51
|
Salazar-Chavarría V, Sánchez-Nieto S, Cruz-Ortega R. Fagopyrum esculentum at early stages copes with aluminum toxicity by increasing ABA levels and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:170-176. [PMID: 32422533 DOI: 10.1016/j.plaphy.2020.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Aluminum toxicity (Al) is one of the main constraints for plant growth on acid soils. While most plants are sensitive to Al, some species have developed strategies to cope with this metal. Fagopyrum esculentum, Moench., var Mancan (Polygonaceae), despite being an aluminum-tolerant plant, shows root inhibition as a seedling during the first hours of exposure to Al, whereas at later times, it fully recovers. In this study, we assessed whether abscisic acid (ABA) levels and the antioxidant system might be involved in the early tolerance mechanisms of F. esculentum. The results showed that seedlings exposed to 50 μM Al for 3, 6, 12, 24, and 48 h showed decreases in the relative root growth (RRG), and there was an accumulation of Al in the root apex from 3 to 24 h. In addition, reactive oxygen species (ROS) levels increased, and were detected early after Al exposure; endogenous ABA levels increased and antioxidant enzyme activity increased, including catalase (CAT, EC1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), ascorbate peroxidase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1) activity. Seedlings treated with exogenous ABA also showed increased ROS levels and CAT and APX activity. The results suggest that after the first 12 h of Al treatment, root growth declines while ROS levels increase due to the entrance of Al into the root. However, the enzyme antioxidant system is promoted, which may impact the recovery of the root growth at later times and increasing levels of ABA might mediate this effect.
Collapse
Affiliation(s)
- Violeta Salazar-Chavarría
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico
| | - Sobeida Sánchez-Nieto
- Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, C.P, 04500, Mexico
| | - Rocío Cruz-Ortega
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico.
| |
Collapse
|
52
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
53
|
Kopittke PM, Lombi E, van der Ent A, Wang P, Laird JS, Moore KL, Persson DP, Husted S. Methods to Visualize Elements in Plants. PLANT PHYSIOLOGY 2020; 182:1869-1882. [PMID: 31974126 PMCID: PMC7140966 DOI: 10.1104/pp.19.01306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/16/2020] [Indexed: 05/18/2023]
Abstract
Understanding the distribution of elements in plants is important for researchers across a broad range of fields, including plant molecular biology, agronomy, plant physiology, plant nutrition, and ionomics. However, it is often challenging to evaluate the applicability of the wide range of techniques available, with each having its own strengths and limitations. Here, we compare scanning/transmission electron microscopy-based energy-dispersive x-ray spectroscopy, x-ray fluorescence microscopy, particle-induced x-ray emission, laser ablation inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spectroscopy, autoradiography, and confocal microscopy with fluorophores. For these various techniques, we compare their accessibility, their ability to analyze hydrated tissues (without sample preparation) and suitability for in vivo analyses, as well as examining their most important analytical merits, such as resolution, sensitivity, depth of analysis, and the range of elements that can be analyzed. We hope that this information will assist other researchers to select, access, and evaluate the approach that is most useful in their particular research program or application.
Collapse
Affiliation(s)
- Peter M Kopittke
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Antony van der Ent
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, St. Lucia, Queensland 4072, Australia
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing 210095, China
| | - Jamie S Laird
- University of Melbourne, School of Physics, Parkville, Victoria 3010, Australia
| | - Katie L Moore
- University of Manchester, School of Materials, Photon Science Institute, Manchester M13 9PL, United Kingdom
| | - Daniel P Persson
- University of Copenhagen, Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, 1871 Frederiksberg, Denmark
| | - Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, 1871 Frederiksberg, Denmark
| |
Collapse
|
54
|
Tolrà R, Martos S, Hajiboland R, Poschenrieder C. Aluminium alters mineral composition and polyphenol metabolism in leaves of tea plants (Camellia sinensis). J Inorg Biochem 2020; 204:110956. [DOI: 10.1016/j.jinorgbio.2019.110956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
|
55
|
Cavalheiro MF, Gavassi MA, Silva GS, Nogueira MA, Silva CMS, Domingues DS, Habermann G. Low root PIP1-1 and PIP2 aquaporins expression could be related to reduced hydration in 'Rangpur' lime plants exposed to aluminium. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:112-121. [PMID: 31864427 DOI: 10.1071/fp19032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
In acidic soils, aluminium (Al) occurs as Al3+, which is phytotoxic. One of the most conspicuous symptoms of Al toxicity is the root growth inhibition, which can lead to low water uptake and consequent reduction in leaf hydration and gas exchange. However, fibrous xylem vessels have been observed in roots of 'Rangpur' lime plants (Citrus limonia L.) when exposed to Al, which could affect the functioning of aquaporins, ultimately reducing their expression. We confirmed a decrease of CO2 assimilation (A), stomatal conductance (gs), transpiration (E) and relative leaf water content (RWC) in 3-month-old C. limonia plants exposed to 1480 μM Al in nutrient solution for 90 days. The estimated hydraulic conductivity from soil to the leaf (KL) and leaf water potential (Ψw) also showed low values, although not consistently reduced over time of Al exposure. The relative expression of aquaporin genes belonging to PIP family (PIP1-1, PIP1-2 and PIP2) showed downregulation for ClPIP1-1 and ClPIP2 and upregulation for ClPIP1-2 in plants exposed to Al. Furthermore, ClPIP1-1 was positively correlated with A and gs in plants exposed to Al. Therefore, downregulation of ClPIP1-1 and ClPIP2 in roots of 'Rangpur' lime plants could be associated with the low leaf hydration of this species when exposed to Al.
Collapse
Affiliation(s)
- Mariana F Cavalheiro
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Vegetal), Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Botânica, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil
| | - Marina A Gavassi
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Vegetal), Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Botânica, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil
| | - Giselle S Silva
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Vegetal), Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Botânica, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil
| | - Matheus A Nogueira
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Vegetal), Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Botânica, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil
| | - Carolina M S Silva
- Escola Superior de Agricultura 'Luiz de Queiróz', Universidade de São Paulo, ESALQ-USP, Departamento de Ciências Biológicas, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Botânica, Universidade Estadual Paulista, UNESP, Instituto de Biociências, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil
| | - Gustavo Habermann
- Departamento de Botânica, Universidade Estadual Paulista, UNESP, Instituto de Biociências, Av. 24-A, 1515; 13506-900, Rio Claro, SP, Brazil; and Corresponding author.
| |
Collapse
|
56
|
Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, Gerrard Wheeler MC. Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:653-665. [PMID: 31626366 DOI: 10.1111/tpj.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 05/29/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H2 O2 content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.
Collapse
Affiliation(s)
- Mariana Beatriz Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Verónica Graciela Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Cintia Lucía Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Ayelén Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Carlos Santiago Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariel Claudia Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
57
|
Li Z, Wang P, Menzies NW, McKenna BA, Karunakaran C, Dynes JJ, Arthur Z, Liu N, Zuin L, Wang D, Kopittke PM. Examining a synchrotron-based approach for in situ analyses of Al speciation in plant roots. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:100-109. [PMID: 31868742 DOI: 10.1107/s1600577519014395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.
Collapse
Affiliation(s)
- Zhigen Li
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - James J Dynes
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Zachary Arthur
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Na Liu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Lucia Zuin
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Dongniu Wang
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
58
|
Zhu CQ, Cao XC, Bai ZG, Zhu LF, Hu WJ, Hu AY, Abliz B, Zhong C, Liang QD, Huang J, Zhang JH, Jin QY. Putrescine alleviates aluminum toxicity in rice (Oryza sativa) by reducing cell wall Al contents in an ethylene-dependent manner. PHYSIOLOGIA PLANTARUM 2019; 167:471-487. [PMID: 30851007 DOI: 10.1111/ppl.12961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Aluminum (Al3+ ) toxicity in acidic soils limits crop productivity worldwide. In this study, we found that putrescine (PUT) significantly alleviates Al toxicity in rice roots. The addition of 0.1 mM PUT promoted root elongation and reduced the Al content in the root apices of Nipponbare (Nip) and Kasalath (Kas) rice under Al toxicity conditions. Exogenous treatment with PUT reduced the cell wall Al content by reducing polysaccharide (pectin and hemicellulose) levels and pectin methylesterase (PME) activity in roots and decreased the translocation of Al from the external environment to the cytoplasm by downregulating the expression of OsNRAT1, which responsible to encode an Al transporter protein Nrat1 (Nramp aluminum transporter 1). The addition of PUT under Al toxicity conditions significantly inhibited ethylene emissions and suppressed the expression of genes involved in ethylene biosynthesis. Treatment with the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) significantly improved ethylene emission, inhibited root elongation, increased the Al accumulation in root tips and the root cell wall, and increased cell wall pectin and hemicellulose contents in both rice cultivars under Al toxicity conditions. The ethylene biosynthesis antagonist aminoethoxyvinylglycine (AVG, inhibitor of the ACC synthase) had the opposite effect and reduced PME activity. Together, our results show that PUT decreases the cell wall Al contents by suppressing ethylene emissions and decreases the symplastic Al levels by downregulating OsNRAT1 in rice.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiao Chuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhi Gang Bai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lian Feng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Wen Jun Hu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - An Yong Hu
- School of Geographic Science, NanTong University, NanTong, 226019, China
| | - Buhailiqem Abliz
- Nuclear Technology Biotechnology Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chu Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Duo Liang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jie Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jun Hua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qian Yu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
59
|
Pirzadah TB, Malik B, Tahir I, Rehman RU, Hakeem KR, Alharby HF. Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:178-186. [PMID: 31574383 DOI: 10.1016/j.plaphy.2019.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The present investigation describes aluminum-induced changes in the leaves of two buckwheat species using both physiological and biochemical indices. With increasing levels of Al (viz. 100, 200 and 300 μM), the mean length of root, shoot as well as their biomass accumulation decreased linearly with respect to control. Tolerance test of F. kashmirianum revealed that it was more tolerant to Al-stress than F. tataricum as revealed by higher accumulation of Al in its roots without any significant damage. Translocation factor (TF) values of both species were found to be < 1, indicating more Al is restrained in roots. Total chlorophyll showed a non-significant increase in F. tataricum while as decreased in F. kashmirianum at 300 μM concentration besides, the carotenoid content exhibited inclined trend in F. tataricum and showed a concomitant decrease in F. kashmirianum. The anthocyanin level showed a non-significant decline in F. kashmirianum. Exposure to different Al-treatments enhances malondialdehyde (MDA), H2O2 and membrane stability index (MSI) in both species, with increases being greater in F. kashmirianum than F. tataricum as also revealed by DAB-mediated in vivo histo-chemical detection method. The osmolyte level in general were elevated in both buckwheat species however, enhancement was more in F. tataricum than F. kashmirianum. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), glutathione-S-transferase (GST) were positively correlated with Al-treatment except catalase (CAT) which exhibits a reverse outcome in F. kashmirianum. The present investigation could play an essential role to better understand the detoxification mechanisms of Al in plants.
Collapse
Affiliation(s)
- Tanveer Bilal Pirzadah
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India; Department of Bioresources, Amar Singh College (Cluster University), Srinagar, Jammu and Kashmir, 190006, India
| | - Bisma Malik
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Inayatullah Tahir
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Reiaz Ul Rehman
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hesham F Alharby
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
60
|
Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. Soil and the intensification of agriculture for global food security. ENVIRONMENT INTERNATIONAL 2019; 132:105078. [PMID: 31400601 DOI: 10.1016/j.envint.2019.105078] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Soils are the most complex and diverse ecosystem in the world. In addition to providing humanity with 98.8% of its food, soils provide a broad range of other services, from carbon storage and greenhouse gas regulation, to flood mitigation and providing support for our sprawling cities. But soil is a finite resource, and rapid human population growth coupled with increasing consumption is placing unprecedented pressure on soils through the intensification of agricultural production - the increasing of crop yield per unit area of soil. Indeed, the human population has increased from ca. 250 million in the year 1000, to 6.1 billion in the year 2000, and is projected to reach 9.8 billion by the year 2050. The current intensification of agricultural practices is already resulting in the unsustainable degradation of soils. Major forms of this degradation include the loss of organic matter and the release of greenhouse gases, the over-application of fertilizers, erosion, contamination, acidification, salinization, and loss of genetic diversity. This ongoing soil degradation is decreasing the long-term ability of soils to provide humans with services, including future food production, and is causing environmental harm. It is imperative that the global society is not shortsighted by focusing solely on the near-immediate benefits of soils, such as food supply. A failure to identify the importance of soil within increasingly intensive agricultural systems will undoubtedly have serious consequences for humanity and represents a failure to consider intergenerational equity. Of utmost importance is the need to unequivocally recognize that the degradation of soils leads to a clear economic cost through the loss of services, with such principles needing to be explicitly considered in economic frameworks and decision-making processes at all levels of governance. We contend that the concept of the Water-Food-Energy nexus must be expanded, forming the Water-Soil-Food-Energy nexus.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing 210095, China.
| | - Brigid A McKenna
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
61
|
Ma Z, Lin S. Transcriptomic Revelation of Phenolic Compounds Involved in Aluminum Toxicity Responses in Roots of Cunninghamia lanceolata (Lamb.) Hook. Genes (Basel) 2019; 10:genes10110835. [PMID: 31652726 PMCID: PMC6896160 DOI: 10.3390/genes10110835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important coniferous evergreen tree species in South China due to its desirable attributes of fast growth and production of strong and hardy wood. However, the yield of Chinese fir is often inhibited by aluminum (Al) toxicity in acidic soils of South China. Understanding the molecular mechanisms of Chinese fir root responses to Al toxicity might help to further increase its productivity. Here we used the Illumina Hiseq4000 platform to carry out transcriptome analysis of Chinese fir roots subjected to Al toxicity conditions. A total of 88.88 Gb of clean data was generated from 12 samples and assembled into 105,732 distinct unigenes. The average length and N50 length of these unigenes were 839 bp and 1411 bp, respectively. Among them, 58362 unigenes were annotated through searches of five public databases (Nr: NCBI non-redundant protein sequences, Swiss-Prot: A manually annotated and reviewed protein sequence database, GO: Gene Ontology, KOG/COG: Clusters of Orthologous Groups of proteins, and KEGG: the Kyoto Encyclopedia of Genes and Genomes database), which led to association of unigenes with 44 GO terms. Plus, 1615 transcription factors (TFs) were functionally classified. Then, differentially expressed genes (DEGs, |log2(fold change)| ≥ 1 and FDR ≤ 0.05) were identified in comparisons labelled TC1 (CK-72 h/CK-1 h) and TC2 (Al-72 h/Al-1 h). A large number of TC2 DEGs group were identified, with most being down-regulated under Al stress, while TC1 DEGs were primarily up-regulated. Combining GO, KEGG, and MapMan pathway analysis indicated that many DEGs are involved in primary metabolism, including cell wall metabolism and lipid metabolism, while other DEGs are associated with signaling pathways and secondary metabolism, including flavonoids and phenylpropanoids metabolism. Furthermore, TFs identified in TC1 and TC2 DEGs represented 21 and 40 transcription factor families, respectively. Among them, expression of bHLH, C2H2, ERF, bZIP, GRAS, and MYB TFs changed considerably under Al stress, which suggests that these TFs might play crucial roles in Chinese fir root responses to Al toxicity. These differentially expressed TFs might act in concert with flavonoid and phenylpropanoid pathway genes in fulfilling of key roles in Chinese fir roots responding to Al toxicity.
Collapse
Affiliation(s)
- Zhihui Ma
- Institute for Forest Resources and Environment of Guizhou,Guizhou University,Guiyang 550025, China.
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
62
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
63
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
64
|
Aluminum stress differentially affects physiological performance and metabolic compounds in cultivars of highbush blueberry. Sci Rep 2019; 9:11275. [PMID: 31375763 PMCID: PMC6677737 DOI: 10.1038/s41598-019-47569-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/18/2019] [Indexed: 11/08/2022] Open
Abstract
Aluminum (Al) toxicity is one of the major factors that limit the growth and production of crops in acid soils. Highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Al toxicity regarding root growth and photosynthetic performance were used. In this study, we compared the physiological and metabolic strategies to cope with Al toxicity among the highbush blueberry cultivars [two new ones (Camellia and Cargo) and three established ones (Brigitta (Al-resistant), Star and Duke)]. Aluminum concentration in roots and leaves increased in all cultivars after 24 and 48 h of exposure to Al, but less so in roots of cultivar Camellia and leaves of cultivar Cargo. These two cultivars displayed minor effects of Al exposure in terms of photosynthetic activity in comparison with the established cultivars. Furthermore, Cargo did not vary fluorescence parameters, whereas Camellia exhibited a decrease in effective quantum yield (ΦPSII) and electron transport rate (ETR) and a change in non-photochemical quenching (NPQ) and maximum quantum yield (Fv/Fm) under Al after 48 h. The Al treatment increased total phenols in leaves of Brigitta, Cargo, and Camellia, whereas antioxidant activity increased in Star and Cargo after 48 h. Aluminum exposure decreased malate concentration in roots of all cultivars, but no change was noted in fumarate concentration. The antioxidant activity correlated with photosynthetic performance and the total phenol concentration in the leaves of new cultivars exposed to Al, suggesting enhanced resistance in the short-term experiment. The principal component analysis separated the new from the established cultivars. In conclusion, the new cultivars appear to be more Al-resistant than the established ones, with Star being most Al-sensitive. Regarding the Al-resistance mechanisms of the new cultivars, it is suggested that Camellia could have a root Al-exclusion mechanism under Al toxicity. This mechanism could be explained by low Al concentration in roots, suggesting that this cultivar could exude organic acid, allowing to chelate Al in the rhizosphere. Nonetheless, further researches are needed to confirm this assumption.
Collapse
|
65
|
Li C, Wang P, van der Ent A, Cheng M, Jiang H, Lund Read T, Lombi E, Tang C, de Jonge MD, Menzies NW, Kopittke PM. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. ANNALS OF BOTANY 2019; 123:57-68. [PMID: 30020418 PMCID: PMC6344099 DOI: 10.1093/aob/mcy135] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/16/2018] [Indexed: 05/06/2023]
Abstract
Background and Aims The pathways whereby foliar-applied nutrients move across the leaf surface remain unclear. The aim of the present study was to examine the pathways by which foliar-applied Zn moves across the sunflower (Helianthus annuus) leaf surface, considering the potential importance of the cuticle, stomata and trichomes. Methods Using synchrotron-based X-ray florescence microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS), the absorption of foliar-applied ZnSO4 and nano-ZnO were studied in sunflower. The speciation of Zn was also examined using synchrotron-based X-ray absorption spectroscopy. Key Results Non-glandular trichomes (NGTs) were particularly important for foliar Zn absorption, with Zn preferentially accumulating within trichomes in ≤15 min. The cuticle was also found to have a role, with Zn appearing to move across the cuticle before accumulating in the walls of the epidermal cells. After 6 h, the total Zn that accumulated in the NGTs was approx. 1.9 times higher than in the cuticular tissues. No marked accumulation of Zn was found within the stomatal cavity, probably indicating a limited contribution of the stomatal pathway. Once absorbed, the Zn accumulated in the walls of the epidermal and the vascular cells, and trichome bases of both leaf sides, with the bundle sheath extensions that connected to the trichomes seemingly facilitating this translocation. Finally, the absorption of nano-ZnO was substantially lower than for ZnSO4, with Zn probably moving across the leaf surface as soluble Zn rather than nanoparticles. Conclusions In sunflower, both the trichomes and cuticle appear to be important for foliar Zn absorption.
Collapse
Affiliation(s)
- Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, China
- The University of Queensland, Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia
- Laboratoire Sols et Environnement, Université de Lorraine, France
| | - Miaomiao Cheng
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Haibo Jiang
- University of Western Australia, Centre for Microscopy, Characterization and Analysis, Crawley, WA, Australia
| | - Thea Lund Read
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia, Australia
| | - Caixian Tang
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | | | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
66
|
Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. Legume nodulation: The host controls the party. PLANT, CELL & ENVIRONMENT 2019; 42:41-51. [PMID: 29808564 DOI: 10.1111/pce.13348] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/21/2023]
Abstract
Global demand to increase food production and simultaneously reduce synthetic nitrogen fertilizer inputs in agriculture are underpinning the need to intensify the use of legume crops. The symbiotic relationship that legume plants establish with nitrogen-fixing rhizobia bacteria is central to their advantage. This plant-microbe interaction results in newly developed root organs, called nodules, where the rhizobia convert atmospheric nitrogen gas into forms of nitrogen the plant can use. However, the process of developing and maintaining nodules is resource intensive; hence, the plant tightly controls the number of nodules forming. A variety of molecular mechanisms are used to regulate nodule numbers under both favourable and stressful growing conditions, enabling the plant to conserve resources and optimize development in response to a range of circumstances. Using genetic and genomic approaches, many components acting in the regulation of nodulation have now been identified. Discovering and functionally characterizing these components can provide genetic targets and polymorphic markers that aid in the selection of superior legume cultivars and rhizobia strains that benefit agricultural sustainability and food security. This review addresses recent findings in nodulation control, presents detailed models of the molecular mechanisms driving these processes, and identifies gaps in these processes that are not yet fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Céline Mens
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Huanan Su
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- National Navel Orange Engineering Research Center, College of Life and Environmental Science, Gannan Normal University, Ganzhou, China
| | - Candice H Jones
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Xitong Chu
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
67
|
Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. THE PLANT CELL 2019; 31:250-271. [PMID: 30464035 PMCID: PMC6391703 DOI: 10.1105/tpc.18.00528] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 05/05/2023]
Abstract
Remodeling of auxin distribution during the integration of plant growth responses with the environment requires the precise control of auxin influx and efflux transporters. The plasma membrane-localized PIN-FORMED (PIN) proteins facilitate auxin efflux from cells, and their activity is regulated by reversible phosphorylation. How PIN modulates plant cellular responses to external stresses and whether its activity is coordinated by phospholipids remain unclear. Here, we reveal that, in Arabidopsis (Arabidopsis thaliana), the phosphatidic acid (PA)-regulated PINOID (PID) kinase is a crucial modulator of PIN2 activity and auxin redistribution in response to salt stress. Under salt stress, loss of phospholipase D function impaired auxin redistribution and resulted in markedly reduced primary root growth; these effects were reversed by exogenous PA. The phospholipase D-derived PA interacted with PID and increased PID-dependent phosphorylation of PIN2, which activated auxin efflux and altered auxin accumulation, promoting root growth when exposed to salt stress. Ablation of the PA binding motif not only diminished PID accumulation at the plasma membrane but also abolished PA-promoted PID phosphorylation of PIN2 and its function in coping with salt stress; however, this ablation did not affect inflorescence and cotyledon development or PIN2-dependent gravitropic and halotropic responses. Our data indicate a role for PA in coupling extracellular salt signaling to PID-directed PIN2 phosphorylation and polar auxin transport, highlighting the importance of lipid-protein interactions in the spatiotemporal regulation of auxin signaling.
Collapse
Affiliation(s)
- Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory Centre of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
68
|
Youssef C, Bizet F, Bastien R, Legland D, Bogeat-Triboulot MB, Hummel I. Quantitative dissection of variations in root growth rate: a matter of cell proliferation or of cell expansion? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5157-5168. [PMID: 30053124 PMCID: PMC6184812 DOI: 10.1093/jxb/ery272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid). Exploiting the adventitious rooting capacity of the Populus genus, and using time-lapse imaging under infrared-light, particle image velocimetry, histological analysis, and kinematics, we quantified the cellular processes involved in root growth variation, and analysed the covariation patterns between growth parameters. The rate of cell production by the root apical meristem and the number of dividing cells were estimated in vivo without destructive measurement. We found that the rate of cell division contributed more to the variation in cell production rate than the number of dividing cells. Regardless of the source of variation, the length of the elongation zone was the best proxy for growth rate, summarizing rates of cell production and cell elongation into a single parameter. Our results demonstrate that cell production rate is the main driver of growth rate, whereas elemental elongation rate is a key driver of short-term growth adjustments.
Collapse
Affiliation(s)
- Chvan Youssef
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - François Bizet
- UMR PIAF, INRA, Université Clermont Auvergne, Aubière, France
| | - Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology, University of Konstanz, Konstanz, Germany
| | - David Legland
- UMR Biopolymers, Interactions and Assemblies, INRA, Nantes, France
| | | | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| |
Collapse
|
69
|
Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int J Mol Sci 2018; 19:E3073. [PMID: 30297682 PMCID: PMC6213855 DOI: 10.3390/ijms19103073] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Sang-Hoon Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Hee Chung Ji
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Chris Stephen Jones
- Feed and Forage Biosciences, International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Ki-Won Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| |
Collapse
|
70
|
Lin Q, Zhang L, Riaz M, Zhang M, Xia H, Lv B, Jiang C. "Assessing the potential of biochar and aged biochar to alleviate aluminum toxicity in an acid soil for achieving cabbage productivity". ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:290-295. [PMID: 29890430 DOI: 10.1016/j.ecoenv.2018.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Biochar has a significant effect on alleviating acid soil aluminum (Al) toxicity and promoting plant growth. The potential effects of aged biochar (long-term applied biochar in soil) on soil amendment have attracted increasing attention. Here, the effects of biochar and aged biochar were evaluated through a pot experiment. The seedlings of cabbage were grown in red soil for 45 days with the following four biochar treatments: CK (0% biochar), PB (2% primary biochar), WB (2% water washed biochar) and AB (2% acidulated biochar) to investigate the potential effect of biochar and aged biochar on mitigating red soil aluminum toxicity and improving cabbage growth. Results indicated that biochar increased the content of available potassium, available phosphorus, and organic carbon in red soil and improved cabbage growth. Biochar not only increased the pH of red soil by 0.42 units, but also reduced exchangeable acid and exchangeable hydrogen (H+) content by 52.74% and 2.86% respectively compared with CK. Additionally, the amount of the total active aluminum and exchangeable Al3+ were reduced by 26.74% and 66.09%, respectively. However, water washed biochar and acidulated biochar decreased the effect of relieving the acidity substantially as compared to the primary biochar. Moreover, acidulated biochar treatment increased the Al3+ content by 8.07% and trend of increasing soil available nutrients was declined with aged biochar. Taken together, it is concluded that biochar can reduce aluminum toxicity by increasing pH of acid soil and available nutrients, thus improves cabbage growth. However, aged biochar had a negative effect on aluminum toxicity reduction and acidic soil improvement, thus inhibited plant growth.
Collapse
Affiliation(s)
- Qingyi Lin
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lin Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Zhejiang Agricultural Technology Extension Center, Hangzhou 310020, PR China
| | - Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mengyang Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Bo Lv
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
71
|
Böhlenius H, Asp H, Hjelm K. Differences in Al sensitivity affect establishment of Populus genotypes on acidic forest land. PLoS One 2018; 13:e0204461. [PMID: 30256819 PMCID: PMC6157885 DOI: 10.1371/journal.pone.0204461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022] Open
Abstract
Forest lands hold great potential for Populus plantations, but in native boreal forests, soils normally have low pH and thus higher levels of aluminum ions (Al3+ and hydroxides). Aluminum (Al) is one of the major factors limiting plant growth on these soils by inhibiting root growth, thus reducing water and nutrient uptake and slowing growth. There is a large variation in Al resistance both among and within species. In this study, growth responses of greenhouse-grown hybrid aspen (P. tremula × tremuloides) and poplar (P. trichocarpa hybrids) were monitored in relation to changes in Al concentrations. In quartz sand, hybrid aspen was more tolerant to exogenous application of Al than P. trichocarpa hybrids. This difference in Al-tolerance was further confirmed by hematoxylin staining of the roots, with hybrid aspen displaying less staining after Al treatment than poplar clones. When planted on forest land with low pH, hybrid aspen increased growth after planting and showed low mortality. This was not the case for poplar clones; plant height decreased after planting and mortality increased. Together, our results suggest that differences in initial growth and survival on forest land among hybrid aspen and the tested poplar clones may be connected to differences in Al tolerance. Our findings that staining with hematoxylin can identify Al-tolerant Populus genotypes may help identify Al-tolerant genotypes suitable for forest land.
Collapse
Affiliation(s)
- Henrik Böhlenius
- Swedish University of Agricultural Sciences, Department of Southern Swedish Forest Research Centre, Alnarp, Sweden
- * E-mail:
| | - Håkan Asp
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Alnarp, Sweden
| | - Karin Hjelm
- The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, Svalöv, Sweden
| |
Collapse
|
72
|
Wu L, Yu J, Shen Q, Huang L, Wu D, Zhang G. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genomics 2018; 19:560. [PMID: 30064381 PMCID: PMC6069884 DOI: 10.1186/s12864-018-4953-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Background Barley is relatively sensitive to Aluminum (Al) toxicity among cereal crops, but shows a wide genotypic difference in Al tolerance. The well-known Al-tolerant mechanism in barley is related to Al exclusion mediated by a citrate transporter HvAACT1 (Al-activated citrate transporter 1). A 1-kb insertion in the promoter region of HvAACT1 gene results in a dramatic increase of its expression level, which only occurs in some Al-tolerant cultivars. However, Al-tolerant Tibetan wild barley accession XZ29 did not have the 1-kb insertion. Results We confirmed that the expression of HvAACT1 and secretion of citrate and other organic acids did not explain the difference in Al-tolerant wild barley XZ29 and Al-sensitive cultivated barley Golden Promise. To identify microRNAs (miRNAs) and their target genes responsive to Al stress in barley roots, eight small RNA libraries with two biological replicates from these two genotypes exposed to control and Al-treated conditions were constructed and submitted to deep sequencing. A total of 342 miRNAs were identified in Golden Promise and XZ29, with 296 miRNAs being commonly shared in the two genotypes. Target genes of these miRNAs were obtained through bioinformatics prediction or degradome identification. Comparative analysis detected 50 miRNAs responsive to Al stress, and some of them were found to be exclusively expressed in XZ29 and associated with Al tolerance. Conclusions miRNAs exclusively expressing in the wild barley were identified and found to be associated with Al stress tolerance. The current results provide a model of describing the roles of some special miRNAs associated with Al tolerance in the Tibetan wild barley. Electronic supplementary material The online version of this article (10.1186/s12864-018-4953-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiahua Yu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
73
|
Li X, Li Y, Mai J, Tao L, Qu M, Liu J, Shen R, Xu G, Feng Y, Xiao H, Wu L, Shi L, Guo S, Liang J, Zhu Y, He Y, Baluška F, Shabala S, Yu M. Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport. PLANT PHYSIOLOGY 2018; 177:1254-1266. [PMID: 29784768 PMCID: PMC6053005 DOI: 10.1104/pp.18.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
Boron (B) alleviates aluminum (Al) toxicity in higher plants; however, the underlying mechanisms behind this phenomenon remain unknown. Here, we used bromocresol green pH indicator, noninvasive microtest, and microelectrode ion flux estimation techniques to demonstrate that B promotes root surface pH gradients in pea (Pisum sativum) roots, leading to alkalization in the root transition zone and acidification in the elongation zone, while Al inhibits these pH gradients. B significantly decreased Al accumulation in the transition zone (∼1.0-2.5 mm from the apex) of lateral roots, thereby alleviating Al-induced inhibition of root elongation. Net indole acetic acid (IAA) efflux detected by an IAA-sensitive platinum microelectrode showed that polar auxin transport, which peaked in the root transition zone, was inhibited by Al toxicity, while it was partially recovered by B. Electrophysiological experiments using the Arabidopsis (Arabidopsis thaliana) auxin transporter mutants (auxin resistant1-7; pin-formed2 [pin2]) and the specific polar auxin transporter inhibitor1-naphthylphthalamic acid showed that PIN2-based polar auxin transport is involved in root surface alkalization in the transition zone. Our results suggest that B promotes polar auxin transport driven by the auxin efflux transporter PIN2 and leads to the downstream regulation of the plasma membrane-H+-ATPase, resulting in elevated root surface pH, which is essential to decrease Al accumulation in this Al-targeted apical root zone. These findings provide a mechanistic explanation for the role of exogenous B in alleviation of Al accumulation and toxicity in plants.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yalin Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jingwen Mai
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Lin Tao
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Mei Qu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jiayou Liu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Guilian Xu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yingming Feng
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Hongdong Xiao
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
| | - Lishu Wu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lei Shi
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shaoxue Guo
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jian Liang
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yiyong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7001, Australia
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| |
Collapse
|
74
|
Liu MY, Lou HQ, Chen WW, Piñeros MA, Xu JM, Fan W, Kochian LV, Zheng SJ, Yang JL. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. PLANT, CELL & ENVIRONMENT 2018; 41:809-822. [PMID: 29346835 DOI: 10.1111/pce.13150] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 05/25/2023]
Abstract
Aluminum (Al)-induced organic acid secretion from the root apex is an important Al resistance mechanism. However, it remains unclear how plants fine-tune root organic acid secretion which can contribute significantly to the loss of fixed carbon from the plant. Here, we demonstrate that Al-induced citrate secretion from the rice bean root apex is biphasic, consisting of an early phase with low secretion and a later phase of large citrate secretion. We isolated and characterized VuMATE2 as a possible second citrate transporter in rice bean functioning in tandem with VuMATE1, which we previously identified. The time-dependent kinetics of VuMATE2 expression correlates well with the kinetics of early phase root citrate secretion. Ectopic expression of VuMATE2 in Arabidopsis resulted in increased root citrate secretion and Al resistance. Electrophysiological analysis of Xenopus oocytes expressing VuMATE2 indicated VuMATE2 mediates anion efflux. However, the expression regulation of VuMATE2 differs from VuMATE1. While a protein translation inhibitor suppressed Al-induced VuMATE1 expression, it releases VuMATE2 expression. Yeast one-hybrid assays demonstrated that a previously identified transcription factor, VuSTOP1, interacts with the VuMATE2 promoter at a GGGAGG cis-acting motif. Thus, we demonstrate that plants adapt to Al toxicity by fine-tuning root citrate secretion with two separate root citrate transport systems.
Collapse
Affiliation(s)
- Mei Ya Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Miguel A Piñeros
- Robert Holley Center for Agriculture and Health (USDA-ARS), Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
75
|
Hu H, He J, Zhao J, Ou X, Li H, Ru Z. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Genes Genomics 2018; 40:1199-1211. [PMID: 30315523 DOI: 10.1007/s13258-018-0680-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.
Collapse
Affiliation(s)
- Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center of Crop Genome Editing, Xinxiang, 453003, Henan, China.
| | - Jie He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Junjie Zhao
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Hongmin Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center of Crop Genome Editing, Xinxiang, 453003, Henan, China
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
| |
Collapse
|
76
|
Xu S, Hu C, Tan Q, Qin S, Sun X. Subcellular distribution of molybdenum, ultrastructural and antioxidative responses in soybean seedlings under excess molybdenum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:75-80. [PMID: 29223849 DOI: 10.1016/j.plaphy.2017.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Some studies have shown that excess molybdenum (Mo) could produce toxic effects on plants. However, little is known about the subcellular distribution of Mo and cell ultrastructure within plants under excess Mo stress. Here, we comprehensively analyzed the changes of Mo distribution in subcellular fractions, cell ultrastructure and antioxidant enzymes in leaves and roots of soybean seedlings in response to excess Mo stress. The results showed that roots exhibited higher Mo accumulation than leaves at the 100 mg L-1 Mo level, about 38.58-, 171.48- and 52.99-fold higher in cell walls, cell organelles and soluble fractions, respectively. Subcellular fractionations of Mo-containing tissues indicated that approximately 90% of Mo was accumulated in the soluble fractions and cell walls of the roots and leaves, and soluble fractions (accumulated 66.3-72.2% Mo) might serve as an effective storage site for excess Mo. Furthermore, excess Mo caused ultrastructural alterations in roots and leaves of soybean seedlings, leading to structural abnormality of chloroplast in leaf cells, plasmolysis, cellular deformity, vacuole enlargement and the swelling of cell wall and cytoplasm in root cells. Meanwhile, under excess Mo stress, the activity of POD, CAT and APX enzymes in roots was 1.43, 2.35 and 1.23 times that under standard Mo condition, while that of SOD and CAT enzymes in leaves was 1.23 and 1.94 times, respectively. This study provided novel insights into the mechanisms of excess Mo toxicity in soybean seedlings.
Collapse
Affiliation(s)
- Shoujun Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China; Micro-element Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China; Micro-element Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China; Micro-element Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyu Qin
- College of Resource and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China; Micro-element Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
77
|
Blamey FPC, McKenna BA, Li C, Cheng M, Tang C, Jiang H, Howard DL, Paterson DJ, Kappen P, Wang P, Menzies NW, Kopittke PM. Manganese distribution and speciation help to explain the effects of silicate and phosphate on manganese toxicity in four crop species. THE NEW PHYTOLOGIST 2018; 217:1146-1160. [PMID: 29091286 DOI: 10.1111/nph.14878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Soil acidity and waterlogging increase manganese (Mn) in leaf tissues to potentially toxic concentrations, an effect reportedly alleviated by increased silicon (Si) and phosphorus (P) supply. Effects of Si and P on Mn toxicity were studied in four plant species using synchrotron-based micro X-ray fluorescence (μ-XRF) and nanoscale secondary ion mass spectrometry (NanoSIMS) to determine Mn distribution in leaf tissues and using synchrotron-based X-ray absorption spectroscopy (XAS) to measure Mn speciation in leaves, stems and roots. A concentration of 30 μM Mn in solution was toxic to cowpea and soybean, with 400 μM Mn toxic to sunflower but not white lupin. Unexpectedly, μ-XRF analysis revealed that 1.4 mM Si in solution decreased Mn toxicity symptoms through increased Mn localization in leaf tissues. NanoSIMS showed Mn and Si co-localized in the apoplast of soybean epidermal cells and basal cells of sunflower trichomes. Concomitantly, added Si decreased oxidation of Mn(II) to Mn(III) and Mn(IV). An increase from 5 to 50 μM P in solution changed some Mn toxicity symptoms but had little effect on Mn distribution or speciation. We conclude that Si increases localized apoplastic sorption of Mn in cowpea, soybean and sunflower leaves thereby decreasing free Mn2+ accumulation in the apoplast or cytoplasm.
Collapse
Affiliation(s)
- F Pax C Blamey
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Cui Li
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Miaomiao Cheng
- Centre for AgriBioscience, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Haibo Jiang
- Centre for Microscopy, Characterization and Analysis, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | - Peter Kappen
- Australian Synchrotron, Clayton, Vic., 3168, Australia
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
78
|
Zhang Y, Guo J, Chen M, Li L, Wang L, Huang CF. The Cell Cycle Checkpoint Regulator ATR Is Required for Internal Aluminum Toxicity-Mediated Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:118. [PMID: 29491872 PMCID: PMC5817422 DOI: 10.3389/fpls.2018.00118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/22/2018] [Indexed: 05/17/2023]
Abstract
Aluminum (Al) can target multiple sites of root cells for toxicity, including the cell wall, the plasma membrane and symplastic components. Previous work revealed that the cell cycle checkpoint regulator (ATR) Ataxia Telangiectasia-mutated and Rad3-related is required for Al toxicity-induced root growth inhibition in als3 and that the symplastic component DNA is an important target site of Al for the toxicity. However, whether monitoring DNA integrity through ATR-regulated pathway is required for Al-induced root growth inhibition in other Al-sensitive mutants remains unknown. In this study, we demonstrated that the atr mutation could also rescue the Al hypersensitivity and Al-induced cell cycle arrest in star1, which supports the hypothesis that ALS3 and STAR1 function together to be involved in the detoxification of Al in Arabidopsis. However, mutation of ATR could not rescue the Al-sensitive phenotype of almt1 or stop1, both of which are defective in external detoxification mechanisms of Al. We further showed that the Al hypersensitivity and Al-induced quiescent center (QC) differentiation in als1 could also be rescued by the atr mutation. Therefore, our results suggest that ATR-regulated pathway is involved in the modulation of internal Al toxicity-mediated root growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinliang Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mo Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao-Feng Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Chao-Feng Huang,
| |
Collapse
|
79
|
Jaiswal SK, Naamala J, Dakora FD. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. BIOLOGY AND FERTILITY OF SOILS 2018; 54:309-318. [PMID: 31258230 PMCID: PMC6560468 DOI: 10.1007/s00374-018-1262-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 05/18/2023]
Abstract
Recent findings on the effect of aluminium (Al) on the functioning of legumes and their associated microsymbionts are reviewed here. Al represents 7% of solid matter in the Earth's crust and is an important abiotic factor that alters microbial and plant functioning at very early stages. The trivalent Al (Al3+) dominates at pH < 5 in soils and becomes a constraint to legume productivity through its lethal effect on rhizobia, the host plant and their interaction. Al3+ has lethal effects on many aspects of the rhizobia/legume symbiosis, which include a decrease in root elongation and root hair formation, lowered soil rhizobial population, and suppression of nitrogen metabolism involving nitrate reduction, nitrite reduction, nitrogenase activity and the functioning of uptake of hydrogenases (Hup), ultimately impairing the N2 fixation process. At the molecular level, Al is known to suppress the expression of nodulation genes in symbiotic rhizobia, as well as the induction of genes for the formation of hexokinase, phosphodiesterase, phosphooxidase and acid/alkaline phosphatase. Al toxicity can also induce the accumulation of reactive oxygen species and callose, in addition to lipoperoxidation in the legume root elongation zone. Al tolerance in plants can be achieved through over-expression of citrate synthase gene in roots and/or the synthesis and release of organic acids that reverse Al-induced changes in proteins, as well as metabolic regulation by plant-secreted microRNAs. In contrast, Al tolerance in symbiotic rhizobia is attained via the production of exopolysaccharides, the synthesis of siderophores that reduce Al uptake, induction of efflux pumps resistant to heavy metals and the expression of metal-inducible (dmeRF) gene clusters in symbiotic Rhizobiaceae. In soils, Al toxicity is usually ameliorated through liming, organic matter supply and use of Al-tolerant species. Our current understanding of crop productivity in high Al soils suggests that a much greater future accumulation of Al is likely to occur in agricultural soils globally if crop irrigation is increased under a changing climate.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Judith Naamala
- Department of Crop Sciences, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
80
|
Kopittke PM, Gianoncelli A, Kourousias G, Green K, McKenna BA. Alleviation of Al Toxicity by Si Is Associated with the Formation of Al-Si Complexes in Root Tissues of Sorghum. FRONTIERS IN PLANT SCIENCE 2017; 8:2189. [PMID: 29312419 PMCID: PMC5742621 DOI: 10.3389/fpls.2017.02189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Silicon is reported to reduce the toxic effects of Al on root elongation but the in planta mechanism by which this occurs remains unclear. Using seedlings of soybean (Glycine max) and sorghum (Sorghum bicolor), we examined the effect of up to 2 mM Si on root elongation rate (RER) in Al-toxic nutrient solutions. Synchrotron-based low energy X-ray fluorescence (LEXRF) was then used for the in situ examination of the distribution of Al and Si within cross-sections cut from the apical tissues of sorghum roots. The addition of Si potentially increased RER in Al-toxic solutions, with RER being up to ca. 0.3 mm h-1 (14%) higher for soybean and ca. 0.2 mm h-1 (17%) higher for sorghum relative to solutions without added Si. This improvement in RER could not be attributed to a change in Al-chemistry of the bulk nutrient solution, nor was it due to a change in the concentration of Al within the apical (0-10 mm) root tissues. Using LEXRF to examine sorghum, it was demonstrated that in roots exposed to both Al and Si, much of the Al was co-located with Si in the mucigel and outer apoplast. These observations suggest that Si reduces the toxicity of Al in planta through formation of Al-Si complexes in mucigel and outer cellular tissues, thereby decreasing the binding of Al to the cell wall where it is known to inhibit wall loosening as required for cell elongation.
Collapse
Affiliation(s)
- Peter M. Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Brigid A. McKenna
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
81
|
Sekine R, Moore KL, Matzke M, Vallotton P, Jiang H, Hughes GM, Kirby JK, Donner E, Grovenor CRM, Svendsen C, Lombi E. Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS NANO 2017; 11:10894-10902. [PMID: 29061049 DOI: 10.1021/acsnano.7b04556] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Increasing consumer use of engineered nanomaterials has led to significantly increased efforts to understand their potential impact on the environment and living organisms. Currently, no individual technique can provide all the necessary information such as their size, distribution, and chemistry in complex biological systems. Consequently, there is a need to develop complementary instrumental imaging approaches that provide enhanced understanding of these "bio-nano" interactions to overcome the limitations of individual techniques. Here we used a multimodal imaging approach incorporating dark-field light microscopy, high-resolution electron microscopy, and nanoscale secondary ion mass spectrometry (NanoSIMS). The aim was to gain insight into the bio-nano interactions of surface-functionalized silver nanoparticles (Ag-NPs) with the green algae Raphidocelis subcapitata, by combining the fidelity, spatial resolution, and elemental identification offered by the three techniques, respectively. Each technique revealed that Ag-NPs interact with the green algae with a dependence on the size (10 nm vs 60 nm) and surface functionality (tannic acid vs branched polyethylenimine, bPEI) of the NPs. Dark-field light microscopy revealed the presence of strong light scatterers on the algal cell surface, and SEM imaging confirmed their nanoparticulate nature and localization at nanoscale resolution. NanoSIMS imaging confirmed their chemical identity as Ag, with the majority of signal concentrated at the cell surface. Furthermore, SEM and NanoSIMS provided evidence of 10 nm bPEI Ag-NP internalization at higher concentrations (40 μg/L), correlating with the highest toxicity observed from these NPs. This multimodal approach thus demonstrated an effective approach to complement dose-response studies in nano-(eco)-toxicological investigations.
Collapse
Affiliation(s)
- Ryo Sekine
- Future Industries Institute, University of South Australia , Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
- Centre for Ecology and Hydrology , Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Katie L Moore
- Department of Materials, The University of Oxford , Parks Road, Oxford, OX1 3PH, United Kingdom
- School of Materials, The University of Manchester , Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Marianne Matzke
- Centre for Ecology and Hydrology , Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Pascal Vallotton
- Institute für Biochemie, ETH Zurich , Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Haibo Jiang
- Department of Materials, The University of Oxford , Parks Road, Oxford, OX1 3PH, United Kingdom
- CSIRO Land and Water, Environmental Contaminant Mitigation and Biotechnology Program , Waite Campus, Waite Road, Perth, SA 5064, Australia
| | - Gareth M Hughes
- Department of Materials, The University of Oxford , Parks Road, Oxford, OX1 3PH, United Kingdom
| | - Jason K Kirby
- CSIRO Land and Water, Environmental Contaminant Mitigation and Biotechnology Program , Waite Campus, Waite Road, Perth, SA 5064, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia , Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chris R M Grovenor
- Department of Materials, The University of Oxford , Parks Road, Oxford, OX1 3PH, United Kingdom
| | - Claus Svendsen
- Centre for Ecology and Hydrology , Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Enzo Lombi
- Future Industries Institute, University of South Australia , Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
82
|
Malucelli E, Procopio A, Fratini M, Gianoncelli A, Notargiacomo A, Merolle L, Sargenti A, Castiglioni S, Cappadone C, Farruggia G, Lombardo M, Lagomarsino S, Maier JA, Iotti S. Single cell versus large population analysis: cell variability in elemental intracellular concentration and distribution. Anal Bioanal Chem 2017; 410:337-348. [PMID: 29150807 DOI: 10.1007/s00216-017-0725-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
The quantification of elemental concentration in cells is usually performed by analytical assays on large populations missing peculiar but important rare cells. The present article aims at comparing the elemental quantification in single cells and cell population in three different cell types using a new approach for single cells elemental analysis performed at sub-micrometer scale combining X-ray fluorescence microscopy and atomic force microscopy. The attention is focused on the light element Mg, exploiting the opportunity to compare the single cell quantification to the cell population analysis carried out by a highly Mg-selective fluorescent chemosensor. The results show that the single cell analysis reveals the same Mg differences found in large population of the different cell strains studied. However, in one of the cell strains, single cell analysis reveals two cells with an exceptionally high intracellular Mg content compared with the other cells of the same strain. The single cell analysis allows mapping Mg and other light elements in whole cells at sub-micrometer scale. A detailed intensity correlation analysis on the two cells with the highest Mg content reveals that Mg subcellular localization correlates with oxygen in a different fashion with respect the other sister cells of the same strain. Graphical abstract Single cells or large population analysis this is the question!
Collapse
Affiliation(s)
- Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.
| | - Alessandra Procopio
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy
| | - Michela Fratini
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale, 1, 00184, Roma, Italy.,CNR-Nanotec, c/o Department of Physics University Sapienza, Rome, Italy
| | | | - Andrea Notargiacomo
- Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnology, 00156, Rome, Italy
| | - Lucia Merolle
- Arcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157, Milan, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.,National Institute of Biostructures and Biosystems, 00136, Rome, Italy
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | | | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157, Milan, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.,National Institute of Biostructures and Biosystems, 00136, Rome, Italy
| |
Collapse
|
83
|
Kopittke PM, Wang P, Lombi E, Donner E. Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil-Plant Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1175-1189. [PMID: 29293828 DOI: 10.2134/jeq2016.09.0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Elevated levels of trace metal(loid)s reduce plant growth, both in soils contaminated by industrial activities and in acid agricultural soils. Although the adverse effects of trace metal(loid)s have long been recognized, there remains much unknown both about their behavior in soils, their toxicity to plants, and the mechanisms that plants use to tolerate elevated concentrations. Synchrotron-based approaches are being utilized increasingly in soil-plant systems to examine toxic metal(loid)s. In the present review, brief consideration is given to the theory of synchrotron radiation. Thereafter, we review the use of synchrotron-based approaches for the examination of various trace metal(loid)s in soil-plant systems, including aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, and cadmium. Within the context of this review, X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (μ-XRF) are of particular interest. These techniques can provide in situ analyses of the distribution and speciation of metal(loid)s in soil-plant systems. The information presented here serves not only to understand the behavior of trace metals in soil-plant systems, but also to provide examples of the potential applications of synchrotron radiation that can be used to advantage in other studies.
Collapse
|
84
|
Abel S. Phosphate scouting by root tips. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:168-177. [PMID: 28527590 DOI: 10.1016/j.pbi.2017.04.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 05/21/2023]
Abstract
Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany; Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
85
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
86
|
Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant's tolerance to aluminum stress. PLANT MOLECULAR BIOLOGY 2017; 95:157-168. [PMID: 28815457 DOI: 10.1007/s11103-017-0644-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 08/02/2017] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE AtPrx64 is one of the peroxidases gene up-regulated in Al stress and has some functions in the formation of plant second cell wall. Its overexpression may improve plant tolerance to Al by some ways. Studies on its function under Al stress may help us to understand the mechanism of plant tolerance to Al stress. In Arabidopsis thaliana, the expressions of some genes (AtPrxs) encoding class III plant peroxidases have been found to be either up-regulated or down-regulated under aluminum (Al) stress. Among 73 genes that encode AtPrxs in Arabidopsis, AtPrx64 is always up-regulated by Al stress, suggesting this gene plays protective roles in response to such stress. In this study, transgenic tobacco plants were generated to examine the effects of overexpressing of AtPrx64 gene on the tolerance to Al stress. The results showed that overexpression of AtPrx64 gene increased the root growth and reduced the accumulation of Al and ROS in the roots. Compared with wild type controls, transgenic tobaccos had much less soluble proteins and malondialdehyde in roots and much more root citrate exudation. The activity of plasma membrane (PM) H+-ATPase, the phosphorylation of PM H+-ATPase and its interaction with 14-3-3 proteins increased in transgenic tobaccos; moreover, the content of lignin in root tips also increased. Taken together, these results showed that overexpression of AtPrx64 gene might enhance the tolerance of tobacco to Al stress.
Collapse
Affiliation(s)
- Yuanshuang Wu
- Faculty of Environmental Science and Engineering, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhili Yang
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jingyi How
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huini Xu
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
| | - Limei Chen
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Chenggong Campus, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
87
|
Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H. Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:1358. [PMID: 28848571 PMCID: PMC5550694 DOI: 10.3389/fpls.2017.01358] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/20/2017] [Indexed: 05/08/2023]
Abstract
Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSIS THALIANA ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1), which encodes an Al-activated malate transporter, revealed that the Al-inducible expression is regulated by a SENSITIVE TO PROTON RHIXOTOXICITY 1 (STOP1) zinc-finger transcription factor. This system, which involves STOP1 and organic acid transporters, is conserved in diverse plant species. The expression of AtALMT1 is also upregulated by several phytohormones and hydrogen peroxide, suggesting there is crosstalk among the signals involved in the transcriptional regulation of AtALMT1. Additionally, phytohormones and reactive oxygen species (ROS) activate various transcriptional responses, including the expression of genes related to increased Al tolerance or the suppression of root growth under Al stress conditions. For example, Al suppressed root growth due to abnormal accumulation of auxin and cytokinin. It activates transcription of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and other phytohormone responsive genes in distal transition zone, which causes suppression of root elongation. On the other hand, overexpression of Al inducible genes for ROS-detoxifying enzymes such as GLUTATHIONE-S-TRANSFERASE, PEROXIDASE, SUPEROXIDE DISMUTASE enhances Al resistance in several plant species. We herein summarize the complex transcriptional regulation of an Al-inducible genes affected by STOP1, phytohormones, and ROS.
Collapse
Affiliation(s)
| | - Ayan Sadhukhan
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | | | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | - Sanjib K. Panda
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
- Faculty of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| |
Collapse
|
88
|
Kopittke PM, McKenna BA, Karunakaran C, Dynes JJ, Arthur Z, Gianoncelli A, Kourousias G, Menzies NW, Ryan PR, Wang P, Green K, Blamey FPC. Aluminum Complexation with Malate within the Root Apoplast Differs between Aluminum Resistant and Sensitive Wheat Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:1377. [PMID: 28824696 PMCID: PMC5541250 DOI: 10.3389/fpls.2017.01377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/14/2023]
Abstract
In wheat (Triticum aestivum), it is commonly assumed that Al is detoxified by the release of organic anions into the rhizosphere, but it is also possible that detoxification occurs within the apoplast and symplast of the root itself. Using Al-resistant (ET8) and Al-sensitive (ES8) near-isogenic lines of wheat, we utilized traditional and synchrotron-based approaches to provide in situ analyses of the distribution and speciation of Al within root tissues. Some Al appeared to be complexed external to the root, in agreement with the common assumption. However, root apical tissues of ET8 accumulated four to six times more Al than ES8 when exposed to Al concentrations that reduce root elongation rate by 50% (3.5 μM Al for ES8 and 50 μM for ET8). Furthermore, in situ analyses of ET8 root tissues indicated the likely presence of Al-malate and other forms of Al, predominantly within the apoplast. To our knowledge, this is the first time that X-ray absorption near edge structure analyses have been used to examine the speciation of Al within plant tissues. The information obtained in the present study is important in developing an understanding of the underlying physiological mode of action for improved root growth in systems with elevated soluble Al.
Collapse
Affiliation(s)
- Peter M. Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Brigid A. McKenna
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | | | | | | | | | | | - Neal W. Menzies
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | | | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China
- Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, BrisbaneQLD, Australia
| | - F. P. C. Blamey
- School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
89
|
Plant cell wall signalling and receptor-like kinases. Biochem J 2017; 474:471-492. [PMID: 28159895 DOI: 10.1042/bcj20160238] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.
Collapse
|
90
|
Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B, Hayashi KI, Zhang X, Zhao Z, De Smet I, Ding Z. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 2017; 18:1213-1230. [PMID: 28600354 DOI: 10.15252/embr.201643806] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022] Open
Abstract
Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al-induced auxin signaling. Al stress triggers a local cytokinin response in the root-apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up-regulated specifically in the root-apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum-induced root growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Bing Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Wenjing Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Bruno Müller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| |
Collapse
|
91
|
Li XW, Liu JY, Fang J, Tao L, Shen RF, Li YL, Xiao HD, Feng YM, Wen HX, Guan JH, Wu LS, He YM, Goldbach HE, Yu M. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea ( Pisum sativum) by Interacting with Cell Wall Pectins. FRONTIERS IN PLANT SCIENCE 2017; 8:742. [PMID: 28533794 PMCID: PMC5421198 DOI: 10.3389/fpls.2017.00742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/20/2017] [Indexed: 05/23/2023]
Abstract
Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings.
Collapse
Affiliation(s)
- Xue Wen Li
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Jia You Liu
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Jing Fang
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Lin Tao
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ya Lin Li
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hong Dong Xiao
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Ying Ming Feng
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Hai Xiang Wen
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Jia Hua Guan
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Li Shu Wu
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Yong Ming He
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| | - Heiner E. Goldbach
- Plant Nutrition-Institute of Crop Science and Resource Conservation, University of BonnBonn, Germany
| | - Min Yu
- Department of Horticulture, School of Food Science and Engineering, School of Life Science and Engineering, Foshan UniversityGuangdong, China
| |
Collapse
|
92
|
Geng X, Horst WJ, Golz JF, Lee JE, Ding Z, Yang ZB. LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:491-504. [PMID: 28181322 DOI: 10.1111/tpj.13506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 05/24/2023]
Abstract
A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls.
Collapse
Affiliation(s)
- Xiaoyu Geng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover, 30419, Germany
| | - John F Golz
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
93
|
Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. PLANT & CELL PHYSIOLOGY 2017; 58:426-439. [PMID: 28064248 DOI: 10.1093/pcp/pcw211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
High-throughput small RNA sequencing has identified several potential aluminum (Al)-responsive microRNAs (miRNAs); however, their regulatory role remains unknown. Here, we identified two miR393 family members in barley, and confirmed two target genes-HvTIR1 and HvAFB-through a modified form of 5'-RACE (rapid amplification of cDNA ends) as well as degradome data analysis. Furthermore, we investigated the biological function of the miR393/target module in root development and its Al stress response. The investigation showed that miR393 affected root growth and adventitious root number by altering auxin sensitivity. Al3+ exposure suppressed miR393 expression in root apex, while overexpression of miR393 counteracted Al-induced inhibition of root elongation and alleviated reactive oxygen species (ROS)-induced cell death. Target mimic (MIM393)-mediated inhibition of miR393's activity enhanced root sensitivity to Al toxicity. We also confirmed that auxin enhanced Al-induced root growth inhibition in barley via application of exogenous 1-naphthaleneacetic acid (NAA), and the expression of auxin-responsive genes in the root apex was induced upon Al treatment. Overexpression of miR393 attenuated the effect of exogenous NAA on Al-induced root growth inhibition, and down-regulated the expression of auxin-responsive genes under Al stress, implying that miR393 regulates root sensitivity to Al through the alteration of auxin signaling output in barley. Therefore, these data indicate that miR393 acts as an integrator of environmental cues in auxin signaling, and suggest a new strategy to improve plant resistance to Al toxicity.
Collapse
Affiliation(s)
- Bin Bai
- Laboratory of Plant-Animal Interactions, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China
- Yunnan Forestry Technological College, Kunming, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhanghui Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ning Hou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhui Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Muyuan Zhu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ning Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
94
|
Yang ZB, He C, Ma Y, Herde M, Ding Z. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition. PLANT PHYSIOLOGY 2017; 173:1420-1433. [PMID: 27932419 PMCID: PMC5291015 DOI: 10.1104/pp.16.01756] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 05/04/2023]
Abstract
Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress.
Collapse
|
95
|
Kusunoki K, Nakano Y, Tanaka K, Sakata Y, Koyama H, Kobayashi Y. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:249-263. [PMID: 27861992 DOI: 10.1111/pce.12866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 05/10/2023]
Abstract
Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance.
Collapse
Affiliation(s)
- Kazutaka Kusunoki
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Nakano
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yoichi Sakata
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
96
|
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. FRONTIERS IN PLANT SCIENCE 2017; 8:1767. [PMID: 29075280 PMCID: PMC5643487 DOI: 10.3389/fpls.2017.01767] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONACYT-Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, La Piedad, Mexico
| | - Camilo Escalante-Magaña
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Manuel Martínez-Estévez,
| |
Collapse
|
97
|
McKenna BA, Wehr JB, Mikkelsen D, Blamey FPC, Menzies NW. Aluminium effects on mechanical properties of cell wall analogues. PHYSIOLOGIA PLANTARUM 2016; 158:382-388. [PMID: 27213484 DOI: 10.1111/ppl.12472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Aluminium (Al) toxicity adversely impacts plant productivity in acid soils by restricting root growth and although several mechanisms are involved the physiological basis of decreased root elongation remains unclear. Understanding the primary mechanisms of Al rhizotoxicity is hindered due to the rapid effects of soluble Al on root growth and the close proximity of many cellular components within the cell wall, plasma membrane, cytosol and nucleus with which Al may react. To overcome some of these difficulties, we report on a novel method for investigating Al interactions with Komagataeibacter xylinus bacterial cellulose (BC)-pectin composites as cell wall analogues. The growth of K. xylinus in the presence of various plant cell wall polysaccharides, such as pectin, has provided a unique in vitro model system with which to investigate the interactions of Al with plant cell wall polysaccharides. The BC-pectin composites reacted in a similar way with Al as do plant cell walls, providing insights into the effects of Al on the mechanical properties of the BC-pectin composites as cell wall analogues. Our findings indicated that there were no significant effects of Al (4-160 μM) on the tensile stress, tensile strain or Young's modulus of the composites. This finding was consistent with cellulose, not pectin, being the major load bearing component in BC-pectin composites, as is also the case in plant cell walls.
Collapse
Affiliation(s)
- Brigid A McKenna
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland, 4072, Australia
| | - J Bernhard Wehr
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland, 4072, Australia
| | - Deirdre Mikkelsen
- The University of Queensland, ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, Queensland, 4072, Australia
| | - F Pax C Blamey
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland, 4072, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
98
|
Liu S, Gao H, Wu X, Fang Q, Chen L, Zhao FJ, Huang CF. Isolation and Characterization of an Aluminum-resistant Mutant in Rice. RICE (NEW YORK, N.Y.) 2016; 9:60. [PMID: 27837430 PMCID: PMC5106411 DOI: 10.1186/s12284-016-0132-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 10/27/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aluminum (Al) toxicity represents a major constraint for crop production on acid soils. Rice is a high Al-resistant plant species among small-grain cereals, but its molecular mechanisms of Al resistance are not fully understood. We adopted a forward genetic screen strategy to uncover the Al-resistance mechanisms in rice. In this study, we screened an ethylmethylsulfone (EMS)-mutagenized library to isolate and characterize mutants with altered sensitivity to Al in rice. RESULTS Treatment of an Al-intolerant indica variety Kasalath with 20 μM Al induced root swelling. This phenotype could be suppressed by the addition of aminoethoxyvinylglycine (AVG, an ethylene synthesis inhibitor), suggesting that increased production of ethylene is responsible for the root swelling under Al stress. By utilizing the root swelling as an indicator, we developed a highly effective method to screen Al-sensitive or -resistant mutants in rice. Through screening of ~5000 M2 lines, we identified 10 Al-sensitive mutants and one Al-resistant mutant ral1 (resistance to aluminum 1). ral1 mutant showed short root phenotype under normal growth condition, which was attributed to reduced cell elongation in the mutant. A dose-response experiment revealed that ral1 mutant was more resistant to Al than wild-type (WT) at all Al concentrations tested. The mutant was also more resistant to Al when grown in an acid soil. The mutant accumulated much lower Al in the root tips (0-1 cm) than WT. The mutant contained less Al in the cell wall of root tips than WT, whereas Al concentration in the cell sap was similar between WT and the mutant. In addition to Al, the mutant was also more resistant to Cd than WT. Quantitative RT-PCR analysis showed that the expression levels of known Al-resistance genes were not increased in the mutant compared to WT. Genetic analysis indicated that the Al-resistance phenotype in ral1 mutant was controlled by a single recessive gene mapped on the long arm of chromosome 6. CONCLUSIONS We have developed a highly efficient method for the screening of rice mutants with altered Al sensitivity. We identified a novel mutant ral1 resistant to Al by this screening. The increased resistance of ral1 to Al toxicity is caused by the reduced Al binding to the cell wall of root tips and the responsible gene is mapped on the long arm of chromosome 6.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huiling Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoyan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiu Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
99
|
Kopittke PM. Role of phytohormones in aluminium rhizotoxicity. PLANT, CELL & ENVIRONMENT 2016; 39:2319-28. [PMID: 27352002 DOI: 10.1111/pce.12786] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of soluble aluminium (Al) reduce root growth in acid soils, but much remains unknown regarding the toxicity of this Al as well as the mechanisms by which plants respond. This review examines changes in phytohormones in Al-stressed plants. Al often results in a rapid 'burst' of ethylene in root apical tissues within 15-30 min, with this regulating an increase in auxin. This production of ethylene and auxin seems to be a component of a plant-response to toxic Al, resulting in cell wall modification or regulation of organic acid release. There is also evidence of a role of auxin in the expression of Al toxicity itself, with Al decreasing basipetal transport of auxin, thereby potentially decreasing wall loosening as required for elongation. Increasingly, changes in abscisic acid in root apices also seem to be involved in plant-responses to toxic Al. Changes in cytokinins, gibberellins and jasmonates following exposure to Al are also examined, although little information is available. Finally, although not a phytohormone, concentrations of nitric oxide change rapidly in Al-exposed tissues. The information presented in this review will assist in focusing future research efforts in examining the importance of phytohormones in plant tissues exposed to toxic levels of Al.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
100
|
Rao IM, Miles JW, Beebe SE, Horst WJ. Root adaptations to soils with low fertility and aluminium toxicity. ANNALS OF BOTANY 2016; 118:593-605. [PMID: 27255099 PMCID: PMC5055624 DOI: 10.1093/aob/mcw073] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 03/01/2016] [Indexed: 05/21/2023]
Abstract
Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. Scope In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Conclusions Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop-livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability.
Collapse
Affiliation(s)
- Idupulapati M. Rao
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - John W. Miles
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - Walter J. Horst
- Leibniz University of Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|