51
|
Veatch-Blohm ME, Medina G, Butler J. Early lateral root formation in response to calcium and nickel shows variation within disjunct populations of Arabidopsis lyrata spp. lyrata. Heliyon 2023; 9:e13632. [PMID: 36846704 PMCID: PMC9950942 DOI: 10.1016/j.heliyon.2023.e13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Root architecture is important in nutrient uptake and avoidance of toxic compounds within the soil. Arabidopsis lyrata spp. lyrata has widespread distribution in disjunct environments that encounter unique stressors starting at germination. Five populations of A. lyrata spp. lyrata show local adaptation to Nickel (Ni) but cross-tolerance to variations in Calcium (Ca) concentration within the soil. Differentiation among the populations begins early in development and appears to impact timing of lateral root formation; therefore the purpose of the study was to understand changes in root architecture and root exploration in response to Ca and Ni within the first three weeks of growth. Lateral root formation was first characterized under one concentration of Ca and Ni. Lateral root formation and tap root length were reduced in all five populations in response to Ni compared to Ca, with the least reduction in the three serpentine populations. When the populations were exposed to a gradient (either Ca or Ni) there were differences in population response based on the nature of the gradient. Start side was the greatest determinant of root exploration and lateral root formation under a Ca gradient, while population was the greatest determinant of root exploration and lateral root formation under a Ni gradient. All populations exhibited about the same frequency of root exploration under a Ca gradient, while the serpentine populations exhibited much higher levels of root exploration under a Ni gradient compared to the two non-serpentine populations. Differences among populations in response to Ca and Ni demonstrate the importance of stress responses early in development, particularly in species that have widespread distribution among disparate habitats.
Collapse
|
52
|
Kenesi E, Kolbert Z, Kaszler N, Klement É, Ménesi D, Molnár Á, Valkai I, Feigl G, Rigó G, Cséplő Á, Lindermayr C, Fehér A. The ROP2 GTPase Participates in Nitric Oxide (NO)-Induced Root Shortening in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:750. [PMID: 36840099 PMCID: PMC9964108 DOI: 10.3390/plants12040750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation. Here, we report that the Arabidopsis ROP2 GTPase is a further potential target of NO-mediated regulation. The ROP2 GTPase was found to be required for the root shortening effect of NO. NO inhibits primary root growth by altering the abundance and distribution of the PIN1 auxin efflux carrier protein and lowering the accumulation of auxin in the root meristem. In rop2-1 insertion mutants, however, wild-type-like root size of the NO-treated roots were maintained in agreement with wild-type-like PIN1 abundance in the meristem. The ROP2 GTPase was shown to be S-nitrosated in vitro, suggesting that NO might directly regulate the GTPase. The potential mechanisms of NO-mediated ROP2 GTPase regulation and ROP2-mediated NO signaling in the primary root meristem are discussed.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Single Cell Omics ACF, H-6728 Szeged, Hungary
| | - Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
53
|
Yang Y, Wang R, Wang L, Cui R, Zhang H, Che Z, Hu D, Chu S, Jiao Y, Yu D, Zhang D. GmEIL4 enhances soybean (Glycine max) phosphorus efficiency by improving root system development. PLANT, CELL & ENVIRONMENT 2023; 46:592-606. [PMID: 36419232 DOI: 10.1111/pce.14497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) deficiency seriously affects plant growth and development and ultimately limits the quality and yield of crops. Here, a new P efficiency-related major quantitative trait locus gene, GmEIL4 (encoding an ethylene-insensitive 3-like 1 protein), was cloned at qP2, which was identified by linkage analysis and genome-wide association study across four environments. Overexpressing GmEIL4 significantly improved the P uptake efficiency by increasing the number, length and surface area of lateral roots of hairy roots in transgenic soybeans, while interfering with GmEIL4 resulted in poor root phenotypic characteristics compared with the control plants under low P conditions. Interestingly, we found that GmEIL4 interacted with EIN3-binding F box protein 1 (GmEBF1), which may regulate the root response to low P stress. We conclude that the expression of GmEIL4 was induced by low-P stress and that overexpressing GmEIL4 improved P accumulation by regulating root elongation and architecture. Analysis of allele variation of GmEIL4 in 894 soybean accessions suggested that GmEIL4 is undergoing artificial selection during soybean evolution, which will benefit soybean production. Together, this study further elucidates how plants respond to low P stress by modifying root structure and provides insight into the great potential of GmEIL4 in crop P-efficient breeding.
Collapse
Affiliation(s)
- Yuming Yang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ruiyang Wang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Ruifan Cui
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | | | - Dandan Hu
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shanshan Chu
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yongqing Jiao
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Dan Zhang
- Department of Agriculture, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
54
|
Ma B, Ma T, Xian W, Hu B, Chu C. Interplay between ethylene and nitrogen nutrition: How ethylene orchestrates nitrogen responses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:399-407. [PMID: 36053148 DOI: 10.1111/jipb.13355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The stress hormone ethylene plays a key role in plant adaptation to adverse environmental conditions. Nitrogen (N) is the most quantitatively required mineral nutrient for plants, and its availability is a major determinant for crop production. Changes in N availability or N forms can alter ethylene biosynthesis and/or signaling. Ethylene serves as an important cellular signal to mediate root system architecture adaptation, N uptake and translocation, ammonium toxicity, anthocyanin accumulation, and premature senescence, thereby adapting plant growth and development to external N status. Here, we review the ethylene-mediated morphological and physiological responses and highlight how ethylene transduces the N signals to the adaptive responses. We specifically discuss the N-ethylene relations in rice, an important cereal crop in which ethylene is essential for its hypoxia survival.
Collapse
Affiliation(s)
- Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tian Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
55
|
Morales-Herrera S, Rubilar-Hernández C, Pérez-Henríquez P, Norambuena L. Endocytic trafficking induces lateral root founder cell specification in Arabidopsis thaliana in a process distinct from the auxin-induced pathway. FRONTIERS IN PLANT SCIENCE 2023; 13:1060021. [PMID: 36726665 PMCID: PMC9885164 DOI: 10.3389/fpls.2022.1060021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Plants can modify their body structure, such as their root architecture, post-embryonically. For example, Arabidopsis thaliana can develop lateral roots as part of an endogenous program or in response to biotic and abiotic stimuli. Root pericycle cells are specified to become lateral root founder cells, initiating lateral root organogenesis. We used the endocytic trafficking inducer Sortin2 to examine the role of endomembrane trafficking in lateral root founder cell specification. Our results indicate that Sortin2 stimulation turns on a de novo program of lateral root primordium formation that is distinct from the endogenous program driven by auxin. In this distinctive mechanism, extracellular calcium uptake and endocytic trafficking toward the vacuole are required for lateral root founder cell specification upstream of the auxin module led by AUX/IAA28. The auxin-dependent TIR1/AFB F-boxes and auxin polar transport are dispensable for the endocytic trafficking-dependent lateral root founder cell specification; however, a different set of F-box proteins and a functional SCF complex are required. The endocytic trafficking could constitute a convenient strategy for organogenesis in response to environmental conditions.
Collapse
|
56
|
Mandal D, Datta S, Raveendar G, Mondal PK, Nag Chaudhuri R. RAV1 mediates cytokinin signaling for regulating primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:106-126. [PMID: 36423224 DOI: 10.1111/tpj.16039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Giridhar Raveendar
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
57
|
Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev Cell 2022; 57:2638-2651.e6. [PMID: 36473460 DOI: 10.1016/j.devcel.2022.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Plant root architecture flexibly adapts to changing nitrate (NO3-) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3--mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3- in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3- availability. Under low-NO3- availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.
Collapse
|
58
|
Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36435985 DOI: 10.1111/pbi.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiaocong Cao
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Juan Zhang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| |
Collapse
|
59
|
Impact of cropping systems on pedogenic distribution and transformations of micronutrients, plant accumulation and microbial community composition in soils: a review. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
60
|
MacTavish R, Anderson JT. Water and nutrient availability exert selection on reproductive phenology. AMERICAN JOURNAL OF BOTANY 2022; 109:1702-1716. [PMID: 36031862 DOI: 10.1002/ajb2.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Global change has changed resource availability to plants, which could shift the adaptive landscape. We hypothesize that novel water and nutrient availability combinations alter patterns of natural selection on reproductive phenology in Boechera stricta (Brassicaceae) and influence the evolution of local adaptation. METHODS We conducted a multifactorial greenhouse study using 35 accessions of B. stricta sourced from a broad elevational gradient in the Rocky Mountains. We exposed full siblings to three soil water and two nutrient availability treatment levels, reflecting current and projected future conditions. In addition, we quantified fitness (seed count) and four phenological traits: the timing of first flowering, the duration of flowering, and height and leaf number at flowering. RESULTS Selection favored early flowering and longer duration of flowering, and the genetic correlation between these traits accorded with the direction of selection. In most treatments, we found selection for increased height, but selection on leaf number depended on water availability, with selection favoring more leaves in well-watered conditions and fewer leaves under severe drought. Low-elevation genotypes had the greatest fitness under drought stress, consistent with local adaptation. CONCLUSIONS We found evidence of strong selection on these heritable traits. Furthermore, the direction and strength of selection on size at flowering depended on the variable measured (height vs. leaf number). Finally, selection often favored both early flowering and a longer duration of flowering. Selection on these two components of phenology can be difficult to disentangle due to tight genetic correlations.
Collapse
Affiliation(s)
- Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
61
|
Treatments with Liquid Smoke and Certain Chemical Constituents Prevalent in Smoke Reduce Phloem Vascular Sectoriality in the Sunflower with Improvement to Growth. Int J Mol Sci 2022; 23:ijms232012468. [DOI: 10.3390/ijms232012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Many higher plants possess a physiological organization that is based upon the carbon economy of their parts. While photosynthates are partitioned according to the relative strength of the plant’s sink tissues, in many species there is also a very close relationship between partitioning, phyllotaxy and vascular connectivity giving rise to sectorial patterns of allocation. Here, we examined the influence of smoke and certain chemical constituents prevalent in smoke including, catechol, resorcinol and hydroquinone on phloem vascular sectoriality in common sunflower (Helianthis annuus L.), as a model plant for sectoriality. By administering radioactive carbon-11 to a single source leaf as 11CO2, 11C-photosynthate allocation patterns were examined using autoradiography. A 1:200 aqueous dilution of liquid smoke treated soil caused 2.6-fold and 2.5-fold reductions in phloem sectoriality in sink leaves and roots, respectively. Treatment with catechol (1,2-d ihydroxybenzene) or resorcinol (1,3-dihydroxybenzene), polyphenolic constituents that are prevalent in smoke, caused similar reductions in phloem sectoriality in the same targeted sink tissues. However, treatment with hydroquinone (1,4-dihydroxybenzene) had no effect. Finally, the longer-term effects of smoke exposure on plant growth and performance were examined using outdoor potted plants grown over the 2022 season. Plants exposed to liquid smoke treatments of the soil on a weekly basis had larger thicker leaves possessing 35% greater lignin content than untreated control plants. They also had thicker stems although the lignin content was the same as controls. Additionally, plants exposed to treatment produced twice the number of flowers with no difference in their disk floret diameters as untreated controls. Altogether, loss of phloem sectoriality from exposure to liquid smoke in the sunflower model benefited plant performance.
Collapse
|
62
|
Chai S, Chen J, Yue X, Li C, Zhang Q, de Dios VR, Yao Y, Tan W. Interaction of BES1 and LBD37 transcription factors modulates brassinosteroid-regulated root forging response under low nitrogen in arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998961. [PMID: 36247555 PMCID: PMC9555238 DOI: 10.3389/fpls.2022.998961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteriod (BR) plays important roles in regulation of plant growth, development and environmental responses. BR signaling regulates multiple biological processes through controlling the activity of BES1/BZR1 regulators. Apart from the roles in the promotion of plant growth, BR is also involved in regulation of the root foraging response under low nitrogen, however how BR signaling regulate this process remains unclear. Here we show that BES1 and LBD37 antagonistically regulate root foraging response under low nitrogen conditions. Both the transcriptional level and dephosphorylated level of BES1, is significant induced by low nitrogen, predominantly in root. Phenotypic analysis showed that BES1 gain-of-function mutant or BES1 overexpression transgenic plants exhibits progressive outgrowth of lateral root in response to low nitrogen and BES1 negatively regulates repressors of nitrate signaling pathway and positively regulates several key genes required for NO3 - uptake and signaling. In contrast, BES1 knock-down mutant BES1-RNAi exhibited a dramatical reduction of lateral root elongation in response to low N. Furthermore, we identified a BES1 interacting protein, LBD37, which is a negative repressor of N availability signals. Our results showed that BES1 can inhibit LBD37 transcriptional repression on N-responsive genes. Our results thus demonstrated that BES1-LBD37 module acts critical nodes to integrate BR signaling and nitrogen signaling to modulate the root forging response at LN condition.
Collapse
Affiliation(s)
- Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenlin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
63
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
64
|
Wu X, Xie X, Yang S, Yin Q, Cao H, Dong X, Hui J, Liu Z, Jia Z, Mao C, Yuan L. OsAMT1;1 and OsAMT1;2 Coordinate Root Morphological and Physiological Responses to Ammonium for Efficient Nitrogen Foraging in Rice. PLANT & CELL PHYSIOLOGY 2022; 63:1309-1320. [PMID: 35861152 DOI: 10.1093/pcp/pcac104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown. Here, we showed that NH4+ supply transiently enhanced the high-affinity NH4+ uptake and stimulated lateral root (LR) branching and elongation. These synergistic physiological and morphological responses were closely related to NH4+-induced expression of NH4+ transporters OsAMT1;1 and OsAMT1;2 in roots. The two independent double mutants (dko) defective in OsAMT1;1 and OsAMT1;2 failed to induce NH4+ uptake and stimulate LR formation, suggesting that OsAMT1s conferred the substrate-dependent root NH4+ foraging. In dko plants, NH4+ was unable to activate the expression of OsPIN2, and the OsPIN2 mutant (lra1) exhibited a strong reduction in NH4+-triggered LR branching, suggesting that the auxin pathway was likely involved in OsAMT1s-dependent LR branching. Importantly, OsAMT1s-dependent root NH4+ foraging behaviors facilitated rice growth and N acquisition under fluctuating NH4+ supply. These results revealed an essential role of OsAMT1s in synergizing root morphological and physiological processes, allowing for efficient root NH4+ foraging to optimize N capture under fluctuating N availabilities.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Xie
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Shan Yang
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Qianyu Yin
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Huairong Cao
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaonan Dong
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jing Hui
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhi Liu
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou City, Zhejiang Province 310058, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
65
|
Smoczynska A, Pacak A, Grabowska A, Bielewicz D, Zadworny M, Singh K, Dolata J, Bajczyk M, Nuc P, Kesy J, Wozniak M, Ratajczak I, Harwood W, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. Excess nitrogen responsive HvMADS27 transcription factor controls barley root architecture by regulating abscisic acid level. FRONTIERS IN PLANT SCIENCE 2022; 13:950796. [PMID: 36172555 PMCID: PMC9511987 DOI: 10.3389/fpls.2022.950796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 β-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.
Collapse
Affiliation(s)
- Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Grabowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacek Kesy
- Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wozniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norfolk, United Kingdom
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
66
|
Encinas‐Valero M, Esteban R, Hereş A, Vivas M, Fakhet D, Aranjuelo I, Solla A, Moreno G, Curiel Yuste J. Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. THE NEW PHYTOLOGIST 2022; 235:2237-2251. [PMID: 35491749 PMCID: PMC9541754 DOI: 10.1111/nph.18182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.
Collapse
Affiliation(s)
- Manuel Encinas‐Valero
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
| | - Raquel Esteban
- Department of Plant Biology and EcologyUniversity of Basque Country (UPV/EHU)B/Sarriena s/n48940LeioaBizkaiaSpain
| | - Ana‐Maria Hereş
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- Department of Forest SciencesTransilvania University of BraşovSirul Beethoven‐1500123BraşovRomania
| | - María Vivas
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Dorra Fakhet
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Alejandro Solla
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Gerardo Moreno
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Jorge Curiel Yuste
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5E‐48009BilbaoBizkaiaSpain
| |
Collapse
|
67
|
Parise AG, de Toledo GRA, Oliveira TFDC, Souza GM, Castiello U, Gagliano M, Marder M. Do plants pay attention? A possible phenomenological-empirical approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:11-23. [PMID: 35636584 DOI: 10.1016/j.pbiomolbio.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Attention is the important ability of flexibly controlling limited cognitive resources. It ensures that organisms engage with the activities and stimuli that are relevant to their survival. Despite the cognitive capabilities of plants and their complex behavioural repertoire, the study of attention in plants has been largely neglected. In this article, we advance the hypothesis that plants are endowed with the ability of attaining attentive states. We depart from a transdisciplinary basis of philosophy, psychology, physics and plant ecophysiology to propose a framework that seeks to explain how plant attention might operate and how it could be studied empirically. In particular, the phenomenological approach seems particularly important to explain plant attention theoretically, and plant electrophysiology seems particularly suited to study it empirically. We propose the use of electrophysiological techniques as a viable way for studying it, and we revisit previous work to support our hypothesis. We conclude this essay with some remarks on future directions for the study of plant attention and its implications to botany.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Umberto Castiello
- Neuroscience of Movement Laboratory (NEMO), Department of General Psychology, University of Padova, Padova, Italy
| | - Monica Gagliano
- Biological Intelligence Laboratory (BI Lab), School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Michael Marder
- Ikerbasque: Basque Foundation for Science & Department of Philosophy, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
68
|
Wu C, Wang X, Zhen W, Nie Y, Li Y, Yuan P, Liu Q, Guo S, Shen Z, Zheng B, Hu Z. SICKLE modulates lateral root development by promoting degradation of lariat intronic RNA. PLANT PHYSIOLOGY 2022; 190:548-561. [PMID: 35788403 PMCID: PMC9434198 DOI: 10.1093/plphys/kiac301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Plant lateral roots (LRs) play vital roles in anchorage and uptake of water and nutrients. Here, we reveal that degradation of lariat intronic RNAs (lariRNAs) modulated by SICKLE (SIC) is required for LR development in Arabidopsis (Arabidopsis thaliana). Loss of SIC results in hyper-accumulation of lariRNAs and restricts the outgrowth of LR primordia, thereby reducing the number of emerged LRs. Decreasing accumulation of lariRNAs by over-expressing RNA debranching enzyme 1 (DBR1), a rate-limiting enzyme of lariRNA decay, restored LR defects in SIC-deficient plants. Mechanistically, SIC interacts with DBR1 and facilitates its nuclear accumulation, which is achieved through two functionally redundant regions (SIC1-244 and SIC252-319) for nuclear localization. Of the remaining amino acids in this region, six (SIC245-251) comprise a DBR1-interacting region while two (SICM246 and SICW251) are essential for DBR1-SIC interaction. Reducing lariRNAs restored microRNA (miRNA) levels and LR development in lariRNA hyper-accumulating plants, suggesting that these well-known regulators of LR development mainly function downstream of lariRNAs. Taken together, we propose that SIC acts as an enhancer of DBR1 nuclear accumulation by driving nuclear localization through direct interaction, thereby promoting lariRNA decay to fine-tune miRNA biogenesis and modulating LR development.
Collapse
Affiliation(s)
- Chengyun Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Xiaoqing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Weibo Zhen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaqing Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Penglai Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaoqiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | |
Collapse
|
69
|
Root Foraging Strategy Improves the Adaptability of Tea Plants (Camellia sinensis L.) to Soil Potassium Heterogeneity. Int J Mol Sci 2022; 23:ijms23158585. [PMID: 35955715 PMCID: PMC9369073 DOI: 10.3390/ijms23158585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype “1511” and low-K intolerant genotype “1601”) using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, “1511” acclimated to K heterogeneity better than “1601”. For “1511”, maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for “1511”. This did not happen in “1601”. The low-K tolerant tea genotype “1511” was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.
Collapse
|
70
|
Tumber‐Dávila SJ, Schenk HJ, Du E, Jackson RB. Plant sizes and shapes above and belowground and their interactions with climate. THE NEW PHYTOLOGIST 2022; 235:1032-1056. [PMID: 35150454 PMCID: PMC9311740 DOI: 10.1111/nph.18031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Although the above and belowground sizes and shapes of plants strongly influence plant competition, community structure, and plant-environment interactions, plant sizes and shapes remain poorly characterized across climate regimes. We investigated relationships among shoot and root system size and climate. We assembled and analyzed, to our knowledge, the largest global database describing the maximum rooting depth, lateral spread, and shoot size of terrestrial plants - more than doubling the Root Systems of Individual Plants database to 5647 observations. Water availability and growth form greatly influence shoot size, and rooting depth is primarily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral spread, with root system diameter being two times wider than shoot width on average for woody plants. Shoot size covaries strongly with rooting system size; however, the geometries of plants differ considerably across climates, with woody plants in more arid climates having shorter shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral spread of plant root systems are likely underestimated at the global scale.
Collapse
Affiliation(s)
- Shersingh Joseph Tumber‐Dávila
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Harvard ForestHarvard University324 N Main StPetershamMA01366USA
| | - H. Jochen Schenk
- Department of Biological ScienceCalifornia State University Fullerton800 North State College BlvdFullertonCA92831USA
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal University19 Xinjiekouwai StreetBeijing100875China
| | - Robert B. Jackson
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Woods Institute for the EnvironmentStanford University473 Via OrtegaStanfordCA94305USA
- Precourt Institute for EnergyStanford University473 Via OrtegaStanfordCA94305USA
| |
Collapse
|
71
|
Montagnoli A, Lasserre B, Terzaghi M, Byambadorj SO, Nyam-Osor B, Scippa GS, Chiatante D. Fertilization reduces root architecture plasticity in Ulmus pumila used for afforesting Mongolian semi-arid steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:878299. [PMID: 35958214 PMCID: PMC9359110 DOI: 10.3389/fpls.2022.878299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 06/13/2023]
Abstract
In this study, we assessed the functional and architectural traits in the coarse roots of Ulmus pumila trees, which are used for afforesting the semi-arid steppe of Mongolia. Tree growth was supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and compost). In July, 2019, for each of these treatments six trees, outplanted in 2011 as 2-year-old seedlings from a container nursery, were randomly selected, excavated by hand, and digitized. The build-up of root length correlated positively with increasing levels of watering for both soil depths analyzed. The application of fertilizers led to root growth suppression resulting in a general reduction of root length in a lowered rooting depth. When root system characteristics were analyzed in relation to wind direction, unfertilized trees showed higher root diameter values in both soil layers of leeward quadrants, likely a response to mechanical forces to improve stability. On the contrary, fertilized trees did not show differences in root diameter among the different quadrants underscoring a strong reduction in root plasticity with a lack of morpho-architectural response to the mechanical forces generated by the two prevailing winds. Finally, the root branching density, another important trait for fast dissipation of mechanical forces, was significantly reduced by the fertilization, independently of the quadrants and watering regime. Our results suggest that knowledge of the root response to the afforestation techniques applied in the semi-arid steppe of Mongolia is a necessary step for revealing the susceptibility of this forest shelterbelt to the exacerbating environmental conditions caused by climate change and, thus, to the development of a sustainable and successful strategy to restore degraded lands.
Collapse
Affiliation(s)
- Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Bruno Lasserre
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
72
|
Gamboa-Becerra R, Desgarennes D, Molina-Torres J, Ramírez-Chávez E, Kiel-Martínez AL, Carrión G, Ortiz-Castro R. Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana. PROTOPLASMA 2022; 259:835-854. [PMID: 34529144 DOI: 10.1007/s00709-021-01705-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Ana L Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
73
|
Carillo P, Rouphael Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:899522. [PMID: 35783949 PMCID: PMC9244799 DOI: 10.3389/fpls.2022.899522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 05/29/2023]
Abstract
Over the past five decades, nitrogen (N) fertilization has been an essential tool for boosting crop productivity in agricultural systems. To avoid N pollution while preserving the crop yields and profit margins for farmers, the scientific community is searching for eco-sustainable strategies aimed at increasing plants' nitrogen use efficiency (NUE). The present article provides a refined definition of the NUE based on the two important physiological factors (N-uptake and N-utilization efficiency). The diverse molecular and physiological mechanisms underlying the processes of N assimilation, translocation, transport, accumulation, and reallocation are revisited and critically discussed. The review concludes by examining the N uptake and NUE in tandem with chloride stress and eustress, the latter being a new approach toward enhancing productivity and functional quality of the horticultural crops, particularly facilitated by soilless cultivation.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
74
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
75
|
Yan S, Yu B, Ming F, Liang Y, Zhong Y, Wang Z, Zhang X, Li X, Qiu Z, Cao B. CsIVP Modulates Low Nitrogen and High-Temperature Resistance in Cucumber. PLANT & CELL PHYSIOLOGY 2022; 63:605-617. [PMID: 35137209 DOI: 10.1093/pcp/pcac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.
Collapse
Affiliation(s)
- Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bingwei Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanting Zhong
- Department of Plant Nutrition, The Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- Department of Plant Nutrition, The Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
76
|
Kořínková N, Fontana IM, Nguyen TD, Pouramini P, Bergougnoux V, Hensel G. Enhancing cereal productivity by genetic modification of root architecture. Biotechnol J 2022; 17:e2100505. [PMID: 35537849 DOI: 10.1002/biot.202100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/03/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
Food security is one of the main topics of today's agriculture, primarily due to increasingly challenging environmental conditions. As most of humankind has a daily intake of cereal grains, current breeding programs focus on these crop plants. Customised endonucleases have been included in the breeders' toolbox after successfully demonstrating their use. Due to technological restrictions, the main focus of the new technology was on above-ground plant organs. In contrast, the essential below ground components were given only limited attention. In the present review, the knowledge of the root system architecture in cereals and the role of phytohormones during their establishment is summarized, and the underlying molecular mechanisms are outlined. The review summarizes how the use of CRISPR-based genome editing methodology can improve the root system architecture to enhance crop production genetically. Finally, future research directions involving this knowledge and technical advances are suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nikola Kořínková
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371
| | - Irene M Fontana
- Leibniz Institute of Plant Genetics and Crop Plant Research, Plant Reproductive Biology, D-06466 Seeland OT, Gatersleben
| | - Thu D Nguyen
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371
| | - Pouneh Pouramini
- Leibniz Institute of Plant Genetics and Crop Plant Research, Plant Reproductive Biology, D-06466 Seeland OT, Gatersleben
| | - Véronique Bergougnoux
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371
| | - Goetz Hensel
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225, Dusseldorf
| |
Collapse
|
77
|
Construction and application of star polycation nanocarrier-based microRNA delivery system in Arabidopsis and maize. J Nanobiotechnology 2022; 20:219. [PMID: 35525952 PMCID: PMC9077854 DOI: 10.1186/s12951-022-01443-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background MicroRNA (miRNA) plays vital roles in the regulation of both plant architecture and stress resistance through cleavage or translation inhibition of the target messenger RNAs (mRNAs). However, miRNA-induced gene silencing remains a major challenge in vivo due to the low delivery efficiency and instability of miRNA, thus an efficient and simple method is urgently needed for miRNA transformation. Previous researches have constructed a star polycation (SPc)-mediated transdermal double-stranded RNA (dsRNA) delivery system, achieving efficient dsRNA delivery and gene silencing in insect pests. Results Here, we tested SPc-based platform for direct delivery of double-stranded precursor miRNA (ds-MIRNA) into protoplasts and plants. The results showed that SPc could assemble with ds-MIRNA through electrostatic interaction to form nano-sized ds-MIRNA/SPc complex. The complex could penetrate the root cortex and be systematically transported through the vascular tissue in seedlings of Arabidopsis and maize. Meanwhile, the complex could up-regulate the expression of endocytosis-related genes in both protoplasts and plants to promote the cellular uptake. Furthermore, the SPc-delivered ds-MIRNA could efficiently increase mature miRNA amount to suppress the target gene expression, and the similar phenotypes of Arabidopsis and maize were observed compared to the transgenic plants overexpressing miRNA. Conclusion To our knowledge, we report the first construction and application of star polycation nanocarrier-based platform for miRNA delivery in plants, which explores a new enable approach of plant biotechnology with efficient transformation for agricultural application. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01443-4.
Collapse
|
78
|
Raghuvanshi R, Raut VV, Pandey M, Jeyakumar S, Verulkar S, Suprasanna P, Srivastava AK. Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118923. [PMID: 35104559 DOI: 10.1016/j.envpol.2022.118923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH4+ as As-associated key macronutrient; while, NH4+/NO3- and K+ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Collapse
Affiliation(s)
- Rishiraj Raghuvanshi
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Subbiah Jeyakumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Satish Verulkar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
79
|
Farooq S, Yasmeen T, Niaz A, Rizwan M, Ali S. Rice straw biochar in combination with farmyard manure mitigates bromoxynil toxicity in wheat (Triticum aestivum L.). CHEMOSPHERE 2022; 295:133854. [PMID: 35122820 DOI: 10.1016/j.chemosphere.2022.133854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Herbicide residues in agriculture commodities are a serious threat for human health and crop production. We investigated the efficient utilization of rice straw biochar and farmyard manure as organic amendments in mitigating the bromoxynil residues in leaves, grain, husk and root tissues of wheat plants. Growth and yield of wheat plants were also examined under field conditions through a 02-year field experiment. The experiment was set up using two wheat cultivars (Faisalabad-08 and Galaxy-2013) as main plot factors and different formulations of biochar and farmyard manure as sub-plot factors in a randomized complete Block design (split plot arrangement) with 03 replications. Different formulations of biochar (BC) and farmyard manure (FYM) i.e., 100 BC: 00 FYM, 75 BC: 25 FYM, 50 BC: 50 FYM, 25 BC: 75 FYM, 00 BC: 100 FYM and 00 BC: 00 FYM as control were prepared and mixed with soil (2% m/m) at the time of sowing. The wheat crop was sprayed with recommended dose (Buctril Super 60 EC, 825 mL ha-1) of bromoxynil 40 days after sowing of the crop. Grain, husk, and root samples were collected at maturity while leave samples were taken 10 days after the herbicide application. Results revealed that the organic amendments significantly reduced the bromoxynil concentration in different tissues of wheat plant besides increasing the growth and yield of plants. The highest concentration of bromoxynil residues was found in control treatment whereas; sole biochar (100 BC:00 FYM) reduced the herbicide residues up to 78% in grain and husk of wheat, 40% in leaves and 64% in root tissues along with 41-44% increase in the grain yield. So, rice straw biochar along with farmyard manure could be considered as a promising option for mitigating the residual herbicide issues in the crop plants along with increase in the yield of wheat crop.
Collapse
Affiliation(s)
- Saba Farooq
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
80
|
Stiblíková P, Klimeš A, Cahill JF, Koubek T, Weiser M. Interspecific differences in root foraging precision cannot be directly inferred from species' mycorrhizal status or fine root economics. OIKOS 2022. [DOI: 10.1111/oik.08995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Adam Klimeš
- Dept of Functional Ecology, Inst. of Botany, Czech Academy of Sciences Třeboň Czechia
- Dept of Biological Sciences, Biological Sciences Building, Univ. of Alberta Edmonton AB Canada
| | - James F. Cahill
- Dept of Biological Sciences, Faculty of Mathematics and Natural Sciences, Univ. of Bergen Bergen Norway
| | - Tomáš Koubek
- Dept of Botany, Faculty of Science, Charles Univ. Praha Czechia
| | - Martin Weiser
- Dept of Botany, Faculty of Science, Charles Univ. Praha Czechia
| |
Collapse
|
81
|
He W, Luo C, Wang Y, Wen X, Wang Y, Li T, Chen G, Zhao K, Li X, Fan C. Response Strategies of Root System Architecture to Soil Environment: A Case Study of Single-Species Cupressus funebris Plantations. FRONTIERS IN PLANT SCIENCE 2022; 13:822223. [PMID: 35498661 PMCID: PMC9048025 DOI: 10.3389/fpls.2022.822223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The root system architecture (RSA), being a key characteristic of the root economic spectrum, describes the spatial arrangement and positioning of roots that determines the plant's exploration of water and nutrients in the soil. Still, it remains poorly understood how the RSA of woody plants responds to the demand for water and nutrients in different soil environments and how the uptake of these resources is optimized. Here we selected single-species plantations of Cupressus funebris and determined their topological index (TI), revised topological index (q a and q b ), root link length (RLL), root branching rate (R b and R i :R i+1), and in situ soil physicochemical properties to assess which root foraging strategies adopt in different soil environments among Guang'an City (GA), Suining City (SN), Mianyang City (MY), and Deyang City (DY) in China. We also tested the potential effects of different nutrients upon RSA according to its plastic phenotype. Principal component analysis (PCA) showed that levels of soil nutrients were the highest at DY, followed by MY and SN, and lower at GA. A dichotomous branching pattern was observed for GA, SN, and MY, but a herringbone branching pattern for DY. The RLL was ranked as GA, > SN, > MY > DY. The R b of GA, SN, and MY was significantly lower than that of DY (p < 0.05). Among the different city regions, values of R 1 /R 2 were the largest in different regions and those of R 4 /R 5 the smallest. The cross-sectional area of the root system did not differ between any two connected branch orders. The TI, q a , and RLL were significantly and negatively correlated with soil's water content, porosity, total nitrogen, total potassium, available nitrogen, and available phosphorus (p < 0.05), whereas they all had significant, positive relationships with soil temperature (p < 0.05). The R b was significantly and positively correlated with total potassium in soil (p < 0.05). Redundancy analysis showed that total potassium was the main factor driving variation in RSA. Our results emphasize that the RSA is capable of corresponding plastic alterations by changing its number of internal or external links and the root link length of fine roots vis-à-vis a heterogeneous environment, thereby optimizing the rates of water capture and space utilization.
Collapse
|
82
|
Hayashi-Tsugane M, Kawaguchi M. Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. PLANTA 2022; 255:95. [PMID: 35348891 DOI: 10.1007/s00425-022-03873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The local and long-distance signaling pathways mediated by the leucine-rich repeat receptor kinase HAR1 suppress root branching and promote primary root length in response to nitrate supply. The root morphology of higher plants changes plastically to effectively absorb nutrients and water from the soil. In particular, legumes develop root organ nodules, in which symbiotic rhizobia fix atmospheric nitrogen in nitrogen-poor environments. The number of nodules formed in roots is negatively regulated by a long-distance signaling pathway that travels through shoots called autoregulation of nodulation (AON). In the model plant Lotus japonicus, defects in AON genes, such as a leucine-rich repeat receptor kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1), an orthologue of CLAVATA1, and the F-box protein TOO MUCH LOVE (TML), induce the formation of an excess number of nodules. The loss-of-function mutant of HAR1 exhibits a short and bushy root phenotype in the absence of rhizobia. We show that the har1 mutant exhibits high nitrate sensitivity during root development. The uninfected har1 mutant significantly increased lateral root number and reduced primary root length in the presence of 3 mM nitrate, compared with the wild-type and tml mutant. Grafting experiments indicated that local and long-distance signaling pathways via root- and shoot-acting HAR1 additively regulated root morphology under the moderate nitrate concentrations. These findings allow us to propose that HAR1-mediated signaling pathways control the root system architecture by suppressing lateral root branching and promoting primary root elongation in response to nitrate availability.
Collapse
Affiliation(s)
- Mika Hayashi-Tsugane
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
83
|
Yamazaki K, Fujiwara T. The Effect of Phosphate on the Activity and Sensitivity of Nutritropism toward Ammonium in Rice Roots. PLANTS (BASEL, SWITZERLAND) 2022; 11:733. [PMID: 35336615 PMCID: PMC8955032 DOI: 10.3390/plants11060733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Understanding how plants determine growth direction from environmental cues is important to reveal optimal strategies in plant survival. Nutritropism is the directional growth of plant roots towards nutrient sources. Our previous study showed that an NH4+ gradient stimulates nutritropism in the lateral roots, but not in the main roots, of a rice cultivar. In the present study, we report nutritropism in the main roots of rice accessions among the World Rice Core Collection, including WRC 25. We investigated the effects of components in nutrient sources on nutritropism in WRC 25. Nutritropism in main roots was stimulated by NH4+ and significantly enhanced by Pi. We found that roots required more NH4+ stimulation for nutritropic responses in the presence of higher Pi, meaning that Pi desensitized root nutritropism. These results indicate that Pi acts as an activator and a desensitizer in nutritropism. Such a regulation of nutritropism would be important for plants to decide their optimum growth directions towards nutrient sources, gravity, moisture, or other stimuli.
Collapse
Affiliation(s)
- Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Science, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | | |
Collapse
|
84
|
Maniou FS, Bouranis DL, Ventouris YE, Chorianopoulou SN. Phenotypic Acclimation of Maize Plants Grown under S Deprivation and Implications to Sulfur and Iron Allocation Dynamics. PLANTS 2022; 11:plants11050703. [PMID: 35270173 PMCID: PMC8912738 DOI: 10.3390/plants11050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
The aim of this work was to study maize root phenotype under sulfur deficiency stress towards revealing potential correlations between the altered phenotypic traits and the corresponding dry mass, sulfur, and iron allocation within plants at the whole-plant level. The dynamics of root morphological and anatomical traits were monitored. These traits were then correlated with plant foliage traits along with dry mass and sulfur and iron allocation dynamics in the shoot versus root. Plants grown under sulfate deprivation did not seem to invest in new root axes. Crown roots presented anatomical differences in all parameters studied; e.g., more and larger xylem vessels in order to maximize water and nutrient transport in the xylem sap. In the root system of S-deficient plants, a reduced concentration of sulfur was observed, whilst organic sulfur predominated over sulfates. A reduction in total iron concentration was monitored, and differences in its subcellular localization were observed. As expected, S-deprivation negatively affected the total sulfur concentration in the aerial plant part, as well as greatly impacted iron allocation in the foliage. Phenotypic adaptation to sulfur deprivation in maize presented alterations mainly in the root anatomy; towards competent handling of the initial sulfur and the induced iron deficiencies.
Collapse
|
85
|
Podar D, Maathuis FJM. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. PLANT, CELL & ENVIRONMENT 2022; 45:719-736. [PMID: 34622470 DOI: 10.1111/pce.14188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Human activity and natural processes have led to the widespread dissemination of metals and metalloids, many of which are toxic and have a negative impact on plant growth and development. Roots, as the first point of contact, are essential in endowing plants with tolerance to excess metal(loid) in the soil. The most important root processes that contribute to tolerance are: adaptation of transport processes that affect uptake efflux and long-distance transport of metal(loid)s; metal(loid) detoxification within root cells via conjugation to thiol rich compounds and subsequent sequestration in the vacuole; plasticity in root architecture; the presence of bacteria and fungi in the rhizosphere that impact on metal(loid) bioavailability; the role of root exudates. In this review, we provide details on these processes and assess their relevance on the detoxification of arsenic, cadmium, mercury and zinc in crops. Furthermore, we assess which of these strategies have been tested in field conditions and whether they are effective in terms of improving crop metal(loid) tolerance.
Collapse
Affiliation(s)
- Dorina Podar
- Department of Molecular Biology and Biotechnology, Faculty of Biology-Geology, Babeș-Bolyai University, Cluj, Romania
| | | |
Collapse
|
86
|
Teng W, He X, Tong Y. Genetic Control of Efficient Nitrogen Use for High Yield and Grain Protein Concentration in Wheat: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040492. [PMID: 35214826 PMCID: PMC8878021 DOI: 10.3390/plants11040492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield components to N availability and assimilates allocation to grains provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-anthesis N uptake and N allocation to grains.
Collapse
Affiliation(s)
- Wan Teng
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Xue He
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Yiping Tong
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64806556
| |
Collapse
|
87
|
Liu Y, von Wirén N. Integration of nutrient and water availabilities via auxin into the root developmental program. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102117. [PMID: 34624806 DOI: 10.1016/j.pbi.2021.102117] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In most soils, the spatial distribution of nutrients and water in the rooting zone of plants is heterogeneous and changes over time. To access localized resources more efficiently, plants induce foraging responses by modulating individual morphological root traits, such as the length of the primary root or the number and length of lateral roots. These adaptive responses require the integration of exogenous and endogenous nutrient- or water-related signals into the root developmental program. Recent studies corroborated a central role of auxin in shaping root architectural traits in response to fluctuating nutrient and water availabilities. In this review, we highlight current knowledge on nutrient- and water-related developmental processes that impact root foraging and involve auxin as a central player. A deeper understanding and exploitation of these auxin-related processes and mechanisms promises advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
88
|
Effect of soil spatial configuration on Trifolium repens varies with resource amount. PLoS One 2022; 17:e0263290. [PMID: 35100326 PMCID: PMC8803177 DOI: 10.1371/journal.pone.0263290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Soil spatial heterogeneity involves nutrients being patchily distributed at a range of scales and is prevalent in natural habitats. However, little is known about the effect of soil spatial configurations at the small scale on plant foraging behavior and plant growth under different resource amounts. Here, we experimentally investigated how a stoloniferous species, Trifolium repens, responded to varied resource amounts and spatial configuration combinations. Plant foraging behavior (i.e., the orientation of the primary stolon, mean length of the primary stolon, foraging precision, and foraging scale) and plant growth (i.e., total biomass, root biomass, shoot biomass, and root/shoot) were compared among differently designed configurations of soil resources in different amounts. The relationships of foraging behavior and plant biomass were analyzed. The results showed that the effect of the spatial configuration of soil resources on Trifolium repens depended on the resource amount. Specifically, when the total resource amount was low, fragmented soil patches promoted root foraging and increased Trifolium repens plant biomass; however, when the total resource amount was high, the soil spatial configuration did not affect foraging behavior or plant growth. Our results also showed that plant growth was facilitated by root foraging scale to adapt to low resource amounts. We conclude that the spatial configuration of soil resources at small scales affects whole plant growth, which is mediated by a distinct foraging strategy. These findings contribute to a better understanding of how the growth strategy of clonal plants responds to heterogeneous environments caused by different resource amounts and its spatial configurations.
Collapse
|
89
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
90
|
Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:28-38. [PMID: 34622686 DOI: 10.1094/mpmi-06-21-0157-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed-PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed-PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
91
|
Zhang XM, Cao XX, He LX, Xue W, Gao JQ, Lei NF, Chen JS, Yu FH, Li MH. Soil heterogeneity in the horizontal distribution of microplastics influences productivity and species composition of plant communities. FRONTIERS IN PLANT SCIENCE 2022; 13:1075007. [PMID: 36570919 PMCID: PMC9772521 DOI: 10.3389/fpls.2022.1075007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Contamination of soils by microplastics can have profound ecological impacts on terrestrial ecosystems and has received increasing attention. However, few studies have considered the impacts of soil microplastics on plant communities and none has tested the impacts of spatial heterogeneity in the horizontal distribution of microplastics in the soil on plant communities. We grew experimental plant communities in soils with either a homogeneous or a heterogeneous distribution of each of six common microplastics, i.e., polystyrene foam (EPS), polyethylene fiber (PET), polyethylene bead (HDPE), polypropylene fiber (PP), polylactic bead (PLA) and polyamide bead (PA6). The heterogeneous treatment consisted of two soil patches without microplastics and two with a higher (0.2%) concentration of microplastics, and the homogeneous treatment consisted of four patches all with a lower (0.1%) concentration of microplastics. Thus, the total amounts of microplastics in the soils were exactly the same in the two treatments. Total and root biomass of the plant communities were significantly higher in the homogeneous than in the heterogeneous treatment when the microplastic was PET and PP, smaller when it was PLA, but not different when it was EPS, HDPE or PA6. In the heterogeneous treatment, total and root biomass were significantly smaller in the patches with than without microplastics when the microplastic was EPS, but greater when the microplastic was PET or PP. Additionally, in the heterogeneous treatment, root biomass was significantly smaller in the patches with than without microplastics when the microplastic was HDPE, and shoot biomass was also significantly smaller when the microplastic was EPS or PET. The heterogeneous distribution of EPS in the soil significantly decreased community evenness, but the heterogeneous distribution of PET increased it. We conclude that soil heterogeneity in the horizontal distribution of microplastics can influence productivity and species composition of plant communities, but such an effect varies depending on microplastic chemical composition (types) and morphology (shapes).
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Xiao-Xiao Cao
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Lin-Xuan He
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ning-Fei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Jin-Song Chen
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- *Correspondence: Fei-Hai Yu, ; Mai-He Li,
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- *Correspondence: Fei-Hai Yu, ; Mai-He Li,
| |
Collapse
|
92
|
Jacques C, Forest M, Durey V, Salon C, Ourry A, Prudent M. Transient Nutrient Deficiencies in Pea: Consequences on Nutrient Uptake, Remobilization, and Seed Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:785221. [PMID: 35003170 PMCID: PMC8733391 DOI: 10.3389/fpls.2021.785221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Legume plants, such as peas, are of significant nutritional interest for both humans and animals. However, plant nutrition and thus, seed composition, depends on soil mineral nutrient availability. Understanding the impact of their deprivation on the plant mineral nutrient content, net uptake, and remobilization is of key importance but remains complex as the elements of the plant ionome are linked in intricate networks, one element deprivation impacting uptake and remobilization of other nutrients. To get a better insight into pea mineral nutrition, the transitory deprivations of 13 mineral nutrients were imposed during the vegetative growth phase. Thereafter, plants were grown under optimal mineral conditions until physiological maturity. Plant nutritional status and seed quality impacts caused by the deprivations were characterized using measurement of mineral nutrient concentration and plant biomass allocation. Our results highlight: (i) the preferential allocation of dry weight and elements to shoots at the expense of the roots under non-limiting conditions, and more particularly to the tendrils in comparison to the other shoot organs, (ii) the positive and/or negative impact of one mineral nutrient deprivation on other elements of the ionome, (iii) four different remobilization strategies for eight mineral nutrients, and (iv) possible strategies to improve seed quality via fine control of fertilization during a period of mineral nutrient deficiency.
Collapse
Affiliation(s)
- Cécile Jacques
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Marion Forest
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Vincent Durey
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Alain Ourry
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, INRAE, Normandie Université, UNICAEN, Caen, France
| | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
93
|
EIN3 and RSL4 interfere with an MYB-bHLH-WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2110004118. [PMID: 34916289 DOI: 10.1073/pnas.2110004118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
The alternating cell specifications of root epidermis to form hair cells or nonhair cells in Arabidopsis are determined by the expression level of GL2, which is activated by an MYB-bHLH-WD40 (WER-GL3-TTG1) transcriptional complex. The phytohormone ethylene (ET) has a unique effect of inducing N-position epidermal cells to form root hairs. However, the molecular mechanisms underlying ET-induced ectopic root hair development remain enigmatic. Here, we show that ET promotes ectopic root hair formation through down-regulation of GL2 expression. ET-activated transcription factors EIN3 and its homolog EIL1 mediate this regulation. Molecular and biochemical analyses further revealed that EIN3 physically interacts with TTG1 and interferes with the interaction between TTG1 and GL3, resulting in reduced activation of GL2 by the WER-GL3-TTG1 complex. Furthermore, we found through genetic analysis that the master regulator of root hair elongation, RSL4, which is directly activated by EIN3, also participates in ET-induced ectopic root hair development. RSL4 negatively regulates the expression of GL2, likely through a mechanism similar to that of EIN3. Therefore, our work reveals that EIN3 may inhibit gene expression by affecting the formation of transcription-activating protein complexes and suggests an unexpected mutual inhibition between the hair elongation factor, RSL4, and the hair specification factor, GL2. Overall, this study provides a molecular framework for the integration of ET signaling and intrinsic root hair development pathway in modulating root epidermal cell specification.
Collapse
|
94
|
Roy A, Bucksch A. Root hairs vs. trichomes: Not everyone is straight! CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102151. [PMID: 34864319 DOI: 10.1016/j.pbi.2021.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Trichomes show 47 morphological phenotypes, while literature reports only two root hair phenotypes in all plants. However, could hair-like structures exist below-ground in a similar wide range of morphologies like trichomes? Genetic mutants and root hair stress phenotypes point to the possibility of uncharacterized morphological variation existing belowground. For example, such root hairs in Arabidopsis (Arabidopsis thaliana) can be wavy, curled, or branched. We found hints in the literature about hair-like structures that emerge before root hairs belowground. As such, these early emerging hair structures can be potential exceptions to the contrasting morphological variation between trichomes and root hairs. Here, we show a previously unreported 'hooked' hair structure growing below-ground in common bean. The unique 'hooking' shape distinguishes the 'hooked hair' morphologically from root hairs. Currently, we cannot fully characterize the phenotype of our observation due to the lack of automated methods for phenotyping root hairs. This phenotyping bottleneck also handicaps the discovery of more morphology types that might exist below-ground as manual screening across species is slower than computer-assisted high-throughput screening.
Collapse
Affiliation(s)
- Ankita Roy
- University of Georgia Franklin College of Arts and Sciences, USA
| | | |
Collapse
|
95
|
Camut L, Gallova B, Jilli L, Sirlin-Josserand M, Carrera E, Sakvarelidze-Achard L, Ruffel S, Krouk G, Thomas SG, Hedden P, Phillips AL, Davière JM, Achard P. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Curr Biol 2021; 31:4971-4982.e4. [PMID: 34614391 DOI: 10.1016/j.cub.2021.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.
Collapse
Affiliation(s)
- Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Barbora Gallova
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Lucas Jilli
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Mathilde Sirlin-Josserand
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Stephen G Thomas
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Peter Hedden
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK; Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
| | - Andrew L Phillips
- Plant Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
96
|
Malik RJ, Bever JD. Enriched CO 2 and Root-Associated Fungi (Mycorrhizae) Yield Inverse Effects on Plant Mass and Root Morphology in Six Asclepias Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:2474. [PMID: 34834836 PMCID: PMC8617772 DOI: 10.3390/plants10112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
While milkweeds (Asclepias spp.) are important for sustaining biodiversity in marginal ecosystems, CO2 flux may afflict Asclepias species and cause detriment to native communities. Negative CO2-induced effects may be mitigated through mycorrhizal associations. In this study, we sought to determine how mycorrhizae interacts with CO2 to influence Asclepias biomass and root morphology. A broad range of Asclepias species (n = 6) were chosen for this study, including four tap-root species (A. sullivantii, A. syriaca, A. tuberosa, and A. viridis) and two fibrous root species (A. incarnata and A. verticillata). Collectively, the six Asclepias species were manipulated under a 2 × 2 full-factorial design that featured two mycorrhizal levels (-/+ mycorrhizae) and two CO2 levels (ambient and enriched (i.e., 3.5× ambient)). After a duration of 10 months, Asclepias responses were assessed as whole dry weight (i.e., biomass) and relative transportive root. Relative transportive root is the percent difference in the diameter of highest order root (transportive root) versus that of first-order absorptive roots. Results revealed an asymmetrical response, as mycorrhizae increased Asclepias biomass by ~12-fold, while enriched CO2 decreased biomass by about 25%. CO2 did not impact relative transportive roots, but mycorrhizae increased root organ's response by more than 20%. Interactions with CO2 and mycorrhizae were observed for both biomass and root morphology (i.e., relative transportive root). A gene associated with CO2 fixation (rbcL) revealed that the two fibrous root species formed a phylogenetic clade that was distant from the four tap-root species. The effect of mycorrhizae was most profound in tap-root systems, as mycorrhizae modified the highest order root into tuber-like structures. A strong positive correlation was observed with biomass and relative transportive root. This study elucidates the interplay with roots, mycorrhizae, and CO2, while providing a potential pathway for mycorrhizae to ameliorate CO2 induced effects.
Collapse
Affiliation(s)
- Rondy J. Malik
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey, 2101 Constant Ave, Lawrence, KS 66045, USA;
| | | |
Collapse
|
97
|
Bilgili A, Çomaklı E. Evaluation of the relationship between root nutrients and root biomass in lands under different management practices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:799. [PMID: 34773518 DOI: 10.1007/s10661-021-09585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Mastering ecological dynamics necessitates identifying the substance cycles in biomass. In terms of sustainable soil productivity, the nutrient content of below-ground biomass is just as significant as the above-ground biomass, which fluctuates depending on land use. Yet, there were limited studies on determining the quantity of plant nutrient stocks, particularly in the below-ground biomass, in rangeland, forest, and plantation areas coexisting in the same ecological zone. In this regard, it is expected that the findings of this study will contribute to the literature. For this purpose in mind, distinct samples were taken from three depth levels (0-10 cm, 10-20 cm, 20-30 cm) to determine root biomass and nutrient stocks of roots in neighboring rangeland, forest, and plantation areas, and roots were divided into diameter classes, and below-ground biomass amounts and nutritional contents of below-ground biomass were determined. According to the results obtained, the total root biomass in the rangelands is 8.02 Mg ha-1, total root biomass was 5.95 Mg ha-1 in forest areas, and in plantation areas, the total root biomass is 6.94 Mg ha-1. Root biomass in the 0-10 cm soil layer constituted 78% of the total biomass. Also, for all land uses, the highest below-ground biomass concentrations were observed for Al, Fe, K, Mg, and Ca. The amounts of Al, Fe, K and Mg in the below-ground biomass followed the sequence of rangeland, plantation, and forest from high to low. Nutrient stocks in below-ground biomass and the effects of increases in root biomass on plant growth should be evaluated by future studies.
Collapse
Affiliation(s)
- Adnan Bilgili
- Eastern Anatolia Forestry Research Institute, 25200, Erzurum, Turkey
| | - Emre Çomaklı
- Environmental Problems Research and Application Center, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
98
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
99
|
Mori A. Farmyard manure application and associated root proliferation improve the net greenhouse gas balance of Italian ryegrass - Maize double-cropping field in Nasu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148332. [PMID: 34147791 DOI: 10.1016/j.scitotenv.2021.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In Japan, most cows are fed indoors, so cow manure must be carefully treated and used to manage soil fertility. The objective of this study was to compare the net greenhouse gas (GHG) balance (NGHGB) of Italian ryegrass - corn (maize) double-cropping fields receiving farmyard manure (FYM), slurry, or methane fermentation digestion liquid (MFDL). FYM, Slurry, MFDL, mineral fertilizer only (Fert.), and no-N control (Cont.) plots were set up in a randomized block design (n = 3). FYM, slurry, or MFDL was applied to meet the K requirement for forage production, and then mineral fertilizers were supplemented to meet the N and P requirements. From September 2017 to September 2020, C inputs as manure and crop residue, heterotrophic respiration (RH), and emissions of methane (CH4) and nitrous oxide (N2O) from soil were determined. The similarity of the total yields in FYM, Slurry, MFDL, and Fert. plots reflected judicious fertility management. However, the residue-C input of Italian ryegrass was 38% greater in FYM plots than in the other plots. Manure-C input decreased in the order of FYM > Slurry > MFDL plots. RH was greater in FYM and Slurry plots than in MFDL plots. Net ecosystem C balance (NECB) ([residue-C + manure-C] - [RH-C + CH4-C]) decreased in the order of FYM > Slurry > MFDL plots. N2O emission was greater in Slurry and MFDL plots than in FYM plots. Consequently, NGHGB ([CH4 and N2O emissions] - NECB) in terms of CO2 equivalent decreased in the order of MFDL > Slurry > FYM plots, so FYM application contributed most to GHG mitigation. Yield-scaled NGHGB was smallest in FYM plots owing to the synergy of the greatest residue-C and manure-C inputs, less N2O emission, and the achievement of a high enough yield, reflecting judicious fertility management based on manure and mineral fertilizer.
Collapse
Affiliation(s)
- Akinori Mori
- Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan.
| |
Collapse
|
100
|
Molecular characterization of a new mitovirus hosted by the ectomycorrhizal fungus Albatrellopsis flettii. Arch Virol 2021; 166:3449-3454. [PMID: 34554305 DOI: 10.1007/s00705-021-05250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The complete genome of a novel mycovirus, Albatrellopsis flettii mitovirus 1 (AfMV1), hosted by the basidiomycetous ectomycorrhizal fungus Albatrellopsis flettii (Morse ex Pouzar) Audet, was sequenced and analyzed. The full-length cDNA sequence, obtained from a dsRNA replication intermediate of the AfMV1 genome, is 3037 bp in length with a predicted G+C content of 40.66%. Sequence analysis revealed that a single large open reading frame (ORF) is present on the positive strand when the mold mitochondrial genetic code is applied. The single ORF encodes a putative RNA-dependent RNA polymerase of 859 amino acids with a predicted molecular weight of 97.05 kDa that shares the closest similarity with the corresponding protein of Entomophthora muscae mitovirus 7, with 43.38% sequence identity. Phylogenetic analysis showed that AfMV1 could be classified as a new member of the genus Mitovirus within the family Mitoviridae. This is the first report of the complete genome sequence of a new mitovirus, AfMV1, isolated from the basidiomycetous ectomycorrhizal fungus A. flettii.
Collapse
|