51
|
In vitro and in silico evaluation of Ononis isoflavonoids as molecules targeting the central nervous system. PLoS One 2022; 17:e0265639. [PMID: 35298568 PMCID: PMC8929578 DOI: 10.1371/journal.pone.0265639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Isoflavonoids with various structural elements show a promising potential effect on central nervous system activities. Despite their favorable medicinal properties, the pharmacokinetic characteristics of this thoroughly investigated group of natural phenolics have only been described to a limited extent. Regarding the lack of information about the BBB permeability of isoflavones, isoflavanones, and pterocarpans found in Ononis species, the aim of our study was to investigate their physico-chemical properties influencing their absorption and distribution. Furthermore, we aimed to characterize the possible MAO-B inhibiting features of Ononis isoflavonoids in silico. Octanol-water partitioning and BBB-PAMPA permeability of formononetin, calycosin D, onogenin, sativanone, medicarpin and maackiain were assessed for the first time in our study. The log P values ranged from 2.21 to 3.03 and log D7.4 values from 2.48 to 3.03, respectively, indicating optimal polarity for BBB permeation. The results of PAMPA-BBB expressed as log Pe values fell between -5.60 and -4.45, predicting their good permeation capability as well. The effective permeability values showed structure-dependent differences, indicating that the pterocarpan type skeleton was the most preferred type, followed by isoflavanones, then isoflavones. The methoxy or methylenedioxy substitution of the same skeleton did not influence the permeability significantly, contrary to an additional hydroxyl group. Membrane retention showed a similar structure dependent pattern to that of effective permeability, ranging from 16% to 70%. For the identification of volumes of chemical space related to particular biological activities the ChemGPS-NP framework was used. The MAO-B inhibitory potency and selectivity were also predicted and validated. Based on our results, MAO-B inhibitory potency could be predicted with good precision, but in the case of selectivity, only the direction could be concluded (favors MAO-B or MAO-A), not the magnitude. Our finding reflects that Ononis isoflavonoid aglycones show an excellent fit with the suggested parameters for BBB permeability and this is the first study to confirm the highly favorable position of these natural products for MAO-B inhibition.
Collapse
|
52
|
Lam PY, Wang L, Lui ACW, Liu H, Takeda-Kimura Y, Chen MX, Zhu FY, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles. PLANT PHYSIOLOGY 2022; 188:1993-2011. [PMID: 34963002 PMCID: PMC8969032 DOI: 10.1093/plphys/kiab606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.
Collapse
Affiliation(s)
| | | | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
53
|
Metabonomics Analysis of Stem Extracts from Dalbergia sissoo. Molecules 2022; 27:molecules27061982. [PMID: 35335342 PMCID: PMC8953952 DOI: 10.3390/molecules27061982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Dalbergia sissoo is a woody plant with economic and medicinal value. As the pharmacological qualities and properties of the wood from this plant primarily depend on its extractives, in this study, the metabolomic analysis of extractives from its stems was carried out using UPLC-MS/MS. A total of 735 metabolites were detected from two groups of samples, heartwood and sapwood, with the largest number of terpenoids in type and the largest number of flavonoids in quantity. The PCA and cluster analysis showed significant differences in the metabolite composition between the two groups. The differential metabolites were mainly organic oxygen compounds, flavonoids, and isoflavones. Among the 105 differential metabolites, 26 metabolites were significantly higher in relative content in sapwood than in heartwood, while the other 79 metabolites were significantly higher in relative content in heartwood than in sapwood. KEGG metabolic pathway enrichment analysis showed that these differential metabolites were mainly enriched in three metabolic pathways: Flavonoid biosynthesis, isoflavonoid biosynthesis, and flavonoid and flavonol biosynthesis. This study provides a reference for metabolomics studies in Dalbergia and other woody plants.
Collapse
|
54
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
55
|
Jeon S, Han J, Kim CW, Kim JG, Moon JH, Kim S. Identification of a candidate gene responsible for the G locus determining chartreuse bulb color in onion (Allium cepa L.) using bulked segregant RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1025-1036. [PMID: 35034161 DOI: 10.1007/s00122-021-04016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A gene encoding a laccase responsible for chartreuse onion bulb color was identified. Markers tagging this gene showed perfect linkage with bulb colors among diverse germplasm. To identify a casual gene for the G locus determining chartreuse bulb color in onion (Allium cepa L.), bulked segregant RNA-Seq (BSR-Seq) was performed using yellow and chartreuse individuals of a segregating population. Through single nucleotide polymorphism (SNP) and differentially expressed gene (DEG) screening processes, 163 and 143 transcripts were selected, respectively. One transcript encoding a laccase-like protein was commonly identified from SNP and DEG screening. This transcript contained four highly conserved copper-binding domains known to be signature sequences of laccases. This gene was designated AcLAC12 since it showed high homology with Arabidopsis AtLAC12. A 4-bp deletion creating a premature stop codon was identified in exon 5 of the chartreuse allele. Another mutant allele in which an intact LTR-retrotransposon was transposed in exon 5 was identified from other chartreuse breeding lines. Genotypes of molecular markers tagging AcLAC12 were perfectly matched with bulb color phenotypes in segregating populations and diverse breeding lines. All chartreuse breeding lines contained inactive alleles of DFR-A gene determining red bulb color, indicating that chartreuse color appeared when both DFR-A and AcLAC12 genes were inactivated. Linkage maps showed that AcLAC12 was positioned at the end of chromosome 7. Transcription levels of structural genes encoding enzymes in anthocyanin biosynthesis pathway were generally reduced in chartreuse bulk compared with yellow bulk. Concentrations of total quercetins were also reduced in chartreuse onion. However, significant amounts of quercetins were detected in chartreuse onion, implying that AcLAC12 might be involved in modification of quercetin derivatives in onion.
Collapse
Affiliation(s)
- SeongChan Jeon
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - JiWon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Cheol-Woo Kim
- National Institute of Horticultural and Herbal Science, RDA, Muan, 58545, Republic of Korea
| | - Ju-Gyeong Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
56
|
Michiu D, Socaciu MI, Fogarasi M, Jimborean AM, Ranga F, Mureşan V, Semeniuc CA. Implementation of an Analytical Method for Spectrophotometric Evaluation of Total Phenolic Content in Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041345. [PMID: 35209133 PMCID: PMC8880325 DOI: 10.3390/molecules27041345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been growing interest in polyphenols’ research since these compounds, as antioxidants, have several health benefits, such as preventing neurodegenerative diseases, inflammation, cancer, cardiovascular diseases, and type 2 diabetes. This study implements an analytical method to assess the total phenolic content (TPC) in essential oils using Folin–Ciocalteu’s phenol reagent and quantifies the individual phenolic compounds by liquid chromatography. Thus, the research design and methodology included: (1) extraction of essential oil from dried thyme leaves by hydrodistillation; (2) spectrophotometric measurement of TPC by Folin–Ciocalteu method; and (3) identification and quantification of individual phenolic compounds by high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS). Results revealed a TPC of 22.62 ± 0.482 mg GAE/100 µL and a polyphenolic profile characterized by phenolic acids (52.1%), flavonoids (16.1%), and other polyphenols (31.8%). Thymol, salvianolic acid A, and rosmarinic acid were the major compounds of thyme essential oil. The proposed analytical procedure has an acceptable level of repeatability, reproducibility, linearity, LOD (limit of detection), and LOQ (limit of quantification).
Collapse
Affiliation(s)
- Delia Michiu
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
| | - Maria-Ioana Socaciu
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
| | - Anamaria Mirela Jimborean
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
- Correspondence: (A.M.J.); (C.A.S.); Tel.: +40-264-596-384 (A.M.J. & C.A.S.)
| | - Floricuţa Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania;
| | - Vlad Mureşan
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Str., 400372 Cluj-Napoca, Romania; (D.M.); (M.-I.S.); (M.F.); (V.M.)
- Correspondence: (A.M.J.); (C.A.S.); Tel.: +40-264-596-384 (A.M.J. & C.A.S.)
| |
Collapse
|
57
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
58
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
59
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
60
|
Ostroukhova E, Peskova I, Levchenko S, Vyugina M, Belash D, Shadura N. The use of a microbiological preparation based on Bacillus subtilis in organic viticulture. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224802006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In organic farming, microbiological preparations are an alternative to chemical pesticides and mineral fertilizers. The article summarizes the experience of a three-year use of the biofungicide Extrasol in combination with colloidal sulfur in the vineyards of the Crimea. The use of the biofungicides makes it possible to control the development of powdery mildew of grape at the level of chemical plant protection products, including during the years of epiphytoties: on the cv. Bastardo magarachskiy grapes – 7.1–14.7 %, on the Italy grape cultivar – up to 5.2%. The degree of influence of the biofungicide Extrasol on the phenolic and oxidase complex of grapes depends on the background level of development of Uncinula necator and the biological effectiveness of the treatment. In comparison with chemical means of protection, the smallest effect of processing cv. Bastardo magarachskiy grapes with a biological product in relation to the accumulation of phenolic compounds was observed at a level of powdery mildew development of 30-50 %; the maximum increase in the technological reserve of phenolic compounds was 59 %, anthocyanins – 12 %; the activity of polyphenol oxidase increased 1.1–3.3 times. The use of the biofungicide Extrasol on Italian grape cultivar led to an increase in the weight of the bunch by an average of 11 %, yield – by 25.6 %, titratable acids – by 9.6 % relative to chemicals; improved the aroma, taste and texture of the berry.
Collapse
|
61
|
Kong W, Jiang M, Wang Y, Chen S, Zhang S, Lei W, Chai K, Wang P, Liu R, Zhang X. Pan-transcriptome assembly combined with multiple association analysis provides new insights into the regulatory network of specialized metabolites in the tea plant Camellia sinensis. HORTICULTURE RESEARCH 2022; 9:uhac100. [PMID: 35795389 PMCID: PMC9251601 DOI: 10.1093/hr/uhac100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/15/2022] [Indexed: 05/07/2023]
Abstract
Specialized metabolites not only play important roles in biotic and abiotic stress adaptation of tea plants (Camellia sinensis (L.) O. Kuntze) but also contribute to the unique flavor of tea, the most important nonalcoholic beverage. However, the molecular networks and major genes that regulate specialized metabolites in tea plants are not well understood. Here, we constructed a population-level pan-transcriptome of the tea plant leaf using second-leaf transcriptome data from 134 accessions to investigate global expression differences in the population, expression presence or absence variations (ePAVs), and differentially expressed genes (DEGs) between pure Camellia sinensis var. assamica (CSA) and pure Camellia sinensis var. sinensis (CSS) accessions. Next, we used a genome-wide association study, a quantitative trait transcript study, and a transcriptome-wide association study to integrate genotypes, accumulation levels of specialized metabolites, and expression levels of pan-transcriptome genes to identify candidate regulatory genes for flavor-related metabolites and to construct a regulatory network for specialized metabolites in tea plants. The pan-transcriptome contains 30 482 expressed genes, 4940 and 5506 of which were newly annotated from a de novo transcriptome assembly without a reference and a genome reference-based assembly, respectively. DEGs and ePAVs indicated that CSA and CSS were clearly differentiated at the population transcriptome level, and they were closely related to abiotic tolerance and secondary metabolite synthesis phenotypes of CSA and CSS based on gene annotations. The regulatory network contained 212 specialized metabolites, 3843 candidate genes, and 3407 eQTLs, highlighting many pleiotropic candidate genes, candidate gene-rich eQTLs, and potential regulators of specialized metabolites. These included important transcription factors in the AP2/ERF-ERF, MYB, WD40, and bHLH families. CsTGY14G0001296, an ortholog of AtANS, appeared to be directly related to variation in proanthocyanins in the tea plant population, and the CsTGY11G0002074 gene encoding F3'5'H was found to contribute to the biased distribution of catechins between pure CSAs and pure CSSs. Together, these results provide a new understanding of the metabolite diversity in tea plants and offer new insights for more effective breeding of better-flavored tea varieties.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Chai
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | | | | |
Collapse
|
62
|
Yu T, Huang D, Wu H, Chen H, Chen S, Cui Q. Navigating Calcium and Reactive Oxygen Species by Natural Flavones for the Treatment of Heart Failure. Front Pharmacol 2021; 12:718496. [PMID: 34858167 PMCID: PMC8630744 DOI: 10.3389/fphar.2021.718496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Heart failure (HF), the leading cause of death among men and women world-wide, causes great health and economic burdens. HF can be triggered by many factors, such as coronary artery disease, heart attack, cardiomyopathy, hypertension, obesity, etc., all of which have close relations with calcium signal and the level of reactive oxygen species (ROS). Calcium is an essential second messenger in signaling pathways, playing a pivotal role in regulating the life and death of cardiomyocytes via the calcium-apoptosis link mediated by the cellular level of calcium. Meanwhile, calcium can also control the rate of energy production in mitochondria that are the major resources of ROS whose overproduction can lead to cell death. More importantly, there are bidirectional interactions between calcium and ROS, and such interactions may have therapeutic implications in treating HF through finely tuning the balance between these two by certain drugs. Many naturally derived products, e.g., flavones and isoflavones, have been shown to possess activities in regulating calcium and ROS simultaneously, thereby leading to a balanced microenvironment in heart tissues to exert therapeutic efficacies in HF. In this mini review, we aimed to provide an updated knowledge of the interplay between calcium and ROS in the development of HF. In addition, we summarized the recent studies (in vitro, in vivo and in clinical trials) using natural isolated flavones and isoflavones in treating HF. Critical challenges are also discussed. The information collected may help to evoke multidisciplinary efforts in developing novel agents for the potential prevention and treatment of HF.
Collapse
Affiliation(s)
- Tianhao Yu
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Danhua Huang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Haokun Wu
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Chen
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sen Chen
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qingbin Cui
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
63
|
Garrett K, Beck MR, Marshall CJ, Maxwell TMR, Logan CM, Greer AW, Gregorini P. Varied diets: implications for lamb performance, rumen characteristics, total antioxidant status, and welfare. J Anim Sci 2021; 99:skab334. [PMID: 34788446 PMCID: PMC8668175 DOI: 10.1093/jas/skab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Intensive pastoral systems have moved away from diverse and varied diets towards overly simple monotonous diets. Feed choice through time is an obsolete way of providing forage to animals, as intensive management schemes generally allocate a single herbage or a dyad mixed sward. Monotonous feeding regimes impose nutritional repetition, which may impair animal performance and welfare. The objective of this experiment was to determine the impact of a diverse diet [DIV; free choice from perennial ryegrass (Lolium perenne L.), plantain (Plantago lanceolata L.), alfalfa (Medicago sativa L.), and chicory (Cichorium intybus L.) at all times], a varied diet [VAR; choice from ryegrass and plantain in the AM (0700-1600 h), and chicory and alfalfa in PM (1600-0700 h)], and a single forage diet of alfalfa [SFA; alfalfa at all times], on DMI, performance, and welfare of lambs. Six-month-old Coopworth ram lambs (n = 21) were offered their respective fresh-forage treatment (n = 7) diet indoors for 20 d. The DIV lambs consumed 1.64 ± 0.03 kg DM/d (mean ± SEm), which was 6% more (P < 0.05; 1.54 ± 0.03 kg DM/d) than the SFA and were not different (P > 0.05; 1.59 ± 0.03 kg DM/d) to the VAR lambs. Average daily gain (ADG) of DIV (296 g/d) and VAR (378 g/d) was 30% and 67% greater (P < 0.05) than that in the SFA lambs (227 g/d), respectively. The VAR lambs had 28% greater (P < 0.05) ADG than the DIV lambs. Differences among treatments were detected (P < 0.05) for the proportion of the day spent conducting the following behaviors: eating, ruminating, idling, lying, and standing. In addition, the number of bouts of stereotypic behaviors recorded from the SFA lambs (13.2 ± 2.2) was 150% greater (P < 0.05) than the DIV (5.1 ± 1.0) and VAR (5.5 ± 1.0) lambs. Our results suggest that the varied diet offered can improve animal performance and welfare compared to a monotonous SFA diet. Feeding management to provide a varied diet can improve performance relative to giving lambs free choice from taxonomically diverse forage options. Moreover, performance is affected by more than the primary chemical composition of the diet consumed, but how the diet is presented through time and the herbage species and quantities of each that are consumed to reach that chemical composition.
Collapse
Affiliation(s)
- Konagh Garrett
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Matthew R Beck
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Cameron J Marshall
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Thomas M R Maxwell
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Chris M Logan
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Andrew W Greer
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Pablo Gregorini
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| |
Collapse
|
64
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
65
|
Liu Q, Liu Y, Li G, Savolainen O, Chen Y, Nielsen J. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nat Commun 2021; 12:6085. [PMID: 34667183 PMCID: PMC8526750 DOI: 10.1038/s41467-021-26361-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Isoflavonoids comprise a class of plant natural products with great nutraceutical, pharmaceutical and agricultural significance. Their low abundance in nature and structural complexity however hampers access to these phytochemicals through traditional crop-based manufacturing or chemical synthesis. Microbial bioproduction therefore represents an attractive alternative. Here, we engineer the metabolism of Saccharomyces cerevisiae to become a platform for efficient production of daidzein, a core chemical scaffold for isoflavonoid biosynthesis, and demonstrate its application towards producing bioactive glucosides from glucose, following the screening-reconstruction-application engineering framework. First, we rebuild daidzein biosynthesis in yeast and its production is then improved by 94-fold through screening biosynthetic enzymes, identifying rate-limiting steps, implementing dynamic control, engineering substrate trafficking and fine-tuning competing metabolic processes. The optimized strain produces up to 85.4 mg L-1 of daidzein and introducing plant glycosyltransferases in this strain results in production of bioactive puerarin (72.8 mg L-1) and daidzin (73.2 mg L-1). Our work provides a promising step towards developing synthetic yeast cell factories for de novo biosynthesis of value-added isoflavonoids and the multi-phased framework may be extended to engineer pathways of complex natural products in other microbial hosts.
Collapse
Affiliation(s)
- Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yi Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Otto Savolainen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark. .,BioInnovation Institute, Ole Maaløes vej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
66
|
Lacourt-Ventura MY, Vilanova-Cuevas B, Rivera-Rodríguez D, Rosario-Acevedo R, Miranda C, Maldonado-Martínez G, Maysonet J, Vargas D, Ruiz Y, Hunter-Mellado R, Cubano LA, Dharmawardhane S, Lampe JW, Baerga-Ortiz A, Godoy-Vitorino F, Martínez-Montemayor MM. Soy and Frequent Dairy Consumption with Subsequent Equol Production Reveals Decreased Gut Health in a Cohort of Healthy Puerto Rican Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168254. [PMID: 34444002 PMCID: PMC8391519 DOI: 10.3390/ijerph18168254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
The U.S. Hispanic female population has one of the highest breast cancer (BC) incidence and mortality rates, while BC is the leading cause of cancer death in Puerto Rican women. Certain foods may predispose to carcinogenesis. Our previous studies indicate that consuming combined soy isoflavones (genistein, daidzein, and glycitein) promotes tumor metastasis possibly through increased protein synthesis activated by equol, a secondary dietary metabolite. Equol is a bacterial metabolite produced in about 20-60% of the population that harbor and exhibit specific gut microbiota capable of producing it from daidzein. The aim of the current study was to investigate the prevalence of equol production in Puerto Rican women and identify the equol producing microbiota in this understudied population. Herein, we conducted a cross-sectional characterization of equol production in a clinically based sample of eighty healthy 25-50 year old Puerto Rican women. Urine samples were collected and evaluated by GCMS for the presence of soy isoflavones and metabolites to determine the ratio of equol producers to equol non-producers. Furthermore, fecal samples were collected for gut microbiota characterization on a subset of women using next generation sequencing (NGS). We report that 25% of the participants were classified as equol producers. Importantly, the gut microbiota from equol non-producers demonstrated a higher diversity. Our results suggest that healthy women with soy and high dairy consumption with subsequent equol production may result in gut dysbiosis by having reduced quantities (diversity) of healthy bacterial biomarkers, which might be associated to increased diseased outcomes (e.g., cancer, and other diseases).
Collapse
Affiliation(s)
- Mercedes Y. Lacourt-Ventura
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Brayan Vilanova-Cuevas
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (B.V.-C.); (F.G.-V.)
| | | | - Raysa Rosario-Acevedo
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Christine Miranda
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
| | - Gerónimo Maldonado-Martínez
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
| | - Johanna Maysonet
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Darlene Vargas
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Yelitza Ruiz
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Robert Hunter-Mellado
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Luis A. Cubano
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Suranganie Dharmawardhane
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (S.D.); (A.B.-O.)
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA;
| | - Abel Baerga-Ortiz
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (S.D.); (A.B.-O.)
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (B.V.-C.); (F.G.-V.)
| | - Michelle M. Martínez-Montemayor
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
- Correspondence: ; Tel.: +1-787-798-3001 (ext. 2152)
| |
Collapse
|
67
|
Gao J, Xiong K, Zhou W, Li W. Extensive Metabolite Profiling in the Unexploited Organs of Black Tiger for Their Potential Valorization in the Pharmaceutical Industry. Life (Basel) 2021; 11:544. [PMID: 34200589 PMCID: PMC8229443 DOI: 10.3390/life11060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Black tiger (Kadsura coccinea (Lem.)) has been reported to hold enormous pharmaceutical potential. The fruit and rhizome of black tiger are highly exploited in the pharmaceutical and other industries. However, the most important organs from the plant such as the leaf and stem are considered biowastes mainly because a comprehensive metabolite profile has not been reported in these organs. Knowledge of the metabolic landscape of the unexploited black tiger organs could help identify and isolate important compounds with pharmaceutical and nutritional values for a better valorization of the species. In this study, we used a widely targeted metabolomics approach to profile the metabolomes of the K. coccinea leaf (KL) and stem (KS) and compared them with the root (KR). We identified 642, 650 and 619 diverse metabolites in KL, KS and KR, respectively. A total of 555 metabolites were mutually detected among the three organs, indicating that the leaf and stem organs may also hold potential for medicinal, nutritional and industrial applications. Most of the differentially accumulated metabolites between organs were enriched in flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, arginine and proline metabolism, arginine biosynthesis, tyrosine metabolism and 2-oxocarboxylic acid metabolism pathways. In addition, several important organ-specific metabolites were detected in K. coccinea. In conclusion, we provide extensive metabolic information to stimulate black tiger leaf and stem valorization in human healthcare and food.
Collapse
Affiliation(s)
- Jianfei Gao
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control of China, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Wei Zhou
- Guizhou Industry Polytechnic College, Guiyang 550008, China;
| | - Weijie Li
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| |
Collapse
|
68
|
Yang Z, Li N, Kitano T, Li P, Spindel JE, Wang L, Bai G, Xiao Y, McCouch SR, Ishihara A, Zhang J, Yang X, Chen Z, Wei J, Ge H, Jander G, Yan J. Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1401-1413. [PMID: 33745166 DOI: 10.1111/tpj.15244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/16/2021] [Indexed: 05/20/2023]
Abstract
Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-β-d-glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-β-d-glucoside and apigenin-7-O-β-d-glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.
Collapse
Affiliation(s)
- Zhongyan Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Nana Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Takashige Kitano
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jennifer E Spindel
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Lishuo Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Genxiang Bai
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yiying Xiao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Susan R McCouch
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Jili Zhang
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Xin Yang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510610, People's Republic of China
| | - Zepeng Chen
- Guangdong Provincial Tobacco Shaoguan Co. Ltd, Shaoguan, Guangdong, 512000, People's Republic of China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Honghua Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
69
|
Garrett K, Beck MR, Marshall CJ, Fleming AE, Logan CM, Maxwell TMR, Greer AW, Gregorini P. Functional diversity vs. monotony: the effect of a multiforage diet as opposed to a single forage diet on animal intake, performance, welfare, and urinary nitrogen excretion. J Anim Sci 2021; 99:skab058. [PMID: 33624023 PMCID: PMC8115717 DOI: 10.1093/jas/skab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to determine the effect of offering animals a multiforage choice (MF) of fresh herbages on dry matter intake (DMI), live weight gain, and animal welfare, in comparison with a monotonous diet of ryegrass (Lolium perenne L.). Twenty ram lambs (30.5 ± 0.9 kg initial live weight; mean ± SEM), were randomly allocated to either a diet consisting of diverse MF choice or a single forage ryegrass (SF) diet (n = 10 per treatment) for 35 d. Both diets were fed ad libitum; however, the MF diet was composed of set dry matter ratios of 24% chicory (Cichorium intybus L.), 30% lucerne (Medicago sativa L.), 25% plantain (Plantago lanceolata L.), and 21% ryegrass. The DMI of the MF lambs was 48% greater (P < 0.01) and the within animal day-to-day coefficient of variation (CV) of intake was 26% lower (P < 0.01) than the SF lambs. The average daily gain (ADG) of lambs offered the MF diet was 92% greater (P < 0.01) than the lambs offered the SF diet. The within-animal day-to-day CV of intake was negatively related to ADG (r = -0.59; P < 0.01). The MF lamb's urinary N concentration was 30% lower (P < 0.01) than that of the SF lambs. The SF lambs spent more time (P < 0.05) exhibiting stereotypic behaviors in the afternoon and spent more time observing other animals than the MF. Overall, allocating an MF choice of fresh herbages as opposed to a single forage diet of ryegrass increases DMI and thereby animal performance, while potentially reducing urinary N excretion.
Collapse
Affiliation(s)
- Konagh Garrett
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Matt R Beck
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Cameron J Marshall
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Anita E Fleming
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Chris M Logan
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Thomas M R Maxwell
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Andrew W Greer
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Pablo Gregorini
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| |
Collapse
|
70
|
Shui L, Huo K, Chen Y, Zhang Z, Li Y, Niu J. Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves. PeerJ 2021; 9:e11239. [PMID: 33981500 PMCID: PMC8083182 DOI: 10.7717/peerj.11239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.
Collapse
Affiliation(s)
- Lanya Shui
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Kaisen Huo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yan Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zilin Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yanfang Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
71
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Flavonoids' Effects on Caenorhabditis elegans' Longevity, Fat Accumulation, Stress Resistance and Gene Modulation Involve mTOR, SKN-1 and DAF-16. Antioxidants (Basel) 2021; 10:antiox10030438. [PMID: 33809299 PMCID: PMC8001597 DOI: 10.3390/antiox10030438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are potential nutraceutical compounds present in diary food. They are considered health-promoting compounds and promising drugs for different diseases, such as neurological and inflammatory diseases, diabetes and cancer. Therefore, toxicological and mechanistic studies should be done to assert the biological effects and identify the molecular targets of these compounds. In this work we describe the effects of six structurally-related flavonoids—baicalein, chrysin, scutellarein, 6-hydroxyflavone, 6,7-dihydroxyflavone and 7,8-dihydroxyflavone—on Caenorhabditis elegans’ lifespan and stress resistance. The results showed that chrysin, 6-hydroxyflavone and baicalein prolonged C. elegans’ lifespan by up to 8.5%, 11.8% and 18.6%, respectively. The lifespan extensions caused by these flavonoids are dependent on different signaling pathways. The results suggested that chrysin’s effects are dependent on the insulin signaling pathway via DAF-16/FOXO. Baicalein and 6-hydroxyflavone’s effects are dependent on the SKN-1/Nfr2 pathway. In addition, microarray analysis showed that baicalein downregulates important age-related genes, such as mTOR and PARP.
Collapse
|
72
|
Ren T, Zheng P, Zhang K, Liao J, Xiong F, Shen Q, Ma Y, Fang W, Zhu X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:363-371. [PMID: 33434784 DOI: 10.1016/j.plaphy.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyphenols are important active components in tea plants, which have strong biological activity and antioxidant activity. A certain degree of stress or exogenous substances can significantly increase the content of polyphenols in plants. γ-Aminobutyric acid (GABA), a natural functional amino acid, was used to study whether exogenous GABA can increase the content of polyphenols and enhance antioxidant activity in tea plants under heat-stress conditions. The results showed that the content of GABA was positively correlated with the content of polyphenols (r = 0.649), especially with the content of total catechins (r = 0.837). Most of the related genes encoding flavonoid metabolism (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, LAR, ANS, ANR and FLS) as well as enzyme activities (PAL, C4H and 4CL) were upregulated. In addition, the activities of antioxidant enzymes were induced under heat-stress conditions. However, 3-mercaptopropionic acid (3-MPA), an inhibitor of GABA synthesis, exhibited opposite results under heat-stress conditions compared with GABA treatment. These results indicated that GABA plays a key role in the accumulation of polyphenols and the upregulation of the antioxidant system in tea plants under heat-stress conditions.
Collapse
Affiliation(s)
- Taiyu Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Shen
- Institute of Tea Sciences, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 417100, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
73
|
Liu J, Xia Y, Jiang W, Shen G, Pang Y. LaPT2 Gene Encodes a Flavonoid Prenyltransferase in White Lupin. FRONTIERS IN PLANT SCIENCE 2021; 12:673337. [PMID: 34177989 PMCID: PMC8226212 DOI: 10.3389/fpls.2021.673337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 05/15/2023]
Abstract
Legume plants are rich in prenylated flavonoid compounds, which play an important role in plant defense and human health. In the present study, we identified a prenyltransferase (PT) gene, named LaPT2, in white lupin (Lupinus albus), which shows a high identity and close relationship with the other known PT genes involved in flavonoid prenylation in planta. The recombinant LaPT2 protein expressed in yeast cells exhibited a relatively strong activity toward several flavonols (e.g., kaempferol, quercetin, and myricetin) and a relatively weak activity toward flavanone (naringenin). In addition, the recombinant LaPT2 protein was also active toward several other types of flavonoids, including galangin, morin, 5-deoxyquercetin, 4'-O-methylkaempferol, taxifolin, and aromadendrin, with distinct enzymatic affinities. The LaPT2 gene was preferentially expressed in the roots, which is consistent with the presence of prenylated flavonoid kaempferol in the roots. Moreover, we found that the expression level of LaPT2 paralleled with those of LaF3H1 and LaFLS2 genes that were relatively higher in roots and lower in leaves, suggesting that they were essential for the accumulation of prenylated flavonoid kaempferol in roots. The deduced full-length LaPT2 protein and its signal peptide fused with a green fluorescent protein (GFP) are targeted to plastids in the Arabidopsis thaliana protoplast. Our study demonstrated that LaPT2 from white lupin is responsible for the biosynthesis of prenylated flavonoids, in particular flavonols, which could be utilized as phytoalexin for plant defense and bioactive flavonoid compounds for human health.
Collapse
Affiliation(s)
- Jinyue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoan Shen
- The Institute of Medicinal Plant Development, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yongzhen Pang,
| |
Collapse
|
74
|
Jesus F, Gonçalves AC, Alves G, Silva LR. Health Benefits of Prunus avium Plant Parts: An Unexplored Source Rich in Phenolic Compounds. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1854781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fábio Jesus
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C. Gonçalves
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Gilberto Alves
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luís R. Silva
- CICS - UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
75
|
Park S, Yi Y, Lim MH. Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metal‐Free and Metal‐Associated Amyloid‐β. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Seongmin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yelim Yi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
76
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
77
|
Li H, Gao S, Zhang S, Zeng W, Zhou J. Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae. J Biotechnol 2020; 325:119-127. [PMID: 33186660 DOI: 10.1016/j.jbiotec.2020.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Flavonoids have notable biological activities and have been widely used in the medicinal and chemical industries. However, single-copy integration of heterologous pathway genes limits the production of flavonoids. In this work, we designed and constructed single-step integration of multiple flavonoid (2S)-naringenin biosynthetic pathway genes in S. cerevisiae. The efficiency of the naringenin metabolic pathway gene integration into the rDNA site reached 93.7%. Subsequently, we used a high titer p-coumaric acid strain as a chassis, which eliminated feedback inhibition of tyrosine and downregulated the competitive pathway. The results indicated that increasing the supply of p-coumaric acid was effective for naringenin production. We additionally optimized the amount of donor DNA. The optimum strain produced 149.8 mg/L of (2S)-naringenin. The multi-copy integration of flavonoid pathway genes effectively improved (2S)-naringenin production in S. cerevisiae. We further analyzed the copy numbers and expression levels of essential genes (4CL and CHS) in the (2S)-naringenin metabolic pathway by qPCR. Higher copy numbers of the (2S)-naringenin metabolic pathway genes were associated with greater 4CL and CHS transcription, and the efficiency of naringenin production was higher. Therefore, multi-copy integration of genes in the (2S)-naringenin metabolic pathway was imperative in rewiring p-coumaric acid flux to enhance flavonoid production.
Collapse
Affiliation(s)
- Hongbiao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Song Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Siqi Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
78
|
Naturally Occurring Flavonoids and Isoflavonoids and Their Microbial Transformation: A Review. Molecules 2020; 25:molecules25215112. [PMID: 33153224 PMCID: PMC7663748 DOI: 10.3390/molecules25215112] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Flavonoids and isoflavonoids are polyphenolic secondary metabolites usually produced by plants adapting to changing ecological environments over a long period of time. Therefore, their biosynthesis pathways are considered as the most distinctive natural product pathway in plants. Seemingly, the flavonoids and isoflavones from fungi and actinomycetes have been relatively overlooked. In this review, we summarized and classified the isoflavones and flavonoids derived from fungi and actinomycetes and described their biological activities. Increasing attention has been paid to bioactive substances derived from microorganism whole-cell biotransformation. Additionally, we described the utilization of isoflavones and flavonoids as substrates by fungi and actinomycetes for biotransformation through hydroxylation, methylation, halogenation, glycosylation, dehydrogenation, cyclisation, and hydrogenation reactions to obtain rare and highly active biofunctional derivatives. Overall, among all microorganisms, actinomycetes are the main producers of flavonoids. In our review, we also summarized the functional genes involved in flavonoid biosynthesis.
Collapse
|
79
|
Hou M, Zhang Y, Mu G, Cui S, Yang X, Liu L. Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea). Sci Rep 2020; 10:17717. [PMID: 33077846 PMCID: PMC7572378 DOI: 10.1038/s41598-020-74763-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonol is an important functional bioactive substance in peanut seeds, and plays important roles responding to abiotic stress. The flavonol content is closely related to the activity and regulation of gene expression patterns of flavonol synthase (FLS). In this study, eight FLS genes, AhFLSs were cloned and their expression characterization in different peanut organ and seedling under different abiotic stress were conducted. The results showed that the expressions levels of AhFLSs were differed in all assayed peanut organs and seedlings under abiotic stress treatments. Expression levels of AhFLS2, AhFLS3, AhFLS4, and AhFLS6 were higher than those of other AhFLSs. The flavonol contents of peanut organs and seedlings under different abiotic stress were also determined using high performance liquid chromatography (HPLC). Dried mature peanut seeds were the organ tissue with the highest flavonol content, and flavonol content increased with seed development. Under abiotic stress treatments, the types of flavonols induced differed among stress treatments. Correlation analysis results suggested that eight AhFLS genes may have different functions in peanut. Moreover, changes in the expression of the eight genes appear to has substrate preference. These results can lay the foundation for the study of improving nutritional value of peanut seed and resistance of peanut plant.
Collapse
Affiliation(s)
- Mingyu Hou
- College of Life Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yongjiang Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Guojun Mu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shunli Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xinlei Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lifeng Liu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China. .,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
80
|
Lui ACW, Lam PY, Chan KH, Wang L, Tobimatsu Y, Lo C. Convergent recruitment of 5'-hydroxylase activities by CYP75B flavonoid B-ring hydroxylases for tricin biosynthesis in Medicago legumes. THE NEW PHYTOLOGIST 2020; 228:269-284. [PMID: 32083753 DOI: 10.1111/nph.16498] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Tricin (3',5'-dimethoxylated flavone) is a predominant flavonoid amongst monocots but occurs only in isolated and unrelated dicot lineages. Although tricin biosynthesis has been intensively studied in monocots, it has remained largely elusive in tricin-accumulating dicots. We investigated a subgroup of cytochrome P450 (CYP) 75B subfamily flavonoid B-ring hydroxylases (FBHs) from two tricin-accumulating legumes, Medicago truncatula and alfalfa (Medicago sativa), by phylogenetic, molecular, biochemical and mutant analyses. Five Medicago cytochrome P450 CYP75B FBHs are phylogenetically distant from other legume CYP75B members. Among them, MtFBH-4, MsFBH-4 and MsFBH-10 were expressed in tricin-accumulating vegetative tissues. In vitro and in planta analyses demonstrated that these proteins catalyze 3'- and 5'-hydroxylations critical to tricin biosynthesis. A key amino acid polymorphism, T492G, at their substrate recognition site 6 domain is required for the novel 5'-hydroxylation activities. Medicago truncatula mtfbh-4 mutants were tricin-deficient, indicating that MtFBH-4 is indispensable for tricin biosynthesis. Our results revealed that these Medicago legumes had acquired the tricin pathway through molecular evolution of CYP75B FBHs subsequent to speciation from other nontricin-accumulating legumes. Moreover, their evolution is independent of that of grass-specific CYP75B apigenin 3'-hydroxylases/chrysoeriol 5'-hydroxylases dedicated to tricin production and Asteraceae CYP75B flavonoid 3',5'-hydroxylases catalyzing the production of delphinidin-based pigments.
Collapse
Affiliation(s)
- Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kwun Ho Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
81
|
Arlotta C, Puglia GD, Genovese C, Toscano V, Karlova R, Beekwilder J, De Vos RCH, Raccuia SA. MYB5-like and bHLH influence flavonoid composition in pomegranate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110563. [PMID: 32771164 DOI: 10.1016/j.plantsci.2020.110563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 05/28/2023]
Abstract
The fruit of the pomegranate (Punica granatum L.) is an important nutraceutical food rich in polyphenolic compounds, including hydrolysable tannins, anthocyanins and flavonols. Their composition varies according to cultivar, tissue and fruit development stage and is probably regulated by a combination of MYB and bHLH type transcription factors (TFs). In this study, metabolomics analysis during fruit developmental stages in the main pomegranate cultivars, Wonderful and Valenciana with contrasting colour of their ripe fruits, showed that flavonols were mostly present in flowers while catechins were highest in unripe fruits and anthocyanins in late fruit maturation stages. A novel MYB TF, PgMYB5-like, was identified, which differs from previously isolated pomegranate TFs by unique C-terminal protein motifs and lack of the amino-acid residues conserved among anthocyanins promoting MYBs. In both pomegranate cultivars the expression of PgMYB5-like was high at flowering stage, while it decreased during fruit ripening. A previously identified bHLH-type TF, PgbHLH, also showed high transcript levels at flowering stage in both cultivars, while it showed a decrease in expression during fruit ripening in cv. Valenciana, but not in cv. Wonderful. Functional analysis of both TFs was performed by agro-infiltration into Nicotiana benthamiana leaves. Plants infiltrated with the PgMYB5-like+PgbHLH combined construct showed a specific and significant accumulation of intermediates of the flavonoid pathway, especially dihydroflavonols, while anthocyanins were not produced. Thus, we propose a role for PgMYB5-like and PgbHLH in the first steps of flavonoid production in flowers and in unripe fruits. The expression patterns of these two TFs may be key in determining the differential flavonoid composition in both flowers and fruits of the pomegranate varieties Wonderful and Valenciana.
Collapse
Affiliation(s)
- Carmen Arlotta
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Giuseppe D Puglia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy.
| | - Claudia Genovese
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Valeria Toscano
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Rumyana Karlova
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Jules Beekwilder
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Ric C H De Vos
- Wageningen Plant Research, Bioscience, 6700 AA, Wageningen, the Netherlands
| | - Salvatore A Raccuia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
82
|
Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081209] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current world of climate change, global warming and a constantly changing environment have made life very stressful for living entities, which has driven the evolution of biochemical processes to cope with stressed environmental and ecological conditions. As climate change conditions continue to develop, we anticipate more frequent occurrences of abiotic stresses such as drought, high temperature and salinity. Living plants, which are sessile beings, are more exposed to environmental extremes. However, plants are equipped with biosynthetic machinery operating to supply thousands of bio-compounds required for maintaining internal homeostasis. In addition to chemical coordination within a plant, these compounds have the potential to assist plants in tolerating, resisting and escaping biotic and abiotic stresses generated by the external environment. Among certain biosynthates, flavonoids are an important example of these stress mitigators. Flavonoids are secondary metabolites and biostimulants; they play a key role in plant growth by inducing resistance against certain biotic and abiotic stresses. In addition, the function of flavonoids as signal compounds to communicate with rhizosphere microbes is indispensable. In this review, the significance of flavonoids as biostimulants, stress mitigators, mediators of allelopathy and signaling compounds is discussed. The chemical nature and biosynthetic pathway of flavonoid production are also highlighted.
Collapse
|
83
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
84
|
Shao Y, Sun Y, Li D, Chen Y. Chrysanthemum indicum L.: A Comprehensive Review of its Botany, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:871-897. [PMID: 32431180 DOI: 10.1142/s0192415x20500421] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chrysanthemum indicum L. (C. indicum L.), a member of the Compositae family, is a perennial plant that has been used as a traditional medicine for more than 2000 years in China and is widely used for the treatment of Pemphigus, swelling, pain, and scrofula. To date, more than 190 chemical constituents have been isolated and identified from this plant, including flavonoids, terpenoids, phenylpropanoids, and phenolic acids. Numerous modern studies have shown that extracts or monomeric compounds from C. indicum L. have several pharmacological activities, such as anti-inflammatory anti-oxidation, antipathogenic microorganism, anticancer, immune regulation, and hepatoprotective effects. However, resource availability, the research on the mechanism, and quality control are still insufficient, which deserves further efforts. In this paper, the advances in botany, phytochemistry, and pharmacology of C. indicum L were reviewed. We hope that this review can provide important information for traditional Chinese medicine, phytochemistry, synthetic and medicinal chemistry researchers for making full use of C. indicum L. resource.
Collapse
Affiliation(s)
- Yanhao Shao
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Yunda Sun
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yiping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.,Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning 530200, P. R. China
| |
Collapse
|
85
|
|
86
|
Liu XL, Wang L, Wang XW, Yan Y, Yang XL, Xie MY, Hu Z, Shen X, Ai H, Lin HH, Xu GH, Yang J, Sun SB. Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:53-67. [PMID: 31733118 DOI: 10.1111/tpj.14611] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1-mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell-based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low-affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV-B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV-B irradiance. In summary, OsPHT2;1 functions as a chloroplast-localized low-affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.
Collapse
Affiliation(s)
- Xiu-Li Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agricultural and Rural Affairs, Chengdu, 610041, Sichuan, China
| | - Xiao-Wen Wang
- Landscape Architecture Department, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Guo-Hua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shu-Bin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
87
|
Loh YC, Chan SY, Tew WY, Oo CW, Yam MF. New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sci 2020; 249:117512. [PMID: 32145305 DOI: 10.1016/j.lfs.2020.117512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Hypertension is one of the leading causes of mortality in relation to the cardiovascular conditions and easily the most overlooked and poorly managed disease in mankind. With well over 200 drugs available in the market globally, there is still an urgency to search for antihypertensive alternatives due to the subpar efficacy and unwarranted side effects of the current choices. Present studies reported over 250 types of plant-derived compounds were being investigated for potential pharmacological effects on the vasculature in the last 3 decades. There were numerous literatures that claimed various compounds exhibiting vasorelaxant properties to a certain extent with low numbers of these compounds being successfully adapted into the current medicinal practice for treatment of hypertension. The issue is the scarcity of reviews that summarizes the discovery of this field and the lack of thorough comparison of these compounds to identify which of these vasodilators should be the next face of hypertension management. Thus, this review is aiming towards identifying the relationship between a major class of plant-derived compounds, flavonoid's activity as a vasodilator with their signalling pathways and their structural characteristics according to their vasorelaxant properties. Interestingly, we found that both nitric oxide and voltage-operated calcium channels pathways, and two of the flavonoid's structural characteristics play crucial roles in eliciting strong vasorelaxant effects. We have faith that the insights of this review will serve as a reference for those researching similar topics in the future and potentially lead to the development of more promising antihypertensive alternative.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Sock Ying Chan
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
88
|
Jo C, Kim S. Transposition of a non-autonomous DNA transposon in the gene coding for a bHLH transcription factor results in a white bulb color of onions (Allium cepa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:317-328. [PMID: 31637460 DOI: 10.1007/s00122-019-03460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A DNA transposon was found in the gene encoding a bHLH transcription factor. Genotypes of the marker tagging this DNA transposon perfectly co-segregated with color phenotypes in large F2:3 populations A combined approach of bulked segregant analysis and RNA-Seq was used to isolate causal gene for C locus controlling white bulb color in onions (Allium cepa L.). A total of 114 contigs containing homozygous single nucleotide polymorphisms (SNPs) between white and yellow bulked RNAs were identified. Four of them showed high homologies with loci clustered in the middle of chromosome 5. SNPs in 34 contigs were confirmed by sequencing of PCR products. One of these contigs showed perfect linkage to the C locus in F2:3 populations consisting of 2491 individuals. However, genotypes of molecular marker tagging this contig were inconsistent with color phenotypes of diverse breeding lines. A total of 146 contigs showed differential expression between yellow and white bulks. Among them, transcription levels of B2 gene encoding a bHLH transcription factor were significantly reduced in white RNA bulk and F2:3 individuals, although there was no SNP in the coding region. Phylogenetic analysis showed that onion B2 was orthologous to bHLH-coding genes regulating anthocyanin biosynthesis pathway in other plant species. Promoter regions of B2 gene were obtained by genome walking and a 577-bp non-autonomous DNA transposon designated as AcWHITE was found in the white allele. Molecular marker tagging AcWHITE showed perfect linkage with the C locus. Marker genotypes of the white allele were detected in some white accessions. However, none of tested red or yellow onions contained AcWHITE insertion, implying that B2 gene was likely to be a casual gene for the C locus.
Collapse
Affiliation(s)
- Changyeong Jo
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea.
| |
Collapse
|
89
|
Schroeder M, Meyer SW, Heyman HM, Barsch A, Sumner LW. Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites 2019; 10:metabo10010013. [PMID: 31878231 PMCID: PMC7023306 DOI: 10.3390/metabo10010013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
The utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS). TIMS offers additional depth-of-coverage through increased peak capacities realized with the multi-dimensional UHPLC-TIMS separations. Metabolite identification confidence is simultaneously enhanced by incorporating orthogonal collision cross section (CCS) data matching. To facilitate metabolite identifications, we created a CCS library of 146 plant natural products. This library was generated using TIMS with N2 drift gas to record the TIMSCCSN2 of plant natural products with a high degree of reproducibility; i.e., average RSD = 0.10%. The robustness of TIMSCCSN2 data matching was tested using authentic standards spiked into complex plant extracts, and the precision of CCS measurements were determined to be independent of matrix affects. The utility of the UHPLC-TIMS-TOF-MS/MS in metabolomics was then demonstrated using extracts from the model legume Medicago truncatula and metabolites were confidently identified based on retention time, accurate mass, molecular formula, and CCS.
Collapse
Affiliation(s)
- Mark Schroeder
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Sven W. Meyer
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Heino M. Heyman
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Aiko Barsch
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Lloyd W. Sumner
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-573-882-5486
| |
Collapse
|
90
|
Latos-Brozio M, Masek A. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Chem Biodivers 2019; 16:e1900426. [PMID: 31657102 DOI: 10.1002/cbdv.201900426] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023]
Abstract
Plant polyphenols, especially flavonoids, are active and pro-health substances found in fruits and vegetables. Quercetin and its glycoside rutin are representatives of flavonoids, commonly found in plant products. Catechins found in large quantities in tea are also a well-known group of natural polyphenols. These compounds are based on the structure of flavan-3-ol, which is why the number, positions and types of substitutions affect the scavenging of radicals and other properties. Despite some inconsistent evidence, several structure-activity relationships of monomeric flavonoids are well established in vitro. However, the relationships between the activity and other properties of the polymeric forms of flavonoids and their structures are poorly understood so far. The aim of this article is to compare the data on polymerization of quercetin, rutin and catechin, as well as to systematize knowledge about the structure-activity relationship of the polymeric forms of these compounds.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| | - Anna Masek
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| |
Collapse
|
91
|
Lv Y, Marsafari M, Koffas M, Zhou J, Xu P. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth Biol 2019; 8:2514-2523. [PMID: 31622552 DOI: 10.1021/acssynbio.9b00193] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plants possess myriads of secondary metabolites with a broad spectrum of health-promoting benefits. To date, plant extraction is still the primary route to produce high-value natural products which inherently suffers from economics and scalability issues. Heterologous expression of plant biosynthetic gene clusters in microbial host is considered as a feasible approach to overcoming these limitations. Oleaginous yeast produces a large amount of lipid bodies, the abundant membrane structure and the lipophilic environment provide the ideal environment for the regioselectivity and stereoselectivity of many plant-derived P450 enzymes. In this work, we used modular method to construct, characterize, and optimize the flavonoid pathways in Yarrowia lipolytica. We also evaluated various precursor biosynthetic routes and unleashed the metabolic potential of Y. lipolytica to produce flavonoids and hydroxylated flavonoids. Specifically, we have identified that chalcone synthase (CHS) and cytochrome P450 reductases (CPR) were the bottlenecks of hydroxylated flavonoid production. We determined the optimal gene copy number of CHS and CPR to be 5 and 2, respectively. We further removed precursor pathway limitations by expressing genes associated with chorismate and malonyl-CoA supply. With pH and carbon-nitrogen ratio (C/N) optimization, our engineered strain produced 252.4 mg/L naringenin, 134.2 mg/L eriodictyol, and 110.5 mg/L taxifolin from glucose in shake flasks. Flavonoid and its hydroxylated derivatives are most prominently known as antioxidant and antiaging agents. These findings demonstrate our ability to harness the oleaginous yeast as the microbial workhorse to expand nature's biosynthetic potential, enabling us to bridge the gap between drug discovery and natural product manufacturing.
Collapse
Affiliation(s)
- Yongkun Lv
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
92
|
Zuk M, Szperlik J, Hnitecka A, Szopa J. Temporal biosynthesis of flavone constituents in flax growth stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:234-245. [PMID: 31323536 DOI: 10.1016/j.plaphy.2019.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 05/20/2023]
Abstract
Previous studies showed that chalcone synthase (chs) silencing in flax (Linum usitatisimum) induces a signal transduction cascade that leads to extensive modification of plant metabolism. Result presented in the current study, performed on field grown flax plants - (across the whole vegetation period) demonstrates that, in addition to its role in tannin and lignin biosynthesis, the chs gene also participates in the regulation of flavone biosynthesis during plant growth. Apigenin and luteolin glycosides constitute the flavones, the major group of flavonoids in flax. Alterations in their levels correlate with plant growth, peaking at the flower initiation stage. Suppression of chs gene expression causes significant changes in the ratio of flavone constituents at the early stage of flax growth. A significant correlation between flavonoid 3'-hydroxylase (F3'H) gene expression and accumulation of luteolin glycosides has been found, indicating that flavone biosynthesis during flax growth and development is regulated by temporal expression of this gene. The lack of such a correlation between the flavone synthase (FNS) gene and flavone accumulation in the course of plant growth suggests that the main route of flavone biosynthesis is mediated by eriodictyol. This is the first report indicating the ratio of flavone constituents as a potent marker of flax growth stages and temporal expression of F3'H, the key gene of their biosynthesis.
Collapse
Affiliation(s)
- Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63, 51-148, Wroclaw, Poland; Linum Foundation, Wroclaw, Poland.
| | - Jakub Szperlik
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Agata Hnitecka
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Jan Szopa
- Linum Foundation, Wroclaw, Poland; Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wroclaw, Poland
| |
Collapse
|
93
|
Xie L, Zhang L, Bai J, Yue Q, Zhang M, Li J, Wang C, Xu Y. Methylglucosylation of Phenolic Compounds by Fungal Glycosyltransferase-Methyltransferase Functional Modules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8573-8580. [PMID: 31293156 DOI: 10.1021/acs.jafc.9b02819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycosylation endows both natural and synthetic small molecules with modulated physicochemical and biological properties. Plant and bacterial glycosyltransferases capable of decorating various privileged scaffolds have been extensively studied, but those from kingdom Fungi still remain underexploited. Here, we use a combination of genome mining and heterologous expression techniques to identify four novel glycosyltransferase-methyltransferase (GT-MT) functional modules from Hypocreales fungi. These GT-MT modules display decent substrate promiscuity and regiospecificity, methylglucosylating a panel of natural products such as flavonoids, stilbenoids, anthraquinones, and benzenediol lactones. Native GT-MT modules can be split up and regrouped into hybrid modules with similar or even improved efficacy as compared with native pairs. Methylglucosylation of kaempferol considerably improves its insecticidal activity against the larvae of oriental armyworm Mythimna separata (Walker). Our work provides a set of efficient biocatalysts for the combinatorial biosynthesis of small molecule glycosides that may have significant importance to the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Jing Bai
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Qun Yue
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Min Zhang
- School of Agricultural Sciences , Zhengzhou University , Kexue Avenue 100 , Zhengzhou 450001 , P. R. China
| | - Jiancheng Li
- Institute of Plant Protection , Hebei Academy of Agriculture and Forestry Sciences , 437 Dongguan Street , Baoding 071000 , P. R. China
| | - Chen Wang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
- Agricultural Genomics Institute at Shenzhen , Chinese Academy of Agricultural Sciences , 7 Pengfei Road , Shenzhen 518124 , P. R. China
| |
Collapse
|
94
|
Styrczewska M, Zuk M, Boba A, Zalewski I, Kulma A. Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases. Curr Pharm Des 2019; 25:2241-2263. [PMID: 31333096 DOI: 10.2174/1381612825666190716111700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.
Collapse
Affiliation(s)
- Monika Styrczewska
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Iwan Zalewski
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
95
|
Hohenstein JD, Studham ME, Klein A, Kovinich N, Barry K, Lee YJ, MacIntosh GC. Transcriptional and Chemical Changes in Soybean Leaves in Response to Long-Term Aphid Colonization. FRONTIERS IN PLANT SCIENCE 2019; 10:310. [PMID: 30930925 PMCID: PMC6424911 DOI: 10.3389/fpls.2019.00310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
Soybean aphids (Aphis glycines Matsumura) are specialized insects that feed on soybean (Glycine max) phloem sap. Transcriptome analyses have shown that resistant soybean plants mount a fast response that limits aphid feeding and population growth. Conversely, defense responses in susceptible plants are slower and it is hypothesized that aphids block effective defenses in the compatible interaction. Unlike other pests, aphids can colonize plants for long periods of time; yet the effect on the plant transcriptome after long-term aphid feeding has not been analyzed for any plant-aphid interaction. We analyzed the susceptible and resistant (Rag1) transcriptome response to aphid feeding in soybean plants colonized by aphids (biotype 1) for 21 days. We found a reduced resistant response and a low level of aphid growth on Rag1 plants, while susceptible plants showed a strong response consistent with pattern-triggered immunity. GO-term analyses identified chitin regulation as one of the most overrepresented classes of genes, suggesting that chitin could be one of the hemipteran-associated molecular pattern that triggers this defense response. Transcriptome analyses also indicated the phenylpropanoid pathway, specifically isoflavonoid biosynthesis, was induced in susceptible plants in response to long-term aphid feeding. Metabolite analyses corroborated this finding. Aphid-treated susceptible plants accumulated daidzein, formononetin, and genistein, although glyceollins were present at low levels in these plants. Choice experiments indicated that daidzein may have a deterrent effect on aphid feeding. Mass spectrometry imaging showed these isoflavones accumulate likely in the mesophyll cells or epidermis and are absent from the vasculature, suggesting that isoflavones are part of a non-phloem defense response that can reduce aphid feeding. While it is likely that aphid can initially block defense responses in compatible interactions, it appears that susceptible soybean plants can eventually mount an effective defense in response to long-term soybean aphid colonization.
Collapse
Affiliation(s)
- Jessica D. Hohenstein
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
| | - Matthew E. Studham
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
| | - Adam Klein
- Ames Laboratory, United States Department of Energy, Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Nik Kovinich
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, United States
| | - Kia Barry
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Young-Jin Lee
- Ames Laboratory, United States Department of Energy, Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Gustavo C. MacIntosh
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
96
|
Widely targeted metabolome and transcriptome landscapes of Allium fistulosum-A. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 2019; 9:3541. [PMID: 30837538 PMCID: PMC6400954 DOI: 10.1038/s41598-019-39856-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Here, we report a comprehensive analysis of the widely targeted metabolome and transcriptome profiles of Allium fistulosum L. (FF) with the single extra chromosome of shallot [A. cepa L. Aggregatum group (AA)] to clarify the novel gene functions in flavonoid biosynthesis. An exhaustive metabolome analysis was performed using the selected reaction monitoring mode of liquid chromatography–tandem quadrupole mass spectrometry, revealing a specific accumulation of quercetin, anthocyanin and flavone glucosides in AA and FF5A. The addition of chromosome 5A from the shallot to A. fistulosum induced flavonoid accumulation in the recipient species, which was associated with the upregulation of several genes including the dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, UDP-glucose flavonoid-3-O-glucosyltransferase, anthocyanin 5-aromatic acyltransferase-like, pleiotropic drug resistance-like ATP binding cassette transporter, and MYB14 transcriptional factor. Additionally, an open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated by using RNA-Seq data from different genetic stocks including the A. fistulosum–A. cepa monosomic addition lines. The functional genomic approach presented here provides an innovative means of targeting the gene responsible for flavonoid biosynthesis in A. cepa. The understanding of flavonoid compounds and biosynthesis-related genes would facilitate the development of noble Allium varieties with unique chemical constituents and, subsequently, improved plant stress tolerance and human health benefits.
Collapse
|
97
|
Ha J, Kang YG, Lee T, Kim M, Yoon MY, Lee E, Yang X, Kim D, Kim YJ, Lee TR, Kim MY, Lee SH. Comprehensive RNA sequencing and co-expression network analysis to complete the biosynthetic pathway of coumestrol, a phytoestrogen. Sci Rep 2019; 9:1934. [PMID: 30760815 PMCID: PMC6374408 DOI: 10.1038/s41598-018-38219-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Coumestrol (CMS), a coumestan isoflavone, plays key roles in nodulation through communication with rhizobia, and has been used as phytoestrogens for hormone replacement therapy in humans. Because CMS content is controlled by multiple genetic factors, the genetic basis of CMS biosynthesis has remained unclear. We identified soybean genotypes with consistently high (Daewonkong) or low (SS0903-2B-21-1-2) CMS content over 2 years. We performed RNA sequencing of leaf samples from both genotypes at developmental stage R7, when CMS levels are highest. Within the phenylpropanoid biosynthetic pathway, 41 genes were tightly connected in a functional co-expression gene network; seven of these genes were differentially expressed between two genotypes. We identified 14 candidate genes involved in CMS biosynthesis. Among them, seven were annotated as encoding oxidoreductases that may catalyze the transfer of electrons from daidzein, a precursor of CMS. Two of the other genes, annotated as encoding a MYB domain protein and a MLP-like protein, may increase CMS accumulation in response to stress conditions. Our results will help to complete our understanding of the CMS biosynthetic pathway, and should facilitate development of soybean cultivars with high CMS content that could be used to promote the fitness of plants and human beings.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myoyeon Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunsoo Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Xuefei Yang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
98
|
A method for visualizing fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum. Biotechniques 2019; 66:65-71. [DOI: 10.2144/btn-2018-0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester [DPBA]) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies, and report the first method for use of DPBA in this eukaryotic model microbe and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies.
Collapse
|
99
|
Kim HS, Yoon YM, Meang MK, Park YE, Lee JY, Lee TH, Lee JE, Kim IH, Youn BS. Reversion of in vivo fibrogenesis by novel chromone scaffolds. EBioMedicine 2019; 39:484-496. [PMID: 30611717 PMCID: PMC6355727 DOI: 10.1016/j.ebiom.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myofibroblasts are known to play a key role in the development of idiopathic pulmonary fibrosis (IPF). Two drugs, pirfenidone and nintedanib, are the only approved therapeutic options for IPF, but their applications are limited due to their side effects. Thus, curative IPF drugs represent a huge unmet medical need. METHODS A mouse hepatic stellate cell (HSC) line was established that could robustly differentiate into myofibroblasts upon treatment with TGF-β. Eupatilin was assessed in diseased human lung fibroblasts from IPF patients (DHLFs) as well as in human lung epithelial cells (HLECs). The drug's performance was extensively tested in a bleomycin-induced lung fibrosis model (BLM). Global gene expression studies and proteome analysis were performed. FINDINGS Eupatilin attenuated disease severity of BLM in both preventative and therapeutic studies. The drug inhibited the in vitro transdifferantiation of DHLFs to myofibroblasts upon stimulation with TGF-β. No such induction of the in vitro transdifferantiation was observed in TGF-β treated HLECs. Specific carbons of eupatilin were essential for its anti-fibrotic activity. Eupatilin was capable of dismantling latent TGF-β complex, specifically by eliminating expression of the latent TGF-β binding protein 1 (LTBP1), in ECM upon actin depolymerization. Unlike eupatilin, pirfenidone was unable to block fibrosis of DHLFs or HSCs stimulated with TGF-β. Eupatilin attenuated phosphorylation of Smad3 by TGF-β. Eupatilin induced myofibroblasts to dedifferentiate into intermediate HCS-like cells. INTERPRETATION Eupatilin may act directly on pathogenic myofibroblasts, disarming them, whereas the anti-fibrotic effect of pirfenidone may be indirect. Eupatilin could increase the efficacy of IPF treatment to curative levels.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Republic of Korea; Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine,Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | | | - Moon Kee Meang
- OsteoNeuroGenInc, Seoul 08501, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do 26426, Republic of Korea
| | - Tae Hee Lee
- School of Oriental Medicine, Formulae Pharmacology Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
100
|
Al-Maharik N. Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 2019; 36:1156-1195. [DOI: 10.1039/c8np00069g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review covers the literature concerning the isolation and identification of new naturally occurring isoflavonoids from Leguminosae and non-Leguminous species between 2012–2017.
Collapse
Affiliation(s)
- Nawaf Al-Maharik
- Department of Forensic Sciences
- Al Istilal University
- Jericho
- Palestinian Authority
| |
Collapse
|