51
|
Marin-Riera M, Brun-Usan M, Zimm R, Välikangas T, Salazar-Ciudad I. Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model. Bioinformatics 2015; 32:219-25. [DOI: 10.1093/bioinformatics/btv527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
|
52
|
Jeannin-Girardon A, Ballet P, Rodin V. Large Scale Tissue Morphogenesis Simulation on Heterogenous Systems Based on a Flexible Biomechanical Cell Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1021-1033. [PMID: 26451816 DOI: 10.1109/tcbb.2015.2418994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The complexity of biological tissue morphogenesis makes in silico simulations of such system very interesting in order to gain a better understanding of the underlying mechanisms ruling the development of multicellular tissues. This complexity is mainly due to two elements: firstly, biological tissues comprise a large amount of cells; secondly, these cells exhibit complex interactions and behaviors. To address these two issues, we propose two tools: the first one is a virtual cell model that comprise two main elements: firstly, a mechanical structure (membrane, cytoskeleton, and cortex) and secondly, the main behaviors exhibited by biological cells, i.e., mitosis, growth, differentiation, molecule consumption, and production as well as the consideration of the physical constraints issued from the environment. An artificial chemistry is also included in the model. This virtual cell model is coupled to an agent-based formalism. The second tool is a simulator that relies on the OpenCL framework. It allows efficient parallel simulations on heterogenous devices such as micro-processors or graphics processors. We present two case studies validating the implementation of our model in our simulator: cellular proliferation controlled by cell signalling and limb growth in a virtual organism.
Collapse
|
53
|
Vanhaeren H, Gonzalez N, Inzé D. A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2015; 13:e0181. [PMID: 26217168 PMCID: PMC4513694 DOI: 10.1199/tab.0181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth.
Collapse
Affiliation(s)
- Hannes Vanhaeren
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
54
|
Pound M, French AP, Wells DM. Quantification of fluorescent reporters in plant cells. Methods Mol Biol 2015; 1242:123-31. [PMID: 25408449 DOI: 10.1007/978-1-4939-1902-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fluorescent reporters are powerful tools for plant research. Many studies require accurate determination of fluorescence intensity and localization. Here, we describe protocols for the quantification of fluorescence intensity in plant cells from confocal laser scanning microscope images using semiautomated software and image analysis techniques.
Collapse
Affiliation(s)
- Michael Pound
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | | | | |
Collapse
|
55
|
|
56
|
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 2015; 6:6450. [PMID: 25774486 PMCID: PMC4382701 DOI: 10.1038/ncomms7450] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. The pitcher-shaped leaf of the carnivorous plant Sarracenia purpurea acts as a pitfall trap to capture small animals. Here, Fukushima et al. analyse pitcher leaf development and propose that this unusual shape evolved from ancestral planar leaves through changes in the orientation of cell division.
Collapse
Affiliation(s)
- Kenji Fukushima
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hironori Fujita
- National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Yamaguchi
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayoshi Kawaguchi
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuyasu Hasebe
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
57
|
Tanaka S, Sichau D, Iber D. LBIBCell: a cell-based simulation environment for morphogenetic problems. Bioinformatics 2015; 31:2340-7. [PMID: 25770313 DOI: 10.1093/bioinformatics/btv147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The simulation of morphogenetic problems requires the simultaneous and coupled simulation of signalling and tissue dynamics. A cellular resolution of the tissue domain is important to adequately describe the impact of cell-based events, such as cell division, cell-cell interactions and spatially restricted signalling events. A tightly coupled cell-based mechano-regulatory simulation tool is therefore required. RESULTS We developed an open-source software framework for morphogenetic problems. The environment offers core functionalities for the tissue and signalling models. In addition, the software offers great flexibility to add custom extensions and biologically motivated processes. Cells are represented as highly resolved, massless elastic polygons; the viscous properties of the tissue are modelled by a Newtonian fluid. The Immersed Boundary method is used to model the interaction between the viscous and elastic properties of the cells, thus extending on the IBCell model. The fluid and signalling processes are solved using the Lattice Boltzmann method. As application examples we simulate signalling-dependent tissue dynamics. AVAILABILITY AND IMPLEMENTATION The documentation and source code are available on http://tanakas.bitbucket.org/lbibcell/index.html
Collapse
Affiliation(s)
- Simon Tanaka
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - David Sichau
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland and
| | - Dagmar Iber
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland and Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
58
|
Zubairova U, Golushko S, Penenko A, Nikolaev S. A computational model of the effect of symplastic growth on cell mechanics in a linear leaf blade. J Bioinform Comput Biol 2015; 13:1540005. [DOI: 10.1142/s0219720015400053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epidermis of a linear leaf, as in Poaceae, is established by parallel files of cells originating from the leaf base. Their feature is symplastic growth where neighboring cell walls adhere and do not slide along each other. We developed a simple mechanical cell-based model for symplastic growth of linear leaf blade. The challenge is to determine what restrictions on cell size symplastic growth creates compared to the free growing cells. We assume an unidirectional growing cell ensemble starting from a meristem-like layer of generative cells and then generating parallel cell rows from every cell of the initial layer. Each cell is characterized by its growth function, and growth of the whole leaf blade is accompanied by mutual adjustment between all the cells. Cells divide once they have reached a threshold area. A mathematical model and its implementation are proposed for computational simulation of 1D symplastic growth of tissues. The question analyzed is how a cell grows in a plant tissue if there is a mechanism for regulating the growth of an isolated growing cell and the behavior of the cell wall matter is elastoplastic. The results of the simulation of linear leaf blade growth are compared to those for a free-growing cell population.
Collapse
Affiliation(s)
- Ulyana Zubairova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Science, 10, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| | - Sergey Golushko
- Design and Technology Institute of Digital Techniques of Siberian Branch of Russian Academy of Science, Laboratory of Analysis and Optimization of Technical Systems, 6, Akademika Rzhanova Str., Novosibirsk 630090, Russia
| | - Aleksey Penenko
- Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Science, 6, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| | - Sergey Nikolaev
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Science, 10, Prospekt Lavrentyeva, Novosibirsk 630090, Russia
| |
Collapse
|
59
|
González N, Inzé D. Molecular systems governing leaf growth: from genes to networks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1045-54. [PMID: 25601785 DOI: 10.1093/jxb/eru541] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arabidopsis leaf growth consists of a complex sequence of interconnected events involving cell division and cell expansion, and requiring multiple levels of genetic regulation. With classical genetics, numerous leaf growth regulators have been identified, but the picture is far from complete. With the recent advances made in quantitative phenotyping, the study of the quantitative, dynamic, and multifactorial features of leaf growth is now facilitated. The use of high-throughput phenotyping technologies to study large numbers of natural accessions or mutants, or to screen for the effects of large sets of chemicals will allow for further identification of the additional players that constitute the leaf growth regulatory networks. Only a tight co-ordination between these numerous molecular players can support the formation of a functional organ. The connections between the components of the network and their dynamics can be further disentangled through gene-stacking approaches and ultimately through mathematical modelling. In this review, we describe these different approaches that should help to obtain a holistic image of the molecular regulation of organ growth which is of high interest in view of the increasing needs for plant-derived products.
Collapse
Affiliation(s)
- Nathalie González
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
60
|
Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 2015; 11:e1003950. [PMID: 25569615 PMCID: PMC4288716 DOI: 10.1371/journal.pcbi.1003950] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.
Collapse
Affiliation(s)
- Frédéric Boudon
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Jérôme Chopard
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Olivier Ali
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Benjamin Gilles
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université Montpellier 2, CNRS, Montpellier, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
- * E-mail: (JT); (CG)
| | - Christophe Godin
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- * E-mail: (JT); (CG)
| |
Collapse
|
61
|
Palm MM, Merks RMH. Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf. Methods Mol Biol 2015; 1189:301-22. [PMID: 25245702 DOI: 10.1007/978-1-4939-1164-6_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computational, cell-based models, such as the cellular Potts model (CPM), have become a widely used tool to study tissue formation. Most cell-based models mimic the physical properties of cells and their dynamic behavior, and generate images of the tissue that the cells form due to their collective behavior. Due to these intuitive parameters and output, cell-based models are often evaluated visually and the parameters are fine-tuned by hand. To get better insight into how in a cell-based model the microscopic scale (e.g., cell behavior, secreted molecular signals, and cell-ECM interactions) determines the macroscopic scale, we need to generate morphospaces and perform parameter sweeps, involving large numbers of individual simulations. This chapter describes a protocol and presents a set of scripts for automatically setting up, running, and evaluating large-scale parameter sweeps of cell-based models. We demonstrate the use of the protocol using a recent cellular Potts model of blood vessel formation model implemented in CompuCell3D. We show the versatility of the protocol by adapting it to an alternative cell-based modeling framework, VirtualLeaf.
Collapse
Affiliation(s)
- Margriet M Palm
- Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands
| | | |
Collapse
|
62
|
Herremans E, Verboven P, Hertog MLATM, Cantre D, van Dael M, De Schryver T, Van Hoorebeke L, Nicolaï BM. Spatial development of transport structures in apple (Malus × domestica Borkh.) fruit. FRONTIERS IN PLANT SCIENCE 2015; 6:679. [PMID: 26388883 PMCID: PMC4554951 DOI: 10.3389/fpls.2015.00679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/17/2015] [Indexed: 05/07/2023]
Abstract
The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus × domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of "Jonagold" apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9-12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit.
Collapse
Affiliation(s)
- Els Herremans
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Pieter Verboven
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | | | - Dennis Cantre
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Mattias van Dael
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
| | - Thomas De Schryver
- Department of Physics and Astronomy, UGCT-Radiation Physics, Ghent UniversityGhent, Belgium
| | - Luc Van Hoorebeke
- Department of Physics and Astronomy, UGCT-Radiation Physics, Ghent UniversityGhent, Belgium
| | - Bart M. Nicolaï
- Division of MeBioS, Department of Biosystems, KU Leuven, University of LeuvenLeuven, Belgium
- Flanders Centre of Postharvest TechnologyLeuven, Belgium
- *Correspondence: Bart M. Nicolaï, Flanders Centre of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| |
Collapse
|
63
|
Daub JT, Merks RMH. Cell-based computational modeling of vascular morphogenesis using Tissue Simulation Toolkit. Methods Mol Biol 2015; 1214:67-127. [PMID: 25468600 DOI: 10.1007/978-1-4939-1462-3_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Collapse
Affiliation(s)
- Josephine T Daub
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
64
|
De Vos D, Vissenberg K, Broeckhove J, Beemster GTS. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root? PLoS Comput Biol 2014; 10:e1003910. [PMID: 25358093 PMCID: PMC4214622 DOI: 10.1371/journal.pcbi.1003910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 09/15/2014] [Indexed: 01/20/2023] Open
Abstract
In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a ‘Uniform Longitudinal Strain Rule’ (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of generating virtual root growth kinematics to dissect and understand the mechanisms controlling this biological system. The growth of a plant root is driven by cell division and cell expansion occurring in spatially distinct developmental zones. Although these zones are in principle stable, depending on the conditions, their size and properties can be modulated. This has been meticulously described by kinematic studies, which have led to the proposal of mechanisms underpinning those observations. At the same time, much knowledge of the identities and interactions of molecules involved in these mechanisms has accumulated, in particular from the model species Arabidopsis thaliana. Here we attempt to resolve the longstanding question whether observed growth patterns can be explained by autonomous decision-making at the level of individual cells or if the aid of some external signal is required. We then ask, building on the accumulated molecular information, which minimal models can provide for stable growth while keeping sufficient flexibility to regulate growth. Therefore, we constructed computational models for different growth mechanisms operating in a virtual two-dimensional Arabidopsis root and compared their behaviour with biological experiments. The simulations provide strong indications that spatial signals are required for realistic and flexible root growth, likely orchestrated by the plant hormones auxin and cytokinin.
Collapse
Affiliation(s)
- Dirk De Vos
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Plant Growth and Development, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jan Broeckhove
- Computational Modelling and Programming, Department of Mathematics and Informatics, University of Antwerp, Antwerp, Belgium
| | - Gerrit T. S. Beemster
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
65
|
Abera MK, Verboven P, Defraeye T, Fanta SW, Hertog MLATM, Carmeliet J, Nicolai BM. A plant cell division algorithm based on cell biomechanics and ellipse-fitting. ANNALS OF BOTANY 2014; 114:605-17. [PMID: 24863687 PMCID: PMC4156124 DOI: 10.1093/aob/mcu078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. METHODS The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. KEY RESULTS The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. CONCLUSIONS The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.
Collapse
Affiliation(s)
- Metadel K. Abera
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Pieter Verboven
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Thijs Defraeye
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Solomon Workneh Fanta
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Jan Carmeliet
- Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ), Wolfgang-Pauli-Strasse 15, 8093 Zürich, Switzerland
- Laboratory for Building Science and Technology, Swiss Federal Laboratories for Materials Testing and Research (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Bart M. Nicolai
- Flanders Centre of Postharvest Technology/BIOSYST-MeBios, University of Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
- For correspondence. E-mail
| |
Collapse
|
66
|
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 2014; 345:1255215. [PMID: 25104393 DOI: 10.1126/science.1255215] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.
Collapse
Affiliation(s)
- Bert De Rybel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Milad Adibi
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany. Albert-Ludwigs-University Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestrasse 1, D-79104 Freiburg, Germany. Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Alice S Breda
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Ondřej Novák
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden. Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 190104-6084, USA
| | - Saiko Yoshida
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Gert Van Isterdael
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium. Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Dreijenlaan 2, 6703HA Wageningen, the Netherlands. TI Food and Nutrition, 6703HA Wageningen, the Netherlands
| | - Guido Hooiveld
- Division of Human Nutrition, Wageningen University, Dreijenlaan 2, 6703HA Wageningen, the Netherlands
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium. Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 190104-6084, USA
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
| | - Christian Fleck
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands.
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands.
| |
Collapse
|
67
|
Abstract
The definition of shape in multicellular organisms is a major issue of developmental biology. It is well established that morphogenesis relies on genetic regulation. However, cells, tissues, and organism behaviors are also bound by the laws of physics, which limit the range of possible deformations organisms can undergo but also define what organisms must do to achieve specific shapes. Besides experiments, theoretical models and numerical simulations of growing tissues are powerful tools to investigate the link between genetic regulation and mechanics. Here, we provide an overview of the main mechanical models of plant morphogenesis developed so far, from subcellular scales to whole tissues. The common concepts and discrepancies between the various models are discussed.
Collapse
Affiliation(s)
- Olivier Ali
- Virtual Plants INRIA Team, UMR AGAP, 34398 Montpellier, France
| | | | | | | |
Collapse
|
68
|
Rolland-Lagan AG, Remmler L, Girard-Bock C. Quantifying Shape Changes and Tissue Deformation in Leaf Development. PLANT PHYSIOLOGY 2014; 165:496-505. [PMID: 24710066 PMCID: PMC4044856 DOI: 10.1104/pp.113.231258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The analysis of biological shapes has applications in many areas of biology, and tools exist to quantify organ shape and detect shape differences between species or among variants. However, such measurements do not provide any information about the mechanisms of shape generation. Quantitative data on growth patterns may provide insights into morphogenetic processes, but since growth is a complex process occurring in four dimensions, growth patterns alone cannot intuitively be linked to shape outcomes. Here, we present computational tools to quantify tissue deformation and surface shape changes over the course of leaf development, applied to the first leaf of Arabidopsis (Arabidopsis thaliana). The results show that the overall leaf shape does not change notably during the developmental stages analyzed, yet there is a clear upward radial deformation of the leaf tissue in early time points. This deformation pattern may provide an explanation for how the Arabidopsis leaf maintains a relatively constant shape despite spatial heterogeneities in growth. These findings highlight the importance of quantifying tissue deformation when investigating the control of leaf shape. More generally, experimental mapping of deformation patterns may help us to better understand the link between growth and shape in organ development.
Collapse
Affiliation(s)
- Anne-Gaëlle Rolland-Lagan
- Department of Biology (A.-G.R.-L., L.R., C.G.-B.) andSchool of Electrical Engineering and Computer Science (A.-G.R.-L.), University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 (A.-G.R.-L.)
| | - Lauren Remmler
- Department of Biology (A.-G.R.-L., L.R., C.G.-B.) andSchool of Electrical Engineering and Computer Science (A.-G.R.-L.), University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 (A.-G.R.-L.)
| | - Camille Girard-Bock
- Department of Biology (A.-G.R.-L., L.R., C.G.-B.) andSchool of Electrical Engineering and Computer Science (A.-G.R.-L.), University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 (A.-G.R.-L.)
| |
Collapse
|
69
|
Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci U S A 2014; 111:8685-90. [PMID: 24912195 DOI: 10.1073/pnas.1404616111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.
Collapse
|
70
|
Baskin TI, Jensen OE. On the role of stress anisotropy in the growth of stems. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4697-707. [PMID: 23913952 DOI: 10.1093/jxb/ert176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.
Collapse
Affiliation(s)
- Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
71
|
Shapiro BE, Meyerowitz EM, Mjolsness E. Using cellzilla for plant growth simulations at the cellular level. FRONTIERS IN PLANT SCIENCE 2013; 4:408. [PMID: 24137172 PMCID: PMC3797531 DOI: 10.3389/fpls.2013.00408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/26/2013] [Indexed: 05/23/2023]
Abstract
Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction.
Collapse
Affiliation(s)
- Bruce E. Shapiro
- Department of Mathematics, California State UniversityNorthridge, CA, USA
- Biological Network Modeling Center, CaltechPasadena, CA, USA
| | | | - Eric Mjolsness
- Department of Computer Science, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
72
|
Fozard JA, Lucas M, King JR, Jensen OE. Vertex-element models for anisotropic growth of elongated plant organs. FRONTIERS IN PLANT SCIENCE 2013; 4:233. [PMID: 23847638 PMCID: PMC3706750 DOI: 10.3389/fpls.2013.00233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/13/2013] [Indexed: 05/09/2023]
Abstract
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries.
Collapse
Affiliation(s)
- John A. Fozard
- Agricultural and Environmental Sciences, Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamLeics, UK
| | - Mikaël Lucas
- Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | - John R. King
- Agricultural and Environmental Sciences, Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamLeics, UK
- School of Mathematical Sciences, University of NottinghamNottingham, UK
| | - Oliver E. Jensen
- Agricultural and Environmental Sciences, Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamLeics, UK
- School of Mathematics, University of ManchesterManchester, UK
| |
Collapse
|
73
|
Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E, Hernández-Hernández V, Cortes-Poza Y, Álvarez-Buylla ER. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 2013; 9:e1003026. [PMID: 23658505 PMCID: PMC3642054 DOI: 10.1371/journal.pcbi.1003026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems. The emergence of tumors results from altered cell differentiation and proliferation during organ and tissue development. Understanding how such altered or normal patterns are established is still a challenge. Molecular genetic approaches to understanding pattern formation have searched for key central genetic controllers. However, biological patterns emerge as a consequence of coupled complex genetic and non-genetic sub-systems operating at various spatial and temporal scales and levels of organization. We present a two-dimensional model and simulation benchmark that considers the integrated dynamics of physical and chemical fields that result from cell proliferation. We aim at understanding how the cellular patterns of stem-cell niches emerge. In these, organizer cells with very low rates of proliferation are surrounded by stem cells with slightly higher proliferation rates that transit to a domain of active proliferation and then of elongation and differentiation. We quantified such cellular patterns in the Arabidopsis thaliana root to test our theoretical propositions. The results of our simulations closely mimic observed root cellular patterns, thus providing a proof of principle that coupled physical fields and chemical processes under active cell proliferation give rise to stem-cell patterns. Our framework may be extended to other developmental systems and to consider gene regulatory networks.
Collapse
Affiliation(s)
- Rafael A. Barrio
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México, Distrito Federal, México
- * E-mail: (RAB); (ERAB)
| | - José Roberto Romero-Arias
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México, Distrito Federal, México
| | - Marco A. Noguez
- Universidad Autónoma de la Ciudad de México, Mexico, Distrito Federal, México
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Elizabeth Ortiz-Gutiérrez
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Yuriria Cortes-Poza
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
- * E-mail: (RAB); (ERAB)
| |
Collapse
|
74
|
Szabó A, Merks RMH. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front Oncol 2013; 3:87. [PMID: 23596570 PMCID: PMC3627127 DOI: 10.3389/fonc.2013.00087] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/02/2013] [Indexed: 12/28/2022] Open
Abstract
Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell "successful" in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development.
Collapse
Affiliation(s)
- András Szabó
- Biomodeling and Biosystems Analysis, Life Sciences Group, Centrum Wiskunde and InformaticaAmsterdam, Netherlands
- Netherlands Consortium for Systems BiologyAmsterdam, Netherlands
- Netherlands Institute for Systems BiologyAmsterdam, Netherlands
| | - Roeland M. H. Merks
- Biomodeling and Biosystems Analysis, Life Sciences Group, Centrum Wiskunde and InformaticaAmsterdam, Netherlands
- Netherlands Consortium for Systems BiologyAmsterdam, Netherlands
- Netherlands Institute for Systems BiologyAmsterdam, Netherlands
- Mathematical Institute, Leiden University, LeidenAmsterdam, Netherlands
| |
Collapse
|
75
|
Merks RMH, Guravage MA. Building simulation models of developing plant organs using VirtualLeaf. Methods Mol Biol 2013; 959:333-352. [PMID: 23299687 DOI: 10.1007/978-1-62703-221-6_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant -development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describe responses to signals from adjacent cells. The outputs are the growing tissues, shapes and cell-differentiation patterns that emerge from the local, chemical and biomechanical cell-cell interactions. Here, we present a step-by-step, practical tutorial for building cell-based simulations of plant development with VirtualLeaf, a freely available, open-source software framework for modeling plant development. We show how to build a model of a growing tissue, a reaction-diffusion system on a growing domain, and an auxin transport model. The aim of VirtualLeaf is to make computational modeling better accessible to experimental plant biologists with relatively little computational background.
Collapse
Affiliation(s)
- Roeland M H Merks
- Centrum Wiskunde & Informatica (CWI), XG Amsterdam, The Netherlands.
| | | |
Collapse
|
76
|
Tholen D, Boom C, Zhu XG. Opinion: prospects for improving photosynthesis by altering leaf anatomy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:92-101. [PMID: 23116676 DOI: 10.1016/j.plantsci.2012.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 05/05/2023]
Abstract
Engineering higher photosynthetic efficiency for greater crop yields has gained significant attention among plant biologists and breeders. To achieve this goal, manipulation of metabolic targets and canopy architectural features has been heavily emphasized. Given the substantial variations in leaf anatomical features among and within plant species, there is large potential to engineer leaf anatomy for improved photosynthetic efficiency. Here we review how different leaf anatomical features influence internal light distribution, delivery of CO(2) to Rubisco and water relations, and accordingly recommend features to engineer for increased leaf photosynthesis under different environments. More research is needed on (a) elucidating the genetic mechanisms controlling leaf anatomy, and (b) the development of a three dimensional biochemical and biophysical model of leaf photosynthesis, which can help pinpoint anatomical features required to gain a higher photosynthesis.
Collapse
Affiliation(s)
- Danny Tholen
- CAS Key Laboratory of Computational Biology, CAS-MPG (Chinese Academy of Sciences-German Max Planck Society) Partner Institute for Computational Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
77
|
De Vylder J, Vandenbussche F, Hu Y, Philips W, Van Der Straeten D. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. PLANT PHYSIOLOGY 2012; 160:1149-59. [PMID: 22942389 PMCID: PMC3490612 DOI: 10.1104/pp.112.202762] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/30/2012] [Indexed: 05/18/2023]
Abstract
Image analysis of Arabidopsis (Arabidopsis thaliana) rosettes is an important nondestructive method for studying plant growth. Some work on automatic rosette measurement using image analysis has been proposed in the past but is generally restricted to be used only in combination with specific high-throughput monitoring systems. We introduce Rosette Tracker, a new open source image analysis tool for evaluation of plant-shoot phenotypes. This tool is not constrained by one specific monitoring system, can be adapted to different low-budget imaging setups, and requires minimal user input. In contrast with previously described monitoring tools, Rosette Tracker allows us to simultaneously quantify plant growth, photosynthesis, and leaf temperature-related parameters through the analysis of visual, chlorophyll fluorescence, and/or thermal infrared time-lapse sequences. Freely available, Rosette Tracker facilitates the rapid understanding of Arabidopsis genotype effects.
Collapse
Affiliation(s)
| | | | - Yuming Hu
- Department of Telecommunications and Information Processing (J.D.V., W.P.) and Department of Physiology (F.V., Y.H., D.V.D.S.), Ghent University, 9000 Ghent, Belgium
| | - Wilfried Philips
- Department of Telecommunications and Information Processing (J.D.V., W.P.) and Department of Physiology (F.V., Y.H., D.V.D.S.), Ghent University, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Department of Telecommunications and Information Processing (J.D.V., W.P.) and Department of Physiology (F.V., Y.H., D.V.D.S.), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
78
|
Band LR, Fozard JA, Godin C, Jensen OE, Pridmore T, Bennett MJ, King JR. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. THE PLANT CELL 2012; 24:3892-906. [PMID: 23110897 PMCID: PMC3517226 DOI: 10.1105/tpc.112.101550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/31/2012] [Accepted: 10/14/2012] [Indexed: 05/21/2023]
Abstract
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.
Collapse
Affiliation(s)
- Leah R. Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John A. Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Christophe Godin
- Virtual Plants Institut National de Recherche en Informatique et en Automatique Project-Team, joint with Institut National de la Recherche Agronomique and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier cedex 5, France
| | - Oliver E. Jensen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
- School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tony Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
79
|
De Vos D, Dzhurakhalov A, Draelants D, Bogaerts I, Kalve S, Prinsen E, Vissenberg K, Vanroose W, Broeckhove J, Beemster GTS. Towards mechanistic models of plant organ growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3325-37. [PMID: 22371079 DOI: 10.1093/jxb/ers037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Modelling and simulation are increasingly used as tools in the study of plant growth and developmental processes. By formulating experimentally obtained knowledge as a system of interacting mathematical equations, it becomes feasible for biologists to gain a mechanistic understanding of the complex behaviour of biological systems. In this review, the modelling tools that are currently available and the progress that has been made to model plant development, based on experimental knowledge, are described. In terms of implementation, it is argued that, for the modelling of plant organ growth, the cellular level should form the cornerstone. It integrates the output of molecular regulatory networks to two processes, cell division and cell expansion, that drive growth and development of the organ. In turn, these cellular processes are controlled at the molecular level by hormone signalling. Therefore, combining a cellular modelling framework with regulatory modules for the regulation of cell division, expansion, and hormone signalling could form the basis of a functional organ growth simulation model. The current state of progress towards this aim is that the regulation of the cell cycle and hormone transport have been modelled extensively and these modules could be integrated. However, much less progress has been made on the modelling of cell expansion, which urgently needs to be addressed. A limitation of the current generation models is that they are largely qualitative. The possibilities to characterize existing and future models more quantitatively will be discussed. Together with experimental methods to measure crucial model parameters, these modelling techniques provide a basis to develop a Systems Biology approach to gain a fundamental insight into the relationship between gene function and whole organ behaviour.
Collapse
Affiliation(s)
- Dirk De Vos
- Department of Biology, University of Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The use of computational techniques increasingly permeates developmental biology, from the acquisition, processing and analysis of experimental data to the construction of models of organisms. Specifically, models help to untangle the non-intuitive relations between local morphogenetic processes and global patterns and forms. We survey the modeling techniques and selected models that are designed to elucidate plant development in mechanistic terms, with an emphasis on: the history of mathematical and computational approaches to developmental plant biology; the key objectives and methodological aspects of model construction; the diverse mathematical and computational methods related to plant modeling; and the essence of two classes of models, which approach plant morphogenesis from the geometric and molecular perspectives. In the geometric domain, we review models of cell division patterns, phyllotaxis, the form and vascular patterns of leaves, and branching patterns. In the molecular-level domain, we focus on the currently most extensively developed theme: the role of auxin in plant morphogenesis. The review is addressed to both biologists and computational modelers.
Collapse
Affiliation(s)
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
81
|
van Mourik S, Kaufmann K, van Dijk ADJ, Angenent GC, Merks RMH, Molenaar J. Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS One 2012; 7:e28762. [PMID: 22291882 PMCID: PMC3264561 DOI: 10.1371/journal.pone.0028762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.
Collapse
Affiliation(s)
- Simon van Mourik
- Biometris, Plant Sciences Group, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
82
|
Peaucelle A, Braybrook S, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis. Curr Biol 2011; 21:1720-6. [PMID: 21982593 DOI: 10.1016/j.cub.2011.08.057] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
|
83
|
Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks RMH, Govaerts W, Friml J. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 2011; 6:447. [PMID: 21179019 PMCID: PMC3018162 DOI: 10.1038/msb.2010.103] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/02/2010] [Indexed: 01/03/2023] Open
Abstract
Here, we provide a novel mechanistic framework for cell polarization during auxin-driven plant development that combines intracellular auxin signaling for regulation of expression of PINFORMED (PIN) auxin efflux transporters and the theoretical assumption of extracellular auxin signaling for regulation of PIN subcellular dynamics. The competitive utilization of auxin signaling component in the apoplast might account for the elusive mechanism for cell-to-cell communication for tissue polarization. Computer model simulations faithfully and robustly recapitulate experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems, and during the competitive regulation of shoot branching by apical dominance. Our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants.
A key question of developmental biology relates to a fundamental issue in cell and tissue polarities, namely, how an individual cell in a polarized tissue senses the polarities of its neighbors and its position within tissue. In plant development, this issue is of pronounced importance, because plants have a remarkable ability to redefine cell and tissue polarities in different developmental programs, such as embryogenesis, postembryonic organogenesis, vascular tissue formation, and tissue regeneration (Kleine-Vehn and Friml, 2008). A polar, cell-to-cell transport of the small signaling molecule auxin in conjunction with local auxin biosynthesis determines auxin gradients during embryonic and postembryonic development, giving positional cues for primordia formation, organ patterning, and tropistic growth (Friml et al, 2002; Benková et al, 2003; Reinhardt et al, 2003; Heisler et al, 2005; Scarpella et al, 2006; Dubrovsky et al, 2008). Over the past decades, theoretical models proposed that auxin acts as a polarizing cue in the center of a positive feedback mechanisms for auxin transport that has a key role in synchronized polarity rearrangements. However, the mechanistic basis for such a feedback loop between auxin and its own transport remains to a large extent elusive. The direction of auxin transport largely depends on the polar subcellular localization of PINFORMED (PIN) proteins at the plasma membrane (Petrášek et al, 2006; Wiśniewska et al, 2006). These proteins recycle between the plasma membrane and intracellular endosomal compartments (Geldner et al, 2001; Dhonukshe et al, 2007), and their recycling modulates PIN-dependent auxin efflux rates and enable rapid changes in PIN polarity (Dubrovsky et al, 2008; Kleine-Vehn et al, 2008a). Nevertheless, the molecular basis for PIN polarization in plants remains unknown. To gain new mechanistic insights in the hypothetical feedback mechanisms governing PIN polarization, several theoretical studies (Mitchison, 1980; Sachs, 1981; Rolland-Lagan and Prusinkiewicz, 2005; Jönsson et al, 2006; Smith et al, 2006; Merks et al, 2007; Bayer et al, 2009; Kramer, 2009) have been carried out. These models suggest that auxin promotes its own transport by modulating the amount of PIN proteins at the plasma membrane by incorporating either not yet identified flux gradient-based component (Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005; Bayer et al, 2009; Kramer, 2009) or an unknown short-range intercellular signal-transmitting auxin concentrations of its direct neighbors (Jönsson et al, 2006; Smith et al, 2006; Merks et al, 2007; Bayer et al, 2009; Sahlin et al, 2009). Here, we propose a feedback driven, biologically plausible model for PIN polarization and auxin transport that introduces the combination of intracellular and extracellular auxin signaling pathways as a unified approach for tissue polarization in plants. Our computer model is based on chemiosmotic hypothesis (Goldsmith et al, 1981; Figure 1A) and integrates up-to-date experimental data, such as auxin feedback on PIN expression (Peer et al, 2004; Heisler et al, 2005) via a nuclear auxin signaling pathway (Chapman and Estelle, 2009; Figure 1B), auxin carrier recycling auxin (Dubrovsky et al, 2008; Kleine-Vehn et al, 2008a; Figure 1C), and auxin feedback on PIN endocytosis (Paciorek et al, 2005) via novel hypothetical, yet plausible, assumption of extracellular auxin perception (Figure 1D). The heart of our extracellular receptor-based polarization (ERP) mechanism is the competitive utilization of auxin receptors in the intercellular space that allows a direct and simple cell-to-cell communication scheme. In our model, auxin binds to its extracellular receptor in the concentration-dependent manner and induces signal to modulate PIN protein abundance at the plasma membrane (Figure 1D). The direct mode of the signal transfer involves temporal immobilization of recruited receptors to the plasma membrane, which is reflected by reduced diffusion of receptors involved in auxin signaling (Figure 1D). This competitive utilization mechanism enables cell-to-cell communication in our model, leading to receptor enrichment at the site of higher auxin concentration (Figure 1D). The PIN polarization and polar auxin transport in our model both depend on and contribute to the establishment of differential auxin signaling in the cell wall. This feedback loop leads ultimately to the alignment of PIN polarization within a tissue. We demonstrated the plausibility of the ERP model for various processes, including de novo vascularization, venation patterning, and tissue regeneration in computer simulations performed with only minimal initial assumptions, a discrete auxin source, and a distal sink. The ERP model reproduces the very detailed PIN polarization events that occur during primary vein initiation (Scarpella et al, 2006), such as basal PIN1 polarity in provascular cells, transient adverse PIN1 polarization in neighboring cells during the alignment of tissue polarization, and inner-lateral polarity displayed by the tissues surrounding a conductive auxin channel (Figure 3). Additionally, the ERP model generates high auxin concentration and high auxin flux simultaneously in emerging veins, revising the classical canalization models (Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005). Importantly, all our model simulations support the claim that the ERP model represents the first single approach that faithfully reproduces PIN polarization, both with the auxin gradient (basal PIN1 polarity in provascular cells) and against the auxin gradient (transient adverse PIN1 polarization in neighboring cells surrounding the provascular bundle), as well as producing the corresponding auxin distribution patterns during auxin canalization. The proposed model introduces the extracellular auxin signaling pathway, which is crucial to account for coordinated PIN polarization and auxin distribution during venation patterning in plants. The putative candidate for extracellular auxin receptor is auxin-binding protein 1 (ABP1), which resides in the lumen of the endoplasmic reticulum and is secreted to the cell wall (Napier et al, 2002; Tromas et al, 2009) where it is physiologically active (Leblanc et al, 1999; Steffens et al, 2001). Additionally, auxin inhibits clathrin-dependent PIN internalization via binding to ABP1 (Robert et al, 2010). Thus, we speculate that the extracellular fraction of ABP1 (or additionally yet to be identified ABPs) could correspond to the common pool of extracellular auxin receptors in the ERP model. A future challenge will be to test whether the ERP model unifies complex PIN polarization and auxin distribution patterns in embryogenesis, root system maintenance, and de novo organ formation. Plant development is exceptionally flexible as manifested by its potential for organogenesis and regeneration, which are processes involving rearrangements of tissue polarities. Fundamental questions concern how individual cells can polarize in a coordinated manner to integrate into the multicellular context. In canalization models, the signaling molecule auxin acts as a polarizing cue, and feedback on the intercellular auxin flow is key for synchronized polarity rearrangements. We provide a novel mechanistic framework for canalization, based on up-to-date experimental data and minimal, biologically plausible assumptions. Our model combines the intracellular auxin signaling for expression of PINFORMED (PIN) auxin transporters and the theoretical postulation of extracellular auxin signaling for modulation of PIN subcellular dynamics. Computer simulations faithfully and robustly recapitulated the experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems and during the competitive regulation of shoot branching by apical dominance. Additionally, our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants.
Collapse
Affiliation(s)
- Krzysztof Wabnik
- Department of Plant Systems Biology, VIB, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|