51
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
52
|
Xu Y, Liu F, Zhu S, Li X. The Maize NBS-LRR Gene ZmNBS25 Enhances Disease Resistance in Rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1033. [PMID: 30065743 PMCID: PMC6056734 DOI: 10.3389/fpls.2018.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 05/05/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain proteins are immune sensors and play critical roles in plant disease resistance. In this study, we cloned and characterized a novel NBS-LRR gene ZmNBS25 in maize. We found that ZmNBS25 could response to pathogen inoculation and salicylic acid (SA) treatment in maize, and transient overexpression of ZmNBS25 induced a hypersensitive response in tobacco. High-performance liquid chromatography (HPLC) analysis showed that, compared to control plants, ZmNBS25 overexpression (ZmNBS25-OE) in Arabidopsis and rice resulted in higher SA levels. By triggering the expression of certain defense-responsive genes, ZmNBS25-OE enhanced the resistance of Arabidopsis and rice to Pseudomonas syringae pv. tomato DC3000 and sheath blight disease, respectively. Moreover, we found little change of grain size and 1000-grain weight between ZmNBS25-OE rice lines and controls. Together, our results suggest that ZmNBS25 can function as a disease resistance gene across different species, being a valuable candidate for engineering resistance in breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaoyu Li, ;
| |
Collapse
|
53
|
Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, Zhang H, Xiao J, Muhammad F, Wang H, Cao A, Xing L, Wang X. LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:50-62. [PMID: 28436098 PMCID: PMC5811777 DOI: 10.1111/pbi.12748] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 05/25/2023]
Abstract
Plant sense potential microbial pathogen using pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). The Lectin receptor-like kinase genes (LecRKs) are involved in various cellular processes mediated by signal transduction pathways. In the present study, an L-type lectin receptor kinase gene LecRK-V was cloned from Haynaldia villosa, a diploid wheat relative which is highly resistant to powdery mildew. The expression of LecRK-V was rapidly up-regulated by Bgt inoculation and chitin treatment. Its transcript level was higher in the leaves than in roots, culms, spikes and callus. Single-cell transient overexpression of LecRK-V led to decreased haustorium index in wheat variety Yangmai158, which is powdery mildew susceptible. Stable transformation LecRK-V into Yangmai158 significantly enhanced the powdery mildew resistance at both seedling and adult stages. At seedling stage, the transgenic line was highly resistance to 18 of the tested 23 Bgt isolates, hypersensitive responses (HR) were observed for 22 Bgt isolates, and more ROS at the Bgt infection sites was accumulated. These indicated that LecRK-V confers broad-spectrum resistance to powdery mildew, and ROS and SA pathways contribute to the enhanced powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jiangyue Cheng
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Anqi Fan
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Zhongyu Yu
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Yingbo Li
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Faheem Muhammad
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Aizhong Cao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Liping Xing
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| |
Collapse
|
54
|
Jandú JJB, Moraes Neto RN, Zagmignan A, de Sousa EM, Brelaz-de-Castro MCA, Dos Santos Correia MT, da Silva LCN. Targeting the Immune System with Plant Lectins to Combat Microbial Infections. Front Pharmacol 2017; 8:671. [PMID: 29046636 PMCID: PMC5632806 DOI: 10.3389/fphar.2017.00671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
The arsenal of drugs available to treat infections caused by eukaryotic and prokaryotic microbes has been declining exponentially due to antimicrobial resistance phenomenon, leading to an urgent need to develop new therapeutic strategies. Host-directed immunotherapy has been reported as an attractive option to treat microbial infections. It consists in the improvement of host defenses by increasing the expression of inflammatory mediators and/or controlling of inflammation-induced tissue injury. Although the in vitro antimicrobial and immunomodulatory activities of lectins have been extensively demonstrated, few studies have evaluated their in vivo effects on experimental models of infections. This review aims to highlight the experimental use of immunomodulatory plant lectins to improve the host immune response against microbial infections. Lectins have been used in vivo both prophylactically and therapeutically resulting in the increased survival of mice under microbial challenge. Other studies successfully demonstrated that lectins could be used in combination with parasite antigens in order to induce a more efficient immunization. Therefore, these plant lectins represent new candidates for management of microbial infections. Furthermore, immunotherapeutic studies have improved our knowledge about the mechanisms involved in host–pathogen interactions, and may also help in the discovery of new drug targets.
Collapse
Affiliation(s)
- Jannyson J B Jandú
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Adrielle Zagmignan
- Pós-Graduação em Biologia Parasitária, Universidade Ceuma, São Luís, Brazil
| | - Eduardo M de Sousa
- Pós-Graduação em Biologia Parasitária, Universidade Ceuma, São Luís, Brazil
| | | | | | - Luís C N da Silva
- Pós-Graduação em Biologia Parasitária, Universidade Ceuma, São Luís, Brazil
| |
Collapse
|
55
|
Alqurashi M, Thomas L, Gehring C, Marondedze C. A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes 2017; 5:proteomes5030022. [PMID: 28820483 PMCID: PMC5620539 DOI: 10.3390/proteomes5030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched, suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.
Collapse
Affiliation(s)
- May Alqurashi
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ludivine Thomas
- HM. Clause, rue Louis Saillant, Z.I. La Motte, BP83, 26802 Portes-lès-Valence, France.
| | - Chris Gehring
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/BIG, 17, avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
56
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
57
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
58
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
59
|
Ponce de León I, Montesano M. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:366. [PMID: 28360923 PMCID: PMC5350094 DOI: 10.3389/fpls.2017.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
60
|
Su Y, Wang Z, Liu F, Li Z, Peng Q, Guo J, Xu L, Que Y. Isolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1348. [PMID: 27642288 PMCID: PMC5009122 DOI: 10.3389/fpls.2016.01348] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
Beta-1,3-glucanases (EC 3.2.1.39), commonly known as pathogenesis-related (PR) proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181) from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 or 3 days) than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h) under NaCl stress, and were steadily up-regulated from 6 to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
61
|
Zhang Z, Finer JJ. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower ( Helianthus annuus L.). IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2016; 52:354-366. [PMID: 27746666 PMCID: PMC5042984 DOI: 10.1007/s11627-016-9774-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/28/2016] [Indexed: 05/23/2023]
Abstract
Agrobacterium-mediated plant transformation is typically conducted by inoculating plant tissues with an Agrobacterium suspension containing approximately 108-109 bacteria mL-1, followed by a 2-3-d co-culture period. Use of longer co-culture periods could potentially increase transformation efficiencies by allowing more time for Agrobacterium to interact with plant cells, but bacterial overgrowth is likely to occur, leading to severe tissue browning and reduced transformation and regeneration. Low bacterial inoculum levels were therefore evaluated as a means to reduce the negative outcomes associated with long co-culture. The use of low inoculum bacterial suspensions (approximately 6 × 102 bacteria mL-1) followed by long co-culture (15 d) led to the production of an average of three transformed sunflower shoots per explant while the use of high inoculum (approximately 6 × 108 bacteria mL-1) followed by short co-culture (3 d) led to no transformed shoots. Low inoculum and long co-culture acted synergistically, and both were required for the improvement of sunflower transformation. Gene expression analysis via qRT-PCR showed that genes related to plant defense response were generally expressed at lower levels in the explants treated with low inoculum than those treated with high inoculum during 15 d of co-culture, suggesting that low inoculum reduced the induction of plant defense responses. The use of low inoculum with long co-culture (LI/LC) led to large increases in sunflower transformation efficiency. This method has great potential for improving transformation efficiencies and expanding the types of target tissues amenable for transformation of different plant species.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Department of Horticulture, The University of Georgia Tifton Campus, Tifton, GA 31793 USA
| | - John J. Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
62
|
Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci Rep 2016; 6:21060. [PMID: 26879005 PMCID: PMC4754703 DOI: 10.1038/srep21060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Proteomics was employed to investigate the molecular mechanisms of apoplastic response to potassium(K)-deficiency in cotton. Low K (LK) treatment significantly decreased the K and protein contents of xylem sap. Totally, 258 peptides were qualitatively identified in the xylem sap of cotton seedlings, of which, 90.31% were secreted proteins. Compared to the normal K (NK), LK significantly decreased the expression of most environmental-stress-related proteins and resulted in a lack of protein isoforms in the characterized proteins. For example, the contents of 21 Class Ш peroxidase isoforms under the LK were 6 to 44% of those under the NK and 11 its isoforms were lacking under the LK treatment; the contents of 3 chitinase isoforms under LK were 11–27% of those under the NK and 2 its isoforms were absent under LK. In addition, stress signaling and recognizing proteins were significantly down-regulated or disappeared under the LK. In contrast, the LK resulted in at least 2-fold increases of only one peroxidase, one protease inhibitor, one non-specific lipid-transfer protein and histone H4 and in the appearance of H2A. Therefore, K deficiency decreased plant tolerance to environmental stresses, probably due to the significant and pronounced decrease or disappearance of a myriad of stress-related proteins.
Collapse
|
63
|
Kim NH, Lee DH, Choi DS, Hwang BK. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:307-15. [PMID: 26706081 DOI: 10.1016/j.plantsci.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 05/24/2023]
Abstract
Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Department of Biology, The University of North Carolina at Chapel Hill, NC 27599-3280, USA
| | - Dong Hyuk Lee
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-8751, USA
| | - Du Seok Choi
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA 92521, USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
64
|
Liu ZQ, Qiu AL, Shi LP, Cai JS, Huang XY, Yang S, Wang B, Shen L, Huang MK, Mou SL, Ma XL, Liu YY, Lin L, Wen JY, Tang Q, Shi W, Guan DY, Lai Y, He SL. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3683-98. [PMID: 25922484 DOI: 10.1093/jxb/erv161] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.
Collapse
Affiliation(s)
- Zhi-qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-lian Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lan-ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jin-sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xue-ying Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bo Wang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lei Shen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mu-kun Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shao-liang Mou
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiao-Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan-yan Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lin Lin
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jia-yu Wen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Qian Tang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wei Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - De-yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan Lai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shui-lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
65
|
Wang P, Liu X, Guo J, Liu C, Fu N, Shen H. Identification and Expression Analysis of Candidate Genes Associated with Defense Responses to Phytophthora capsici in Pepper Line "PI 201234". Int J Mol Sci 2015; 16:11417-38. [PMID: 25993303 PMCID: PMC4463708 DOI: 10.3390/ijms160511417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022] Open
Abstract
Phytophthora capsici (Leonian), classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum). Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line "PI 201234", with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR). These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi) in the resistant line "PI 201234" and susceptible line "Qiemen". Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.
Collapse
Affiliation(s)
- Pingyong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Xiaodan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Jinju Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Chen Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Nan Fu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
66
|
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 2015; 10:e0121902. [PMID: 25849296 PMCID: PMC4388846 DOI: 10.1371/journal.pone.0121902] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.
Collapse
Affiliation(s)
- Rebecca Lyons
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- * E-mail:
| | - Jiri Stiller
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Jonathan Powell
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Anca Rusu
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - John M. Manners
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Kemal Kazan
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland, 4067, Australia
| |
Collapse
|
67
|
Bai SN. The concept of the sexual reproduction cycle and its evolutionary significance. FRONTIERS IN PLANT SCIENCE 2015; 231:11-9. [PMID: 25667590 DOI: 10.1016/j.plantsci.2014.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/20/2014] [Accepted: 11/14/2014] [Indexed: 05/03/2023]
Abstract
The concept of a "sexual reproduction cycle (SRC)" was first proposed by Bai and Xu (2013) to describe the integration of meiosis, sex differentiation, and fertilization. This review discusses the evolutionary and scientific implications of considering these three events as part of a single process. Viewed in this way, the SRC is revealed to be a mechanism for efficiently increasing genetic variation, facilitating adaptation to environmental challenges. It also becomes clear that, in terms of cell proliferation, it is appropriate to contrast mitosis with the entire SRC, rather than with meiosis alone. Evolutionarily, it appears that the SRC was first established in unicellular eukaryotes and that all multicellular organisms evolved within that framework. This concept provides a new perspective into how sexual reproduction evolved, how generations should be defined, and how developmental processes of various multicellular organisms should properly be compared.
Collapse
Affiliation(s)
- Shu-Nong Bai
- State Key Laboratory of Protein & Plant Gene Research, Quantitative Biology Center, College of Life Science, Peking University Beijing, China
| |
Collapse
|
68
|
Kim DS, Kim NH, Hwang BK. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum). THE NEW PHYTOLOGIST 2015; 205:786-800. [PMID: 25323422 DOI: 10.1111/nph.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/01/2014] [Indexed: 05/10/2023]
Abstract
Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Korea
| | | | | |
Collapse
|
69
|
Kim NH, Hwang BK. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:81-94. [PMID: 25335438 DOI: 10.1111/tpj.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | |
Collapse
|
70
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
71
|
Chen J, Yang L, Gu J, Bai X, Ren Y, Fan T, Han Y, Jiang L, Xiao F, Liu Y, Cao S. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:570-82. [PMID: 25329733 DOI: 10.1111/nph.13101] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/03/2014] [Indexed: 05/08/2023]
Abstract
Pollution of soil by the heavy metal cadmium (Cd) is a global environmental problem. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is one of the most important mechanisms contributing to Cd accumulation and tolerance. However, the regulation of this pathway is poorly understood. Here, we identified an Arabidopsis thaliana cadmium-tolerant dominant mutant xcd1-D (XVE system-induced cadmium-tolerance 1) and cloned XCD1 gene (previously called MAN3), which encodes an endo-β-mannanase. Overexpression of MAN3 led to enhanced Cd accumulation and tolerance, whereas loss-of-function of MAN3 resulted in decreased Cd accumulation and tolerance. In the presence of estradiol, enhanced Cd accumulation and tolerance in xcd1-D was associated with GSH-dependent, Cd-activated synthesis of PCs, which was correlated with coordinated activation of gene expression. Cd stress-induced expression of MAN3 and the consequently increased mannanase activity, led to increased mannose content in cell walls. Moreover, mannose treatment not only rescued the Cd-sensitive phenotype of the xcd1-2 mutant, but also improved the Cd tolerance of wild-type plants. Significantly, this mannose-mediated Cd accumulation and tolerance is dependent on GSH-dependent PC concentrations via coordinated control of expression of genes involved in PC synthesis. Our results suggest that MAN3 regulates the GSH-dependent PC synthesis pathway that contributes to Cd accumulation and tolerance in A. thaliana by coordinated control of gene expression.
Collapse
Affiliation(s)
- Jian Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. FRONTIERS IN PLANT SCIENCE 2015; 6:219. [PMID: 25904927 PMCID: PMC4389352 DOI: 10.3389/fpls.2015.00219] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 05/19/2023]
Abstract
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition.
Collapse
Affiliation(s)
- Lucie Trdá
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
| | - Justine Claverie
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Daphnée Brulé
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Stephan Dorey
- Laboratoire Stress, Défenses et Reproduction des Plantes, URVVC EA 4707, Université de Reims Champagne-ArdenneReims, France
| | - Benoit Poinssot
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
- *Correspondence: Benoit Poinssot, Université de Bourgogne, UMR 1347 Agroécologie INRA – uB – Agrosup, 17 rue Sully, 21000 Dijon, France
| |
Collapse
|
73
|
A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Sci Rep 2014; 4:7090. [PMID: 25404472 PMCID: PMC4235309 DOI: 10.1038/srep07090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022] Open
Abstract
As one of the key enzymes in the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH) plays a role in response to abiotic stresses and pathogenesis. Here, a full-length cDNA was obtained, designed as ScG6PDH from sugarcane. The ScG6PDH gene is 1,646 bp long with a 1,524-bp long ORF encoding 507 amino acid residues. Analysis of a phylogenetic tree indicated that this gene is a member of the cytosolic G6PDH gene family, which is consistent with results from a subcellular localization experiment. Based on a real-time quantitative RT-PCR performed under salt, drought, heavy metal (CdCl2) and low temperature (4°C) treatments, the transcription levels of the ScG6PDH gene were higher compared with transcription levels where these treatments were not imposed, suggesting a positive response of this gene to these environmental stresses. Furthermore, G6PDH activity was stimulated under 4°C, CdCl2, NaCl and PEG treatments, but the increments varied with treatment and sampling time, implying positive response to abiotic stresses, similar to the transcript of the G6PDH gene. Ion conductivity measurements and a histochemical assay provided indirect evidence of the involvement of the ScG6PDH gene in defense reactions to the above-mentioned abiotic stresses.
Collapse
|
74
|
Choi DS, Kim NH, Hwang BK. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. PLANT PHYSIOLOGY 2014; 166:1298-311. [PMID: 25237129 PMCID: PMC4226358 DOI: 10.1104/pp.114.246736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
75
|
Chen D, Ma X, Li C, Zhang W, Xia G, Wang M. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:1467-78. [PMID: 24828329 DOI: 10.1007/s00299-014-1630-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/26/2014] [Indexed: 05/04/2023]
Abstract
TaACO1 could catalyze ACC into ethylene in vitro. Constitutive expression of TaACO1 in Arabidopsis conferred salt sensitivity, and TaACO1 regulates salt stress mainly via the DREB1/CBF signal transduction pathway. Ethylene signaling plays essential roles in mediating plant responses to biotic and abiotic stresses, besides regulating plant growth and development. The roles of ethylene biosynthesis in abiotic stress, however, remain elusive. In this study, an aminocyclopropane-1-carboxylate oxidase gene, TaACO1, affecting the terminal step in ethylene biosynthesis, was isolated from a salt-tolerant bread wheat introgression line Shanrong No. 3 (SR3) and its effect on salt-stress response was examined. Purified recombinant protein of TaACO1 heterogenously expressed in Escherchia coli could catalyze ACC into ethylene in vitro. TaACO1 transcripts were down-regulated by salt, drought, oxidative stress and ABA. TaACO1-transgenic plants conferred salt sensitivity as judged from the seed germination, cotyledon greening and the relative root growth under salt stress. Constitutive expression of TaACO1 in Arabidopsis increased AtMYB15 expression and suppressed the expression of stress-responsive genes AtRAB18, AtCBF1 and AtCBF3. These findings are helpful in understanding the roles of ethylene biosynthesis in plant salt-stress response.
Collapse
Affiliation(s)
- Donghua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
76
|
Burra DD, Berkowitz O, Hedley PE, Morris J, Resjö S, Levander F, Liljeroth E, Andreasson E, Alexandersson E. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC PLANT BIOLOGY 2014; 14:254. [PMID: 25270759 PMCID: PMC4192290 DOI: 10.1186/s12870-014-0254-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/20/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling. RESULTS Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with β-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid. CONCLUSIONS Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.
Collapse
Affiliation(s)
- Dharani Dhar Burra
- />Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Oliver Berkowitz
- />Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
- />School of Plant Biology, The University of Western Australia, Crawley, WA 6009 Australia
- />Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Pete E Hedley
- />Genome Technology, James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Jenny Morris
- />Genome Technology, James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Svante Resjö
- />Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Erland Liljeroth
- />Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- />Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Alexandersson
- />Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
77
|
Guidarelli M, Zoli L, Orlandini A, Bertolini P, Baraldi E. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. MOLECULAR PLANT PATHOLOGY 2014; 15:832-40. [PMID: 24690196 PMCID: PMC6638621 DOI: 10.1111/mpp.12143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The fungal pathogen Colletotrichum acutatum is the causal agent of strawberry (Fragaria × ananassa) anthracnose. Although the fungus can infect strawberry fruits at both unripe and ripe stages, the symptoms appear only on red ripe fruits. On white unripe fruits, the pathogen becomes quiescent as melanized appressoria after 24 h of interaction. Previous transcriptome analysis has indicated that a mannose-binding lectin (MBL) gene is the most up-regulated gene in 24-h-infected white strawberries, suggesting a role for this gene in the low susceptibility of unripe stages. A time course analysis of the expression of this MBL gene, named FaMBL1 (Fragaria × ananassa MBL 1a), was undertaken to monitor its expression profile in white and red fruits at early interaction times: FaMBL1 was expressed exclusively in white fruit after 24 h, when the pathogen was quiescent. Agrobacterium-mediated transient transformation was used to silence and overexpress the FaMBL1 gene in 24-h-infected white and red strawberries, respectively. FaMBL1-silenced unripe fruits showed an increase in susceptibility to C. acutatum. These 24-h-infected tissues contained subcuticular hyphae, indicating pathogen penetration and active growth. In contrast, overexpression of FaMBL1 in ripe fruits decreased susceptibility; here, 24-h-infected tissues showed a high percentage of ungerminated appressoria, suggesting that the growth of the pathogen had slowed. These data suggest that FaMBL1 plays a crucial role in the resistance of unripe strawberry fruits to C. acutatum.
Collapse
Affiliation(s)
- Michela Guidarelli
- Department of Agricultural Sciences (DIPSA), University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | | | | | | | | |
Collapse
|
78
|
Miyakawa T, Hatano KI, Miyauchi Y, Suwa YI, Sawano Y, Tanokura M. A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. PLANT PHYSIOLOGY 2014; 166:766-78. [PMID: 25139159 PMCID: PMC4213107 DOI: 10.1104/pp.114.242636] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/14/2014] [Indexed: 05/19/2023]
Abstract
Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Ken-ichi Hatano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - You-ichi Suwa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yoriko Sawano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| |
Collapse
|
79
|
Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S, Ji J, Gachomo E, Chu K, Negeri A, Benson J, Nelson R, Bradbury P, Nielsen D, Holland JB, Balint-Kurti PJ, Johal G. A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways. PLoS Genet 2014; 10:e1004562. [PMID: 25166276 PMCID: PMC4148229 DOI: 10.1371/journal.pgen.1004562] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023] Open
Abstract
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants. The hypersensitive pathogen defense response (HR) in plants typically consists of a rapid, localized cell death around the point of attempted pathogen penetration. It is found in all plant species and is associated with high levels of resistance to a wide range of pathogens and pests including bacteria, fungi, viruses, nematodes, parasitic plants and insects. Little is known about the control of HR after initiation, largely because it is so rapid and localized and therefore difficult to quantify. Here we use a mutant maize gene conferring an exaggerated HR to quantify HR levels in a set of 3,381 mapping lines characterised at 26.5 million loci to identify genes associated with naturally-occurring variation in HR. Many of these genes seem to be involved in a set of connected regulatory pathways including protein degradation, control of programmed cell death, recycling of cellular components and regulation of oxidative stress. We have also shown that several of these genes show high levels of expression induction during HR. The study provides the first comprehensive list of natural variants in maize genes that modulate HR and cluster within reported pathways underlying molecular events during HR.
Collapse
Affiliation(s)
- Bode A Olukolu
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Guan-Feng Wang
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Vijay Vontimitta
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Bala P Venkata
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Sandeep Marla
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Jiabing Ji
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Emma Gachomo
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Kevin Chu
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Adisu Negeri
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Jacqueline Benson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Rebecca Nelson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Peter Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Dahlia Nielsen
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America; Department of Crop Science, NC State University, Raleigh, North Carolina, United States of America
| | - Peter J Balint-Kurti
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America; USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America
| | - Gurmukh Johal
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| |
Collapse
|
80
|
Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics 2014. [PMID: 25109872 PMCID: PMC4148935 DOI: 10.2135/cropsci2014.01.0042 10.1186/1471-2164-15-674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. RESULTS We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. CONCLUSIONS Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism that it mediated. These results increase our understanding of plant-insect interactions and can be used to protect against this destructive agricultural pest.
Collapse
Affiliation(s)
- Wentang Lv
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ba Du
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinxin Shangguan
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Zhao
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufang Pan
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangcun He
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
81
|
Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics 2014; 15:674. [PMID: 25109872 PMCID: PMC4148935 DOI: 10.1186/1471-2164-15-674] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/30/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. RESULTS We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. CONCLUSIONS Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism that it mediated. These results increase our understanding of plant-insect interactions and can be used to protect against this destructive agricultural pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
82
|
Casarrubias-Castillo K, Martínez-Gallardo NA, Délano-Frier JP. Treatment of Amaranthus cruentus with chemical and biological inducers of resistance has contrasting effects on fitness and protection against compatible Gram positive and Gram negative bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:927-39. [PMID: 24913050 DOI: 10.1016/j.jplph.2014.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 05/19/2023]
Abstract
Amaranthus cruentus (Ac) plants were treated with the synthetic systemic acquired resistance (SAR) inducer benzothiadiazole (BTH), methyl jasmonate (MeJA) and the incompatible pathogen, Pseudomonas syringae pv. syringae (Pss), under greenhouse conditions. The treatments induced a set of marker genes in the absence of pathogen infection: BTH and Pss similarly induced genes coding for pathogenesis-related and antioxidant proteins, whereas MeJA induced the arginase, LOX2 and amarandin 1 genes. BTH and Pss were effective when tested against the Gram negative pathogen Ps pv. tabaci (Pst), which was found to have a compatible interaction with grain amaranth. The resistance response appeared to be salicylic acid-independent. However, resistance against Clavibacter michiganensis subsp. michiganensis (Cmm), a Gram positive tomato pathogen also found to infect Ac, was only conferred by Pss, while BTH increased susceptibility. Conversely, MeJA was ineffective against both pathogens. Induced resistance against Pst correlated with the rapid and sustained stimulation of the above genes, including the AhPAL2 gene, which were expressed both locally and distally. The lack of protection against Cmm provided by BTH, coincided with a generalized down-regulation of defense gene expression and chitinase activity. On the other hand, Pss-treated Ac plants showed augmented expression levels of an anti-microbial peptide gene and, surprisingly, of AhACCO, an ethylene biosynthetic gene associated with susceptibility to Cmm in tomato, its main host. Pss treatment had no effect on productivity, but compromised growth, whereas MeJA reduced yield and harvest index. Conversely, BTH treatments led to smaller plants, but produced significantly increased yields. These results suggest essential differences in the mechanisms employed by biological and chemical agents to induce SAR in Ac against bacterial pathogens having different infection strategies. This may determine the outcome of a particular plant-pathogen interaction, leading to resistance or susceptibility, as in Cmm-challenged Ac plants previously induced with Pss or BTH, respectively.
Collapse
Affiliation(s)
| | | | - John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, Cinvestav-Unidad Irapuato, México, Mexico.
| |
Collapse
|
83
|
Kim NH, Kim DS, Chung EH, Hwang BK. Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. PLANT PHYSIOLOGY 2014; 165:76-91. [PMID: 24686111 PMCID: PMC4012606 DOI: 10.1104/pp.114.238840] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Xanthomonas campestris pv vesicatoria type III effector protein, AvrBsT, triggers hypersensitive cell death in pepper (Capsicum annuum). Here, we have identified the pepper SGT1 (for suppressor of the G2 allele of skp1) as a host interactor of AvrBsT and also the pepper PIK1 (for receptor-like cytoplasmic kinase1). PIK1 specifically phosphorylates SGT1 and AvrBsT in vitro. AvrBsT specifically binds to the CHORD-containing protein and SGT1 domain of SGT1, resulting in the inhibition of PIK1-mediated SGT1 phosphorylation and subsequent nuclear transport of the SGT1-PIK1 complex. Liquid chromatography-tandem mass spectrometry of the proteolytic peptides of SGT1 identified the residues serine-98 and serine-279 of SGT1 as the major PIK1-mediated phosphorylation sites. Site-directed mutagenesis of SGT1 revealed that the identified SGT1 phosphorylation sites are responsible for the activation of AvrBsT-triggered cell death in planta. SGT1 forms a heterotrimeric complex with both AvrBsT and PIK1 exclusively in the cytoplasm. Agrobacterium tumefaciens-mediated coexpression of SGT1 and PIK1 with avrBsT promotes avrBsT-triggered cell death in Nicotiana benthamiana, dependent on PIK1. Virus-induced silencing of SGT1 and/or PIK1 compromises avrBsT-triggered cell death, hydrogen peroxide production, defense gene induction, and salicylic acid accumulation, leading to the enhanced bacterial pathogen growth in pepper. Together, these results suggest that SGT1 interacts with PIK1 and the bacterial effector protein AvrBsT and promotes the hypersensitive cell death associated with PIK1-mediated phosphorylation in plants.
Collapse
|
84
|
Kim DS, Jeun Y, Hwang BK. The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. PLANT MOLECULAR BIOLOGY 2014; 84:329-44. [PMID: 24085708 DOI: 10.1007/s11103-013-0137-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/24/2013] [Indexed: 05/06/2023]
Abstract
Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | | | |
Collapse
|
85
|
Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y. Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 2014; 9:e84426. [PMID: 24392135 PMCID: PMC3879312 DOI: 10.1371/journal.pone.0084426] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/14/2013] [Indexed: 11/18/2022] Open
Abstract
Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shanshan Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shanshan Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (LX); (YQ)
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research, Sandringham, Auckland, New Zealand
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (LX); (YQ)
| |
Collapse
|
86
|
Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. THE NEW PHYTOLOGIST 2014; 201:518-530. [PMID: 24117868 DOI: 10.1111/nph.12521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| |
Collapse
|
87
|
Choi DS, Hong JK, Hwang BK. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. PLANTA 2013; 238:1113-24. [PMID: 24022744 DOI: 10.1007/s00425-013-1956-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticulture, Gyeongnam National University of Science and Technology, Chilam-dong, Jinju, 660-758, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
88
|
Lee JH, Kim YC, Choi D, Park JM. Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing. Int J Mol Sci 2013; 14:22782-95. [PMID: 24256816 PMCID: PMC3856090 DOI: 10.3390/ijms141122782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022] Open
Abstract
Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST) and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS) repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7%) pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER) stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR)-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death.
Collapse
Affiliation(s)
- Jeong Hee Lee
- Infection and Immunity Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yusung-gu, Daejeon 305-600, Korea; E-Mails: (J.H.L.); (Y.C.K.); (D.C.)
| | - Young Cheol Kim
- Infection and Immunity Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yusung-gu, Daejeon 305-600, Korea; E-Mails: (J.H.L.); (Y.C.K.); (D.C.)
| | - Doil Choi
- Infection and Immunity Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yusung-gu, Daejeon 305-600, Korea; E-Mails: (J.H.L.); (Y.C.K.); (D.C.)
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Jeong Mee Park
- Infection and Immunity Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yusung-gu, Daejeon 305-600, Korea; E-Mails: (J.H.L.); (Y.C.K.); (D.C.)
| |
Collapse
|
89
|
Choi HW, Kim NH, Lee YK, Hwang BK. The pepper extracellular xyloglucan-specific endo-β-1,4-glucanase inhibitor protein gene, CaXEGIP1, is required for plant cell death and defense responses. PLANT PHYSIOLOGY 2013; 161:384-96. [PMID: 23093361 PMCID: PMC3532269 DOI: 10.1104/pp.112.203828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/19/2012] [Indexed: 05/19/2023]
Abstract
Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants.
Collapse
|
90
|
Zhang H, Gao Z, Zheng X, Zhang Z. The role of G-proteins in plant immunity. PLANT SIGNALING & BEHAVIOR 2012; 7:1284-8. [PMID: 22895102 PMCID: PMC3493415 DOI: 10.4161/psb.21431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G-proteins play an important regulatory role in multiple physiological processes, including the plant immune response, and substantial progress has been made in elucidating the G-protein-mediated defense-signaling network. This mini-review discusses the importance of G-proteins in plant immunity. We also provide an overview of how G-proteins affect plant cell death and stomatal movement. Our recent studies demonstrated that G-proteins are involved in signal transduction and induction of stomatal closure and defense responses. We also discuss future directions for G-protein signaling studies involving plant immunity.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
- Department of Plant Pathology; Anhui Agricultural University; Hefei, China
| | - Zhimou Gao
- Department of Plant Pathology; Anhui Agricultural University; Hefei, China
| | - Xiaobo Zheng
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
- Correspondence to: Zhengguang Zhang,
| |
Collapse
|
91
|
Lee DH, Kim DS, Hwang BK. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:235-248. [PMID: 22640562 DOI: 10.1111/j.1365-313x.2012.05063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regulation of gene expression via post-transcriptional modification by RNA-binding proteins is crucial for plant disease and innate immunity. Here, we report the identification of the pepper (Capsicum annuum) RNA-binding protein1 gene (CaRBP1) as essential for hypersensitive cell death and defense signaling in the cytoplasm. CaRBP1 contains an RNA recognition motif and is rapidly and strongly induced in pepper by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaRBP1 displays in vitro RNA- and DNA-binding activity and in planta nucleocytoplasmic localization. Transient expression of CaRBP1 in pepper leaves triggers cell-death and defense responses. Notably, cytoplasmic localization of CaRBP1, mediated by the N-terminal region of CaRBP1, is essential for the hypersensitive cell-death response. Silencing of CaRBP1 in pepper plants significantly enhances susceptibility to avirulent Xcv infection. This is accompanied by compromised hypersensitive cell death, production of reactive oxygen species in oxidative bursts, expression of defense marker genes and accumulation of endogenous salicylic acid and jasmonic acid. Over-expression of CaRBP1 in Arabidopsis confers reduced susceptibility to infection by the biotrophic oomycete Hyaloperonospora arabidopsidis. Together, these results suggest that cytoplasmic localization of CaRBP1 is required for plant signaling of hypersensitive cell-death and defense responses.
Collapse
Affiliation(s)
- Dong Hyuk Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
92
|
Chang WC, Liu KL, Hsu FC, Jeng ST, Cheng YS. Ipomoelin, a jacalin-related lectin with a compact tetrameric association and versatile carbohydrate binding properties regulated by its N terminus. PLoS One 2012; 7:e40618. [PMID: 22808208 PMCID: PMC3394770 DOI: 10.1371/journal.pone.0040618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/11/2012] [Indexed: 01/07/2023] Open
Abstract
Many proteins are induced in the plant defense response to biotic stress or mechanical wounding. One group is lectins. Ipomoelin (IPO) is one of the wound-inducible proteins of sweet potato (Ipomoea batatas cv. Tainung 57) and is a Jacalin-related lectin (JRL). In this study, we resolved the crystal structures of IPO in its apo form and in complex with carbohydrates such as methyl α-D-mannopyranoside (Me-Man), methyl α-D-glucopyranoside (Me-Glc), and methyl α-D-galactopyranoside (Me-Gal) in different space groups. The packing diagrams indicated that IPO might represent a compact tetrameric association in the JRL family. The protomer of IPO showed a canonical β-prism fold with 12 strands of β-sheets but with 2 additional short β-strands at the N terminus. A truncated IPO (ΔN10IPO) by removing the 2 short β-strands of the N terminus was used to reveal its role in a tetrameric association. Gel filtration chromatography confirmed IPO as a tetrameric form in solution. Isothermal titration calorimetry determined the binding constants (K(A)) of IPO and ΔN10IPO against various carbohydrates. IPO could bind to Me-Man, Me-Glc, and Me-Gal with similar binding constants. In contrast, ΔN10IPO showed high binding ability to Me-Man and Me-Glc but could not bind to Me-Gal. Our structural and functional analysis of IPO revealed that its compact tetrameric association and carbohydrate binding polyspecificity could be regulated by the 2 additional N-terminal β-strands. The versatile carbohydrate binding properties of IPO might play a role in plant defense.
Collapse
Affiliation(s)
- Wei-Chieh Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Kai-Lun Liu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Fang-Ciao Hsu
- Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Tong Jeng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
93
|
Choi DS, Hwang IS, Hwang BK. Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper. THE PLANT CELL 2012; 24:1675-90. [PMID: 22492811 PMCID: PMC3398571 DOI: 10.1105/tpc.112.095869] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 05/18/2023]
Abstract
Plants recruit innate immune receptors such as leucine-rich repeat (LRR) proteins to recognize pathogen attack and activate defense genes. Here, we identified the pepper (Capsicum annuum) pathogenesis-related protein10 (PR10) as a leucine-rich repeat protein1 (LRR1)-interacting partner. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the specific interaction between LRR1 and PR10 in planta. Avirulent Xanthomonas campestris pv vesicatoria infection induces PR10 expression associated with the hypersensitive cell death response. Transient expression of PR10 triggers hypersensitive cell death in pepper and Nicotiana benthamiana leaves, which is amplified by LRR1 coexpression as a positive regulator. LRR1 promotes the ribonuclease activity and phosphorylation of PR10, leading to enhanced cell death signaling. The LRR1-PR10 complex is formed in the cytoplasm, resulting in its secretion into the apoplastic space. Engineered nuclear confinement of both proteins revealed that the cytoplasmic localization of the PR10-LRR1 complex is essential for cell death-mediated defense signaling. PR10/LRR1 silencing in pepper compromises resistance to avirulent X. campestris pv vesicatoria infection. By contrast, PR10/LRR1 overexpression in Arabidopsis thaliana confers enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that the cytosolic LRR-PR10 complex is responsible for cell death-mediated defense signaling.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
94
|
Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:451-82. [PMID: 22404464 DOI: 10.1146/annurev-arplant-042811-105518] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants and animals sense conserved microbial signatures through receptors localized to the plasma membrane and cytoplasm. These receptors typically carry or associate with non-arginine-aspartate (non-RD) kinases that initiate complex signaling networks cumulating in robust defense responses. In plants, coregulatory receptor kinases have been identified that not only are critical for the innate immune response but also serve an essential function in other regulatory signaling pathways.
Collapse
|
95
|
Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5471-83. [PMID: 21862481 PMCID: PMC3223046 DOI: 10.1093/jxb/err226] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 05/19/2023]
Abstract
Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes a protein with two jacalin-like lectin domains was identified in wheat. Pathogen infection and phytohormone treatments induced its expression; while application of the salicylic acid (SA) biosynthesis inhibitor paclobutrazol and the jasmonic acid (JA) biosynthesis inhibitor diethyldithiocarbamic acid, respectively, substantially inhibited its expression. Attenuating TaJRLL1 through virus-induced gene silencing increased susceptibility to the facultative fungal pathogen Fusarium graminearum and the biotrophic fungal pathogen Blumeria graminis. Arabidopsis thaliana transformed with TaJRLL1 displayed increased resistance to F. graminearum and Botrytis cinerea. JA and SA levels in transgenic Arabidopsis increased significantly. A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways. These results suggest that TaJRLL1 could be a component of the SA- and JA-dependent defence signalling pathways.
Collapse
Affiliation(s)
- Yang Xiang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, PR China
| | - Min Song
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, PR China
| | - Zhaoyan Wei
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, PR China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth and Development, Hunan Agricultural University, Changsha 410128, PR China
| | - Lixia Zhang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, PR China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth and Development, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, PR China
- To whom correspondence should be addressed. E-mail:
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
96
|
Lee DH, Choi HW, Hwang BK. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. PLANT PHYSIOLOGY 2011; 156:2011-25. [PMID: 21628629 PMCID: PMC3149946 DOI: 10.1104/pp.111.177568] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/25/2011] [Indexed: 05/19/2023]
Abstract
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.
Collapse
|
97
|
Kim DS, Hwang BK. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:642-55. [PMID: 21299658 DOI: 10.1111/j.1365-313x.2011.04525.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a pepper (Capsicum annuum) receptor-like cytoplasmic protein kinase (RLCK) gene (CaPIK1) that is transcriptionally activated by infection with Xanthomonas campestris pv. vesicatoria (Xcv). Silencing of CaPIK1 in pepper plants confers enhanced susceptibility to Xcv infection. Salicylic acid-dependent defense responses are attenuated in the CaPIK1-silenced plants, including expression of salicylic acid-dependent genes, but not of a jasmonic acid-regulated gene. Induction of salicylic acid accumulation by Xcv infection is compromised in CaPIK1-silenced plants. The functional CaPIK1 protein not only autophosphorylates, but also phosphorylates myelin basic protein. CaPIK1 exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Transient expression of CaPIK1 in pepper leaves leads to generation of reactive oxygen species (ROS), ultimately leading to hypersensitive cell death. Over-expression (OX) of CaPIK1 in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis, associated with elevated ROS bursts. Salicylic acid levels in CaPIK1-OX plants are higher than those in wild-type plants. Together, these results suggest that CaPIK1 modulates the signaling required for the salicylic acid-dependent defense response to pathogen infection.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
98
|
Choi DS, Hwang BK. Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. THE PLANT CELL 2011; 23:823-42. [PMID: 21335377 PMCID: PMC3077778 DOI: 10.1105/tpc.110.082081] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.
Collapse
|