51
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
52
|
Bannoud F, Bellini C. Adventitious Rooting in Populus Species: Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:668837. [PMID: 34093625 PMCID: PMC8174304 DOI: 10.3389/fpls.2021.668837] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 05/11/2023]
Abstract
Populus spp. are among the most economically important species worldwide. These trees are used not only for wood and fiber production, but also in the rehabilitation of degraded lands. Since they are clonally propagated, the ability of stem cuttings to form adventitious roots is a critical point for plant establishment and survival in the field, and consequently for the forest industry. Adventitious rooting in different Populus clones has been an agronomic trait targeted in breeding programs for many years, and many factors have been identified that affect this quantitative trait. A huge variation in the rooting capacity has been observed among the species in the Populus genus, and the responses to some of the factors affecting this trait have been shown to be genotype-dependent. This review analyses similarities and differences between results obtained from studies examining the role of internal and external factors affecting rooting of Populus species cuttings. Since rooting is the most important requirement for stand establishment in clonally propagated species, understanding the physiological and genetic mechanisms that promote this trait is essential for successful commercial deployment.
Collapse
Affiliation(s)
- Florencia Bannoud
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- *Correspondence: Florencia Bannoud,
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Catherine Bellini,
| |
Collapse
|
53
|
Hsu SH, Shen MW, Chen JC, Lur HS, Liu CT. The Photosynthetic Bacterium Rhodopseudomonas palustris Strain PS3 Exerts Plant Growth-Promoting Effects by Stimulating Nitrogen Uptake and Elevating Auxin Levels in Expanding Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:573634. [PMID: 33613595 PMCID: PMC7889516 DOI: 10.3389/fpls.2021.573634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
Rhodopseudomonas palustris strain PS3, a phototrophic bacterium, was originally isolated from a paddy field located in Taipei city, Taiwan, and showed positive effects on the growth of leafy vegetables. The aim of this study was to clarify the mechanism of the beneficial effects exerted by PS3 on plants. An ineffective R. palustris strain, YSC3, isolated from a paddy field located in Yilan County, was used as the negative control for comparative analyses. We cultivated non-heading Chinese cabbage (Brassica rapa var. chinensis) in 1/2 strength Hoagland hydroponic solution, in which nitrate is the main nitrogen source. We evaluated various plant physiological responses to inoculation with different bacterial inoculants. The N use efficiency (NUE) of PS3-inoculated plants was dramatically higher than that of YSC3-inoculated plants. The nitrate uptake efficiency (NUpE) was significantly elevated in plants treated with PS3; however, no excess nitrate accumulation was observed in leaves. We also noticed that the endogenous indole-3-acetic acid (IAA) levels as well as the cell division rate in the leaves of PS3-inoculated plants were significantly higher than those in the leaves of YSC3-inoculated plants. We examined the bacterial transcription of some genes during root colonization, and found that the expression level of IAA synthesis related gene MAO was almost the same between these two strains. It suggests that the elevated endogenous IAA in the PS3-inoculated plants was not directly derived from the exogenous IAA produced by this bacterium. Taken together, we deduced that PS3 inoculation could promote plant growth by enhancing nitrate uptake and stimulating the accumulation of endogenous auxin in young expanding leaves to increase the proliferation of leaf cells during leaf development.
Collapse
Affiliation(s)
- Shu-Hua Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Meng-Wei Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Huu-Sheng Lur
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- *Correspondence: Huu-Sheng Lur,
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Huu-Sheng Lur,
| |
Collapse
|
54
|
Dreischhoff S, Das IS, Jakobi M, Kasper K, Polle A. Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:590063. [PMID: 33381131 PMCID: PMC7767828 DOI: 10.3389/fpls.2020.590063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
Ectomycorrhizal fungi (EMF) grow as saprotrophs in soil and interact with plants, forming mutualistic associations with roots of many economically and ecologically important forest tree genera. EMF ensheath the root tips and produce an extensive extramatrical mycelium for nutrient uptake from the soil. In contrast to other mycorrhizal fungal symbioses, EMF do not invade plant cells but form an interface for nutrient exchange adjacent to the cortex cells. The interaction of roots and EMF affects host stress resistance but uncovering the underlying molecular mechanisms is an emerging topic. Here, we focused on local and systemic effects of EMF modulating defenses against insects or pathogens in aboveground tissues in comparison with arbuscular mycorrhizal induced systemic resistance. Molecular studies indicate a role of chitin in defense activation by EMF in local tissues and an immune response that is induced by yet unknown signals in aboveground tissues. Volatile organic compounds may be involved in long-distance communication between below- and aboveground tissues, in addition to metabolite signals in the xylem or phloem. In leaves of EMF-colonized plants, jasmonate signaling is involved in transcriptional re-wiring, leading to metabolic shifts in the secondary and nitrogen-based defense metabolism but cross talk with salicylate-related signaling is likely. Ectomycorrhizal-induced plant immunity shares commonalities with systemic acquired resistance and induced systemic resistance. We highlight novel developments and provide a guide to future research directions in EMF-induced resistance.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
55
|
Szuba A, Marczak Ł, Ratajczak I. Metabolome adjustments in ectomycorrhizal Populus × canescens associated with strong promotion of plant growth by Paxillus involutus despite a very low root colonization rate. TREE PHYSIOLOGY 2020; 40:1726-1743. [PMID: 32761190 DOI: 10.1093/treephys/tpaa100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
It is believed that resource exchange, which is responsible for intensified growth of ectomycorrhizal plants, occurs in the fungus-plant interface. However, increasing evidence indicates that such intensified plant growth, especially root growth promotion, may be independent of root colonization. Nevertheless, the molecular adjustments in low-colonized plants remain poorly understood. Here, we analysed the metabolome of Populus × canescens microcuttings characterized by significantly increased growth triggered by inoculation with Paxillus involutus, which successfully colonized only 2.1 ± 0.3% of root tips. High-throughput metabolomic analyses of leaves, stems and roots of Populus × canescens microcuttings supplemented with leaf proteome data were performed to determine ectomycorrhiza-triggered changes in N-, P- and C-compounds. The molecular adjustments were relatively low in low-colonized (M) plants. Nevertheless, the levels of foliar phenolic compounds were significantly increased in M plants. Increases of total soluble carbohydrates, starch as well as P concentrations were also observed in M leaves along with the increased abundance of the majority of glycerophosphocholines detected in M roots. However, compared with the leaves of the non-inoculated controls, M leaves presented lower concentrations of both N and most photosynthesis-related proteins and all individual mono- and disaccharides. In M stems, only a few compounds with different abundances were detected, including a decrease in carbohydrates, which was also detected in M roots. Thus, these results suggest that the growth improvement of low-colonized poplar trees is independent of an increased photosynthesis rate, massively increased resource (C:N) exchange and delivery of most nutrients to leaves. The mechanism responsible for poplar growth promotion remains unknown but may be related to increased P uptake, subtle leaf pigment changes, the abundance of certain photosynthetic proteins, slight increases in stem and root amino acid levels and the increase in flavonoids (increasing the antioxidant capacity in poplar), all of which improve the fitness of low-colonized poplars.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62035 Kórnik, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14 PL-61704 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, PL-60625 Poznan, Poland
| |
Collapse
|
56
|
Zhang Y, Rodriguez L, Li L, Zhang X, Friml J. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. SCIENCE ADVANCES 2020; 6:6/50/eabc8895. [PMID: 33310852 PMCID: PMC7732203 DOI: 10.1126/sciadv.abc8895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 05/31/2023]
Abstract
Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Xixi Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
57
|
Daguerre Y, Basso V, Hartmann-Wittulski S, Schellenberger R, Meyer L, Bailly J, Kohler A, Plett JM, Martin F, Veneault-Fourrey C. The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Sci Rep 2020; 10:20362. [PMID: 33230111 PMCID: PMC7683724 DOI: 10.1038/s41598-020-76832-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Despite the pivotal role of jasmonic acid in the outcome of plant-microorganism interactions, JA-signaling components in roots of perennial trees like western balsam poplar (Populus trichocarpa) are poorly characterized. Here we decipher the poplar-root JA-perception complex centered on PtJAZ6, a co-repressor of JA-signaling targeted by the effector protein MiSSP7 from the ectomycorrhizal basidiomycete Laccaria bicolor during symbiotic development. Through protein-protein interaction studies in yeast we determined the poplar root proteins interacting with PtJAZ6. Moreover, we assessed via yeast triple-hybrid how the mutualistic effector MiSSP7 reshapes the association between PtJAZ6 and its partner proteins. In the absence of the symbiotic effector, PtJAZ6 interacts with the transcription factors PtMYC2s and PtJAM1.1. In addition, PtJAZ6 interacts with it-self and with other Populus JAZ proteins. Finally, MiSSP7 strengthens the binding of PtJAZ6 to PtMYC2.1 and antagonizes PtJAZ6 homo-/heterodimerization. We conclude that a symbiotic effector secreted by a mutualistic fungus may promote the symbiotic interaction through altered dynamics of a JA-signaling-associated protein-protein interaction network, maintaining the repression of PtMYC2.1-regulated genes.
Collapse
Affiliation(s)
- Yohann Daguerre
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Veronica Basso
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Sebastian Hartmann-Wittulski
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Romain Schellenberger
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Laura Meyer
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Justine Bailly
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Annegret Kohler
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Jonathan M Plett
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Claire Veneault-Fourrey
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France.
| |
Collapse
|
58
|
Daguerre Y, Basso V, Hartmann-Wittulski S, Schellenberger R, Meyer L, Bailly J, Kohler A, Plett JM, Martin F, Veneault-Fourrey C. The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Sci Rep 2020; 10:20362. [PMID: 33230111 DOI: 10.1038/s41598-020-76832-76836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2020] [Indexed: 05/26/2023] Open
Abstract
Despite the pivotal role of jasmonic acid in the outcome of plant-microorganism interactions, JA-signaling components in roots of perennial trees like western balsam poplar (Populus trichocarpa) are poorly characterized. Here we decipher the poplar-root JA-perception complex centered on PtJAZ6, a co-repressor of JA-signaling targeted by the effector protein MiSSP7 from the ectomycorrhizal basidiomycete Laccaria bicolor during symbiotic development. Through protein-protein interaction studies in yeast we determined the poplar root proteins interacting with PtJAZ6. Moreover, we assessed via yeast triple-hybrid how the mutualistic effector MiSSP7 reshapes the association between PtJAZ6 and its partner proteins. In the absence of the symbiotic effector, PtJAZ6 interacts with the transcription factors PtMYC2s and PtJAM1.1. In addition, PtJAZ6 interacts with it-self and with other Populus JAZ proteins. Finally, MiSSP7 strengthens the binding of PtJAZ6 to PtMYC2.1 and antagonizes PtJAZ6 homo-/heterodimerization. We conclude that a symbiotic effector secreted by a mutualistic fungus may promote the symbiotic interaction through altered dynamics of a JA-signaling-associated protein-protein interaction network, maintaining the repression of PtMYC2.1-regulated genes.
Collapse
Affiliation(s)
- Yohann Daguerre
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Veronica Basso
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Sebastian Hartmann-Wittulski
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Romain Schellenberger
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Laura Meyer
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Justine Bailly
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Annegret Kohler
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Jonathan M Plett
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Claire Veneault-Fourrey
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France.
| |
Collapse
|
59
|
Villalobos Solis MI, Poudel S, Bonnot C, Shrestha HK, Hettich RL, Veneault-Fourrey C, Martin F, Abraham PE. A Viable New Strategy for the Discovery of Peptide Proteolytic Cleavage Products in Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1177-1188. [PMID: 32597696 DOI: 10.1094/mpmi-04-20-0082-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.
Collapse
Affiliation(s)
- Manuel I Villalobos Solis
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Clemence Bonnot
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Him K Shrestha
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Claire Veneault-Fourrey
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Francis Martin
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| |
Collapse
|
60
|
Behr M, Baldacci-Cresp F, Kohler A, Morreel K, Goeminne G, Van Acker R, Veneault-Fourrey C, Mol A, Pilate G, Boerjan W, de Almeida Engler J, El Jaziri M, Baucher M. Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. MYCORRHIZA 2020; 30:555-566. [PMID: 32647969 DOI: 10.1007/s00572-020-00976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impact of the alteration of the monolignol biosynthesis pathway on the establishment of the in vitro interaction of poplar roots either with a mutualistic ectomycorrhizal fungus or with a pathogenic root-knot nematode. Overall, the five studied transgenic lines downregulated for caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) or both COMT and CAD displayed a lower mycorrhizal colonisation percentage, indicating a lower ability for establishing mutualistic interaction than the wild-type. The susceptibility to root-knot nematode infection was variable in the five lines, and the CAD-deficient line was found to be less susceptible than the wild-type. We discuss these phenotypic differences in the light of the large shifts in the metabolic profile and gene expression pattern occurring between roots of the CAD-deficient line and wild-type. A role of genes related to trehalose metabolism, phytohormones, and cell wall construction in the different mycorrhizal symbiosis efficiency and nematode sensitivity between these two lines is suggested. Overall, these results show that the alteration of plant metabolism caused by the repression of a single gene within phenylpropanoid pathway results in significant alterations, at the root level, in the response towards mutualistic and pathogenic associates. These changes may constrain plant fitness and biomass production, which are of economic importance for perennial industrial crops such as poplar.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Annegret Kohler
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Kris Morreel
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Claire Veneault-Fourrey
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | | | - Wout Boerjan
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | | | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium.
| |
Collapse
|
61
|
Wei X, Chen J, Zhang C, Liu H, Zheng X, Mu J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. HORTICULTURE RESEARCH 2020; 7:140. [PMID: 32922812 PMCID: PMC7459316 DOI: 10.1038/s41438-020-00361-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/01/2023]
Abstract
Adventitious root (AR) formation is a unique feature of plant reproduction and plays a vital role in crop production as many horticultural and forestry plants are propagated through cuttings. A growing number of reports have shown that microbes, particularly mycorrhizal fungi are able to promote AR formation, but the underlying mechanisms remain largely unclear. This study established an in vitro culture system and investigated AR formation in microcuttings of Rhododendron fortunei Lindl. inoculated with Oidiodendron maius Barron Om19, an ericoid mycorrhizal fungus strain. Hormones and precursors involved in the biosynthesis of indole-3-acetic acid (IAA) in Om19 mycelium were analyzed. Om19 was able to produce a large quantity of tryptophan (Trp) and also indole-3-pyruvate (IPA) and IAA, indicating that IAA biosynthesis in Om19 could be through a Trp-dependent pathway. After inoculation of Om19, ARs were quickly formed in microcuttings. Symbiosis related genes were activated in ARs, and Om19 effectively colonized the roots. YUC3, a key gene in plant biosynthesis of IAA and genes involved in nitrogen (N) uptake and metabolism, phosphorus (P) uptake were highly upregulated. Plants absorbed significantly greater quantity of mineral nutrients, and their growth was substantially enhanced compared to the control plants without Om19 inoculation. A working model for Om19 enhanced AR formation was proposed. The rapid formation of ARs in cuttings could be due in part to the induction of IAA biosynthesized by Om19 and also attributed to Trp catalyzed biosynthesis of IAA in plants. AR formation, in turn, provided Om19 preferred sites for colonization. Our study suggested that in addition to promoting AR formation, Om19 could potentially be used as a new biofertilizer for enhancing production of ericaceous plants, such as blueberry, cranberry, and rhododendron.
Collapse
Affiliation(s)
- Xiangying Wei
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL 32703 USA
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL 32703 USA
| | - Chunying Zhang
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, 200231 Shanghai, China
| | - Hong Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian Province China
| | - Xiuxia Zheng
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
| |
Collapse
|
62
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
63
|
Zhang X, Li X, Ye L, Huang Y, Kang Z, Zhang B, Zhang X. Colonization by Tuber melanosporum and Tuber indicum affects the growth of Pinus armandii and phoD alkaline phosphatase encoding bacterial community in the rhizosphere. Microbiol Res 2020; 239:126520. [PMID: 32526628 DOI: 10.1016/j.micres.2020.126520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
Abstract
The synthesis of truffle ectomycorrhizae and the ecology of truffle-colonized seedlings in the early symbiotic stage are important for the successful truffle cultivation. In this study, two black truffle species, Tuber melanosporum and Tuber indicum, were selected to colonize Pinus armandii seedlings. 2, 4, 6 and 8 months after inoculation, the growth performance of the host and the rhizosphere soil properties were detected. The dynamic changes of two mating type genes in substrate were also monitored to assess the sexual distribution of truffles. Additionally, the variation of soil bacterial communities encoded by phoD alkaline phosphatase genes was investigated through next-generation sequencing. The results indicated that both T. melanosporum and T. indicum colonization promoted the growth of P. armandii seedlings to some extent, including improving their biomass, total root surface area, root superoxide dismutases and peroxidase activity. The organic matter and available phosphorus in rhizosphere soil were also significantly enhanced by two truffles' colonization. The phoD-harboring bacterial community structure was altered by both truffles, and T. melanosporum decreased their diversity or richness on the 6th and 8th month after inoculation. Pseudomonas, Xanthomonas, and Sinorhizobium, a N2-fixer with phoD genes, were found more abundant in truffle-colonized treatments. The mating type distribution of the two truffles was uneven, with MAT1-1-1 gene occupying the majority. Overall, T. melanosporum and T. indicum colonization affected the micro-ecology of truffle symbionts during the early symbiotic stage. These results could give us a better understanding on the truffle-plant-soil-microbe interactions, which would be beneficial to the subsequent truffle cultivation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yue Huang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
64
|
Farh MEA, Jeon J. Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi. THE PLANT PATHOLOGY JOURNAL 2020; 36:193-203. [PMID: 32547336 PMCID: PMC7272855 DOI: 10.5423/ppj.rw.02.2020.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 05/06/2023]
Abstract
Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.
Collapse
Affiliation(s)
- Mohamed El-Agamy Farh
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Corresponding author. Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) , ORCID Junhyun Jeon https://orcid.org/0000-0002-0617-4007
| |
Collapse
|
65
|
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, Daguerre Y, Na H, Grigoriev IV, Martin F, Veneault-Fourrey C. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. PLANT, CELL & ENVIRONMENT 2020; 43:1047-1068. [PMID: 31834634 DOI: 10.1111/pce.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.
Collapse
Affiliation(s)
- Veronica Basso
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Annegret Kohler
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Shingo Miyauchi
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Vasanth Singan
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Frédéric Guinet
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Jan Šimura
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Ondřej Novák
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Kerrie W Barry
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Mojgan Amirebrahimi
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Jonathan Block
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Yohann Daguerre
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Hyunsoo Na
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Igor V Grigoriev
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California
| | - Francis Martin
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
66
|
Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A, Martin FM. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ Microbiol 2020; 22:1435-1446. [PMID: 32090429 DOI: 10.1111/1462-2920.14959] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
To establish and maintain a symbiotic relationship, the ectomycorrhizal fungus Laccaria bicolor releases mycorrhiza-induced small secreted proteins (MiSSPs) into host roots. Here, we have functionally characterized the MYCORRHIZA-iNDUCED SMALL SECRETED PROTEIN OF 7.6 kDa (MiSSP7.6) from L. bicolor by assessing its induced expression in ectomycorrhizae, silencing its expression by RNAi, and tracking in planta subcellular localization of its protein product. We also carried out yeast two-hybrid assays and bimolecular fluorescence complementation analysis to identify possible protein targets of the MiSSP7.6 effector in Populus roots. We showed that MiSSP7.6 expression is upregulated in ectomycorrhizal rootlets and associated extramatrical mycelium during the late stage of symbiosis development. RNAi mutants with a decreased MiSSP7.6 expression have a lower mycorrhization rate, suggesting a key role in the establishment of the symbiosis with plants. MiSSP7.6 is secreted, and it localizes both to the nuclei and cytoplasm in plant cells. MiSSP7.6 protein was shown to interact with two Populus Trihelix transcription factors. Furthermore, when coexpressed with one of the Trihelix transcription factors, MiSSP7.6 is localized to plant nuclei only. Our data suggest that MiSSP7.6 is a novel secreted symbiotic effector and is a potential determinant for ectomycorrhiza formation.
Collapse
Affiliation(s)
- Heng Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Xin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Annegret Kohler
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Francis M Martin
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| |
Collapse
|
67
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|
68
|
A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nat Chem Biol 2020; 16:345-350. [DOI: 10.1038/s41589-019-0438-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022]
|
69
|
Kumla J, Suwannarach N, Matsui K, Lumyong S. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. PLoS One 2020; 15:e0227478. [PMID: 31899917 PMCID: PMC6941825 DOI: 10.1371/journal.pone.0227478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Indole-3-acetic acid (IAA) is an imperative phytohormone for plant growth and development. Ectomycorrhizal fungi (ECM) are able to produce IAA. However, only a few studies on IAA biosynthesis pathways in ECM fungi have been reported. This study aimed to investigate the IAA biosynthesis pathway of six ECM cultures including Astraeus odoratus, Gyrodon suthepensis, Phlebopus portentosus, Pisolithus albus, Pisolithus orientalis and Scleroderma suthepense. The results showed that all ECM fungi produced IAA in liquid medium that had been supplemented with L-tryptophan. Notably, fungal IAA levels vary for different fungal species. The detection of indole-3-lactic acid and indole-3-ethanol in the crude culture extracts of all ECM fungi indicated an enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, respectively in the IAA biosynthesis via the indole-3-pyruvic acid pathway. Moreover, the tryptophan aminotransferase activity confirmed that all ECM fungi synthesize IAA through the indole-3-pyruvic acid pathway. Additionally, the elongation of rice and oat coleoptiles was stimulated by crude culture extract. This is the first report of the biosynthesis pathway of IAA in the tested ECM fungi.
Collapse
Affiliation(s)
- Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 7 Japan
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
70
|
Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. ADVANCES IN PLANT MICROBIOME AND SUSTAINABLE AGRICULTURE 2020. [DOI: 10.1007/978-981-15-3204-7_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
71
|
Szuba A, Marczak Ł, Karliński L, Mucha J, Tomaszewski D. Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates. MYCORRHIZA 2019; 29:503-517. [PMID: 31456074 DOI: 10.1007/s00572-019-00910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Leszek Karliński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Dominik Tomaszewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
72
|
Cope KR, Bascaules A, Irving TB, Venkateshwaran M, Maeda J, Garcia K, Rush TA, Ma C, Labbé J, Jawdy S, Steigerwald E, Setzke J, Fung E, Schnell KG, Wang Y, Schlief N, Bücking H, Strauss SH, Maillet F, Jargeat P, Bécard G, Puech-Pagès V, Ané JM. The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots. THE PLANT CELL 2019; 31:2386-2410. [PMID: 31416823 PMCID: PMC6790088 DOI: 10.1105/tpc.18.00676] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.
Collapse
Affiliation(s)
- Kevin R Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Junko Maeda
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomás A Rush
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Edward Steigerwald
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jonathan Setzke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Emmeline Fung
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kimberly G Schnell
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Yunqian Wang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathaniel Schlief
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Patricia Jargeat
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, UPS, CNRS, IRD, 31077 Toulouse, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
73
|
Plett KL, Raposo AE, Anderson IC, Piller SC, Plett JM. Protein Arginine Methyltransferase Expression Affects Ectomycorrhizal Symbiosis and the Regulation of Hormone Signaling Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1291-1302. [PMID: 31216220 DOI: 10.1094/mpmi-01-19-0007-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants-the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis-encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
74
|
Pellegrin C, Daguerre Y, Ruytinx J, Guinet F, Kemppainen M, Frey NFD, Puech‐Pagès V, Hecker A, Pardo AG, Martin FM, Veneault‐Fourrey C. Laccaria bicolor
MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ Microbiol 2019; 21:3765-3779. [DOI: 10.1111/1462-2920.14727] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Pellegrin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Yohann Daguerre
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Joske Ruytinx
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Frédéric Guinet
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Virginie Puech‐Pagès
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Arnaud Hecker
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Alejandro G. Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Francis M. Martin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Claire Veneault‐Fourrey
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| |
Collapse
|
75
|
Fan HM, Sun CH, Wen LZ, Liu BW, Ren H, Sun X, Ma FF, Zheng CS. CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum. PLANT & CELL PHYSIOLOGY 2019; 60:1581-1594. [PMID: 31058993 DOI: 10.1093/pcp/pcz061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.
Collapse
Affiliation(s)
- Hong-Mei Fan
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Li-Zhu Wen
- Department of Plants, College of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Bo-Wen Liu
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hong Ren
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xia Sun
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fang-Fang Ma
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cheng-Shu Zheng
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
76
|
Labbé J, Muchero W, Czarnecki O, Wang J, Wang X, Bryan AC, Zheng K, Yang Y, Xie M, Zhang J, Wang D, Meidl P, Wang H, Morrell-Falvey JL, Cope KR, Maia LGS, Ané JM, Mewalal R, Jawdy SS, Gunter LE, Schackwitz W, Martin J, Le Tacon F, Li T, Zhang Z, Ranjan P, Lindquist E, Yang X, Jacobson DA, Tschaplinski TJ, Barry K, Schmutz J, Chen JG, Tuskan GA. Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase. NATURE PLANTS 2019; 5:676-680. [PMID: 31285560 DOI: 10.1038/s41477-019-0469-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/04/2019] [Indexed: 05/21/2023]
Abstract
The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.
Collapse
Affiliation(s)
- Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Olaf Czarnecki
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Juan Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaoping Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anthony C Bryan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kaijie Zheng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongil Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dongfang Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Peter Meidl
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hemeng Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Kevin R Cope
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Ritesh Mewalal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lee E Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wendy Schackwitz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Joel Martin
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - François Le Tacon
- Institut National de la Recherche Agronomique et Université de Lorraine, Labex ARBRE, Champenoux, France
| | - Ting Li
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zhihao Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
77
|
Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, Sheng H, An L. Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress. Front Microbiol 2019; 10:1221. [PMID: 31231328 PMCID: PMC6560172 DOI: 10.3389/fmicb.2019.01221] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The rhizosphere is colonized by a mass of microbes, including bacteria capable of promoting plant growth that carry out complex interactions. Here, by using a sterile experimental system, we demonstrate that Sphingomonas sp. Cra20 promotes the growth of Arabidopsis thaliana by driving developmental plasticity in the roots, thus stimulating the growth of lateral roots and root hairs. By investigating the growth dynamics of A. thaliana in soil with different water-content, we demonstrate that Cra20 increases the growth rate of plants, but does not change the time of reproductive transition under well-water condition. The results further show that the application of Cra20 changes the rhizosphere indigenous bacterial community, which may be due to the change in root structure. Our findings provide new insights into the complex mechanisms of plant and bacterial interactions. The ability to promote the growth of plants under water-deficit can contribute to the development of sustainable agriculture.
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yaolong Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiangli Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Taozhe Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
78
|
Bacht M, Tarkka MT, López IF, Bönn M, Brandl R, Buscot F, Feldhahn L, Grams TEE, Herrmann S, Schädler M. Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:770-781. [PMID: 30753106 DOI: 10.1094/mpmi-10-18-0290-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.
Collapse
Affiliation(s)
- Michael Bacht
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Mika T Tarkka
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Iván Fernández López
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Markus Bönn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Roland Brandl
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - François Buscot
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lasse Feldhahn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Thorsten E E Grams
- 4 Ecophysiology of Plants, Technical University Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Sylvie Herrmann
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Martin Schädler
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- 5 Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
79
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
80
|
Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, Commun C, Deveau A, Pardo A, Veneault-Fourrey C, Kohler A, Rosso MN, Henrissat B, Berrin JG, Martin F. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. THE NEW PHYTOLOGIST 2018; 220:1309-1321. [PMID: 29624684 DOI: 10.1111/nph.15113] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
In ectomycorrhiza, root ingress and colonization of the apoplast by colonizing hyphae is thought to rely mainly on the mechanical force that results from hyphal tip growth, but this could be enhanced by secretion of cell-wall-degrading enzymes, which have not yet been identified. The sole cellulose-binding module (CBM1) encoded in the genome of the ectomycorrhizal Laccaria bicolor is linked to a glycoside hydrolase family 5 (GH5) endoglucanase, LbGH5-CBM1. Here, we characterize LbGH5-CBM1 gene expression and the biochemical properties of its protein product. We also immunolocalized LbGH5-CBM1 by immunofluorescence confocal microscopy in poplar ectomycorrhiza. We show that LbGH5-CBM1 expression is substantially induced in ectomycorrhiza, and RNAi mutants with a decreased LbGH5-CBM1 expression have a lower ability to form ectomycorrhiza, suggesting a key role in symbiosis. Recombinant LbGH5-CBM1 displays its highest activity towards cellulose and galactomannans, but no activity toward L. bicolor cell walls. In situ localization of LbGH5-CBM1 in ectomycorrhiza reveals that the endoglucanase accumulates at the periphery of hyphae forming the Hartig net and the mantle. Our data suggest that the symbiosis-induced endoglucanase LbGH5-CBM1 is an enzymatic effector involved in cell wall remodeling during formation of the Hartig net and is an important determinant for successful symbiotic colonization.
Collapse
Affiliation(s)
- Feng Zhang
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - George E Anasontzis
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
- CNRS, UMR 7257 & Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Aurore Labourel
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
| | - Charlotte Champion
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
| | - Mireille Haon
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Provincia de Buenos Aires, Argentina
| | - Carine Commun
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Aurélie Deveau
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Alejandro Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Annegret Kohler
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Marie-Noëlle Rosso
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR 7257 & Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- INRA, USC, 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jean-Guy Berrin
- INRA, Aix-Marseille Université, UMR 1163, Biodiversity and Biotechnology of Fungi, 13009, Marseille, France
| | - Francis Martin
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| |
Collapse
|
81
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
82
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
83
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|
84
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
85
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
86
|
Mello A, Balestrini R. Recent Insights on Biological and Ecological Aspects of Ectomycorrhizal Fungi and Their Interactions. Front Microbiol 2018; 9:216. [PMID: 29497408 PMCID: PMC5818412 DOI: 10.3389/fmicb.2018.00216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments influencing soil structure and ecosystem functionality. Around them a peculiar region, the mycorrhizosphere, develops. This is a very dynamic environment where plants, soil and microorganisms interact. Interest in this fascinating environment has increased over the years. For a long period the knowledge of the microbial populations in the rhizosphere has been limited, because they have always been studied by traditional culture-based techniques. These methods, which only allow the study of cultured microorganisms, do not allow the characterization of most organisms existing in nature. The introduction in the last few years of methodologies that are independent of culture techniques has bypassed this limitation. This together with the development of high-throughput molecular tools has given new insights into the biology, evolution, and biodiversity of mycorrhizal associations, as well as, the molecular dialog between plants and fungi. The genomes of many mycorrhizal fungal species have been sequenced so far allowing to better understanding the lifestyle of these fungi, their sexual reproduction modalities and metabolic functions. The possibility to detect the mycelium and the mycorrhizae of heterothallic fungi has also allowed to follow the spatial and temporal distributional patterns of strains of different mating types. On the other hand, the availability of the genome sequencing from several mycorrhizal fungi with a different lifestyle, or belonging to different groups, allowed to verify the common feature of the mycorrhizal symbiosis as well as the differences on how different mycorrhizal species interact and dialog with the plant. Here, we will consider the aspects described before, mainly focusing on ectomycorrhizal fungi and their interactions with plants and other soil microorganisms.
Collapse
Affiliation(s)
- Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Torino Unit, National Research Council, Turin, Italy
| | | |
Collapse
|
87
|
de Freitas Pereira M, Veneault-Fourrey C, Vion P, Guinet F, Morin E, Barry KW, Lipzen A, Singan V, Pfister S, Na H, Kennedy M, Egli S, Grigoriev I, Martin F, Kohler A, Peter M. Secretome Analysis from the Ectomycorrhizal Ascomycete Cenococcum geophilum. Front Microbiol 2018; 9:141. [PMID: 29487573 PMCID: PMC5816826 DOI: 10.3389/fmicb.2018.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Cenococcum geophilum is an ectomycorrhizal fungus with global distribution in numerous habitats and associates with a large range of host species including gymnosperm and angiosperm trees. Moreover, C. geophilum is the unique ectomycorrhizal species within the clade Dothideomycetes, the largest class of Ascomycetes containing predominantly saprotrophic and many devastating phytopathogenic fungi. Recent studies highlight that mycorrhizal fungi, as pathogenic ones, use effectors in form of Small Secreted Proteins (SSPs) as molecular keys to promote symbiosis. In order to better understand the biotic interaction of C. geophilum with its host plants, the goal of this work was to characterize mycorrhiza-induced small-secreted proteins (MiSSPs) that potentially play a role in the ectomycorrhiza formation and functioning of this ecologically very important species. We combined different approaches such as gene expression profiling, genome localization and conservation of MiSSP genes in different C. geophilum strains and closely related species as well as protein subcellular localization studies of potential targets of MiSSPs in interacting plants using in tobacco leaf cells. Gene expression analyses of C. geophilum interacting with Pinus sylvestris (pine) and Populus tremula × Populus alba (poplar) showed that similar sets of genes coding for secreted proteins were up-regulated and only few were specific to each host. Whereas pine induced more carbohydrate active enzymes (CAZymes), the interaction with poplar induced the expression of specific SSPs. We identified a set of 22 MiSSPs, which are located in both, gene-rich, repeat-poor or gene-sparse, repeat-rich regions of the C. geophilum genome, a genome showing a bipartite architecture as seen for some pathogens but not yet for an ectomycorrhizal fungus. Genome re-sequencing data of 15 C. geophilum strains and two close relatives Glonium stellatum and Lepidopterella palustris were used to study sequence conservation of MiSSP-encoding genes. The 22 MiSSPs showed a high presence-absence polymorphism among the studied C. geophilum strains suggesting an evolution through gene gain/gene loss. Finally, we showed that six CgMiSSPs target four distinct sub-cellular compartments such as endoplasmic reticulum, plasma membrane, cytosol and tonoplast. Overall, this work presents a comprehensive analysis of secreted proteins and MiSSPs in different genetic level of C. geophilum opening a valuable resource to future functional analysis.
Collapse
Affiliation(s)
- Maíra de Freitas Pereira
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Claire Veneault-Fourrey
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Patrice Vion
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Fréderic Guinet
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Kerrie W. Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vasanth Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Stephanie Pfister
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Hyunsoo Na
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Megan Kennedy
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Simon Egli
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Igor Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| |
Collapse
|
88
|
Daguerre Y, Levati E, Ruytinx J, Tisserant E, Morin E, Kohler A, Montanini B, Ottonello S, Brun A, Veneault-Fourrey C, Martin F. Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC Genomics 2017; 18:737. [PMID: 28923004 PMCID: PMC5604158 DOI: 10.1186/s12864-017-4114-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ectomycorrhizal (ECM) fungi develop a mutualistic symbiotic interaction with the roots of their host plants. During this process, they undergo a series of developmental transitions from the running hyphae in the rhizosphere to the coenocytic hyphae forming finger-like structures within the root apoplastic space. These transitions, which involve profound, symbiosis-associated metabolic changes, also entail a substantial transcriptome reprogramming with coordinated waves of differentially expressed genes. To date, little is known about the key transcriptional regulators driving these changes, and the aim of the present study was to delineate and functionally characterize the transcription factor (TF) repertoire of the model ECM fungus Laccaria bicolor. RESULTS We curated the L. bicolor gene models coding for transcription factors and assessed their expression and regulation in Poplar and Douglas fir ectomycorrhizae. We identified 285 TFs, 191 of which share a significant similarity with known transcriptional regulators. Expression profiling of the corresponding transcripts identified TF-encoding fungal genes differentially expressed in the ECM root tips of both host plants. The L. bicolor core set of differentially expressed TFs consists of 12 and 22 genes that are, respectively, upregulated and downregulated in symbiotic tissues. These TFs resemble known fungal regulators involved in the control of fungal invasive growth, fungal cell wall integrity, carbon and nitrogen metabolism, invasive stress response and fruiting-body development. However, this core set of mycorrhiza-regulated TFs seems to be characteristic of L. bicolor and our data suggest that each mycorrhizal fungus has evolved its own set of ECM development regulators. A subset of the above TFs was functionally validated with the use of a heterologous, transcription activation assay in yeast, which also allowed the identification of previously unknown, transcriptionally active yet secreted polypeptides designated as Secreted Transcriptional Activator Proteins (STAPs). CONCLUSIONS Transcriptional regulators required for ECM symbiosis development in L. bicolor have been uncovered and classified through genome-wide analysis. This study also identifies the STAPs as a new class of potential ECM effectors, highly expressed in mycorrhizae, which may be involved in the control of the symbiotic root transcriptome.
Collapse
Affiliation(s)
- Y Daguerre
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden
| | - E Levati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - J Ruytinx
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Hasselt University, Centre for Environmental Sciences, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - E Tisserant
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - E Morin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - A Kohler
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - B Montanini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - S Ottonello
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - A Brun
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - C Veneault-Fourrey
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France.
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France.
| | - F Martin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| |
Collapse
|
89
|
Martin FM, Uroz S, Barker DG. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 2017; 356:356/6340/eaad4501. [DOI: 10.1126/science.aad4501] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Sebastiana M, Martins J, Figueiredo A, Monteiro F, Sardans J, Peñuelas J, Silva A, Roepstorff P, Pais MS, Coelho AV. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. MYCORRHIZA 2017; 27:109-128. [PMID: 27714470 DOI: 10.1007/s00572-016-0734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal.
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| | - Andreia Figueiredo
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Filipa Monteiro
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Anabela Silva
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria Salomé Pais
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| |
Collapse
|
91
|
Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci Rep 2017; 7:41134. [PMID: 28106141 PMCID: PMC5247675 DOI: 10.1038/srep41134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
Plant roots are the first parts of plants to face drought stress (DS), and thus root modification is important for plants to adapt to drought. We hypothesized that the roots of arbuscular mycorrhizal (AM) plants exhibit better adaptation in terms of morphology and phytohormones under DS. Trifoliate orange seedlings inoculated with Diversispora versiformis were subjected to well-watered (WW) and DS conditions for 6 weeks. AM seedlings exhibited better growth performance and significantly greater number of 1st, 2nd, and 3rd order lateral roots, root length, area, average diameter, volume, tips, forks, and crossings than non-AM seedlings under both WW and DS conditions. AM fungal inoculation considerably increased root hair density under both WW and DS and root hair length under DS, while dramatically decreased root hair length under WW but there was no change in root hair diameter. AM plants had greater concentrations of indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin in roots, which were significantly correlated with changes in root morphology. These results support the hypothesis that AM plants show superior adaptation in root morphology under DS that is potentially associated with indole-3-acetic acid, methyl jasmonate, nitric oxide, and calmodulin levels.
Collapse
Affiliation(s)
- Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Peng Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, Zhejiang 318026, China
| | - Chun-Yan Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qiu-Dan Ni
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - De-Jian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.,Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
92
|
Casarrubia S, Sapienza S, Fritz H, Daghino S, Rosenkranz M, Schnitzler JP, Martin F, Perotto S, Martino E. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds. PLoS One 2016; 11:e0168236. [PMID: 27973595 PMCID: PMC5156394 DOI: 10.1371/journal.pone.0168236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023] Open
Abstract
Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general induction of plant growth was observed for most other fungi, especially those producing higher biomass, further strengthening the role of a nonspecific mechanism, such as CO2 emission.
Collapse
Affiliation(s)
- Salvatore Casarrubia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sara Sapienza
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Héma Fritz
- INRA-Nancy and Lorraine University, Lab of Excellence ARBRE, Unité Mixte de Recherche 1136, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Francis Martin
- INRA-Nancy and Lorraine University, Lab of Excellence ARBRE, Unité Mixte de Recherche 1136, Champenoux, France
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- INRA-Nancy and Lorraine University, Lab of Excellence ARBRE, Unité Mixte de Recherche 1136, Champenoux, France
| |
Collapse
|
93
|
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 2016; 14:760-773. [PMID: 27795567 DOI: 10.1038/nrmicro.2016.149] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the diversification of Fungi and the rise of conifer-dominated and angiosperm- dominated forests, mutualistic symbioses developed between certain trees and ectomycorrhizal fungi that enabled these trees to colonize boreal and temperate regions. The evolutionary success of these symbioses is evident from phylogenomic analyses that suggest that ectomycorrhizal fungi have arisen in approximately 60 independent saprotrophic lineages, which has led to the wide range of ectomycorrhizal associations that exist today. In this Review, we discuss recent genomic studies that have revealed the adaptations that seem to be fundamental to the convergent evolution of ectomycorrhizal fungi, including the loss of some metabolic functions and the acquisition of effectors that facilitate mutualistic interactions with host plants. Finally, we consider how these insights can be integrated into a model of the development of ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Francis Martin
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Annegret Kohler
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claude Murat
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), 54500 Vandoeuvre-lès-Nancy, France
| | - David S Hibbett
- Biology Department, Clark University, Lasry Center for Bioscience, 950 Main Street, Worcester, Massachusetts 01610, USA
| |
Collapse
|
94
|
Werner S, Polle A, Brinkmann N. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 2016; 100:8651-65. [DOI: 10.1007/s00253-016-7792-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 11/25/2022]
|
95
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
96
|
Baldacci-Cresp F, Sacré PY, Twyffels L, Mol A, Vermeersch M, Ziemons E, Hubert P, Pérez-Morga D, El Jaziri M, de Almeida Engler J, Baucher M. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:560-572. [PMID: 27135257 DOI: 10.1094/mpmi-01-16-0015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Pierre-Yves Sacré
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Laure Twyffels
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Adeline Mol
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Eric Ziemons
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Philippe Hubert
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - David Pérez-Morga
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
- 4 Laboratoire de Parasitologie Moléculaire, Université libre de Bruxelles; and
| | - Mondher El Jaziri
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Janice de Almeida Engler
- 5 INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, F-06900 Sophia Antipolis, France
| | - Marie Baucher
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
97
|
Turgeman T, Lubinsky O, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Koltai H, Zaady E, Ben-Shabat S, Guy O, Lewinsohn E, Sitrit Y. The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum. MYCORRHIZA 2016; 26:287-297. [PMID: 26563200 DOI: 10.1007/s00572-015-0667-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.
Collapse
Affiliation(s)
- Tidhar Turgeman
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Olga Lubinsky
- Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Nurit Roth-Bejerano
- Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Varda Kagan-Zur
- Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel
| | - Eli Zaady
- Agricultural Research Organization, Gilat Research Center, 85280, Beer-Sheva, Israel
| | - Shimon Ben-Shabat
- Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ofer Guy
- Desert Agro-Research Center, Ramat-Negev R & D, D.N, 85515, Halutza, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Yaár Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, Israel
| | - Yaron Sitrit
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
98
|
Larsen PE, Sreedasyam A, Trivedi G, Desai S, Dai Y, Cseke LJ, Collart FR. Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction. FRONTIERS IN PLANT SCIENCE 2016; 6:1061. [PMID: 26834754 PMCID: PMC4717292 DOI: 10.3389/fpls.2015.01061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/16/2015] [Indexed: 05/29/2023]
Abstract
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root-mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15 transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.
Collapse
Affiliation(s)
- Peter E. Larsen
- Argonne National Laboratory, Biosciences DivisionLemont, IL, USA
- Department of Bioengineering, University of Illinois at ChicagoChicago IL, USA
| | - Avinash Sreedasyam
- Department of Biological Sciences, University of Alabama in HuntsvilleHuntsville, AL, USA
| | - Geetika Trivedi
- Department of Biological Sciences, University of Alabama in HuntsvilleHuntsville, AL, USA
| | - Shalaka Desai
- Argonne National Laboratory, Biosciences DivisionLemont, IL, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at ChicagoChicago IL, USA
| | - Leland J. Cseke
- Department of Biological Sciences, University of Alabama in HuntsvilleHuntsville, AL, USA
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences DivisionLemont, IL, USA
| |
Collapse
|
99
|
Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Mol Ecol 2016; 25:630-47. [PMID: 26642189 DOI: 10.1111/mec.13506] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/10/2015] [Accepted: 11/22/2015] [Indexed: 01/30/2023]
Abstract
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.
Collapse
Affiliation(s)
- Brian P Looney
- Department of Ecology and Evolutionary Biology, University of Tennessee, 332 Hesler Biology Building, Knoxville, TN, 37996-1610, USA
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Evolutionsbiologiskt Centrum, Norbyv. 18D, 75236, Uppsala, Sweden
| | - Felix Hampe
- Department of Biology, Gent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Marisol Sánchez-García
- Department of Ecology and Evolutionary Biology, University of Tennessee, 332 Hesler Biology Building, Knoxville, TN, 37996-1610, USA
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 332 Hesler Biology Building, Knoxville, TN, 37996-1610, USA
| |
Collapse
|
100
|
Li G, Song H, Li B, Kronzucker HJ, Shi W. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress. PLANT PHYSIOLOGY 2015; 169:2608-23. [PMID: 26468517 PMCID: PMC4677891 DOI: 10.1104/pp.15.00904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/13/2015] [Indexed: 05/20/2023]
Abstract
A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Haiyan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Herbert J Kronzucker
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (G.L., H.S., B.L., W.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| |
Collapse
|