normally configured greyscale flower pictures, (ii) scrambled flower configurations, (iii) high contrast normally configured flowers, and (iv) asymmetrically scrambled flowers. While all flower pictures contained very similar spatial information, both experienced and naïve bees were better able to learn to discriminate between normally configured flowers than between any of the modified versions. Our results suggest that a specialisation in flower recognition in bees is due to a combination of hard-wired neural circuitry and experience-dependent factors.
Collapse
|
58
|
Honeybee Cognition as a Tool for Scientific Engagement. INSECTS 2021; 12:insects12090842. [PMID: 34564282 PMCID: PMC8471026 DOI: 10.3390/insects12090842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Global scientific literacy can be improved through widespread and effective community engagement by researchers. We propose honeybees (Apis mellifera) as a public engagement tool due to widespread awareness of colony collapse and the bees’ importance in food production. Moreover, their cognitive abilities make for engaging experiments. Their relative ease of cultivation means that studies can be performed cost-effectively, especially when partnering with local apiarists. Using a proxy for honeybee learning, a group of non-specialist high-school-aged participants obtained data suggesting that caffeine, but not dopamine, improved learning. This hands-on experience facilitated student understanding of the scientific method, factors that shape learning and the importance of learning for colony health. Abstract Apis mellifera (honeybees) are a well-established model for the study of learning and cognition. A robust conditioning protocol, the olfactory conditioning of the proboscis extension response (PER), provides a powerful but straightforward method to examine the impact of varying stimuli on learning performance. Herein, we provide a protocol that leverages PER for classroom-based community or student engagement. Specifically, we detail how a class of high school students, as part of the Ryukyu Girls Outreach Program, examined the effects of caffeine and dopamine on learning performance in honeybees. Using a modified version of the PER conditioning protocol, they demonstrated that caffeine, but not dopamine, significantly reduced the number of trials required for a successful conditioning response. In addition to providing an engaging and educational scientific activity, it could be employed, with careful oversight, to garner considerable reliable data examining the effects of varying stimuli on honeybee learning.
Collapse
|
59
|
Suitability of drone olfactory sensitivity as a selection trait for Varroa-resistance in honeybees. Sci Rep 2021; 11:17703. [PMID: 34489529 PMCID: PMC8421409 DOI: 10.1038/s41598-021-97191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
The most effective strategy against brood diseases, such as those stemming from infestation by the mite Varroa destructor, is the early detection and removal of sick brood. Recent findings suggest that genes associated with worker bee olfactory perception play a central role in Varroa-sensitive hygiene (VSH). In this study, the odour sensitivity of Apis mellifera drones was examined through proboscis extension response (PER) conditioning. Individuals sensitive/insensitive to the two Varroa-parasitised-brood odours (extract-low and extract-high) were used for breeding. Twenty-one queens from a VSH-selected line (SelQ) and nineteen queens from a nonselected line (ConQ) were single-drone-inseminated with sperm from drones that showed either sensitivity (SenD+) or insensitivity (SenD-) to the two extracts. Individual VSH behaviour in a total of 5072 offspring of these combinations (SelQ × SenD+, SelQ × SenD-, ConQ × SenD+, ConQ × SenD-) was subsequently observed in a specially designed observation unit with infrared light. The results from the video observation were also separately examined, considering the genetic origin (VSH-selected or nonselected line) of the participating queens and drones. While the drone PER conditioning results were not significantly reflected in the VSH results of the respective offspring, the genetic origin of the participating queens/drones was crucial for VSH manifestation.
Collapse
|
60
|
Wada-Katsumata A, Schal C. Olfactory Learning Supports an Adaptive Sugar-Aversion Gustatory Phenotype in the German Cockroach. INSECTS 2021; 12:724. [PMID: 34442290 PMCID: PMC8397102 DOI: 10.3390/insects12080724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.
Collapse
Affiliation(s)
- Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
61
|
Barascou L, Brunet JL, Belzunces L, Decourtye A, Henry M, Fourrier J, Le Conte Y, Alaux C. Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints. CHEMOSPHERE 2021; 276:130134. [PMID: 33690036 DOI: 10.1016/j.chemosphere.2021.130134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The growing gap between new evidence of pesticide toxicity in honeybees and conventional toxicological assays recommended by regulatory test guidelines emphasizes the need to complement current lethal endpoints with sublethal endpoints. In this context, behavioral and reproductive performances have received growing interest since the 2000s, likely due to their ecological relevance and/or the emergence of new technologies. We review the biological interests and methodological measurements of these predominantly studied endpoints and discuss their possible use in the pesticide risk assessment procedure based on their standardization level, simplicity and ecological relevance. It appears that homing flights and reproduction have great potential for pesticide risk assessment, mainly due to their ecological relevance. If exploratory research studies in ecotoxicology have paved the way toward a better understanding of pesticide toxicity in honeybees, the next objective will then be to translate the most relevant behavioral and reproductive endpoints into regulatory test methods. This will require more comparative studies and improving their ecological relevance. This latter goal may be facilitated by the use of population dynamics models for scaling up the consequences of adverse behavioral and reproductive effects from individuals to colonies.
Collapse
Affiliation(s)
- Lena Barascou
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| | - Jean-Luc Brunet
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Luc Belzunces
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Axel Decourtye
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Mickael Henry
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Julie Fourrier
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| |
Collapse
|
62
|
Evans LJ, Smith KE, Raine NE. Odour Learning Bees Have Longer Foraging Careers Than Non-learners in a Natural Environment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individual animals allowed the opportunity to learn generally outperform those prevented from learning, yet, within a species the capacity for learning varies markedly. The evolutionary processes that maintain this variation in learning ability are not yet well understood. Several studies demonstrate links between fitness traits and visual learning, but the selection pressures operating on cognitive traits are likely influenced by multiple sensory modalities. In addition to vision, most animals will use a combination of hearing, olfaction (smell), gustation (taste), and touch to gain information about their environment. Some animals demonstrate individual preference for, or enhanced learning performance using certain senses in relation to particular aspects of their behaviour (e.g., foraging), whereas conspecific individuals may show different preferences. By assessing fitness traits in relation to different sensory modalities we will strengthen our understanding of factors driving observed variation in learning ability. We assessed the relationship between the olfactory learning ability of bumble bees (Bombus terrestris) and their foraging performance in their natural environment. We found that bees which failed to learn this odour-reward association had shorter foraging careers; foraging for fewer days and thus provisioning their colonies with fewer resources. This was not due to a reduced propensity to forage, but may have been due to a reduced ability to return to their colony. When comparing among only individuals that did learn, we found that the rate at which floral resources were collected was similar, regardless of how they performed in the olfactory learning task. Our results demonstrate that an ability to learn olfactory cues can have a positive impact of the foraging performance of B. terrestris in a natural environment, but echo findings of earlier studies on visual learning, which suggest that enhanced learning is not necessarily beneficial for bee foragers provisioning their colony.
Collapse
|
63
|
Chen YR, Tzeng DTW, Ting C, Hsu PS, Wu TH, Zhong S, Yang EC. Missing Nurse Bees-Early Transcriptomic Switch From Nurse Bee to Forager Induced by Sublethal Imidacloprid. Front Genet 2021; 12:665927. [PMID: 34220942 PMCID: PMC8248817 DOI: 10.3389/fgene.2021.665927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The environmental residue/sublethal doses of neonicotinoid insecticides are believed to generate a negative impact on pollinators, including honey bees. Here we report our recent investigation on how imidacloprid, one of the major neonicotinoids, affects worker bees by profiling the transcriptomes of various ages of bees exposed to different doses of imidacloprid during the larval stage. The results show that imidacloprid treatments during the larval stage severely altered the gene expression profiles and may induce precocious foraging. Differential expression of foraging regulators was found in 14-day-old treated adults. A high transcriptome similarity between larvae-treated 14-day-old adults and 20-day-old controls was also observed, and the similarity was positively correlated with the dose of imidacloprid. One parts per billion (ppb) of imidacloprid was sufficient to generate a long-term impact on the bee's gene expression as severe as with 50 ppb imidacloprid. The disappearance of nurse bees may be driven not only by the hive member constitution but also by the neonicotinoid-induced precocious foraging behavior.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chieh Ting
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Pei-Shou Hsu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Tzu-Hsien Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Hassan A, Huang Q, Mehmood N, Xu H, Zhou W, Gao Y. Alteration of Termite Locomotion and Allogrooming in Response to Infection by Pathogenic Fungi. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1256-1263. [PMID: 33909076 DOI: 10.1093/jee/toab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Termites, being vulnerable to parasitic or pathogenic infections due to large number of individuals living together in colonies, have evolved various behavioral and physiological tactics to resist the infections by those pathogens. Locomotion can help termites collect information on parasites and accordingly exhibit hygienic behaviors. Termites inevitably encounter entomopathogenic fungi during nesting and foraging. However, how these fungal pathogens influence locomotion of termites and how hygienic behavior benefits their survival remains unknown. Here, we examined locomotion alteration of the termite Reticulitermes chinensis (Isoptera: Rhinotermitidae) after infections with different concentrations of the entomopathogenic fungus Metarhizium anisopliae (Hypocreales: Clavicipitaceae). When R. chinensis was isolated, the low concentration (5 × 103 conidia/ml) significantly increased termite locomotion after 6, 12, and 24 h compared with control. However, the high concentrations (5 × 107, 5 × 109 conidia/ml) significantly decreased termite locomotion after 48 h, and termite survival was also significantly lower at 5 × 107 and 5 × 109 conidia/ml compared with the low concentrations and the control. When R. chinensis was in group, however, the locomotion significantly increased 24 h after exposure to 5 × 103 and 5 × 109 conidia/ml but was normalized after 48 h of exposure compared with the control. Allogrooming was significantly higher at 5 × 103 and 5 × 109 conidia/ml compared with the control. The fungal infection did not result in significantly higher mortality of the group termites probably owing to their allogrooming. These findings enhance our understanding on how a termite species copes with biotic stress (i.e., fungal infections) via adaptive behaviors.
Collapse
Affiliation(s)
- Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Nasir Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
65
|
Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci Rep 2021; 11:11721. [PMID: 34083559 PMCID: PMC8175726 DOI: 10.1038/s41598-021-90895-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Floral nectar is a pivotal element of the intimate relationship between plants and pollinators. Nectars are composed of a plethora of nutritionally valuable compounds but also hundreds of secondary metabolites (SMs) whose function remains elusive. Here we performed a set of behavioural experiments to study whether five ubiquitous nectar non-protein amino acids (NPAAs: β-alanine, GABA, citrulline, ornithine and taurine) interact with gustation, feeding preference, and learning and memory in Apis mellifera. We showed that foragers were unable to discriminate NPAAs from water when only accessing antennal chemo-tactile information and that freely moving bees did not exhibit innate feeding preferences for NPAAs. Also, NPAAs did not alter food consumption or longevity in caged bees over 10 days. Taken together our data suggest that natural concentrations of NPAAs did not alter nectar palatability to bees. Olfactory conditioning assays showed that honey bees were more likely to learn a scent when it signalled a sucrose reward containing either β-alanine or GABA, and that GABA enhanced specific memory retention. Conversely, when ingested two hours prior to conditioning, GABA, β-alanine, and taurine weakened bees' acquisition performances but not specific memory retention, which was enhanced in the case of β-alanine and taurine. Neither citrulline nor ornithine affected learning and memory. NPAAs in nectars may represent a cooperative strategy adopted by plants to attract beneficial pollinators.
Collapse
|
66
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
67
|
Riveros AJ, Entler BV, Seid MA. Stimulus-dependent learning and memory in the neotropical ant Ectatomma ruidum. J Exp Biol 2021; 224:261761. [PMID: 33948646 DOI: 10.1242/jeb.238535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
Learning and memory are major cognitive processes strongly tied to the life histories of animals. In ants, chemotactile information generally plays a central role in social interaction, navigation and resource exploitation. However, in hunters, visual information should take special relevance during foraging, thus leading to differential use of information from different sensory modalities. Here, we aimed to test whether a hunter, the neotropical ant Ectatomma ruidum, differentially learns stimuli acquired through multiple sensory channels. We evaluated the performance of E. ruidum workers when trained using olfactory, mechanical, chemotactile and visual stimuli under a restrained protocol of appetitive learning. Conditioning of the maxilla labium extension response enabled control of the stimuli provided. Our results show that ants learn faster and remember for longer when trained using chemotactile or visual stimuli than when trained using olfactory and mechanical stimuli separately. These results agree with the life history of E. ruidum, characterized by a high relevance of chemotactile information acquired through antennation as well as the role of vision during hunting.
Collapse
Affiliation(s)
- Andre J Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Cra. 26 #63B-48, Bogotá, Colombia
| | - Brian V Entler
- Program in Neuroscience, Biology Department, University of Scranton, Scranton, PA 18510, USA
| | - Marc A Seid
- Program in Neuroscience, Biology Department, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
68
|
Monchanin C, Blanc-Brude A, Drujont E, Negahi MM, Pasquaretta C, Silvestre J, Baqué D, Elger A, Barron AB, Devaud JM, Lihoreau M. Chronic exposure to trace lead impairs honey bee learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112008. [PMID: 33578129 DOI: 10.1016/j.ecoenv.2021.112008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Pollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development. Honey bees exposed to the highest of these low concentrations had reduced olfactory learning performances. These honey bees also developed smaller heads, which may have constrained their cognitive functions as we show a general relationship between head size and learning performance. Our results demonstrate that lead pollutants, even at trace levels, can have dramatic effects on honey bee cognitive abilities, potentially altering key colony functions and the pollination service.
Collapse
Affiliation(s)
- Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia.
| | - Amaury Blanc-Brude
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Erwann Drujont
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mohammed Mustafa Negahi
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Jérôme Silvestre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - David Baqué
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Arnaud Elger
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, France.
| |
Collapse
|
69
|
Han B, Wei Q, Wu F, Hu H, Ma C, Meng L, Zhang X, Feng M, Fang Y, Rueppell O, Li J. Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers. eLife 2021; 10:64830. [PMID: 33760729 PMCID: PMC8016481 DOI: 10.7554/elife.64830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context specificity of behavior in animals more generally.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Department of Biology, University of North Carolina Greensboro, Greensboro, United States
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China.,Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, Greensboro, United States.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
70
|
Okada S, Hirano N, Abe T, Nagayama T. Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. J Exp Biol 2021; 224:jeb.242180. [PMID: 33536310 DOI: 10.1242/jeb.242180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Aversive learning was applied to affect the phototactic behaviour of the marbled crayfish. Animals initially showed negative phototaxis to white light and positive taxis to blue light. Using an aversive learning paradigm, we investigated the plasticity of innate behaviour following operant conditioning. The initial rate of choosing a blue-lit exit was analysed by a dual choice experiment between blue-lit and white-lit exits in pre-test conditions. During training, electrical shocks were applied to the animals when they oriented to the blue-lit exit. Memory tests were given to analyse the orientation rate to the blue-lit exit in trials 1 and 24 h after training and these rates were compared with the pre-test. In general, animals avoided the blue-lit exit in the memory tests. When training was carried out three times, the long-term memory was retained for at least 48 h, although a single bout of training was also enough to form a long-term memory. Cooling animals at 4°C or injection of cycloheximide immediately after training altered the formation of long-term memory, but had no effect on short-term memory formation. Administration of the adenylate cyclase inhibitor SQ22536, the PKA inhibitor H89 or the CREB inhibitor KG-501 immediately after training also blocked the formation of long-term memory, but had no effect on short-term memory formation. Thus, our pharmacological behavioural analyses showed that new protein synthesis was necessary to form long-term memories and that the cAMP/PKA/CREB pathway is the main signal cascade for long-term memory formation in the marbled crayfish.
Collapse
Affiliation(s)
- Shione Okada
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Natsumi Hirano
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Abe
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
71
|
Hassan A, Huang Q, Xu H, Wu J, Mehmood N. Silencing of the phosphofructokinase gene impairs glycolysis and causes abnormal locomotion in the subterranean termite Reticulitermes chinensis Snyder. INSECT MOLECULAR BIOLOGY 2021; 30:57-70. [PMID: 33068440 DOI: 10.1111/imb.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Phosphofructokinase (PFK) is a rate-limiting enzyme in glycolysis, but its linkage with locomotion in termites is not well understood, despite the demonstrated involvement of this gene in the locomotion of different animals. Here, we investigated the effect of the pfk gene on locomotion in the subterranean termite Reticulitermes chinensis Snyder through RNA interference and the use of an Ethovision XT tracking system. The knockdown of pfk resulted in significantly decreased expression of the pfk gene in different castes of termites. The pfk-silenced workers displayed higher levels of glucose but lower levels of nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) production and decreased activity of the PFK enzyme. Furthermore, abnormal locomotion (decreased distance travelled, velocity and acceleration but increased turn angle, angular velocity and meander) was observed in different castes of pfk-silenced termites. We found caste-specific locomotion among workers, soldiers and dealates. Additionally, soldiers and dealates showed higher velocity in the inner zone than in the wall zone, which is considered an effective behaviour to avoid predation. These findings reveal the close linkage between the pfk gene and locomotion in termites, which helps us to better understand the regulatory mechanism and caste specificity of social behaviours in social insects.
Collapse
Affiliation(s)
- A Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Q Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - H Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - J Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - N Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
72
|
Giurfa M. Learning of sameness/difference relationships by honey bees: performance, strategies and ecological context. Curr Opin Behav Sci 2021; 37:1-6. [PMID: 35083374 PMCID: PMC8772047 DOI: 10.1016/j.cobeha.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans and non-human primates learn conceptual relationships such as ‘same’ and ‘different, which have to be encoded independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high-level cognition and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honey bees also learns the conceptual relationships of sameness and difference and transfers these relationships to novel stimuli. We review evidence about sameness/difference learning in bees and analyze its adaptive value within an ecological context. The experiments reviewed cannot be accounted for by low-level strategies and challenge, therefore, the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts.
Collapse
Affiliation(s)
- Martin Giurfa
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
73
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
74
|
Gong Z, Gu G, Wang Y, Dong S, Tan K, Nieh JC. Floral tea polyphenols can improve honey bee memory retention and olfactory sensitivity. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104177. [PMID: 33279470 DOI: 10.1016/j.jinsphys.2020.104177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Animal-pollinated plants face a common problem, how their defensive anti-herbivore compounds may impair or alter pollinator behavior. Evolution has tailored multiple solutions, which largely involve pollinator tolerance or manipulation, to the benefit of the plant, not the removal of these compounds from pollen or nectar. The tea plant, Camilla sinensis, is famous for the caffeine and tea polyphenols (TP) that it produces in its leaves. However, these compounds are also found in its nectar, which honey bees readily collect. We examined the effects of these compounds on bee foraging choices, learning, memory, and olfactory sensitivity. Foragers preferred a sucrose feeder with 100 µg or 10 µg TP/ml over a control feeder. Caffeine, but not TP, weakly increased honey bee learning. Both caffeine and TP significantly increased memory retention, even when tested 7 d after the last learning trial. In addition, TP generally elevated EAG responsiveness to alarm pheromone odors. These results demonstrate that other secondary plant compounds, not only caffeine, can attract pollinators and influence their learning and memory.
Collapse
Affiliation(s)
- Zhiwen Gong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Science, Xishuangbanna 666300, China
| | - Gaoying Gu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Science, Xishuangbanna 666300, China
| | - Yuan Wang
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650223 China
| | - Shihao Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Science, Xishuangbanna 666300, China.
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
75
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
76
|
Haverkamp A, Smid HM. A neuronal arms race: the role of learning in parasitoid-host interactions. CURRENT OPINION IN INSECT SCIENCE 2020; 42:47-54. [PMID: 32947014 DOI: 10.1016/j.cois.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Parasitic wasps and their larval hosts are intimately connected by an array of behavioral adaptations and counter-adaptations. This co-evolution has led to highly specific, natural variation in learning rates and memory consolidation in parasitoid wasps. Similarly, the hosts of the parasitoids show specific sensory adaptations as well as non-associative learning strategies for parasitoid avoidance. However, these neuronal and behavioral adaptations of both hosts and wasps have so far been studied largely apart from each other. Here we argue that a parallel investigation of the nervous system in wasps and their hosts might lead to novel insights into the evolution of insect behavior and the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
77
|
Carlesso D, Smargiassi S, Sassoli L, Cappa F, Cervo R, Baracchi D. Exposure to a biopesticide interferes with sucrose responsiveness and learning in honey bees. Sci Rep 2020; 10:19929. [PMID: 33199794 PMCID: PMC7670424 DOI: 10.1038/s41598-020-76852-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The entomopathogenic fungus Beauveria bassiana is a widely used biopesticide that is considered as an effective alternative to classical agrochemicals. B. bassiana is thought to be safe for pollinators although little is known about its side-effects on pollinators' behaviour and cognition. Here, we focused on honey bees and used the proboscis extension response (PER) protocol to assess whether B. bassiana affects individual sucrose responsiveness, non-associative and associative olfactory learning and memory. Fungus-treated bees displayed an enhanced sucrose responsiveness, which could not be explained by metabolic alterations. Strikingly, exposed bees were twice as inconsistent as controls in response to sucrose, showing PER to lower but not to higher sucrose concentrations. Exposed bees habituated less to sucrose and had a better acquisition performance in the conditioning phase than controls. Further, neither mid- nor long-term memory were affected by the fungus. As sucrose responsiveness is the main determinant of division of foraging labour, these changes might unsettle the numerical ratio between the sub-castes of foragers leading to suboptimal foraging. Although the use of biocontrol strategies should be preferred over chemical pesticides, careful assessment of their side-effects is crucial before claiming that they are safe for pollinators.
Collapse
Affiliation(s)
- Daniele Carlesso
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stefania Smargiassi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Lara Sassoli
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
78
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
79
|
Bell HC, Montgomery CN, Benavides JE, Nieh JC. Effects of Nosema ceranae (Dissociodihaplophasida: Nosematidae) and Flupyradifurone on Olfactory Learning in Honey Bees, Apis mellifera (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6000118. [PMID: 33232488 PMCID: PMC7685397 DOI: 10.1093/jisesa/ieaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The health of insect pollinators, particularly the honey bee, Apis mellifera (Linnaeus, 1758), is a major concern for agriculture and ecosystem health. In response to mounting evidence supporting the detrimental effects of neonicotinoid pesticides on pollinators, a novel 'bee safe' butenolide compound, flupyradifurone (FPF) has been registered for use in agricultural use. Although FPF is not a neonicotinoid, like neonicotinoids, it is an excitotoxic nicotinic acetylcholine receptor agonist. In addition, A. mellifera faces threats from pathogens, such as the microsporidian endoparasite, Nosema ceranae (Fries et al. 1996). We therefore sought 1) to increase our understanding of the potential effects of FPF on honey bees by focusing on a crucial behavior, the ability to learn and remember an odor associated with a food reward, and 2) to test for a potential synergistic effect on such learning by exposure to FPF and infection with N. ceranae. We found little evidence that FPF significantly alters learning and memory at short-term field-realistic doses. However, at high doses and at chronic, field-realistic exposure, FPF did reduce learning and memory in an olfactory conditioning task. Infection with N. ceranae also reduced learning, but there was no synergy (no significant interaction) between N. ceranae and exposure to FPF. These results suggest the importance of continued studies on the chronic effects of FPF.
Collapse
Affiliation(s)
- Heather Christine Bell
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - Corina N Montgomery
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - Jaime E Benavides
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, Gilman Dr, La Jolla, CA
| |
Collapse
|
80
|
Murmu MS, Hanoune J, Choi A, Bureau V, Renou M, Dacher M, Deisig N. Modulatory effects of pheromone on olfactory learning and memory in moths. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104159. [PMID: 33127358 DOI: 10.1016/j.jinsphys.2020.104159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Pheromones are chemical communication signals known to elicit stereotyped behaviours and/or physiological processes in individuals of the same species, generally in relation to a specific function (e.g. mate finding in moths). However, recent research suggests that pheromones can modulate behaviours, which are not directly related to their usual function and thus potentially affect behavioural plasticity. To test this hypothesis, we studied the possible modulatory effects of pheromones on olfactory learning and memory in Agrotis ipsilon moths, which are well-established models to study sex-pheromones. To achieve this, sexually mature male moths were trained to associate an odour with either a reward (appetitive learning) or punishment (aversive learning) and olfactory memory was tested at medium- and long-term (1 h or 1.5 h, and 24 h). Our results show that male moths can learn to associate an odour with a sucrose reward, as well as a mild electric shock, and that olfactory memory persists over medium- and long-term range. Pheromones facilitated both appetitive and aversive olfactory learning: exposure to the conspecific sex-pheromone before conditioning enhanced appetitive but not aversive learning, while exposure to a sex-pheromone component of a heterospecific species (repellent) facilitated aversive but not appetitive learning. However, this effect was short-term, as medium- and long-term memory were not improved. Thus, in moths, pheromones can modulate olfactory learning and memory, indicating that they contribute to behavioural plasticity allowing optimization of the animal's behaviour under natural conditions. This might occur through an alteration of sensitization.
Collapse
Affiliation(s)
- Meena Sriti Murmu
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France; Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Jeremy Hanoune
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Abraham Choi
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Valentin Bureau
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Michel Renou
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France.
| | - Nina Deisig
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France; Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany.
| |
Collapse
|
81
|
Chromatic, achromatic and bimodal negative patterning discrimination by free-flying bumble bees. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
82
|
Zhang X, Hu H, Han B, Wei Q, Meng L, Wu F, Fang Y, Feng M, Ma C, Rueppell O, Li J. The Neuroproteomic Basis of Enhanced Perception and Processing of Brood Signals That Trigger Increased Reproductive Investment in Honeybee ( Apis mellifera) Workers. Mol Cell Proteomics 2020; 19:1632-1648. [PMID: 32669299 PMCID: PMC8014994 DOI: 10.1074/mcp.ra120.002123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.
Collapse
Affiliation(s)
- Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
83
|
Manzi C, Vergara-Amado J, Franco LM, Silva AX. The effect of temperature on candidate gene expression in the brain of honey bee Apis mellifera (Hymenoptera: Apidae) workers exposed to neonicotinoid imidacloprid. J Therm Biol 2020; 93:102696. [DOI: 10.1016/j.jtherbio.2020.102696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
|
84
|
Baracchi D, Cabirol A, Devaud JM, Haase A, d'Ettorre P, Giurfa M. Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Commun Biol 2020; 3:447. [PMID: 32807870 PMCID: PMC7431541 DOI: 10.1038/s42003-020-01183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
Since their discovery in insects, pheromones are considered as ubiquitous and stereotyped chemical messengers acting in intraspecific animal communication. Here we studied the effect of pheromones in a different context as we investigated their capacity to induce persistent modulations of associative learning and memory. We used honey bees, Apis mellifera, and combined olfactory conditioning and pheromone preexposure with disruption of neural activity and two-photon imaging of olfactory brain circuits, to characterize the effect of pheromones on olfactory learning and memory. Geraniol, an attractive pheromone component, and 2-heptanone, an aversive pheromone, improved and impaired, respectively, olfactory learning and memory via a durable modulation of appetitive motivation, which left odor processing unaffected. Consistently, interfering with aminergic circuits mediating appetitive motivation rescued or diminished the cognitive effects induced by pheromone components. We thus show that these chemical messengers act as important modulators of motivational processes and influence thereby animal cognition.
Collapse
Affiliation(s)
- David Baracchi
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
| | - Jean-Marc Devaud
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Povo, Italy
| | - Patrizia d'Ettorre
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, F-93430, Sorbonne Paris Cité, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Institut Universitaire de France (IUF), Toulouse, France.
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
85
|
Lai Y, Despouy E, Sandoz JC, Su S, de Brito Sanchez MG, Giurfa M. Degradation of an appetitive olfactory memory via devaluation of sugar reward is mediated by 5-HT signaling in the honey bee. Neurobiol Learn Mem 2020; 173:107278. [PMID: 32652234 DOI: 10.1016/j.nlm.2020.107278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Conditioned taste aversion (CTA) learning induces the devaluation of a preferred food through its pairing with a stimulus inducing internal illness. In invertebrates, it is still unclear how this aversive learning impairs the memories of stimuli that had been associated with the appetitive food prior to its devaluation. Here we studied this phenomenon in the honey bee and characterized its neural underpinnings. We first trained bees to associate an odorant (conditioned stimulus, CS) with appetitive fructose solution (unconditioned stimulus, US) using a Pavlovian olfactory conditioning. We then subjected the bees that learned the association to a CTA training during which the antennal taste of fructose solution was contingent or not to the ingestion of quinine solution, which induces malaise a few hours after ingestion. Only the group experiencing contingent fructose stimulation and quinine-based malaise exhibited a decrease in responses to the fructose and a concomitant decrease in odor-specific retention in tests performed 23 h after the original odor conditioning. Furthermore, injection of dopamine- and serotonin-receptor antagonists after CTA learning revealed that this long-term decrease was mediated by serotonergic signaling as its blockade rescued both the responses to fructose and the odor-specific memory 23 h after conditioning. The impairment of a prior CS memory by subsequent CTA conditioning confirms that bees retrieve a devaluated US representation when presented with the CS. Our findings further highlight the importance of serotonergic signaling in aversive learning in the bee and uncover mechanisms underlying aversive memories induced by internal illness in invertebrates.
Collapse
Affiliation(s)
- Yuan Lai
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Elodie Despouy
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Songkun Su
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France.
| | - Martin Giurfa
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
86
|
Kumagai H, Kunieda T, Nakamura K, Matsumura Y, Namiki M, Kohno H, Kubo T. Developmental stage-specific distribution and phosphorylation of Mblk-1, a transcription factor involved in ecdysteroid-signaling in the honey bee brain. Sci Rep 2020; 10:8735. [PMID: 32457433 PMCID: PMC7250831 DOI: 10.1038/s41598-020-65327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
In the honey bee, the mushroom bodies (MBs), a higher-order center in insect brain, comprise interneurons termed Kenyon cells (KCs). We previously reported that Mblk-1, which encodes a transcription factor involved in ecdysteroid-signaling, is expressed preferentially in the large-type KCs (lKCs) in the pupal and adult worker brain and that phosphorylation by the Ras/MAPK pathway enhances the transcriptional activity of Mblk-1 in vitro. In the present study, we performed immunoblotting and immunofluorescence studies using affinity-purified anti-Mblk-1 and anti-phosphorylated Mblk-1 antibodies to analyze the distribution and phosphorylation of Mblk-1 in the brains of pupal and adult workers. Mblk-1 was preferentially expressed in the lKCs in both pupal and adult worker brains. In contrast, some Mblk-1 was phosphorylated almost exclusively in the pupal stages, and phosphorylated Mblk-1 was preferentially expressed in the MB neuroblasts and lKCs in pupal brains. Immunofluorescence studies revealed that both Mblk-1 and phosphorylated Mblk-1 are located in both the cytoplasm and nuclei of the lKC somata in the pupal and adult worker brains. These findings suggest that Mblk-1 plays a role in the lKCs in both pupal and adult stages and that phosphorylated Mblk-1 has pupal stage-specific functions in the MB neuroblasts and lKCs in the honey bee brain.
Collapse
Affiliation(s)
- Hitomi Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Korefumi Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro Matsumura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Manami Namiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
87
|
Riveros AJ, Leonard AS, Gronenberg W, Papaj DR. Learning of bimodal versus unimodal signals in restrained bumble bees. J Exp Biol 2020; 223:jeb220103. [PMID: 32321753 DOI: 10.1242/jeb.220103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 01/31/2023]
Abstract
Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.
Collapse
Affiliation(s)
- Andre J Riveros
- Departamento de Biología, Grupo de Investigaciones CANNON, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
88
|
Zhao Z, McBride CS. Evolution of olfactory circuits in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:353-367. [PMID: 31984441 PMCID: PMC7192870 DOI: 10.1007/s00359-020-01399-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Recent years have seen an explosion of interest in the evolution of neural circuits. Comparison of animals from different families, orders, and phyla reveals fascinating variation in brain morphology, circuit structure, and neural cell types. However, it can be difficult to connect the complex changes that occur across long evolutionary distances to behavior. Luckily, these changes accumulate through processes that should also be observable in recent time, making more tractable comparisons of closely related species relevant and complementary. Here, we review several decades of research on the evolution of insect olfactory circuits across short evolutionary time scales. We describe two well-studied systems, Drosophila sechellia flies and Heliothis moths, in detailed case studies. We then move through key types of circuit evolution, cataloging examples from other insects and looking for general patterns. The literature is dominated by changes in sensory neuron number and tuning at the periphery-often enhancing neural response to odorants with new ecological or social relevance. However, changes in the way olfactory information is processed by central circuits is clearly important in a few cases, and we suspect the development of genetic tools in non-model species will reveal a broad role for central circuit evolution. Moving forward, such tools should also be used to rigorously test causal links between brain evolution and behavior.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
89
|
Scheiner R, Frantzmann F, Jäger M, Mitesser O, Helfrich-Förster C, Pauls D. A Novel Thermal-Visual Place Learning Paradigm for Honeybees ( Apis mellifera). Front Behav Neurosci 2020; 14:56. [PMID: 32351370 PMCID: PMC7174502 DOI: 10.3389/fnbeh.2020.00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Honeybees (Apis mellifera) have fascinating navigational skills and learning capabilities in the field. To decipher the mechanisms underlying place learning in honeybees, we need paradigms to study place learning of individual honeybees under controlled laboratory conditions. Here, we present a novel visual place learning arena for honeybees which relies on high temperatures as aversive stimuli. Honeybees learn to locate a safe spot in an unpleasantly warm arena, relying on a visual panorama. Bees can solve this task at a temperature of 46°C, while at temperatures above 48°C bees die quickly. This new paradigm, which is based on pioneering work on Drosophila, allows us now to investigate thermal-visual place learning of individual honeybees in the laboratory, for example after controlled genetic knockout or pharmacological intervention.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Felix Frantzmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Jäger
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Biocenter, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
90
|
Pratavieira M, da Silva Menegasso AR, Roat T, Malaspina O, Palma MS. In Situ Metabolomics of the Honeybee Brain: The Metabolism of l-Arginine through the Polyamine Pathway in the Proboscis Extension Response (PER). J Proteome Res 2020; 19:832-844. [PMID: 31859515 DOI: 10.1021/acs.jproteome.9b00653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proboscis extension response (PER) reflex may be used to condition the pairing of an odor with sucrose, which is applied to the antennae, in experiments to induce learning, where the odor represents a conditioned stimulus, while sucrose represents an unconditioned stimulus. A series of studies have been conducted on honeybees, relating learning and memory acquisition/retrieval using the PER as a strategy for accessing their ability to exhibit an unconditioned stimulus; however, the major metabolic processes involved in the PER are not well known. Thus, the aim of this investigation is profiling the metabolome of the honeybee brain involved in the PER. In this study, a semiquantitative approach of matrix-assisted laser desorption ionization (MALDI) mass spectral imaging (MSI) was used to profile the most abundant metabolites of the honeybee brain that support the PER. It was reported that execution of the PER requires the metabolic transformations of arginine, ornithine, and lysine as substrates for the production of putrescine, cadaverine, spermine, spermidine, 1,3-diaminopropane, and γ-aminobutyric acid (GABA). Considering the global metabolome of the brain of honeybee workers, the PER requires the consumption of large amounts of cadaverine and 1,3-diaminopropane, in parallel with the biosynthesis of high amounts of spermine, spermidine, and ornithine. To exhibit the PER, the brain of honeybee workers processes the conversion of l-arginine and l-lysine through the polyamine pathway, with different regional metabolomic profiles at the individual neuropil level. The outcomes of this study using this metabolic route as a reference are indicating that the antennal lobes and the calices (medial and lateral) were the most active brain regions for supporting the PER.
Collapse
Affiliation(s)
- Marcel Pratavieira
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Anally Ribeiro da Silva Menegasso
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Thaisa Roat
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Osmar Malaspina
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Mario Sergio Palma
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| |
Collapse
|
91
|
Villar ME, Marchal P, Viola H, Giurfa M. Redefining Single-Trial Memories in the Honeybee. Cell Rep 2020; 30:2603-2613.e3. [DOI: 10.1016/j.celrep.2020.01.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/16/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
|
92
|
Buatois A, Laroche L, Lafon G, Avarguès‐Weber A, Giurfa M. Higher‐order discrimination learning by honeybees in a virtual environment. Eur J Neurosci 2020; 51:681-694. [DOI: 10.1111/ejn.14633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition Center for Integrative Biology CNRS University of Toulouse Toulouse Cedex 09 France
| | - Lou Laroche
- Research Centre on Animal Cognition Center for Integrative Biology CNRS University of Toulouse Toulouse Cedex 09 France
| | - Gregory Lafon
- Research Centre on Animal Cognition Center for Integrative Biology CNRS University of Toulouse Toulouse Cedex 09 France
| | - Aurore Avarguès‐Weber
- Research Centre on Animal Cognition Center for Integrative Biology CNRS University of Toulouse Toulouse Cedex 09 France
| | - Martin Giurfa
- Research Centre on Animal Cognition Center for Integrative Biology CNRS University of Toulouse Toulouse Cedex 09 France
- College of Animal Science (College of Bee Science) Fujian Agriculture and Forestry University Fuzhou China
- Institut Universitaire de France (IUF) France
| |
Collapse
|
93
|
Arican C, Bulk J, Deisig N, Nawrot MP. Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning. Front Physiol 2020; 10:1539. [PMID: 31969831 PMCID: PMC6960104 DOI: 10.3389/fphys.2019.01539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/05/2019] [Indexed: 12/05/2022] Open
Abstract
Animal personality and individuality are intensively researched in vertebrates and both concepts are increasingly applied to behavioral science in insects. However, only few studies have looked into individuality with respect to performance in learning and memory tasks. In vertebrates, individual learning capabilities vary considerably with respect to learning speed and learning rate. Likewise, honeybees express individual learning abilities in a wide range of classical conditioning protocols. Here, we study individuality in the learning and memory performance of cockroaches, both in classical and operant conditioning tasks. We implemented a novel classical (olfactory) conditioning paradigm where the conditioned response is established in the maxilla-labia response (MLR). Operant spatial learning was investigated in a forced two-choice task using a T-maze. Our results confirm individual learning abilities in classical conditioning of cockroaches that was reported for honeybees and vertebrates but contrast long-standing reports on stochastic learning behavior in fruit flies. In our experiments, most learners expressed a correct behavior after only a single learning trial showing a consistent high performance during training and test. We can further show that individual learning differences in insects are not limited to classical conditioning but equally appear in operant conditioning of the cockroach.
Collapse
Affiliation(s)
| | | | - Nina Deisig
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin Paul Nawrot
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
94
|
Hostachy C, Couzi P, Hanafi-Portier M, Portemer G, Halleguen A, Murmu M, Deisig N, Dacher M. Responsiveness to Sugar Solutions in the Moth Agrotis ipsilon: Parameters Affecting Proboscis Extension. Front Physiol 2019; 10:1423. [PMID: 31849694 PMCID: PMC6888557 DOI: 10.3389/fphys.2019.01423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/04/2019] [Indexed: 12/05/2022] Open
Abstract
Adult moths need energy and nutrients for reproducing and obtain them mainly by consuming flower nectar (a solution of sugars and other compounds). Gustatory perception gives them information on the plants they feed on. Feeding and food perception are integrated in the proboscis extension response, which occurs when their antennae touch a sugar solution. We took advantage of this reflex to explore moth sugar responsiveness depending on different parameters (i.e., sex, age, satiety, site of presentation, and composition of the solution). We observed that starvation but not age induced higher response rates to sucrose. Presentation of sucrose solutions in a randomized order confirmed that repeated sugar stimulations did not affect the response rate; however, animals were sometimes sensitized to water, indicating sucrose presentation might induce non-associative plasticity. Leg stimulation was much less efficient than antennal stimulation to elicit a response. Quinine prevented and terminated sucrose-elicited proboscis extension. Males but not females responded slightly more to sucrose than to fructose. Animals of either sex rarely reacted to glucose, but curiously, mixtures in which half sucrose or fructose were replaced by glucose elicited the same response rate than sucrose or fructose alone. Fructose synergized the response when mixed with sucrose in male but not female moths. This is consistent with the fact that nectars consumed by moths in nature are mixtures of these three sugars, which suggests an adaptation to nectar perception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Matthieu Dacher
- Sorbonne Université, Université Paris Est Créteil, INRA, CNRS, IRD – Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Paris, France
| |
Collapse
|
95
|
Amaya-Márquez M, Tusso S, Hernández J, Jiménez JD, Wells H, I. Abramson C. Olfactory Learning in the Stingless Bee Melipona eburnea Friese (Apidae: Meliponini). INSECTS 2019; 10:insects10110412. [PMID: 31752087 PMCID: PMC6920981 DOI: 10.3390/insects10110412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 12/04/2022]
Abstract
Olfactory learning and floral scents are co-adaptive traits in the plant–pollinator relationship. However, how scent relates to cognition and learning in the diverse group of Neotropical stingless bees is largely unknown. Here we evaluated the ability of Melipona eburnea to be conditioned to scent using the proboscis extension reflex (PER) protocol. Stingless bees did not show PER while harnessed but were able to be PER conditioned to scent when free-to-move in a mini-cage (fmPER). We evaluated the effect of: 1) unconditioned stimulus (US) reward, and 2) previous scent–reward associations on olfactory learning performance. When using unscented-US, PER-responses were low on day 1, but using scented-US reward the olfactory PER-response increased on day 1. On day 2 PER performance greatly increased in bees that previously had experienced the same odor and reward combination, while bees that experienced a different odor on day 2 showed poor olfactory learning. Bees showed higher olfactory PER conditioning to guava than to mango odor. The effect of the unconditioned stimulus reward was not a significant factor in the model on day 2. This indicates that olfactory learning performance can increase via either taste receptors or accumulated experience with the same odor. Our results have application in agriculture and pollination ecology.
Collapse
Affiliation(s)
- Marisol Amaya-Márquez
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.H.); (J.D.J.)
- Correspondence: ; Tel.: +57-1-3165000 (ext. 11503/11546)
| | - Sergio Tusso
- Science for Life Laboratories and Department of Evolutionary Biology, Norbyvägen 18D, Uppsala University, 75236 Uppsala, Sweden;
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Grosshaderner Str. Planegg-Martinsried, Germany
| | - Juan Hernández
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.H.); (J.D.J.)
| | - Juan Darío Jiménez
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.H.); (J.D.J.)
| | | | - Charles I. Abramson
- Department of Psychology, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
96
|
Pietrantuono AL, Requier F, Fernández-Arhex V, Winter J, Huerta G, Guerrieri F. Honeybees generalize among pollen scents from plants flowering in the same seasonal period. ACTA ACUST UNITED AC 2019; 222:jeb.201335. [PMID: 31611291 DOI: 10.1242/jeb.201335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
Abstract
When honey bees (Apis mellifera) feed on flowers, they extend their proboscis to absorb the nectar, i.e. they perform the proboscis extension response (PER). The presence of pollen and/or nectar can be associated with odors, colors or visual patterns, which allows honey bees to recognize food sources in the environment. Honey bees can associate similar, though different, stimuli with the presence of food; i.e. honey bees discriminate and generalize among stimuli. Here, we evaluated generalization among pollen scents from six different plant species. Experiments were based on the PER conditioning protocol over two phases: (1) conditioning, in which honey bees associated the scent of each pollen type with sucrose, and (2) test, in which honey bees were presented with a novel scent, to evaluate generalization. Generalization was evinced by honey bees extending their proboscis to a novel scent. The level of PER increased over the course of the conditioning phase for all pollen scents. Honey bees generalized pollen from Pyracantha coccinea and from Hypochaeris radicata These two plants have different amounts of protein and are not taxonomically related. We observed that the flowering period influences the olfactory perceptual similarity and we suggest that both pollen types may share volatile compounds that play key roles in perception. Our results highlight the importance of analyzing the implications of the generalization between pollen types of different nutritional quality. Such studies could provide valuable information for beekeepers and agricultural producers, as the generalization of a higher quality pollen can benefit hive development, and increase pollination and honey production.
Collapse
Affiliation(s)
- Ana Laura Pietrantuono
- CONICET - CCT Patagonia Norte. Av. de los Pioneros 2350, San Carlos de Bariloche 8400, Río Negro, Argentina .,IFAB-Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA-Bariloche, Modesta Victoria 4450, CC 277, San Carlos de Bariloche 8400, Río Negro, Argentina
| | - Fabrice Requier
- CONICET - CCT Patagonia Norte. Av. de los Pioneros 2350, San Carlos de Bariloche 8400, Río Negro, Argentina.,Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91190 Paris, France
| | - Valeria Fernández-Arhex
- CONICET - CCT Patagonia Norte. Av. de los Pioneros 2350, San Carlos de Bariloche 8400, Río Negro, Argentina.,IFAB-Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA-Bariloche, Modesta Victoria 4450, CC 277, San Carlos de Bariloche 8400, Río Negro, Argentina
| | - Josefina Winter
- INTI - Sede Neuquén, Ruta 7 Km 5 Mercado Concentrador, Parque Industrial 8300, Neuquén, Argentina
| | - Guillermo Huerta
- IFAB-Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA-Bariloche, Modesta Victoria 4450, CC 277, San Carlos de Bariloche 8400, Río Negro, Argentina
| | - Fernando Guerrieri
- IRBI - Institut de Recherche sur la Biologie de l'Insecte UMR 7261, CNRS - Université de Tours, 37020 Tours, France
| |
Collapse
|
97
|
Farina WM, Balbuena MS, Herbert LT, Mengoni Goñalons C, Vázquez DE. Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. INSECTS 2019; 10:insects10100354. [PMID: 31635293 PMCID: PMC6835870 DOI: 10.3390/insects10100354] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosystems. Its great versatility as an experimental model makes it an excellent proxy to evaluate the environmental impact of agrochemicals using current methodologies and procedures in environmental toxicology. The increase in agrochemical use, including those that do not target insects directly, can have deleterious effects if carried out indiscriminately. This seems to be the case of the herbicide glyphosate (GLY), the most widely used agrochemical worldwide. Its presence in honey has been reported in samples obtained from different environments. Hence, to understand its current and potential risks for this pollinator it has become essential to not only study the effects on honeybee colonies located in agricultural settings, but also its effects under laboratory conditions. Subtle deleterious effects can be detected using experimental approaches. GLY negatively affects associative learning processes of foragers, cognitive and sensory abilities of young hive bees and promotes delays in brood development. An integrated approach that considers behavior, physiology, and development allows not only to determine the effects of this agrochemical on this eusocial insect from an experimental perspective, but also to infer putative effects in disturbed environments where it is omnipresent.
Collapse
Affiliation(s)
- Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - M Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Lucila T Herbert
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Carolina Mengoni Goñalons
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Diego E Vázquez
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| |
Collapse
|
98
|
Marchal P, Villar ME, Geng H, Arrufat P, Combe M, Viola H, Massou I, Giurfa M. Inhibitory learning of phototaxis by honeybees in a passive-avoidance task. ACTA ACUST UNITED AC 2019; 26:1-12. [PMID: 31527185 PMCID: PMC6749929 DOI: 10.1101/lm.050120.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and established a passive-avoidance task in which they had to suppress positive phototaxis. Bees placed in a two-compartment box learned to inhibit spontaneous attraction to a compartment illuminated with blue light by associating and entering into that chamber with shock delivery. Inhibitory learning resulted in an avoidance memory that could be retrieved 24 h after training and that was specific to the punished blue light. The memory was mainly operant but involved a Pavlovian component linking the blue light and the shock. Coupling conditioning with transcriptional analyses in key areas of the brain showed that inhibitory learning of phototaxis leads to an up-regulation of the dopaminergic receptor gene Amdop1 in the calyces of the mushroom bodies, consistently with the role of dopamine signaling in different forms of aversive learning in insects. Our results thus introduce new perspectives for uncovering further cellular and molecular underpinnings of aversive learning and memory in bees. Overall, they represent an important step toward comparative learning studies between the appetitive and the aversive frameworks.
Collapse
Affiliation(s)
- Paul Marchal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Maria Eugenia Villar
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Haiyang Geng
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Patrick Arrufat
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Maud Combe
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Haydée Viola
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis," CONICET-Universidad de Buenos Aires, Buenos Aires (C1121ABG), Argentina
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
99
|
Characterization of the olfactory system of the giant honey bee, Apis dorsata. Cell Tissue Res 2019; 379:131-145. [PMID: 31410628 DOI: 10.1007/s00441-019-03078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Apis dorsata is an open-nesting, undomesticated, giant honey bee found in southern Asia. We characterized a number of aspects of olfactory system of Apis dorsata and compared it with the well-characterized, western honeybee, Apis mellifera, a domesticated, cavity-nesting species. A. dorsata differs from A. mellifera in nesting behavior, foraging activity, and defense mechanisms. Hence, there can be different demands on its olfactory system. We elucidated the glomerular organization of A. dorsata by creating a digital atlas for the antennal lobe and visualized the antennal lobe tracts and localized their innervations. We showed that the neurites of Kenyon cells with cell bodies located in a neighborhood in calyx retain their relative neighborhoods in the pedunculus and the vertical lobe forming a columnar organization in the mushroom body. The vertical lobe and the calyx of the mushroom body were found to be innervated by extrinsic neurons with cell bodies in the lateral protocerebrum. We found that the species was amenable to olfactory conditioning and showed good learning and memory retention at 24 h after training. It was also amenable to massed and spaced conditioning and could distinguish trained odor from an untrained novel odor. We found that all the above mentioned features in A. dorsata are very similar to those in A. mellifera. We thereby establish A. dorsata as a good model system, strikingly similar to A. mellifera despite the differences in their nesting and foraging behavior.
Collapse
|
100
|
Muth F, Francis JS, Leonard AS. Modality-specific impairment of learning by a neonicotinoid pesticide. Biol Lett 2019; 15:20190359. [PMID: 31362607 DOI: 10.1098/rsbl.2019.0359] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees. We found that neonicotinoid consumption differentially impacted learning of floral stimuli, impairing scent, but not colour, learning. These findings raise questions about the mechanisms by which pesticides might differentially impair sensory systems, with implications for how neonicotinoids affect multiple aspects of bee ecology.
Collapse
Affiliation(s)
- Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jacob S Francis
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|