51
|
Galland M, He D, Lounifi I, Arc E, Clément G, Balzergue S, Huguet S, Cueff G, Godin B, Collet B, Granier F, Morin H, Tran J, Valot B, Rajjou L. An Integrated "Multi-Omics" Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:1984. [PMID: 29213276 PMCID: PMC5702907 DOI: 10.3389/fpls.2017.01984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.
Collapse
Affiliation(s)
- Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Dongli He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Imen Lounifi
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Erwann Arc
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Gilles Clément
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Stéphanie Huguet
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Boris Collet
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Fabienne Granier
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Halima Morin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Joseph Tran
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Benoit Valot
- GQE-Le Moulon, Génétique Quantitative et Evolution (INRA Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay), PAPPSO-Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Saclay Plant Sciences (SPS), Gif-sur-Yvette, France
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
- *Correspondence: Loïc Rajjou
| |
Collapse
|
52
|
Mori A, Toyota M, Shimada M, Mekata M, Kurata T, Tasaka M, Morita MT. Isolation of New Gravitropic Mutants under Hypergravity Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1443. [PMID: 27746791 PMCID: PMC5040707 DOI: 10.3389/fpls.2016.01443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 05/31/2023]
Abstract
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.
Collapse
Affiliation(s)
- Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
| | - Masatsugu Toyota
- Department of Botany, University of WisconsinMadison, MadisonWI, USA
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologySaitama, Japan
| | - Masayoshi Shimada
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Mika Mekata
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Tetsuya Kurata
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Miyo T. Morita
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoya, Japan
- CREST, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
53
|
Cheng Z. APseudomonas aeruginosa-secreted protease modulates host intrinsic immune responses, but how? Bioessays 2016; 38:1084-1092. [DOI: 10.1002/bies.201600101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenyu Cheng
- Department of Microbiology and Immunology; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
54
|
Miluzio A, Oliveto S, Pesce E, Mutti L, Murer B, Grosso S, Ricciardi S, Brina D, Biffo S. Expression and activity of eIF6 trigger malignant pleural mesothelioma growth in vivo. Oncotarget 2016; 6:37471-85. [PMID: 26462016 PMCID: PMC4741942 DOI: 10.18632/oncotarget.5462] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
eIF6 is an antiassociation factor that regulates the availability of active 80S. Its activation is driven by the RACK1/PKCβ axis, in a mTORc1 independent manner. We previously described that eIF6 haploinsufficiency causes a striking survival in the Eμ-Myc mouse lymphoma model, with lifespans extended up to 18 months. Here we screen for eIF6 expression in human cancers. We show that Malignant Pleural Mesothelioma tumors (MPM) and a MPM cell line (REN cells) contain high levels of hyperphosphorylated eIF6. Enzastaurin is a PKC beta inhibitor used in clinical trials. We prove that Enzastaurin treatment decreases eIF6 phosphorylation rate, but not eIF6 protein stability. The growth of REN, in vivo, and metastasis are reduced by either Enzastaurin treatment or eIF6 shRNA. Molecular analysis reveals that eIF6 manipulation affects the metabolic status of malignant mesothelioma cells. Less glycolysis and less ATP content are evident in REN cells depleted for eIF6 or treated with Enzastaurin (Anti-Warburg effect). We propose that eIF6 is necessary for malignant mesothelioma growth, in vivo, and can be targeted by kinase inhibitors.
Collapse
Affiliation(s)
- Annarita Miluzio
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy
| | - Stefania Oliveto
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy.,Dipartimento di Scienze e Innovazione Tecnologica, University of Eastern Piedmont, Alessandria, Italy
| | - Elisa Pesce
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy
| | - Luciano Mutti
- Biomedicine Institute, The University of Salford, The Crescent, Salford, UK
| | - Bruno Murer
- Hospital Dall'Angelo, Pathology Unit, Venice, Italy
| | | | - Sara Ricciardi
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy
| | - Daniela Brina
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Unit, Istituto Nazionale Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milano, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
55
|
Interruption of magnesium supply at heading influenced proteome of peripheral layers and reduced grain dry weight of two wheat ( Triticum aestivum L.) genotypes. J Proteomics 2016; 143:83-92. [DOI: 10.1016/j.jprot.2016.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 11/18/2022]
|
56
|
Moore M, Gossmann N, Dietz KJ. Redox Regulation of Cytosolic Translation in Plants. TRENDS IN PLANT SCIENCE 2016; 21:388-397. [PMID: 26706442 DOI: 10.1016/j.tplants.2015.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
Control of protein homeostasis is crucial for environmental acclimation of plants. In this context, translational control is receiving increasing attention, particularly since post-translational modifications of the translational apparatus allow very fast and highly effective control of protein synthesis. Reduction and oxidation (redox) reactions decisively control translation by modifying initiation, elongation, and termination of translation. This opinion article compiles information on the redox sensitivity of cytosolic translation factors and the significance of redox regulation as a key modulator of translation for efficient acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Nikolaj Gossmann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
57
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network. PLANT PHYSIOLOGY 2016; 170:1848-67. [PMID: 26754667 PMCID: PMC4775144 DOI: 10.1104/pp.15.01883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/07/2016] [Indexed: 05/20/2023]
Abstract
Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Matteo Dell'Acqua
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Mario Enrico Pè
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| |
Collapse
|
58
|
Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, Wang S. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Sci Rep 2015; 5:17587. [PMID: 26625868 PMCID: PMC4667245 DOI: 10.1038/srep17587] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/02/2015] [Indexed: 11/15/2022] Open
Abstract
Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
59
|
Gallo S, Manfrini N. Working hard at the nexus between cell signaling and the ribosomal machinery: An insight into the roles of RACK1 in translational regulation. ACTA ACUST UNITED AC 2015; 3:e1120382. [PMID: 26824030 DOI: 10.1080/21690731.2015.1120382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023]
Abstract
RACK1 is a ribosome-associated protein which functions as a receptor for activated PKCs. It also acts as a scaffold for many other proteins involved in diverse signaling pathways, e.g. Src, JNK, PDE4D and FAK signaling. With such a broad interactome, RACK1 has been suggested to function as a linker between cell signaling and the translation machinery. Accordingly, RACK1 modulates translation at different levels in several model organisms. For instance, it regulates ribosome stalling and mRNA quality control in yeasts and promotes translation efficiency downstream of specific cellular stimuli in mammals. However, the molecular mechanism by which RACK1 exerts these roles is widely uncharacterized. Moreover, the full list of ribosome-recruited RACK1 interactors still needs characterization. Here we discuss in vivo and in vitro findings to better delineate the roles of RACK1 in regulating ribosome function and translation.
Collapse
Affiliation(s)
- Simone Gallo
- Molecular Histology and Cell Growth Unit; National Institute of Molecular Genetics - INGM "Romeo and Enrica Invernizzi" ; Milan, Italy
| | - Nicola Manfrini
- Molecular Histology and Cell Growth Unit; National Institute of Molecular Genetics - INGM "Romeo and Enrica Invernizzi" ; Milan, Italy
| |
Collapse
|
60
|
Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6399-413. [PMID: 26184996 PMCID: PMC4588887 DOI: 10.1093/jxb/erv348] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.
Collapse
Affiliation(s)
- Thu-Phuong Nguyen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Gwendal Cueff
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL CNRS 3559, Laboratory of Excellence 'Saclay Plant Sciences' (LabEx SPS), RD10, F-78026 Versailles Cedex, France AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
| | - Dwayne D Hegedus
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N5A9, Canada Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL CNRS 3559, Laboratory of Excellence 'Saclay Plant Sciences' (LabEx SPS), RD10, F-78026 Versailles Cedex, France AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
| | - Leónie Bentsink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
61
|
Abstract
Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
62
|
Brina D, Miluzio A, Ricciardi S, Biffo S. eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:830-5. [PMID: 25252159 DOI: 10.1016/j.bbagrm.2014.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
Here we discuss the function of eukaryotic initiation factor 6 (eIF6; Tif6 in yeast). eIF6 binds 60S ribosomal subunits and blocks their joining to 40S. In this context, we propose that eIF6 impedes unproductive 80S formation, namely, the formation of 80S subunits without mRNA. Genetic evidence shows that eIF6 has a dual function: in yeast and mammals, nucleolar eIF6 is necessary for the biogenesis of 60S subunits. In mammals, cytoplasmic eIF6 is required for insulin and growth factor-stimulated translation. In contrast to other translation factors, eIF6 activity is not under mTOR control. The physiological significance of eIF6 impacts on cancer and on inherited Shwachman-Bodian-Diamond syndrome. eIF6 is overexpressed in specific human tumors. In a murine model of lymphomagenesis, eIF6 depletion leads to a striking increase of survival, without adverse effects. Shwachman-Bodian-Diamond syndrome is caused by loss of function of SBDS protein. In yeast, point mutations of Tif6, the yeast homolog of eIF6, rescue the quasi-lethal effect due to the loss of the SBDS homolog, Sdo1. We propose that eIF6 is a node regulator of ribosomal function and predict that prioritizing its pharmacological targeting will be of benefit in cancer and Shwachman-Bodian-Diamond syndrome. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Daniela Brina
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy
| | | | - Sara Ricciardi
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy
| | - Stefano Biffo
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy.
| |
Collapse
|
63
|
Leonardi GDA, Carlos NA, Mazzafera P, Balbuena TS. Eucalyptus urograndis stem proteome is responsive to short-term cold stress. Genet Mol Biol 2015; 38:191-8. [PMID: 26273222 PMCID: PMC4530643 DOI: 10.1590/s1415-475738220140235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/07/2014] [Indexed: 01/03/2023] Open
Abstract
Eucalyptus urograndis is a hybrid eucalyptus of major economic importance to the Brazilian pulp and paper industry. Although widely used in forest nurseries around the country, little is known about the biochemical changes imposed by environmental stress in this species. In this study, we evaluated the changes in the stem proteome after short-term stimulation by exposure to low temperature. Using two-dimensional gel electrophoresis coupled to high-resolution mass spectrometry-based protein identification, 12 proteins were found to be differentially regulated and successfully identified after stringent database searches against a protein database from a closely related species (Eucalyptus grandis). The identification of these proteins indicated that the E. urograndis stem proteome responded quickly to low temperature, mostly by down-regulating specific proteins involved in energy metabolism, protein synthesis and signaling. The results of this study represent the first step in understanding the molecular and biochemical responses of E. urograndis to thermal stress.
Collapse
Affiliation(s)
- Gabriela de Almeida Leonardi
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Natália Aparecida Carlos
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Tiago Santana Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| |
Collapse
|
64
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
65
|
Urano D, Czarnecki O, Wang X, Jones AM, Chen JG. Arabidopsis receptor of activated C kinase1 phosphorylation by WITH NO LYSINE8 KINASE. PLANT PHYSIOLOGY 2015; 167:507-16. [PMID: 25489024 PMCID: PMC4326752 DOI: 10.1104/pp.114.247460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. Here, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1 acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1A(S122A/T162A), but not the phosphomimetic form, RACK1A(S122D/T162E), rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1A(S122D/T162E) accumulated at similar levels as those of RACK1(S122A/T162A). However, although the steady-state level of the RACK1A(S122A/T162A) protein was similar to wild-type RACK1A protein, the RACK1A(S122D/T162E) protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. Taken together, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.
Collapse
Affiliation(s)
- Daisuke Urano
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Olaf Czarnecki
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Xiaoping Wang
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Alan M Jones
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Jin-Gui Chen
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| |
Collapse
|
66
|
Chen S, Ding G, Wang Z, Cai H, Xu F. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. J Proteomics 2015; 117:106-19. [PMID: 25644742 DOI: 10.1016/j.jprot.2015.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. BIOLOGICAL SIGNIFICANCE Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated proteome alteration of the roots and leaves in two B. napus genotypes, with different P-deficient tolerances, in response to long-term low P stress and short-term P-free starvation by 2-DE. And comparative genomic was conducted to map the DAPs to the linkage map of B. napus by sequence alignment. The present study offers new insights into adaptability mechanism of B. napus to P deficiency and provides novel information in map-based cloning to isolate the genes in B. napus and scientific improvement of P-efficient in practice.
Collapse
Affiliation(s)
- Shuisen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenhua Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
67
|
Kakehi JI, Kawano E, Yoshimoto K, Cai Q, Imai A, Takahashi T. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana. PLoS One 2015; 10:e0117309. [PMID: 25625317 PMCID: PMC4308196 DOI: 10.1371/journal.pone.0117309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5), shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10), respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5’ leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1) homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5’ leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.
Collapse
Affiliation(s)
- Jun-Ichi Kakehi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eri Kawano
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kaori Yoshimoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Qingqing Cai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akihiro Imai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
68
|
Chen JG. Phosphorylation of RACK1 in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1022013. [PMID: 26322575 PMCID: PMC4622689 DOI: 10.1080/15592324.2015.1022013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. These findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.
Collapse
Affiliation(s)
- Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|
69
|
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:1090. [PMID: 26697044 PMCID: PMC4672068 DOI: 10.3389/fpls.2015.01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
| | | | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
- *Correspondence: Marco A. Villanueva
| |
Collapse
|
70
|
Myklebust LM, Horvli O, Raae AJ. RACK1 (receptor for activated C-kinase 1) interactions with spectrin repeat elements. J Mol Recognit 2014; 28:49-58. [PMID: 26268370 DOI: 10.1002/jmr.2411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Line M. Myklebust
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Ole Horvli
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Arnt J. Raae
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| |
Collapse
|
71
|
OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS One 2014; 9:e97120. [PMID: 24865690 PMCID: PMC4035261 DOI: 10.1371/journal.pone.0097120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction.
Collapse
|
72
|
Wang B, Yu J, Zhu D, Chang Y, Zhao Q. Maize ZmRACK1 is involved in the plant response to fungal phytopathogens. Int J Mol Sci 2014; 15:9343-59. [PMID: 24865494 PMCID: PMC4100098 DOI: 10.3390/ijms15069343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023] Open
Abstract
The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, we cloned a maize RACK1 gene (ZmRACK1) by RT-PCR. The amino acid sequence of ZmRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with OsRACK1 from rice revealed 89% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that ZmRACK1 was expressed in all analyzed tissues of maize and that its transcription in leaves was induced by abscisic acid and jasmonate at a high concentration. Overexpression of ZmRACK1 in maize led to a reduction in symptoms caused by Exserohilum turcicum (Pass.) on maize leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PR-5, increased 2.5-3 times in transgenic maize, and reactive oxygen species production was more active than in the wild-type. Yeast two-hybrid assays showed that ZmRACK1 could interact with RAC1, RAR1 and SGT1. This study and previous work leads us to believe that ZmRACK1 may form a complex with regulators of plant disease resistance to coordinate maize reactions to pathogens.
Collapse
Affiliation(s)
- Baosheng Wang
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Dengyun Zhu
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yujie Chang
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qian Zhao
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
73
|
Speth C, Laubinger S. RACK1 and the microRNA pathway: is it déjà-vu all over again? PLANT SIGNALING & BEHAVIOR 2014; 9:e27909. [PMID: 24521556 PMCID: PMC4091593 DOI: 10.4161/psb.27909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/19/2014] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
- Chemical Genomics Centre (CGC) of the Max Planck Society; Dortmund, Germany, & MPI for Developmental Biology; Tübingen, Germany
| | - Sascha Laubinger
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
- Chemical Genomics Centre (CGC) of the Max Planck Society; Dortmund, Germany, & MPI for Developmental Biology; Tübingen, Germany
| |
Collapse
|
74
|
Komatsu S, Hiraga S, Nouri MZ. Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips. Mol Biol Rep 2014; 41:1127-39. [PMID: 24385303 DOI: 10.1007/s11033-013-2959-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022]
Abstract
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan,
| | | | | |
Collapse
|
75
|
Belda-Palazón B, Nohales MA, Rambla JL, Aceña JL, Delgado O, Fustero S, Martínez MC, Granell A, Carbonell J, Ferrando A. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. FRONTIERS IN PLANT SCIENCE 2014; 5:202. [PMID: 24904603 PMCID: PMC4032925 DOI: 10.3389/fpls.2014.00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - María A. Nohales
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - José L. Aceña
- Centro de Investigación Príncipe FelipeValencia, Spain
| | - Oscar Delgado
- Centro de Investigación Príncipe FelipeValencia, Spain
| | - Santos Fustero
- Centro de Investigación Príncipe FelipeValencia, Spain
- Departamento de Química Orgánica, Universidad de ValenciaValencia, Spain
| | - M. Carmen Martínez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Alejandro Ferrando, Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain e-mail:
| |
Collapse
|
76
|
Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH, Jauh GY, Harada JJ, Wang CS. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:119-35. [PMID: 24176057 PMCID: PMC4350433 DOI: 10.1111/tpj.12371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/28/2013] [Accepted: 10/24/2013] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.
Collapse
Affiliation(s)
- Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yun-Chu Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yu-Chun Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Bing-Jyun Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - John J Harada
- Section of Plant Biology, College of Biological Sciences, University of CaliforniaDavis, CA, 95616, USA
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU and Agricultural Biotechnology Center, NCHUTaichung, 40227, Taiwan
- *For correspondence (e-mail )
| |
Collapse
|
77
|
Iglesias J, Trigueros M, Rojas-Triana M, Fernández M, Albar JP, Bustos R, Paz-Ares J, Rubio V. Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. J Proteomics 2013; 94:1-22. [DOI: 10.1016/j.jprot.2013.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022]
|
78
|
Li Q, Zhao P, Li J, Zhang C, Wang L, Ren Z. Genome-wide analysis of the WD-repeat protein family in cucumber and Arabidopsis. Mol Genet Genomics 2013; 289:103-24. [DOI: 10.1007/s00438-013-0789-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
|
79
|
Wang J, Lan P, Gao H, Zheng L, Li W, Schmidt W. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics 2013; 14:783. [PMID: 24225185 PMCID: PMC3830539 DOI: 10.1186/1471-2164-14-783] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Ribosomes are essential ribonucleoprotein complexes that are engaged in translation and thus indispensable for growth. Arabidopsis thaliana ribosomes are composed of 80 distinct ribosomal proteins (RPs), each of which is encoded by two to seven highly similar paralogous genes. Little information is available on how RP genes respond to a shortage of essential mineral nutrients such as phosphate (Pi) or iron (Fe). In the present study, the expression of RP genes and the differential accumulation of RPs upon Pi or Fe deficiency in Arabidopsis roots were comprehensively analyzed. Results Comparison of 3,106 Pi-responsive genes with 3,296 Fe-responsive genes revealed an overlap of 579 genes that were differentially expressed under both conditions in Arabidopsis roots. Gene ontology (GO) analysis revealed that these 579 genes were mainly associated with abiotic stress responses. Among the 247 RP genes retrieved from the TAIR10 release of the Arabidopsis genome (98 small subunit RP genes, 143 large subunit RP genes and six ribosome-related genes), seven RP genes were not detected in Arabidopsis roots by RNA sequencing under control conditions. Transcripts from 20 and 100 RP genes showed low and medium abundance, respectively; 120 RP genes were highly expressed in Arabidopsis roots. As anticipated, gene ontology (GO) analysis indicated that most RP genes were related to translation and ribosome assembly, but some of the highly expressed RP genes were also involved in the responses to cold, UV-B, and salt stress. Only three RP genes derived from three ‘sets’ of paralogous genes were differentially expressed between Pi-sufficient and Pi-deficient roots, all of which were induced by Pi starvation. In Fe-deficient plants, 81 RP genes from 51 ’sets’ of paralagous RP genes were significantly down-regulated in response to Fe deficiency. The biological processes ’translation’ (GO: 0006412), ’ribosome biogenesis (GO: 0042254), and ’response to salt (GO: 0009651), cold (GO: 0009409), and UV-B stresses (GO: 0071493)’ were enriched in this subset of RP genes. At the protein level, 21 and two RPs accumulated differentially under Pi- and Fe-deficient conditions, respectively. Neither the differentially expressed RP genes nor the differentially expressed RPs showed any overlap between the two growth types. Conclusions In the present study three and 81 differentially expressed RP genes were identified under Pi and Fe deficiency, respectively. At protein level, 21 and two RP proteins were differentially accumulated under Pi- and Fe-deficient conditions. Our study shows that the expression of paralogous genes encoding RPs was regulated in a stress-specific manner in Arabidopsis roots, presumably resulting in an altered composition of ribosomes and biased translation. These findings may aid in uncovering an unexplored mechanism by which plants adapt to changing environmental conditions.
Collapse
Affiliation(s)
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China.
| | | | | | | | | |
Collapse
|
80
|
Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:433-45. [PMID: 23941160 DOI: 10.1111/tpj.12308] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) regulate plant development by post-transcriptional regulation of target genes. In Arabidopsis thaliana, DCL1 processes precursors (pri-miRNAs) to miRNA duplexes, which associate with AGO1. Additional proteins act in concert with DCL1 (e.g. HYL1 and SERRATE) or AGO1 to facilitate efficient and precise pri-miRNA processing and miRNA loading, respectively. In this study, we show that the accumulation of plant microRNAs depends on RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1), a scaffold protein that is found in all higher eukaryotes. miRNA levels are reduced in rack1 mutants, and our data suggest that RACK1 affects the microRNA pathway via several distinct mechanisms involving direct interactions with known microRNA factors: RACK1 ensures the accumulation and processing of some pri-miRNAs, directly interacts with SERRATE and is part of an AGO1 complex. As a result, mutations in RACK1 lead to over-accumulation of miRNA target mRNAs, which are important for ABA responses and phyllotaxy, for example. In conclusion, our study identified complex functioning of RACK1 proteins in the Arabidopsis miRNA pathway; these proteins are important for miRNA production and therefore plant development.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany; Chemical Genomics Centre of the Max Planck Society, 44227, Dortmund, Germany; Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
81
|
Falcone Ferreyra ML, Casadevall R, Luciani MD, Pezza A, Casati P. New evidence for differential roles of l10 ribosomal proteins from Arabidopsis. PLANT PHYSIOLOGY 2013; 163:378-91. [PMID: 23886624 PMCID: PMC3762657 DOI: 10.1104/pp.113.223222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 05/19/2023]
Abstract
The RIBOSOMAL PROTEIN L10 (RPL10) is an integral component of the eukaryotic ribosome large subunit. Besides being a constituent of ribosomes and participating in protein translation, additional extraribosomal functions in the nucleus have been described for RPL10 in different organisms. Previously, we demonstrated that Arabidopsis (Arabidopsis thaliana) RPL10 genes are involved in development and translation under ultraviolet B (UV-B) stress. In this work, transgenic plants expressing ProRPL10:β-glucuronidase fusions show that, while AtRPL10A and AtRPL10B are expressed both in the female and male reproductive organs, AtRPL10C expression is restricted to pollen grains. Moreover, the characterization of double rpl10 mutants indicates that the three AtRPL10s differentially contribute to the total RPL10 activity in the male gametophyte. All three AtRPL10 proteins mainly accumulate in the cytosol but also in the nucleus, suggesting extraribosomal functions. After UV-B treatment, only AtRPL10B localization increases in the nuclei. We also here demonstrate that the three AtRPL10 genes can complement a yeast RPL10 mutant. Finally, the involvement of RPL10B and RPL10C in UV-B responses was analyzed by two-dimensional gels followed by mass spectrometry. Overall, our data provide new evidence about the nonredundant roles of RPL10 proteins in Arabidopsis.
Collapse
|
82
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
83
|
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. THE PLANT CELL 2013; 25:2444-63. [PMID: 23903317 PMCID: PMC3753376 DOI: 10.1105/tpc.113.109538] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.
Collapse
Affiliation(s)
- Marie-Christine Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Fabienne Granier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Olivier Pichon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Jean-Pierre Renou
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Valérie Gaudin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Yves Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
84
|
Niehl A, Zhang ZJ, Kuiper M, Peck SC, Heinlein M. Label-free quantitative proteomic analysis of systemic responses to local wounding and virus infection in Arabidopsis thaliana. J Proteome Res 2013; 12:2491-503. [PMID: 23594257 DOI: 10.1021/pr3010698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plants are continuously exposed to changing environmental conditions and must, as sessile organisms, possess sophisticated acclimative mechanisms. To gain insight into systemic responses to local virus infection or wounding, we performed comparative LC-MS/MS protein profiling of distal, virus-free leaves four and five days after local inoculation of Arabidopsis thaliana plants with either Oilseed rape mosaic virus (ORMV) or inoculation buffer alone. Our study revealed biomarkers for systemic signaling in response to wounding and compatible virus infection in Arabidopsis, which should prove useful in further addressing the trigger-specific systemic response network and the elusive systemic signals. We observed responses common to ORMV and mock treatment as well as protein profile changes that are specific to local virus infection or mechanical wounding (mock treatment) alone, which provides evidence for the existence of more than one systemic signal to induce these distinct changes. Comparison of the systemic responses between time points indicated that the responses build up over time. Our data indicate stress-specific changes in proteins involved in jasmonic and abscisic acid signaling, intracellular transport, compartmentalization of enzyme activities, protein folding and synthesis, and energy and carbohydrate metabolism. In addition, a virus-triggered systemic signal appears to suppress antiviral host defense.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR 2357, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
85
|
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, Calamita P, Sanvito F, Biffo S. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70:1439-50. [PMID: 23212600 PMCID: PMC11113757 DOI: 10.1007/s00018-012-1215-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.
Collapse
Affiliation(s)
- Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Simone Gallo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Magri
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Daniela Brina
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Pesce
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Piera Calamita
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|
86
|
Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 2013; 8:606. [PMID: 22929616 PMCID: PMC3435506 DOI: 10.1038/msb.2012.39] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023] Open
Abstract
Deep profiling of the transcriptome and proteome during leaf development reveals unexpected responses to water deficit, as well as a surprising lack of protein-level fluctuations during the day–night cycle, despite clear changes at the transcript level. ![]()
Transcript and protein variation patterns reflect the functional stages of the leaf. Protein and transcript levels correlate well during leaf development, with some notable exceptions. Diurnal transcript-level fluctuations are not matched by corresponding diurnal fluctuations in the detected proteome. Continuous reduced soil water content results in reduced leaf growth, but the plant adapts at molecular levels without showing a typical drought response.
Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.
Collapse
|
87
|
Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:276. [PMID: 23888164 PMCID: PMC3719017 DOI: 10.3389/fpls.2013.00276] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/04/2013] [Indexed: 05/20/2023]
Abstract
Due to its ease to donate or accept electrons, iron (Fe) plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl) synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability of Fe.
Collapse
Affiliation(s)
| | - I Chun Pan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Wenfeng Li
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Ping Lan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | | | - Wolfgang Schmidt
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Academia Sinica, Institute of Plant and Microbial Biology, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
88
|
Carroll AJ. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function. FRONTIERS IN PLANT SCIENCE 2013; 4:32. [PMID: 23459595 PMCID: PMC3585428 DOI: 10.3389/fpls.2013.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area.
Collapse
Affiliation(s)
- Adam J. Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Adam J. Carroll, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, ACT 0200, Canberra, Australia. e-mail:
| |
Collapse
|
89
|
Fennell H, Olawin A, Mizanur RM, Izumori K, Chen JG, Ullah H. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:1407-10. [PMID: 22951405 PMCID: PMC3548859 DOI: 10.4161/psb.21995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.
Collapse
Affiliation(s)
- Herman Fennell
- Department of Biology; Howard University; Washington, DC USA
| | | | - Rahman M. Mizanur
- US Army Medical Research Institute of Infectious Diseases (USAMRIID); Fort Detrick; Frederick, MD USA
| | - Ken Izumori
- Faculty of Agriculture; Kagawa University; Kagawa, Japan
| | - Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| | - Hemayet Ullah
- Department of Biology; Howard University; Washington, DC USA
- Correspondence to: Hemayet Ullah,
| |
Collapse
|
90
|
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 2012; 12:87-105. [PMID: 23071099 DOI: 10.1074/mcp.m112.017277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators.
Collapse
Affiliation(s)
- Nicole Rachfall
- Institute of Microbiology and Genetics, Georg-August Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
91
|
Rengel D, Arribat S, Maury P, Martin-Magniette ML, Hourlier T, Laporte M, Varès D, Carrère S, Grieu P, Balzergue S, Gouzy J, Vincourt P, Langlade NB. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PLoS One 2012; 7:e45249. [PMID: 23056196 PMCID: PMC3466295 DOI: 10.1371/journal.pone.0045249] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/17/2012] [Indexed: 12/24/2022] Open
Abstract
Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions.
Collapse
Affiliation(s)
- David Rengel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS One 2012; 7:e44908. [PMID: 23028673 PMCID: PMC3441479 DOI: 10.1371/journal.pone.0044908] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/09/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.
Collapse
Affiliation(s)
- Jianjun Guo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | | | | | | |
Collapse
|
93
|
Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:24-34. [PMID: 22682562 DOI: 10.1016/j.plantsci.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/06/2023]
Abstract
Ribosomes play a basic housekeeping role in global translation. However, a number of ribosomal-protein-defective mutants show common and rare developmental phenotypes including growth defects, changes in leaf development, and auxin-related phenotypes. This suggests that translational regulation may be occurring during development. In addition, proteomic and bioinformatic analyses have demonstrated a high heterogeneity in ribosome composition. Although this might be a sign of unequal roles of individual ribosomal proteins, it does not explain every ribosomal-protein-defective phenotype. Moreover, comprehensive interpretations concerning the relationship between ribosomal-protein-defective phenotypes and molecular changes in ribosome status are lacking. In this review, we address these phenotypes based on three models, ribosome insufficiency, heterogeneity, and aberrancy, to consider how ribosomes play developmental roles. We propose that the three models are not mutually exclusive, and ribosomal-protein-defective phenotypes can be explained with one or more of these models. The three models with reference to genetic, biochemical, and bioinformatic knowledge will serve as a foundation for future studies of translational regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
94
|
Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS One 2012; 7:e44908. [PMID: 23028673 DOI: 10.1371/journal.pone.0044908.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/09/2012] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.
Collapse
Affiliation(s)
- Jianjun Guo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | | | | | | |
Collapse
|
95
|
Kouba T, Rutkai E, Karásková M, Valášek LS. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res 2011; 40:2683-99. [PMID: 22123745 PMCID: PMC3315329 DOI: 10.1093/nar/gkr1083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional in that its deletion, despite being lethal, does not affect eIF3 integrity. Here, we show that a short C-terminal truncation and two clustered mutations directly disturbing the PCI domain produce lethal or slow growth phenotypes and significantly reduce amounts of 40S-bound eIF3 and eIF5 in vivo. The extreme C-terminus directly interacts with blades 1–3 of the small ribosomal protein RACK1/ASC1, which is a part of the 40S head, and, consistently, deletion of the ASC1 coding region likewise affects eIF3 association with ribosomes. The PCI domain per se shows strong but unspecific binding to RNA, for the first time implicating this typical protein–protein binding domain in mediating protein–RNA interactions also. Importantly, as our clustered mutations severely reduce RNA binding, we conclude that the c/NIP1 C-terminal region forms an important intermolecular bridge between eIF3 and the 40S head region by contacting RACK1/ASC1 and most probably 18S rRNA.
Collapse
Affiliation(s)
- Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, v.v.i., Prague, the Czech Republic
| | | | | | | |
Collapse
|
96
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
97
|
Guo J, Yang X, Weston DJ, Chen JG. Abscisic acid receptors: past, present and future. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:469-79. [PMID: 21554537 DOI: 10.1111/j.1744-7909.2011.01044.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Jin-Gui Chen (Corresponding author) Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg(2+) -chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114-2790, USA
| | | | | | | |
Collapse
|
98
|
Kim YY, Jung KW, Yoo KS, Jeung JU, Shin JS. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:874-84. [PMID: 21471120 DOI: 10.1093/pcp/pcr039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Yun Young Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
99
|
Guo J, Jin Z, Yang X, Li JF, Chen JG. Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. PLANT SIGNALING & BEHAVIOR 2011; 6:766-71. [PMID: 21543889 PMCID: PMC3172860 DOI: 10.4161/psb.6.5.15438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Genetics; Harvard Medical School; Boston, MA USA
- Department of Molecular Biology; Massachusetts General Hospital; Boston, MA USA
| | - Zhaoqing Jin
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| | - Xiaohan Yang
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| | - Jian-Feng Li
- Department of Genetics; Harvard Medical School; Boston, MA USA
- Department of Molecular Biology; Massachusetts General Hospital; Boston, MA USA
| | - Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|