51
|
Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas JL, Chardot T, Gallois JL, D'Andrea S. PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. THE PLANT CELL 2018; 30:2116-2136. [PMID: 30087208 PMCID: PMC6181022 DOI: 10.1105/tpc.18.00275] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 05/19/2023]
Abstract
Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that Arabidopsis thaliana oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown. Here, we report that PUX10, a member of the plant UBX-domain containing (PUX) protein family, is an integral LD protein that associates with a subpopulation of LDs during seed germination. In pux10 mutant seedlings, PUX10 deficiency impaired the degradation of ubiquitinated oleosins and prevented the extraction of ubiquitinated oleosins from LDs. We also showed that PUX10 interacts with ubiquitin and CDC48A, the AAA ATPase Cell Division Cycle 48, through its UBA and UBX domains, respectively. Collectively, these results strongly suggest that PUX10 is an adaptor recruiting CDC48A to ubiquitinated oleosins, thus facilitating the dislocation of oleosins from LDs by the segregase activity of CDC48A. We propose that PUX10 and CDC48A are core components of a LD-associated degradation machinery, which we named the LD-associated degradation system. Importantly, PUX10 is also the first determinant of a LD subpopulation described in plants, suggesting functional differentiation of LDs in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Carine Deruyffelaere
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Zita Purkrtova
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Bouchez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sabine D'Andrea
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
52
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
53
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
54
|
Yurchenko O, Kimberlin A, Mehling M, Koo AJ, Chapman KD, Mullen RT, Dyer JM. Response of high leaf-oil Arabidopsis thaliana plant lines to biotic or abiotic stress. PLANT SIGNALING & BEHAVIOR 2018; 13:e1464361. [PMID: 29701541 PMCID: PMC6103283 DOI: 10.1080/15592324.2018.1464361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Recent studies have shown that it is possible to engineer substantial increases in triacylglycerol (TAG) content in plant vegetative biomass, which offers a novel approach for increasing the energy density of food, feed, and bioenergy crops or for creating a sink for the accumulation of unusual, high-value fatty acids. However, whether or not these changes in lipid metabolism affect plant responses to biotic and/or abiotic stresses is an open question. Here we show that transgenic Arabidopsis thaliana plant lines engineered for elevated leaf oil content, as well as lines engineered for accumulation of unusual conjugated fatty acids in leaf oil, had similar short-term responses to heat stress (e.g., 3 days at 37°C) as wild-type plants, including a reduction in polyunsaturated fatty acid (PUFA)-containing polar lipids and an increase in PUFA-containing neutral lipids. At extended time periods (e.g., 14 days at 37°C), however, plant lines containing accumulated conjugated fatty acids displayed earlier senescence and plant death. Further, no-choice feeding studies demonstrated that plants with the highest leaf oil content generated cabbage looper (Trichoplusia ni) insects with significantly heavier body weights. Taken together, these results suggest that biotic and abiotic responses will be important considerations when developing and deploying high-oil-biomass crops in the field.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Marina Mehling
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Abraham J. Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kent D. Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - John M. Dyer
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| |
Collapse
|
55
|
Laibach N, Schmidl S, Müller B, Bergmann M, Prüfer D, Schulze Gronover C. Small rubber particle proteins from Taraxacum brevicorniculatum promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(cis-1,4-isoprene) bodies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1045-1061. [PMID: 29377321 DOI: 10.1111/tpj.13829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 05/27/2023]
Abstract
Natural rubber biosynthesis occurs on rubber particles, i.e. organelles resembling small lipid droplets localized in the laticifers of latex-containing plant species, such as Hevea brasiliensis and Taraxacum brevicorniculatum. The latter expresses five small rubber particle protein (SRPP) isoforms named TbSRPP1-5, the most abundant proteins in rubber particles. These proteins maintain particle stability and are therefore necessary for rubber biosynthesis. TbSRPP1-5 were transiently expressed in Nicotiana benthamiana protoplasts and the proteins were found to be localized on lipid droplets and in the endoplasmic reticulum, with TbSRPP1 and TbSRPP3 also present in the cytosol. Bimolecular fluorescence complementation confirmed pairwise interactions between all proteins except TbSRPP2. The corresponding genes showed diverse expression profiles in young T. brevicorniculatum plants exposed to abiotic stress, and all except TbSRPP4 and TbSRPP5 were upregulated. Young Arabidopsis thaliana plants that overexpressed TbSRPP2 and TbSRPP3 tolerated drought stress better than wild-type plants. Furthermore, we used rubber particle extracts and standards to investigate the affinity of the TbSRPPs for different phospholipids, revealing a preference for negatively charged head groups and 18:2/16:0 fatty acid chains. This finding may explain the effect of TbSRPP3-5 on the dispersity of artificial poly(cis-1,4-isoprene) bodies and on the lipid droplet distribution we observed in N. benthamiana leaves. Our data provide insight into the assembly of TbSRPPs on rubber particles, their role in rubber particle structure, and the link between rubber biosynthesis and lipid droplet-associated stress responses, suggesting that SRPPs form the basis of evolutionarily conserved intracellular complexes in plants.
Collapse
Affiliation(s)
- Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| | - Sina Schmidl
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| | - Maike Bergmann
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
56
|
Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol 2018; 49:191-198. [DOI: 10.1016/j.copbio.2017.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
57
|
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. PLANT PHYSIOLOGY 2018; 176:199-207. [PMID: 29203559 PMCID: PMC5761825 DOI: 10.1104/pp.17.01522] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 05/04/2023]
Abstract
Oil bodies have multiple functions: oleosin-mediated freezing tolerance of seeds, direct interaction with glyoxysomes for lipid degradation in seedlings, and antifungal compound production in leaves.
Collapse
Affiliation(s)
- Takashi L Shimada
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | | |
Collapse
|
58
|
Park KY, Kim WT, Kim EY. The proper localization of RESPONSIVE TO DESICCATION 20 in lipid droplets depends on their biogenesis induced by STRESS-RELATED PROTEINS in vegetative tissues. Biochem Biophys Res Commun 2017; 495:1885-1889. [PMID: 29247649 DOI: 10.1016/j.bbrc.2017.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
Abstract
Arabidopsis LD surface proteins, SRPs are found only in higher plants and are important for LD biogenesis and abiotic stress signaling. However, the cellular mechanism of SRPs is still unclear. To investigate molecular functions of SRPs, we used tobacco transient expression system. Transient expression of SRPs was sufficient and synergistic for LD biogenesis, and SRPs participated in the formation step of LD in tobacco leaves. RESPONSIVE TO DESICCATION 20 (RD20), a known LD-localizing peroxygenase, localized to LD in the presence of an SRP, and its peroxygenase activity correlated with proper localization of RD20 to LD. Our data suggest that Arabidopsis SRPs play roles as positive factors for LD biogenesis to provide a proper localization of LD-localizing proteins in vegetative tissues.
Collapse
Affiliation(s)
- Ki Youl Park
- Department of Systems Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, South Korea.
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
59
|
Cloning and Aggregation Characterization of Rubber Elongation Factor and Small Rubber Particle Protein from Ficus carica. Mol Biotechnol 2017; 60:83-91. [DOI: 10.1007/s12033-017-0051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1182-1201. [PMID: 29083105 DOI: 10.1111/tpj.13754] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady-state maintenance and turnover of plant LDs, particularly in non-seed tissues, are relatively unknown. Previously, we showed that the LD-associated proteins (LDAPs) are a family of plant-specific, LD surface-associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two-hybrid library using the Arabidopsis LDAP3 isoform as 'bait' in an effort to identify other novel LD protein constituents. One of the candidate LDAP3-interacting proteins was Arabidopsis At5g16550, which is a plant-specific protein of unknown function that we termed LDIP (LDAP-interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α-helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T-DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.
Collapse
Affiliation(s)
- Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yingqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, 76203, USA
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Olga Yurchenko
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Sunjung Park
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Franziska K Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37007, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37007, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, 76203, USA
| | - John M Dyer
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
61
|
Oh TR, Kim JH, Cho SK, Ryu MY, Yang SW, Kim WT. AtAIRP2 E3 Ligase Affects ABA and High-Salinity Responses by Stimulating Its ATP1/SDIRIP1 Substrate Turnover. PLANT PHYSIOLOGY 2017; 174:2515-2531. [PMID: 28626006 PMCID: PMC5543955 DOI: 10.1104/pp.17.00467] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
AtAIRP2 is a cytosolic RING-type E3 ubiquitin ligase that positively regulates an abscisic acid (ABA) response in Arabidopsis (Arabidopsis thaliana). Yeast two-hybrid screening using AtAIRP2 as bait identified ATP1 (AtAIRP2 Target Protein1) as a substrate of AtAIRP2. ATP1 was found to be identical to SDIRIP1, which was reported recently to be a negative factor in ABA signaling and a target protein of the RING E3 ligase SDIR1. Accordingly, ATP1 was renamed ATP1/SDIRIP1. A specific interaction between AtAIRP2 and ATP1/SDIRIP1 and ubiquitination of ATP1/SDIRIP1 by AtAIRP2 were demonstrated in vitro and in planta. The turnover of ATP1/SDIRIP1 was regulated by AtAIRP2 in cell-free degradation and protoplast cotransfection assays. The ABA-mediated germination assay of 35S:ATP1/SDIRIP1-RNAi/atairp2 double mutant progeny revealed that ATP1/SDIRIP1 acts downstream of AtAIRP2. AtAIRP2 and SDIR1 reciprocally complemented the ABA- and salt-insensitive germination phenotypes of sdir1 and atairp2 mutants, respectively, indicating their combinatory roles in seed germination. Subcellular localization and bimolecular fluorescence complementation experiments in the presence of MG132, a 26S proteasome inhibitor, showed that AtAIRP2 and ATP1/SDIRIP1 were colocalized to the cytosolic spherical body, which lies in close proximity to the nucleus, in tobacco (Nicotiana benthamiana) leaf cells. The 26S proteasome subunits RPN12a and RPT1 and the molecular chaperones HSP70 and HSP101 were colocalized to these discrete punctae-like structures. These results raised the possibility that AtAIRP2 and ATP1/SDIRIP1 interact in the cytosolic spherical compartment. Collectively, our data suggest that the down-regulation of ATP1/SDIRIP1 by AtAIRP2 and SDIR1 RING E3 ubiquitin ligases is critical for ABA and high-salinity responses during germination in Arabidopsis.
Collapse
Affiliation(s)
- Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
62
|
Pyc M, Cai Y, Greer MS, Yurchenko O, Chapman KD, Dyer JM, Mullen RT. Turning Over a New Leaf in Lipid Droplet Biology. TRENDS IN PLANT SCIENCE 2017; 22:596-609. [PMID: 28454678 DOI: 10.1016/j.tplants.2017.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) in plants have long been viewed as storage depots for neutral lipids that serve as sources of carbon, energy, and lipids for membrane biosynthesis. While much of our knowledge of LD function in plants comes from studies of oilseeds, a recent surge in research on LDs in non-seed cell types has led to an array of new discoveries. It is now clear that both evolutionarily conserved and kingdom-specific mechanisms underlie the biogenesis of LDs in eukaryotes, and proteomics and homology-based approaches have identified new protein players. This review highlights some of these recent discoveries and other new areas of plant LD research, including their role in stress responses and as targets of metabolic engineering strategies aimed at increasing oil content in bioenergy crops.
Collapse
Affiliation(s)
- Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yingqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - Michael S Greer
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - Olga Yurchenko
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - John M Dyer
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
63
|
Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:824-836. [PMID: 27987528 PMCID: PMC5466434 DOI: 10.1111/pbi.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/23/2023]
Abstract
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.
Collapse
Affiliation(s)
- Yingqi Cai
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | | | - Ann Price
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Thuy N. Nguyen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
- Present address: Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Samantha C. Watt
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Olga Yurchenko
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Sunjung Park
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
- Present address: Biology DepartmentCentral Arizona CollegeMaricopaAZ85138USA
| | - Drew Sturtevant
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Kent D. Chapman
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| |
Collapse
|
64
|
Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Int J Mol Sci 2017; 18:ijms18050958. [PMID: 28468331 PMCID: PMC5454871 DOI: 10.3390/ijms18050958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and SRPP117,204,243, were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.
Collapse
|
65
|
Dai L, Nie Z, Kang G, Li Y, Zeng R. Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:97-106. [PMID: 27915177 DOI: 10.1016/j.plaphy.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Rubber elongation factor (REF) is the most abundant protein found on the rubber particles or latex from Hevea brasiliensis (the Para rubber tree) and is considered to play important roles in natural rubber (cis-polyisoprene) biosynthesis. 16 BAC (benzyldimethyl-n-hexadecylammonium chloride)/SDS-PAGE separations and mass spectrometric identification had revealed that two REF isoforms shared similar amino acid sequences and common C-terminal sequences. In this study, the gene sequences encoding these two REF isoforms (one is 23.6 kDa in size with 222 amino acid residues and the other is 27.3 kDa in size with 258 amino acid residues) were obtained. Their proteins were relatively enriched by sequential extraction of the rubber particle proteins and separated by 16 BAC/SDS-PAGE. The localization of these isoforms on the surfaces of rubber particles was further verified by western blotting and immunogold electron microscopy, which demonstrated that these two REF isoforms are mainly located on the surfaces of larger rubber particles and that they bind more tightly to rubber particles than the most abundant REF and SRPP (small rubber particle protein).
Collapse
Affiliation(s)
- Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Zhiyi Nie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, PR China; State Key Laboratory Incubation Base, Danzhou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, PR China.
| |
Collapse
|
66
|
Wadeesirisak K, Castano S, Berthelot K, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Lecomte S, Bottier C. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:201-210. [DOI: 10.1016/j.bbamem.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
|
67
|
Zhi Y, Taylor MC, Campbell PM, Warden AC, Shrestha P, El Tahchy A, Rolland V, Vanhercke T, Petrie JR, White RG, Chen W, Singh SP, Liu Q. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow ( Triadica sebifera). FRONTIERS IN PLANT SCIENCE 2017; 8:1339. [PMID: 28824675 PMCID: PMC5541829 DOI: 10.3389/fpls.2017.01339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/18/2017] [Indexed: 05/04/2023]
Abstract
Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.
Collapse
Affiliation(s)
- Yao Zhi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- CSIRO Agriculture and FoodCanberra, ACT, Australia
| | | | | | | | | | | | | | | | | | | | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Wenli Chen
| | | | - Qing Liu
- CSIRO Agriculture and FoodCanberra, ACT, Australia
- Qing Liu
| |
Collapse
|
68
|
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:894. [PMID: 28611809 PMCID: PMC5447075 DOI: 10.3389/fpls.2017.00894] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER.
Collapse
Affiliation(s)
- Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420 Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Françoise Immel
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Denis Coulon
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- Bordeaux INPTalence, France
| | - Nicolas Esnay
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Karine Tuphile
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphanie Pascal
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphane Claverol
- Proteome Platform, Functional Genomic Center of Bordeaux, University of BordeauxBordeaux, France
| | - Laëtitia Fouillen
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Claire Bréhélin
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- *Correspondence: Claire Bréhélin
| |
Collapse
|
69
|
Seo DH, Ahn MY, Park KY, Kim EY, Kim WT. The N-Terminal UND Motif of the Arabidopsis U-Box E3 Ligase PUB18 Is Critical for the Negative Regulation of ABA-Mediated Stomatal Movement and Determines Its Ubiquitination Specificity for Exocyst Subunit Exo70B1. THE PLANT CELL 2016; 28:2952-2973. [PMID: 27956469 PMCID: PMC5240735 DOI: 10.1105/tpc.16.00347] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana U-box E3 ligases PUB18/PUB19 and PUB22/PUB23 are negative regulators of drought stress responses. PUB18/PUB19 regulate the drought stress response in an abscisic acid (ABA)-dependent manner, whereas PUB22/PUB23 regulate this response in an ABA-independent manner. A major structural difference between PUB18/PUB19 and PUB22/PUB23 is the presence of the UND (U-box N-terminal domain). Here, we focused on elucidating the molecular mechanism that mediates the functional difference between PUB18 and PUB22 and found that the UNDPUB18 was critically involved in the negative regulation of ABA-mediated stomatal movements. Exo70B1, a subunit of the exocyst complex, was identified as a target of PUB18, whereas Exo70B2 was a substrate of PUB22. However, the ∆UND-PUB18 derivative failed to ubiquitinate Exo70B1, but ubiquitinated Exo70B2. By contrast, the UNDPUB18-PUB22 chimeric protein ubiquitinated Exo70B1 instead of Exo70B2, suggesting that the ubiquitination specificities of PUB18 and PUB22 to Exo70B1 and Exo70B2, respectively, are dependent on the presence or absence of the UNDPUB18 motif. The ABA-insensitive phenotypes of the pub18 pub19 exo70b1 triple mutant were reminiscent of those of exo70b1 rather than pub18 pub19, indicating that Exo70B1 functions downstream of PUB18. Overall, our results suggest that the UNDPUB18 motif is crucial for the negative regulation of ABA-dependent stomatal movement and for determination of its ubiquitination specificity to Exo70B1.
Collapse
Affiliation(s)
- Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Min Yong Ahn
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
70
|
AtSRP1, SMALL RUBBER PARTICLE PROTEIN HOMOLOG, functions in pollen growth and development in Arabidopsis. Biochem Biophys Res Commun 2016; 475:223-9. [PMID: 27208780 DOI: 10.1016/j.bbrc.2016.05.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022]
Abstract
To identify novel roles of SMALL RUBBER PARTICLE PROTEIN Homolog in the non-rubber-producing plant Arabidopsis (AtSRP1), we isolated a T-DNA-insertion knock-out mutant (FLAG_543A05) and investigated its functional characteristics. AtSRP1 is predominantly expressed in reproductive organs and is localized to lipid droplets and ER. Compared to wild-type (WT) Arabidopsis, atsrp1 plants contain small siliques with a reduced number of heterogeneously shaped seeds. The size of anther and pollen grains in atsrp1 is highly irregular, with a lower grain number than WT. Therefore, AtSRP1 plays a novel role related to pollen growth and development in a non-rubber-producing plant.
Collapse
|