51
|
Bhalla S, Garg N. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. MYCORRHIZA 2021; 31:735-754. [PMID: 34669029 DOI: 10.1007/s00572-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) pollution of soil reduces the growth and reproductive potential of plants. Silicon (Si) and arbuscular mycorrhizal (AM) fungi play significant roles in alleviating adverse effects of As stress. However, studies are scant regarding alleviative effects of Si in pigeonpea (Cajanus cajan L. Millsp.) because legumes are considered low Si-accumulators. We investigated the individual as well as synergistic potential of Si with two AM species (M1-Claroideoglomus etunicatum and M2-Rhizoglomus intraradices) in modulating soil properties, thereby improving growth and productivity of pigeonpea genotype Pusa 2001 grown in AsV and AsIII challenged soils. Both As species hampered the establishment of AM symbiosis, thus, reducing nutrient uptake, growth and yield, with AsIII more toxic than AsV. Exogenously applied Si and AM species enhanced soil glomalin and phosphatases activity, hence decreased metal bioavailability in soil, increased plant nutrient acquisition, biomass and chlorophylls; with maximum benefits provided by M2, closely followed by Si and least by M1. These amendments boosted the activities of starch hydrolytic enzymes (α-, β-amylase, starch phosphorylase) in plants, along with a simultaneous increase in total soluble sugars (TSS). This enhanced sugar accumulation directly led to improved reproductive attributes, more efficiently by M2 and Si than by M1. Moreover, there was a substantial increase in proline biosynthesis due to significantly enhanced activities of its biosynthetic enzymes. Additionally, combined applications of Si and AM, especially +Si+M2, complemented each other where AM enhanced Si uptake, while Si induced mycorrhization, suggesting their mutual and beneficial roles in ameliorating metal(loid) toxicity and achieving sustainability in pigeonpea production under As stress.
Collapse
Affiliation(s)
- Shyna Bhalla
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
52
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
53
|
Abdalla M, Ahmed MA. Arbuscular Mycorrhiza Symbiosis Enhances Water Status and Soil-Plant Hydraulic Conductance Under Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:722954. [PMID: 34721455 PMCID: PMC8551442 DOI: 10.3389/fpls.2021.722954] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/20/2021] [Indexed: 05/27/2023]
Abstract
Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below -0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below -1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures.
Collapse
Affiliation(s)
- Mohanned Abdalla
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Mutez Ali Ahmed
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
54
|
Degola F, Spadola G, Forgia M, Turina M, Dramis L, Chitarra W, Nerva L. Aspergillus Goes Viral: Ecological Insights from the Geographical Distribution of the Mycovirome within an Aspergillus flavus Population and Its Possible Correlation with Aflatoxin Biosynthesis. J Fungi (Basel) 2021; 7:833. [PMID: 34682254 PMCID: PMC8538035 DOI: 10.3390/jof7100833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial multi-level interactions are essential to control the success of spreading and survival of most microbes in natural environments. Phytopathogenic mycotoxigenic fungal species, such as Aspergillus flavus, represent an important issue in food safety. Usually, non-toxigenic strains are exploited for biocontrol strategies to mitigate infections by toxigenic strains. To comprehend all the biological variables involved in the aflatoxin biosynthesis, and to possibly evaluate the interplay between A. flavus toxigenic and non-toxigenic strains during intraspecific biocompetition, the "virological" perspective should be considered. For these reasons, investigations on mycoviruses associated to A. flavus populations inhabiting specific agroecosystems are highly desirable. Here, we provide the first accurate characterization of the novel mycovirome identified within an A. flavus wild population colonizing the maize fields of northern Italy: a selection of A. flavus strains was biologically characterized and subjected to RNAseq analysis, revealing new mycoviruses and a peculiar geographic pattern distribution in addition to a 20% rate of infection. More interestingly, a negative correlation between viral infection and aflatoxin production was found. Results significantly expanded the limited existent data about mycoviruses in wild A. flavus, opening new and intriguing hypotheses about the ecological significance of mycoviruses.
Collapse
Affiliation(s)
- Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (G.S.); (L.D.)
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (G.S.); (L.D.)
| | - Marco Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.F.); (M.T.); (W.C.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.F.); (M.T.); (W.C.)
| | - Lucia Dramis
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (G.S.); (L.D.)
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.F.); (M.T.); (W.C.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy; (M.F.); (M.T.); (W.C.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano, Italy
| |
Collapse
|
55
|
Jabborova D, Annapurna K, Al-Sadi AM, Alharbi SA, Datta R, Zuan ATK. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra ( Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi J Biol Sci 2021; 28:5490-5499. [PMID: 34588859 PMCID: PMC8459127 DOI: 10.1016/j.sjbs.2021.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Drought is a major abiotic factor limiting plant growth and crop production. There is limited information on effect of interaction between biochar and Arbuscular mycorrhizal fungi (AMF) on okra growth, root morphological traits and soil enzyme activities under drought stress. We studied the influence of biochar and AMF on the growth of Okra (Abelmoschus esculentus) in pot experiments in a net house under drought condition. The results showed that the biochar treatment significantly increased plant growth (the plant height by 14.2%, root dry weight by 30.0%) and root morphological traits (projected area by 22.3% and root diameter by 22.7%) under drought stress. In drought stress, biochar treatment significantly enhanced the chlorophyll 'a' content by 32.7%, the AMF spore number by 22.8% and the microbial biomass as compared to the control. Plant growth parameters such as plant height, shoot and root dry weights significantly increased by AMF alone, by 16.6%, 21.0% and 40.0% respectively under drought condition. Other plant biometrics viz: the total root length, the root volume, the projected area and root diameter improved significantly with the application of AMF alone by 38.3%, 60.0%,16.8% and 15.9% respectively as compared with control. Compared to the control, AMF treatment alone significantly enhanced the total chlorophyll content by 36.6%, the AMF spore number by 39.0% and the microbial biomass by 29.0% under drought condition. However, the highest values of plant growth parameters (plant height, shoot dry weight, root dry weight) and root morphological traits (the total root length, root volume, projected area, root surface area) were observed in the combined treatment of biochar and AMF treatment viz: 31.9%, 34.2%, 60.0% and 68.6%, 66.6%, 45.5%, 41.8%, respectively compared to the control under drought stress. The nitrogen content, total chlorophyll content and microbial biomass increased over un-inoculated control. The soil enzymes; alkaline phosphatase, dehydrogenase and fluorescein diacetate enzyme activities significantly increased in the combined treatment by 55.8%, 68.7% and 69.5%, respectively as compared to the control under drought stress. We conclude that biochar and AMF together is potentially beneficial for cultivation of okra in drought stress conditions.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, AlKhoud 123, Muscat, Oman
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
56
|
Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS, Zhang L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45276-45295. [PMID: 33860891 DOI: 10.1007/s11356-021-13755-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/29/2021] [Indexed: 05/08/2023]
Abstract
Drought is a major environmental threat limiting worldwide crop production. Drought stress affects the tobacco quality and yield; therefore, the current research studies were undertaken to investigate the effectiveness of arbuscular mycorrhizal fungi (AMF) under drought stress on morphological and biochemical attributes of tobacco (Nicotiana tabacum L. variety Yunyan 87). AMF-inoculated and AMF-non-inoculated plants were maintained in a greenhouse and irrigated with a half-strength Hoagland solution (100 mL pot-1) once a week. At harvesting, the plant height, number of leaves, fresh and dry weights, mycorrhizal colonization, and concentration of leaf photosynthetic pigments and photosynthetic rate were measured. Data were statistically analyzed by ANOVA and the principal component (PCA) analyses. The effect of root colonization significantly increased biomass production and essential oil accumulation. Results showed that drought at mild and severe stressed levels significantly affected tobacco growth by decreasing plant height, biomass, and a number of leaves. However, inoculation of AMF considerably increased plant height, fresh and dry weights, chlorophyll (a, b), total chlorophyll, and carotenoid content by 43.84, 40.87 and 49.76, 185.29, 325.60, 173.12, and 211.49%, respectively. Compared with non-inoculated plants, AMF inoculation significantly enhanced the essential oil yield and the uptake of nitrogen, phosphorus, and potassium with the increase of 257.36, 102.71, and 90.76, 62.32, and 84.51%, respectively, in mild drought + AMF-treated plants. Similarly, the antioxidant enzymatic activity, glomalin-related soil protein (GRSP), and accumulation of phenols and flavonoids and osmolytes content were also significantly improved in inoculated plants under drought stress. Additionally, AMF inoculation significantly upregulated the lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) enzymes by 197 and 298.44% under drought conditions. These findings depicted that the symbiotic association of AMF improved the overall growth pattern and secondary metabolism in tobacco plants under severe drought stress conditions and may be used as an approaching source of important drugs in the field of pharmacology.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | | | - Mudassar Iqbal
- Department of Agricultural Chemistry, University of Agriculture, Peshawar, Peshawar, Pakistan
| | - Pingping Wang
- Shaanxi Tobacco Scientific Institution, Xi'an, 71000, China
| | | | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
57
|
Balestrini R. Grand Challenges in Fungi-Plant Interactions. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:750003. [PMID: 37744123 PMCID: PMC10512379 DOI: 10.3389/ffunb.2021.750003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection (CNR, IPSP), Turin, Italy
| |
Collapse
|
58
|
Bread Wheat ( Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions. PLANTS 2021; 10:plants10091756. [PMID: 34579289 PMCID: PMC8466081 DOI: 10.3390/plants10091756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Abiotic constraints such as water deficit reduce cereal production. Plants have different strategies against these stresses to improve plant growth, physiological metabolism and crop production. For example, arbuscular mycorrhiza (AM)—bread wheat association has been shown to improve tolerance to drought stress conditions. The objective of this study was to determine the effect of AM inoculation on plant characteristics, lipid peroxidation, solute accumulation, water deficit saturation, photosynthetic activity, total phenol secretion and enzymatic activities including peroxidise (PO) and polyphenol oxidase (PPO) in two bread wheat cultivars (PAN3497 and SST806) under well-watered and drought-stressed conditions in plants grown under greenhouse conditions, to determine whether AM can enhance drought tolerance in wheat. AM inoculation improved morphological and physiological parameters in plants under stress. The leaf number increased by 35% and 5%, tiller number by 25% and 23%, chlorophyll content by 7% and 10%, accumulation of soluble sugars by 33% and 14%, electrolyte leakage by 26% and 32%, PPO by 44% and 47% and PO by 30% and 37% respectively, in PAN3497 and SST806, respectively. However, drought stress decreased proline content by 20% and 24%, oxidative damage to lipids measured as malondialdehyde by 34% and 60%, and total phenol content by 55% and 40% respectively, in AM treated plants of PAN3497 and SST806. PAN3497 was generally more drought-sensitive than SST806. This study showed that AM can contribute to protect plants against drought stress by alleviating water deficit induced oxidative stress.
Collapse
|
59
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
60
|
Yadav A, Saini I, Kaushik P, Ahmad Ansari M, Rashid Khan M, Haq N. Effects of arbuscular mycorrhizal fungi and P-solubilizing Pseudomonas fluorescence (ATCC-17400) on morphological traits and mineral content of sesame. Saudi J Biol Sci 2021; 28:2649-2654. [PMID: 34025149 PMCID: PMC8117026 DOI: 10.1016/j.sjbs.2021.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.
Collapse
Affiliation(s)
- Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, 122502 Rewari, India
| | - Ishan Saini
- Department of Botany, Kurukshetra University Kurukshetra, Kurukshetra 136119, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia 46022, Spain
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
61
|
Pasković I, Soldo B, Goreta Ban S, Radić T, Lukić M, Urlić B, Mimica M, Brkić Bubola K, Colla G, Rouphael Y, Major N, Šimpraga M, Ban D, Palčić I, Franić M, Grozić K, Lukić I. Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chem 2021; 359:129961. [PMID: 33945985 DOI: 10.1016/j.foodchem.2021.129961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The effects of different fertilisation treatments with arbuscular mycorrhizal fungi (AMF) inoculation on AMF root colonisation, fruit yield, nutrient and total phenol contents, volatile compound composition, and sensory attributes of tomato (Solanum lycopersicum L.) were investigated. Mineral, organic, and mineral + organic fertiliser application positively affected tomato yield (35%-50%) and phosphorus concentration (24%-29%) compared with controls. AMF application had a significant impact on the total nitrogen (+9%), manganese (+12%), and hydrophilic phenol (+8%) contents in the fruit. Volatile compounds were affected by the interactive effects of fertilisation and AMF application. The response of tomato fruit sensory quality indicators was relatively modest, with only a few sensory characteristics affected to a lesser extent. Although tomato showed susceptibility to field-native AMF, particular combinations of fertilisation and AMF inoculation were more effective at improving the quality parameters of tomatoes under field conditions applied in this study.
Collapse
Affiliation(s)
- Igor Pasković
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Soldo
- University of Split, Faculty of Science, Department of Chemistry, R. Boškovića 33, 21000 Split, Croatia
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia.
| | - Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Marina Lukić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Branimir Urlić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Matea Mimica
- University of Split, Faculty of Science, Department of Chemistry, R. Boškovića 33, 21000 Split, Croatia
| | - Karolina Brkić Bubola
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Giuseppe Colla
- University of Tuscia, Department of Agricultural and Forestry Sciences, 01100 Viterbo, Italy
| | - Youssef Rouphael
- University of Naples Federico II, Department of Agricultural Sciences, 80055 Portici, Italy
| | - Nikola Major
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Maja Šimpraga
- Faculty of Bioscience Engineering, Department of Plants and Crops, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Dean Ban
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Igor Palčić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Mario Franić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Kristina Grozić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia
| | - Igor Lukić
- Institute of Agriculture and Tourism, Deparment of Agriculture and Nutrition, K. Huguesa 8, 52440 Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|
62
|
Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, Sharma A, El-Sawah AM. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC PLANT BIOLOGY 2021; 21:195. [PMID: 33888066 PMCID: PMC8061216 DOI: 10.1186/s12870-021-02949-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). RESULTS Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. CONCLUSIONS The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, 210014, China.
| | - Dina Fathi Ismail Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500, Prague, Czech Republic
- Department of Plant Physiology, Slovak University of Agriculture, 94911, Nitra, Slovakia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500, Prague, Czech Republic
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, 62511, Egypt
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 123, Al-Khoud, Oman
| | - Anket Sharma
- State Key Laboratory of Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
63
|
Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars. PLANTS 2021; 10:plants10040811. [PMID: 33924128 PMCID: PMC8074330 DOI: 10.3390/plants10040811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Wheat is a staple food consumed by the majority of people in the world and its production needs to be doubled to feed the growing population. On the other hand, global wheat productivity is greatly affected due to drought and low fertility of soil under arid and semi-arid regions. Application of supplementary irrigation and plant growth-promoting rhizobacteria (PGPR) has been suggested as sustainable measures to combat drought stress and to improve soil fertility and, hence, crop yield. This research was undertaken to study the effect of supplementary irrigation together with a combination of various PGPR on the growth and yield of two wheat cultivars, namely Sardari and Sirvan. The results of variance analysis (mean of squares) showed that the effect of irrigation, cultivar, and irrigation and biofertilizer and irrigation on height, spike length, seed/spike, and numbers of spikes/m2, 1000-seed weight, and grain yield were significant at 1% probability level. The effect of cultivar and irrigation interactions showed that the highest grain yield was obtained in a treatment with two additional irrigations in Sirvan cultivar (5015.0 kg/ha) and Sardari (4838.9 kg/ha) as compared to the 3598 kg/ha and 3598.3 kg/h grain yield in Sirvan and Sardari cultivars with similar treatment, but without irrigation, i.e., dryland farming. Drought conditions significantly affected the wheat grain yield while supplementary irrigation resulted in 39.38% and 34.48% higher yields in Sirvan and Sardari cultivars.
Collapse
|
64
|
Chandrasekaran M, Boopathi T, Manivannan P. Comprehensive Assessment of Ameliorative Effects of AMF in Alleviating Abiotic Stress in Tomato Plants. J Fungi (Basel) 2021; 7:303. [PMID: 33921098 PMCID: PMC8071382 DOI: 10.3390/jof7040303] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Population growth and food necessity envisaged the dire need for supplementation to a larger community balance in food production. With the advent of the green revolution, agriculture witnessed the insurrection of horticultural fruit crops and field crops in enormous modes. Nevertheless, chemical fertilizer usage foresees soil pollution and fertility loss. Utilization of biocontrol agents and plant growth promotion by microbial colonization enrooted significant restoration benefits. Constant reliability for healthy foods has been emancipated across the globe stressing high nutritive contents among indigenous field crops like tomato (Solanum lycopersicum). However, stress tolerance mechanisms and efficient abatement require deeper insights. The applicability of arbuscular mycorrhizal fungi (AMF) poses as an ultimate strategy to minimize the deleterious consequences of abiotic stress such as salt, drought, temperature and heavy metal stress sustainably. The rational modality employing the application of AMF is one of significant efforts to lessen cell damages under abiotic stress. The novelty of the compilation can be redressed to cohesive literature for combating stress. The literature review will provide agricultural scientists worldwide in providing a rational approach that can have possible implications in not only tomato but also other vegetable crops.
Collapse
Affiliation(s)
| | - T. Boopathi
- Department of Biology, Gandhigram Rural Institute, Tamilnadu 624302, India;
| | | |
Collapse
|
65
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
66
|
Huang D, Wang Q, Zhang Z, Jing G, Ma M, Ma F, Li C. Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. HORTICULTURE RESEARCH 2021; 8:84. [PMID: 33790267 PMCID: PMC8012562 DOI: 10.1038/s41438-021-00524-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 05/08/2023]
Abstract
Drought leads to reductions in plant growth and crop yields. Arbuscular mycorrhizal fungi (AMF), which form symbioses with the roots of the most important crop species, alleviate drought stress in plants. In the present work, we identified 14 GH3 genes in apple (Malus domestica) and provided evidence that MdGH3-2 and MdGH3-12 play important roles during AM symbiosis. The expression of both MdGH3-2 and MdGH3-12 was upregulated during mycorrhization, and the silencing of MdGH3-2/12 had a negative impact on AM colonization. MdGH3-2/12 silencing resulted in the downregulation of five genes involved in strigolactone synthesis, and there was a corresponding change in root strigolactone content. Furthermore, we observed lower root dry weights in RNAi lines under AM inoculation conditions. Mycorrhizal transgenic plants showed greater sensitivity to drought stress than WT, as indicated by their higher relative electrolytic leakage and lower relative water contents, osmotic adjustment ability, ROS scavenging ability, photosynthetic capacity, chlorophyll fluorescence values, and abscisic acid contents. Taken together, these data demonstrate that MdGH3-2/12 plays an important role in AM symbiosis and drought stress tolerance in apple.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
67
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
68
|
The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. SUSTAINABILITY 2021. [DOI: 10.3390/su13052710] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems arising from the limited availability of natural resources and the impact of certain anthropogenic activities on the environment must be addressed as soon as possible. To meet this challenge, it is necessary, among other things, to reconsider and redesign agricultural systems to find more sustainable and environmentally friendly solutions, paying specific attention to waste from agriculture. Indeed, the transition to a more sustainable and circular economy should also involve the effective valorization of agricultural waste, which should be seen as an excellent opportunity to obtain valuable materials. For the reasons mentioned above, this review reports and discusses updated studies dealing with the valorization of agricultural waste, through its conversion into materials to be applied to crops and soil. In particular, this review highlights the opportunity to obtain plant biostimulants, biofertilizers, and biopolymers from agricultural waste. This approach can decrease the impact of waste on the environment, allow the replacement and reduction in the use of synthetic compounds in agriculture, and facilitate the transition to a sustainable circular economy.
Collapse
|
69
|
Del Buono D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141763. [PMID: 32889471 DOI: 10.1016/j.scitotenv.2020.141763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 05/16/2023]
Abstract
Anthropogenic climate change, namely climate alterations induced by human activities, is causing some issues to agricultural systems for their vulnerability to extreme events. Forecasts predict a global population increase in the near years that will exacerbate this situation, elevating the global demand for food. It will pose severe concerns in terms of natural resource usage and availability. Agriculture is one of the anthropogenic activities that will be more affected in the future. Climate extremes menace to affect the quantity and quality of crop production severely. Drought, water and soil salinity are considered among the most problematic factors that anthropogenic climate change will increase. This complex and worrying scenario requires the urgent implementation of sustainable measures which are capable of improving crop yield and quality, fostering the robustness and resilience of cropping systems. Among the more current methodology, the use of natural plant biostimulants (PBs) has been proposed to improve plant resistance to abiotic environmental stresses. The advantage of using these substances is due to their effectiveness in improving crop productivity and quality. Therefore, in this review, the most recent researches dealing with the use of natural PBs for improving plant resistance to drought and salinity, in an anthropogenic climate change scenario, have been reported and critically discussed.
Collapse
Affiliation(s)
- Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| |
Collapse
|
70
|
|
71
|
Malhi GS, Kaur M, Kaushik P, Alyemeni MN, Alsahli AA, Ahmad P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J Biol Sci 2020; 28:1465-1476. [PMID: 33613074 PMCID: PMC7878692 DOI: 10.1016/j.sjbs.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Vegetable production is hampered by several abiotic stresses which are very common in this era of climate change. There is a huge pressure on the plants to survive and yield better results even in the prevalence of various environmental stresses such as cold stress, drought, heat stress, salinity etc. This necessitates the need of robust plant growth which is possible with mycorrhizal association. Mycorrhiza improves plants tolerance to several abiotic stresses by various physiological, functional and biochemical changes in plants. The application of arbuscular mycorrhiza (AM) as vegetable biofertilizers doesn’t only influence the plant health, but moreover discursively it lowers the demand for harmful chemical fertilizers. Overall, it may be concluded that inoculation of vegetables with arbuscular mycorrhizal fungi can be used, as it easily guards plants against undesirable abiotic stresses. In this work, information is provided based on several examples from the literature based on the application of AM to combat harmful abiotic stresses in vegetable crops. This paper reviews the impacts of AM fungi on the plant parameters, its functional activities and molecular mechanisms which makes it more adaptable and underline the future prospects of using AM fungi as a biofertilizer in the stress condition.
Collapse
Affiliation(s)
| | | | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.,Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
72
|
Peña R, Robbins C, Corella JC, Thuita M, Masso C, Vanlauwe B, Signarbieux C, Rodriguez A, Sanders IR. Genetically Different Isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Induce Differential Responses to Stress in Cassava. FRONTIERS IN PLANT SCIENCE 2020; 11:596929. [PMID: 33424891 PMCID: PMC7793890 DOI: 10.3389/fpls.2020.596929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 05/12/2023]
Abstract
Water scarcity negatively impacts global crop yields and climate change is expected to greatly increase the severity of future droughts. The use of arbuscular mycorrhizal fungi (AMF) can potentially mitigate the effects of water stress in plants. Cassava is a crop that feeds approximately 800 million people daily. Genetically different isolates of the AMF R. irregularis as well as their clonal progeny have both been shown to greatly alter cassava growth in field conditions. Given that cassava experiences seasonal drought in many of the regions in which it is cultivated, we evaluated whether intraspecific variation in R. irregularis differentially alters physiological responses of cassava to water stress. In a first experiment, conducted in field conditions in Western Kenya, cassava was inoculated with two genetically different R. irregularis isolates and their clonal progeny. All cassava plants exhibited physiological signs of stress during the dry period, but the largest differences occurred among plants inoculated with clonal progeny of each of the two parental fungal isolates. Because drought had not been experimentally manipulated in the field, we conducted a second experiment in the greenhouse where cassava was inoculated with two genetically different R. irregularis isolates and subjected to drought, followed by re-watering, to allow recovery. Physiological stress responses of cassava to drought differed significantly between plants inoculated with the two different fungi. However, plants that experienced higher drought stress also recovered at a faster rate following re-watering. We conclude that intraspecific genetic variability in AMF significantly influences cassava physiological responses during water stress. This highlights the potential of using naturally existing variation in AMF to improve cassava tolerance undergoing water stress. However, the fact that clonal progeny of an AMF isolate can differentially affect how cassava copes with natural drought stress in field conditions, highlights the necessity to understand additional factors, beyond genetic variation, which can account for such large differences in cassava responses to drought.
Collapse
Affiliation(s)
- Ricardo Peña
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chanz Robbins
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joaquim Cruz Corella
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Moses Thuita
- International Institute for Tropical Agriculture (IITA) Kenya, Nairobi, Kenya
| | - Cargele Masso
- International Institute for Tropical Agriculture (IITA) Cameroon, Yaoundé, Cameroon
| | - Bernard Vanlauwe
- International Institute for Tropical Agriculture (IITA) Kenya, Nairobi, Kenya
| | - Constant Signarbieux
- Laboratory of Ecological Systems (ECOS), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alia Rodriguez
- Department of Biology, National University of Colombia, Bogotá, Colombia
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
73
|
Jadrane I, Al Feddy MN, Dounas H, Kouisni L, Aziz F, Ouahmane L. Inoculation with selected indigenous mycorrhizal complex improves Ceratonia siliqua's growth and response to drought stress. Saudi J Biol Sci 2020; 28:825-832. [PMID: 33424372 PMCID: PMC7783803 DOI: 10.1016/j.sjbs.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant’s growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.
Collapse
Key Words
- AMF, Arbuscular Mycorrhizal Fungi
- CAT, Catalase
- Ceratonia siliqua
- Climate change
- DW, Dry weight
- Drought stress
- EDTA, Ethylenediaminetetraacetic acid
- FC, Field capacity
- FW, Fresh weight
- G-POD, Guaiacol-peroxidase
- MPa, Millipascal
- MSI, Membrane Stability Index
- Mediterranean zone
- Mycorrhizae
- NBT, Nitro blue tetrazolium
- NM, Non mycorrhizal
- OD, Optical density
- Oxidative stress
- PCR, Polymerase chain reaction
- PVPP, Polyvinylpolypyrrolidone
- RWC, Relative water content
- SC, Stomatal conductance
- SOD, Superoxide dismutase
- TSS, Total Soluble sugars
- TW, Turgid weight
Collapse
Affiliation(s)
- Issam Jadrane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Mohamed Najib Al Feddy
- Phytobacteriology Laboratory, Plant Protection Research Unit, CRRA Marrakesh, National Institute for Agronomical Research, Marrakesh, Morocco
| | - Hanane Dounas
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Lamfeddal Kouisni
- University Mohammed VI Polytechnic, Agrobiosciences Program, Benguerir, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Change Cadi Ayyad University, Marrakesh, Morocco
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
74
|
Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. FRONTIERS IN PLANT SCIENCE 2020; 11:516818. [PMID: 33193464 PMCID: PMC7649861 DOI: 10.3389/fpls.2020.516818] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/22/2020] [Indexed: 05/24/2023]
Abstract
Rainfall regimes are expected to shift on a regional scale as the water cycle intensifies in a warmer climate, resulting in greater extremes in dry versus wet conditions. Such changes are having a strong impact on the agro-physiological functioning of plants that scale up to influence interactions between plants and microorganisms and hence ecosystems. In (semi)-arid ecosystems, the date palm (Phoenix dactylifera L.) -an irreplaceable tree- plays important socio-economic roles. In the current study, we implemeted an adapted management program to improve date palm development and its tolerance to water deficit by using single or multiple combinations of exotic and native arbuscular mycorrhizal fungi (AMF1 and AMF2 respectively), and/or selected consortia of plant growth-promoting rhizobacteria (PGPR: B1 and B2), and/or composts from grasses and green waste (C1 and C2, respectively). We analyzed the potential for physiological functioning (photosynthesis, water status, osmolytes, mineral nutrition) to evolve in response to drought since this will be a key indicator of plant resilience in future environments. As result, under water deficit, the selected biofertilizers enhanced plant growth, leaf water potential, and electrical conductivity parameters. Further, the dual-inoculation of AMF/PGPR amended with composts alone or in combination boosted the biomass under water deficit conditions to a greater extent than in non-inoculated and/or non-amended plants. Both single and dual biofertilizers improved physiological parameters by elevating stomatal conductance, photosynthetic pigments (chlorophyll and carotenoids content), and photosynthetic efficiency. The dual inoculation and compost significantly enhanced, especially under drought stress, the concentrations of sugar and protein content, and antioxidant enzymes (polyphenoloxidase and peroxidase) activities as a defense strategy as compared with controls. Under water stress, we demonstrated that phosphorus was improved in the inoculated and amended plants alone or in combination in leaves (AMF2: 807%, AMF1+B2: 657%, AMF2+C1+B2: 500%, AMF2+C2: 478%, AMF1: 423%) and soil (AMF2: 397%, AMF1+B2: 322%, AMF2+C1+B2: 303%, AMF1: 190%, C1: 188%) in comparison with controls under severe water stress conditions. We summarize the extent to which the dual and multiple combinations of microorganisms can overcome challenges related to drought by enhancing plant physiological responses.
Collapse
Affiliation(s)
- Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Abdelilah Tahiri
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Anas Raklami
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture Frick (FiBL), Frick, Switzerland
| | - Abderrahim Boutasknit
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Raja Ben-Laouane
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Salma Toubali
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Youssef Ait Rahou
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Mustapha Ait Chitt
- Domaines Agricoles, Laboratoire El Bassatine, Domaine El Bassatine, Meknès, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Mohammed VI Polytechnic University (UM6P), Agrobiosciences program (AgBs), Benguerir, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| |
Collapse
|
75
|
Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12100370] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.
Collapse
|
76
|
Balestrini R, Brunetti C, Chitarra W, Nerva L. Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi? PLANTS (BASEL, SWITZERLAND) 2020; 9:E1105. [PMID: 32867243 PMCID: PMC7570035 DOI: 10.3390/plants9091105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this reason, they receive expanding attention for the potential use in sustainable and climate-smart agriculture context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity and extreme temperature, the involved mechanisms are still to be fully discovered. In this review, some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed, with a specific focus on nitrogen acquisition-mediated by AM fungi.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
| | - Cecilia Brunetti
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
| | - Walter Chitarra
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
- Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, (CREA-VE), 31015 Conegliano (TV), Italy
| | - Luca Nerva
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
- Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, (CREA-VE), 31015 Conegliano (TV), Italy
| |
Collapse
|
77
|
Deficit Irrigation and Arbuscular Mycorrhiza as a Water-Saving Strategy for Eggplant Production. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crop production in arid regions requires continuous irrigation to fulfill water demand throughout the growing season. Agronomic measures, such as roots-soil microorganisms, including arbuscular mycorrhizal (AM) fungi, have emerged in recent years to overcome soil constraints and improve water use efficiency (WUE). Eggplant plants were exposed to varying water stress under inoculated (AM+) and non-inoculated (AM−) to evaluate yield performance along with plant physiological status. Plants grown under full irrigation resulted in the highest fruit yield, and there were significant reductions in total yield and yield components when applying less water. The decline in fruit yield was due to the reduction in the number of fruits rather than the weight of the fruit per plant. AM+ plants showed more favorable growth conditions, which translated into better crop yield, total dry biomass, and number of fruits under all irrigation treatments. The fruit yield did not differ between full irrigation and 80% evapotranspiration (ET) restoration with AM+, but a 20% reduction in irrigation water was achieved. Water use efficiency (WUE) was negatively affected by deficit irrigation, particularly at 40% ET, when the water deficit severely depressed fruit yield. Yield response factor (Ky) showed a lower tolerance with a value higher than 1, with a persistent drop in WUE suggesting a lower tolerance to water deficits. The (Ky) factor was relatively lower with AM+ than with AM− for the total fruit yield and dry biomass (Kss), indicating that AM may enhance the drought tolerance of the crop. Plants with AM+ had a higher uptake of N and P in shoots and fruits, higher stomatal conductance (gs), and higher photosynthetic rates (Pn), regardless of drought severity. Soil with AM+ had higher extractable N, P, and organic carbon (OC), indicating an improvement of the fertility status in coping with a limited water supply.
Collapse
|
78
|
Chialva M, Lanfranco L, Guazzotti G, Santoro V, Novero M, Bonfante P. Gigaspora margarita and Its Endobacterium Modulate Symbiotic Marker Genes in Tomato Roots under Combined Water and Nutrient Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E886. [PMID: 32674305 PMCID: PMC7412303 DOI: 10.3390/plants9070886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
Abstract
As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF) may be effective in enhancing plant resilience to drought, one of the major limiting factors threatening crop productivity. AMF host their own microbiota and previous data demonstrated that endobacteria thriving in Gigaspora margarita modulate fungal antioxidant responses. Here, we used the G. margarita-Candidatus Glomeribacter gigasporarum system to test whether the tripartite interaction between tomato, G. margarita and its endobacteria may improve plant resilience to combined water/nutrient stress. Tomato plants were inoculated with spores containing endobacteria (B+) or not (B-), and exposed to combined water/nutrient stress. Plants traits, AM colonization and expression of AM marker genes were measured. Results showed that mycorrhizal frequency was low and no growth effect was observed. Under control conditions, B+ inoculated plants were more responsive to the symbiosis, as they showed an up-regulation of three AM marker genes involved in phosphate and lipids metabolism compared with B- inoculated or not-inoculated plants. When combined stress was imposed, the difference between fungal strains was still evident for one marker gene. These results indicate that the fungal endobacteria finely modulate plant metabolism, even in the absence of growth response.
Collapse
Affiliation(s)
- Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; (M.C.); (G.G.); (M.N.); (P.B.)
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; (M.C.); (G.G.); (M.N.); (P.B.)
| | - Gianluca Guazzotti
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; (M.C.); (G.G.); (M.N.); (P.B.)
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Science, University of Torino, Largo Braccini 2, I-10095 Grugliasco, Italy;
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; (M.C.); (G.G.); (M.N.); (P.B.)
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; (M.C.); (G.G.); (M.N.); (P.B.)
| |
Collapse
|
79
|
Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L. Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses 2020; 12:E675. [PMID: 32580438 PMCID: PMC7354615 DOI: 10.3390/v12060675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/30/2023] Open
Abstract
Tomato plants can establish symbiotic interactions with arbuscular mycorrhizal fungi (AMF) able to promote plant nutrition and prime systemic plant defenses against pathogens attack; the mechanism involved is known as mycorrhiza-induced resistance (MIR). However, studies on the effect of AMF on viral infection, still limited and not conclusive, indicate that AMF colonization may have a detrimental effect on plant defenses against viruses, so that the term "mycorrhiza-induced susceptibility" (MIS) has been proposed for these cases. To expand the case studies to a not yet tested viral family, that is, Bromoviridae, we investigated the effect of the colonization by the AMF Funneliformis mosseae on cucumber mosaic virus (CMV) infection in tomato by phenotypic, physiological, biochemical, and transcriptional analyses. Our results showed that the establishment of a functional AM symbiosis is able to limit symptoms development. Physiological and transcriptomic data highlighted that AMF mitigates the drastic downregulation of photosynthesis-related genes and the reduction of photosynthetic CO2 assimilation rate caused by CMV infection. In parallel, an increase of salicylic acid level and a modulation of reactive oxygen species (ROS)-related genes, toward a limitation of ROS accumulation, was specifically observed in CMV-infected mycorrhizal plants. Overall, our data indicate that the AM symbiosis influences the development of CMV infection in tomato plants and exerts a priming effect able to enhance tolerance to viral infection.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Unit of Sesto Fiorentino (FI), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy;
| | - Valerio Casarin
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Mara Berti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy;
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
80
|
Diversity and distribution of arbuscular mycorrhizal fungi along a land use gradient in Terceira Island (Azores). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
81
|
Melo CD, Walker C, Freitas H, Machado AC, Borges PAV. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and São Miguel Islands (Azores). Biodivers Data J 2020; 8:e49759. [PMID: 32280296 PMCID: PMC7142165 DOI: 10.3897/bdj.8.e49759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/08/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The data, presented here, come from samples collected during three research projects which aimed to assess the impact of land-use type on Arbuscular Mycorrhizal Fungi (AMF) diversity and community composition in pastures of Terceira Island (Azores, Macaronesia, Portugal) and also in the native forest of two Azorean Islands (Terceira and São Miguel; Azores, Macaronesia, Portugal). Both projects contributed to improving the knowledge of AMF community structure at both local and regional scales. NEW INFORMATION Little is known on the AMF communities from Azores islands and this study reports the first survey in two Azorean Islands (Terceira and São Miguel). A total of 18,733 glomeromycotan spores were classified at the species level from 244 field soil samples collected in three different habitat types - native forests (dominated by Juniperus brevifolia and Picconia azorica), semi-natural and intensively-managed pastures. Thirty-seven distinct spore morphotypes, representing ten glomeromycotan families, were detected. Species of the family Acaulosporaceae dominated the samples, with 13 species (38% of the taxa), followed by Glomeraceae (6 spp.), Diversisporaceae (4 spp.), Archaeosporaceae (3 spp.), Claroideoglomeraceae (3 spp.), Gigasporaceae (3 spp.), Ambisporaceae and Paraglomeraceae, both with the same number of AMF species (2 spp.), Sacculosporaceae (1 sp.) and Entrophospora (family insertae sedis). Members of the family Acaulosporaceae occurred almost exclusively in the native forests especially associated with the Picconia azorica rhizosphere, while members of Gigasporaceae family showed a high tendency to occupy the semi-natural pastures and the native forests of Picconia azorica. Members of Glomeraceae family were broadly distributed by all types of habitat which confirm the high ecological plasticity of this AMF family to occupy the more diverse habitats.
Collapse
Affiliation(s)
- Catarina Drumonde Melo
- cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Terceira, Azores, PortugalcE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042Angra do Heroísmo, Terceira, AzoresPortugal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, PortugalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401CoimbraPortugal
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LR, Edinburgh, United KingdomRoyal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LREdinburghUnited Kingdom
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth WA 6009, Crawley, AustraliaSchool of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth WA 6009CrawleyAustralia
| | - Helena Freitas
- CFE – Centre for FunctionalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, PortugalCFE – Centre for FunctionalCFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3001-401CoimbraPortugal
| | - Artur Câmara Machado
- CBA-UAç – Biotechnology Center of Azores, Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Rua Capitão D´Ávila, 9700-042, Angra do Heroísmo, PortugalCBA-UAç – Biotechnology Center of Azores, Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Rua Capitão D´Ávila, 9700-042Angra do HeroísmoPortugal
| | - Paulo A. V. Borges
- cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Terceira, Azores, PortugalcE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias e do Ambiente, Rua Capitão João d’Ávila, São Pedro, 9700-042Angra do Heroísmo, Terceira, AzoresPortugal
| |
Collapse
|
82
|
Combined Effects of Water Deficit, Exogenous Ethylene Application and Root Symbioses on Trigonelline and ABA Accumulation in Fenugreek. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secondary metabolites (SMs) have high economic impact thanks to their exploitability in chemical, pharmaceutical and cosmetic industries. Trigonella foenum-graecum has an importance due to the production of bioactive compounds with pharmaceutical values. Among them, the alkaloid trigonelline is known for its role in the treatment of different human diseases. SM accumulation is influenced by environmental factors but is modulated by the application of exogenous compounds. Ethephon, a precursor of the phytohormone ethylene, was already used to influence SM accumulation. Our work is aimed at evaluating the accumulation of trigonelline and the phytohormone abscisic acid (ABA) when three factors were combined: i) two levels of water regimes (well-watered and water deficit), ii) ethephon treatments and iii) inoculation with an arbuscular mycorrhizal (AM)-based inoculum also leading to nodulation. The content of trigonelline and ABA was significantly affected by symbioses, showing high accumulation in AM-colonized plants irrespective of the water regimes applied. In terms of trigonelline accumulation with respect to ethephon treatments, while symbiotic plants showed a dose-dependent trend, non-symbiotic plants showed a significantly difference only when 550 ppm of ethephon was applied. In conclusion, our work provides new information on the effects of both ethephon and symbioses on plant growth and accumulation of valuable compounds, such as trigonelline, in fenugreek.
Collapse
|
83
|
Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Douira A, El Modafar C, Mitsui T, Wahbi S, Meddich A. Arbuscular Mycorrhizal Fungi Mediate Drought Tolerance and Recovery in Two Contrasting Carob ( Ceratonia siliqua L.) Ecotypes by Regulating Stomatal, Water Relations, and (In)Organic Adjustments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E80. [PMID: 31936327 PMCID: PMC7020440 DOI: 10.3390/plants9010080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
Irregular precipitation and drought caused an increase in tree mortality rates in multiple forest biomes with alterations in both ecosystem services and carbon balance. Carob (Ceratonia siliqua) growth and production in arid and semi-arid ecosystems are likely affected by climate change-induced droughts. Understanding the physiological responses of drought-induced early-stage tree death and strategies to enhance drought tolerance and optimize growth will help tree improvement programs. Mycorrhizal inoculation has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. However, a better understanding of these complex interconnected cellular processes and arbuscular mycorrhizal fungi (AMF)-mediated mechanisms regulating drought tolerance in plants will enhance its potential application as an efficient approach for bio-amelioration of stresses. The objectives of this work were to elucidate the different effects of autochthone AMF on inorganic solute and water content uptakes, organic adjustments (sugar and proteins content), leaf gas exchange (stomatal conductance and efficiency of photosystems I and II), and oxidative damage of two contrasting ecotypes of carob seedlings: coastal (southern ecotype (SE)) and in-land (northern ecotype (NE)) under control (C), drought (by cessation of irrigation for 15 days (15D)), and recovery (R) conditions. Our findings showed that AMF promoted growth, nutrient content, and physiological and biochemical parameters in plants of both ecotypes during C, 15D, and R conditions. After four days of recovery, stomatal conductance (gs), the maximum photochemical efficiency of PSII (Fv/Fm), water content, and plant uptake of mineral nutrients (P, K, Na, and Ca) were significantly higher in shoots of mycorrhizal (AM) than non-mycorrhizal (NM) control plants. Consequently, AMF reduced to a greater degree the accumulation of hydrogen peroxide (H2O2) and oxidative damage to lipid (malondialdehyde (MDA)) content in AM than NM plants in NE and SE, after recovery. Altogether, our findings suggest that AMF can play a role in drought resistance of carob trees at an early stage by increasing the inorganic solutes (P, K, Na, and Ca), water content uptake, organic solutes (soluble sugars and protein content), stomatal conductance, and defense response against oxidative damage during re-watering after drought stress.
Collapse
Affiliation(s)
- Abderrahim Boutasknit
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Mohamed Anli
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Raja Ben-Laouane
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Allal Douira
- Laboratory of Botany and Plant Protection, Faculty of Science, BP. 133, Ibn Tofail University, Kenitra 14000, Morocco
| | - Cherkaoui El Modafar
- Laboratory of Biotechnology and Molecular Bioengineering, Faculty of Sciences and Techniques, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Said Wahbi
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences Semlalia, Cadi Ayyad University, BP: 2390, Marrakesh 40000, Morocco
| |
Collapse
|
84
|
Interaction of Tomato Genotypes and Arbuscular Mycorrhizal Fungi under Reduced Irrigation. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5040079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Climate change is increasing drought events and decreasing water availability. Tomato is commonly transplanted to an open field after seedling production in a nursery, requiring large volumes of water. Arbuscular mycorrhizal (AM) fungi help plants cope with drought stress; however, their effects depend on plant genotype and environmental conditions. In this study, we assessed the interactions among different tomato seedling genotypes and two AM fungi, Funneliformis mosseae and Rhizophagus intraradices, under two water regimes, full and reduced. Our results showed that F. mosseae was more effective than R. intraradices in the mitigation of drought stress both in old and modern genotypes. However, seedlings inoculated with R. intraradices recorded the highest values of leaf area. ‘Pearson’ and ‘Everton’ genotypes inoculated with F. mosseae recorded the highest values of root, leaf, and total dry weights under reduced and full irrigation regimes, respectively. In addition, ‘Pearson’ and ‘H3402’ genotypes inoculated with F. mosseae under a reduced irrigation regime displayed high values of water use efficiency. Our results highlight the importance of using AM fungi to mitigate drought stress in nursery production of tomato seedlings. However, the development of ad hoc AM fungal formulations, which consider genotype x AM fungi interactions, is fundamental for achieving the best agronomic performances.
Collapse
|
85
|
Begum N, Ahanger MA, Su Y, Lei Y, Mustafa NSA, Ahmad P, Zhang L. Improved Drought Tolerance by AMF Inoculation in Maize ( Zea mays) Involves Physiological and Biochemical Implications. PLANTS (BASEL, SWITZERLAND) 2019; 8:E579. [PMID: 31817760 PMCID: PMC6963921 DOI: 10.3390/plants8120579] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
The role of arbuscular mycorrhizal fungus (AMF, Glomus versiforme) in amelioration of drought-induced effects on growth and physio-biochemical attributes in maize (Zea mays L.) was studied. Maize plants were exposed to two drought regimes, i.e., moderate drought (MD) and severe drought (SD), with and without AMF inoculation. Drought at both levels reduced plant height, and chlorophyll and carotenoid content, thereby impeding photosynthesis. In addition, drought stress enhanced the generation of toxic reactive oxygen species (ROS), including H2O2, resulting in membrane damage reflected as increased electrolyte leakage and lipid peroxidation. Such negative effects were much more apparent under SD conditions that those of MD and the control, however, AMF inoculation significantly ameliorated the deleterious effects of drought-induced oxidative damage. Under control conditions, inoculation of AMF increased growth and photosynthesis by significantly improving chlorophyll content, mineral uptake and assimilation. AMF inoculation increased the content of compatible solutes, such as proline, sugars and free amino acids, assisting in maintaining the relative water content. Up-regulation of the antioxidant system was obvious in AMF-inoculated plants, thereby mediating quick alleviation of oxidative effects of drought through elimination of ROS. In addition, AMF mediated up-regulation of the antioxidant system contributed to maintenance of redox homeostasis, leading to protection of major metabolic pathways, including photosynthesis, as observed in the present study. Total phenols increased due to AMF inoculation under both MD and SD conditions. The present study advocates the beneficial role of G. versiforme inoculation in maize against drought stress.
Collapse
Affiliation(s)
- Naheeda Begum
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Muhammad Abass Ahanger
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Yunyun Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Yafang Lei
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| | - Nabil Sabet A. Mustafa
- Biotechnology for fruit Tress Micropropagation Laboratory, Department of Pomology, National Research Centre, Cairo 12622, Egypt;
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; (N.B.); (M.A.A.); (Y.S.); (Y.L.)
| |
Collapse
|
86
|
Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Pan J, Liu Y, Feng H. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E4199. [PMID: 31461957 PMCID: PMC6747277 DOI: 10.3390/ijms20174199] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant-AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.
Collapse
Affiliation(s)
- Ali Bahadur
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Asfa Batool
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Shengjin Jiang
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qin Mingsen
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianbin Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
87
|
Balestrini R, Rosso LC, Veronico P, Melillo MT, De Luca F, Fanelli E, Colagiero M, di Fossalunga AS, Ciancio A, Pentimone I. Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Front Microbiol 2019; 10:1807. [PMID: 31456765 PMCID: PMC6700261 DOI: 10.3389/fmicb.2019.01807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Climate changes include the intensification of drought in many parts of the world, increasing its frequency, severity and duration. However, under natural conditions, environmental stresses do not occur alone, and, in addition, more stressed plants may become more susceptible to attacks by pests and pathogens. Studies on the impact of the arbuscular mycorrhizal (AM) symbiosis on tomato response to water deficit showed that several drought-responsive genes are differentially regulated in AM-colonized tomato plants (roots and leaves) during water deficit. To date, global changes in mycorrhizal tomato root transcripts under water stress conditions have not been yet investigated. Here, changes in root transcriptome in the presence of an AM fungus, with or without water stress (WS) application, have been evaluated in a commercial tomato cultivar already investigated for the water stress response during AM symbiosis. Since root-knot nematodes (RKNs, Meloidogyne incognita) are obligate endoparasites and cause severe yield losses in tomato, the impact of the AM fungal colonization on RKN infection at 7 days post-inoculation was also evaluated. Results offer new information about the response to AM symbiosis, highlighting a functional redundancy for several tomato gene families, as well as on the tomato and fungal genes involved in WS response during symbiosis, underlying the role of the AM fungus. Changes in the expression of tomato genes related to nematode infection during AM symbiosis highlight a role of AM colonization in triggering defense responses against RKN in tomato. Overall, new datasets on the tomato response to an abiotic and biotic stress during AM symbiosis have been obtained, providing useful data for further researches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Laura C Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Pasqua Veronico
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Maria Teresa Melillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Francesca De Luca
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Elena Fanelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Mariantonietta Colagiero
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | | | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Isabella Pentimone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
88
|
Tisarum R, Theerawitaya C, Samphumphuang T, Phisalaphong M, Singh HP, Cha-um S. Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar ( Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:821-835. [PMID: 31402812 PMCID: PMC6656829 DOI: 10.1007/s12298-019-00658-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 05/08/2023]
Abstract
Drought or water deficit is a major abiotic stress that can reduce growth and productivity in the rice crop especially in the rain-fed areas, which face long-term water shortage. The objective of this investigation was to promote the drought tolerant abilities in pigmented rice cv. 'Hom Nil' at booting stage using arbuscular mycorrhizal fungi (AMF)-inoculation, mixed spores of Glomus geosporum, G. etunicatum and G. mosseae in the soil before rice seedling transplantation. At booting stage, the AMF-inoculated (+AMF) and AMF-uninoculated plants (-AMF) were subjected to control (well-watering; 46.6% SWC) and water deficit condition (14 days water withholding; 13.8% SWC). Colonization percentage in the AMF-inoculated root tissues were evidently proved in both with and without water deficit conditions, leading to elevate total phosphorus in root and leaf tissues. Interestingly, sucrose and total soluble sugar concentration in the flag leaf were increased by 5.0 folds and 1.5 folds, respectively in the plants under water deficit (WD). Free proline was accumulated in flag leaf when exposure to water deficit, subsequently regulated by AMF-inoculation. Total soluble sugar and free proline enrichment in 'Hom Nil' was a major mode of osmotic adjustment to control osmotic potential in the cellular level when exposed to water deficit, leading to maintained photosynthetic abilities and growth performances. Concentration of chlorophyll b in AMF-inoculated plants under water deficit stress was retained, causing to improve chlorophyll fluorescence and net photosynthetic rate. Shoot height and number of tillers were significantly declined by 12.5% and 11.6%, respectively, when subjected to WD. At the harvest, grain yield, panicle dry weight and fertility percentage of AMF-inoculated rice from WD were greater than those without AMF by 1.5, 3.9 and 2.4 folds, respectively. Cyanidin-3-glucoside and peonidin-3-glucoside concentrations in pericarp were enriched in the grain derived from AMF-inoculation with water deficit stress. Overall growth characters and physiological adaptations in 'Hom Nil' grown under water deficit condition were retained by AMF inoculation, resulting in enhanced yield attributes and anthocyanin fortification in rice grain.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014 India
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
89
|
Tian L, Chang C, Ma L, Nasir F, Zhang J, Li W, Tran LSP, Tian C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2019; 12:35. [PMID: 31076886 PMCID: PMC6510786 DOI: 10.1186/s12284-019-0287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice, which serves as a staple food for more than half of the world's population, is very susceptible to the pathogenic fungus, Magnaporthe oryzae. However, common wild rice (Oryza rufipogon), which is the ancestor of Asian cultivated rice (O. sativa), has significant potential as a genetic source of resistance to M. oryzae. Recent studies have shown that the domestication of rice has altered its relationship to symbiotic arbuscular mycorrhizae. A comparative response of wild and domestic rice inhabited by mycorrhizae to infection by M. oryzae has not been documented. RESULTS In the current study, roots of wild and cultivated rice colonized with the arbuscular mycorrhizal (AM) fungus (AMF) Rhizoglomus intraradices were used to compare the transcriptomic responses of the two species to infection by M. oryzae. Phenotypic analysis indicated that the colonization of wild and cultivated rice with R. intraradices improved the resistance of both genotypes to M. oryzae. Wild AM rice, however, was more resistant to M. oryzae than the cultivated AM rice, as well as nonmycorrhizal roots of wild rice. Transcriptome analysis indicated that the mechanisms regulating the responses of wild and cultivated AM rice to M. oryzae invasion were significantly different. The expression of a greater number of genes was changed in wild AM rice than in cultivated AM rice in response to the pathogen. Both wild and cultivated AM rice exhibited a shared response to M. oryzae which included genes related to the auxin and salicylic acid pathways; all of these play important roles in pathogenesis-related protein synthesis. In wild AM rice, secondary metabolic and biotic stress-related analyses indicated that the jasmonic acid synthesis-related α-linolenic acid pathway, the phenolic and terpenoid pathways, as well as the phenolic and terpenoid syntheses-related mevalonate (MVA) pathway were more affected by the pathogen. Genes related to these pathways were more significantly enriched in wild AM rice than in cultivated AM rice in response to M. oryzae. On the other hand, genes associated with the 'brassinosteroid biosynthesis' were more enriched in cultivated AM rice. CONCLUSIONS The AMF R. intraradices-colonized rice plants exhibited greater resistance to M. oryzae than non-AMF-colonized plants. The findings of the current study demonstrate the potential effects of crop domestication on the benefits received by the host via root colonization with AMF(s), and provide new information on the underlying molecular mechanisms. In addition, results of this study can also help develop guidelines for the applications of AMF(s) when planting rice.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Jianfeng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- College of Life Science, Jilin Agricultural University, Changchun, Jilin China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000 Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
90
|
Microbes in Cahoots with Plants: MIST to Hit the Jackpot of Agricultural Productivity during Drought. Int J Mol Sci 2019; 20:ijms20071769. [PMID: 30974865 PMCID: PMC6480072 DOI: 10.3390/ijms20071769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Drought conditions marked by water deficit impede plant growth thus causing recurrent decline in agricultural productivity. Presently, research efforts are focussed towards harnessing the potential of microbes to enhance crop production during drought. Microbial communities, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) buddy up with plants to boost crop productivity during drought via microbial induced systemic tolerance (MIST). The present review summarizes MIST mechanisms during drought comprised of modulation in phytohormonal profiles, sturdy antioxidant defence, osmotic grapnel, bacterial exopolysaccharides (EPS) or AMF glomalin production, volatile organic compounds (VOCs), expression of fungal aquaporins and stress responsive genes, which alters various physiological processes such as hydraulic conductance, transpiration rate, stomatal conductivity and photosynthesis in host plants. Molecular studies have revealed microbial induced differential expression of various genes such as ERD15 (Early Response to Dehydration 15), RAB18 (ABA-responsive gene) in Arabidopsis, COX1 (regulates energy and carbohydrate metabolism), PKDP (protein kinase), AP2-EREBP (stress responsive pathway), Hsp20, bZIP1 and COC1 (chaperones in ABA signalling) in Pseudomonas fluorescens treated rice, LbKT1, LbSKOR (encoding potassium channels) in Lycium, PtYUC3 and PtYUC8 (IAA biosynthesis) in AMF inoculated Poncirus, ADC, AIH, CPA, SPDS, SPMS and SAMDC (polyamine biosynthesis) in PGPR inoculated Arabidopsis, 14-3-3 genes (TFT1-TFT12 genes in ABA signalling pathways) in AMF treated Solanum, ACO, ACS (ethylene biosynthesis), jasmonate MYC2 gene in chick pea, PR1 (SA regulated gene), pdf1.2 (JA marker genes) and VSP1 (ethylene-response gene) in Pseudomonas treated Arabidopsis plants. Moreover, the key role of miRNAs in MIST has also been recorded in Pseudomonas putida RA treated chick pea plants.
Collapse
|
91
|
Chun SC, Paramasivan M, Chandrasekaran M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Front Microbiol 2018; 9:2525. [PMID: 30459731 PMCID: PMC6232873 DOI: 10.3389/fmicb.2018.02525] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023] Open
Abstract
Salinity and drought are the major osmotic stress limitations that affect plant growth and crop yield in agriculture worldwide. The alternative response mediated by plants in response to salinity and drought are principally proline accumulation which regulates stress combat strategies owing to sustainable production in the realm of agricultural production even under severe stress. Symbiotic and soil associated arbuscular mycorrhizal fungi (AMF) are regarded as efficient biofertilizers in several crops under these stresses. Summarily AMF is renowned for effective scavengers of free radicals in soil thereby increasing soil parameters optimal for plant growth. AMF contribute to augment host plant tolerance to stress specifically salinity and drought. Mycorrhizal colonization positively regulates root uptake of available nutrients and enhance growth even when bestowed by water constraints which has contributory roles due to proline accumulation providing several intriguing researches on AMF symbiosis pertaining to plant productivity and yield. Mycorrhizal plants and their non-mycorrhizal counterparts show varied expression pattern regarding proline amass. Hence, the precise role of proline with respect to stress tolerance and equivocal mechanisms involved in evasion of osmotic stress has not been extensively reviewed earlier. Further molecular forecasting in this arena is still an underexploited research field. This review comprehensively addresses the observable facts pertaining to proline accumulation upon AMF association and adherence relevant to stress tolerance and host plant efficiency and efficacy.
Collapse
Affiliation(s)
- Se Chul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
92
|
Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Di Serio C, Maserti B, Guerrieri E, Balestrini R. The Association With Two Different Arbuscular Mycorrhizal Fungi Differently Affects Water Stress Tolerance in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1480. [PMID: 30356724 PMCID: PMC6189365 DOI: 10.3389/fpls.2018.01480] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/21/2018] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are very widespread, forming symbiotic associations with ∼80% of land plant species, including almost all crop plants. These fungi are considered of great interest for their use as biofertilizer in low-input and organic agriculture. In addition to an improvement in plant nutrition, AM fungi have been reported to enhance plant tolerance to important abiotic and biotic environmental conditions, especially to a reduced availability of resources. These features, to be exploited and applied in the field, require a thorough identification of mechanisms involved in nutrient transfer, metabolic pathways induced by single and multiple stresses, physiological and eco-physiological mechanisms resulting in improved tolerance. However, cooperation between host plants and AM fungi is often related to the specificity of symbiotic partners, the environmental conditions and the availability of resources. In this study, the impact of two AM fungal species (Funneliformis mosseae and Rhizophagus intraradices) on the water stress tolerance of a commercial tomato cultivar (San Marzano nano) has been evaluated in pots. Biometric and eco-physiological parameters have been recorded and gene expression analyses in tomato roots have been focused on plant and fungal genes involved in inorganic phosphate (Pi) uptake and transport. R. intraradices, which resulted to be more efficient than F. mosseae to improve physiological performances, was selected to assess the role of AM symbiosis on tomato plants subjected to combined stresses (moderate water stress and aphid infestation) in controlled conditions. A positive effect on the tomato indirect defense toward aphids in terms of enhanced attraction of their natural enemies was observed, in agreement with the characterization of volatile organic compound (VOC) released. In conclusion, our results offer new insights for understanding the molecular and physiological mechanisms involved in the tolerance toward water deficit as mediated by a specific AM fungus. Moreover, they open new perspectives for the exploitation of AM symbiosis to enhance crop tolerance to abiotic and biotic stresses in a scenario of global change.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics, Centre of Viticulture and Enology Research, Conegliano, Italy
| | - Pasquale Cascone
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | | | - Paola Bartolini
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Gloriano Moneti
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Claudia Di Serio
- Geriatric Intensive Care Unit, Experimental and Clinical Medicine Department, University of Florence, AOU Careggi, Florence, Italy
| | - Biancaelena Maserti
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Emilio Guerrieri
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Turin-Florence-Portici (NA) Units, Portici, Italy
| |
Collapse
|
93
|
Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. FRONTIERS IN PLANT SCIENCE 2018; 9:1270. [PMID: 30233616 PMCID: PMC6132195 DOI: 10.3389/fpls.2018.01270] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhiza (AM) is the most common symbiotic association of plants with microbes. AM fungi occur in the majority of natural habitats and they provide a range of important ecological services, in particular by improving plant nutrition, stress resistance and tolerance, soil structure and fertility. AM fungi also interact with most crop plants including cereals, vegetables, and fruit trees, therefore, they receive increasing attention for their potential use in sustainable agriculture. Basic research of the past decade has revealed the existence of a dedicated recognition and signaling pathway that is required for AM. Furthermore, recent evidence provided new insight into the exchange of nutritional benefits between the symbiotic partners. The great potential for application of AM has given rise to a thriving industry for AM-related products for agriculture, horticulture, and landscaping. Here, we discuss new developments in these fields, and we highlight future potential and limits toward the use of AM fungi for plant production.
Collapse
Affiliation(s)
- Min Chen
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| | | | - Lorenzo Borghi
- Institute of Plant and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Eva Nouri
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, Rte Albert Gockel, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
94
|
Wang M, Schäfer M, Li D, Halitschke R, Dong C, McGale E, Paetz C, Song Y, Li S, Dong J, Heiling S, Groten K, Franken P, Bitterlich M, Harrison MJ, Paszkowski U, Baldwin IT. Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. eLife 2018; 7:e37093. [PMID: 30152755 PMCID: PMC6156081 DOI: 10.7554/elife.37093] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023] Open
Abstract
High-through-put (HTP) screening for functional arbuscular mycorrhizal fungi (AMF)-associations is challenging because roots must be excavated and colonization evaluated by transcript analysis or microscopy. Here we show that specific leaf-metabolites provide broadly applicable accurate proxies of these associations, suitable for HTP-screens. With a combination of untargeted and targeted metabolomics, we show that shoot accumulations of hydroxy- and carboxyblumenol C-glucosides mirror root AMF-colonization in Nicotiana attenuata plants. Genetic/pharmacologic manipulations indicate that these AMF-indicative foliar blumenols are synthesized and transported from roots to shoots. These blumenol-derived foliar markers, found in many di- and monocotyledonous crop and model plants (Solanum lycopersicum, Solanum tuberosum, Hordeum vulgare, Triticum aestivum, Medicago truncatula and Brachypodium distachyon), are not restricted to particular plant-AMF interactions, and are shown to be applicable for field-based QTL mapping of AMF-related genes.
Collapse
Affiliation(s)
- Ming Wang
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Martin Schäfer
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Dapeng Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Rayko Halitschke
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Chuanfu Dong
- Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Erica McGale
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Christian Paetz
- Research Group Biosynthesis / NMRMax Planck Institute for Chemical EcologyJenaGermany
| | - Yuanyuan Song
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Suhua Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Junfu Dong
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Sven Heiling
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Karin Groten
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental CropsGrossbeerenGermany
- Institute of BiologyHumboldt Universität zu BerlinBerlinGermany
| | | | | | - Uta Paszkowski
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
95
|
Young E, Carey M, Meharg AA, Meharg C. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. MICROBIOME 2018; 6:48. [PMID: 29554982 PMCID: PMC5859661 DOI: 10.1186/s40168-018-0434-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/05/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. RESULTS Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. CONCLUSIONS Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.
Collapse
Affiliation(s)
- Ellen Young
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Manus Carey
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Andrew A. Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| |
Collapse
|
96
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
97
|
Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. PLANTA 2018; 247:573-585. [PMID: 29124326 DOI: 10.1007/s00425-017-2808-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/03/2017] [Indexed: 05/12/2023]
Abstract
AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.
Collapse
Affiliation(s)
- Susanna Pollastri
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Massimo Pesando
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | - Erica Lumini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | | | - Antonella Faccio
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Marco Michelozzi
- CNR, Institute of Biosciences and Bioresources, Sesto Fiorentino, Italy
| | - Maurizio Lambardi
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | | | - Francesco Loreto
- CNR, Department of Biology, Agriculture and Food Sciences (DiSBA), Rome, Italy
| | - Mauro Centritto
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | - Raffaella Balestrini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy.
| |
Collapse
|
98
|
Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Hughes D, Cavallini A, Giovannetti M, Giordani T. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep 2018; 8:4. [PMID: 29311719 PMCID: PMC5758643 DOI: 10.1038/s41598-017-18445-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | | | - David Hughes
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrea Cavallini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| |
Collapse
|
99
|
Zhu X, Cao Q, Sun L, Yang X, Yang W, Zhang H. Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO 2 and NaCl Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1363. [PMID: 30283478 PMCID: PMC6156373 DOI: 10.3389/fpls.2018.01363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/28/2018] [Indexed: 05/20/2023]
Abstract
Stomata play a critical role in the regulation of gas exchange between the interior of the leaf and the exterior environment and are affected by environmental and endogenous stimuli. This study aimed to evaluate the effect of the arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, on the stomatal behavior of wheat (Triticum aestivum L.) plants under combination with elevated CO2 and NaCl stress. Wheat seedlings were exposed to ambient (400 ppm) or elevated (700 ppm) CO2 concentrations and 0, 1, and 2 g kg-1 dry soil NaCl treatments for 10 weeks. AM symbiosis increased the leaf area and stomatal density (SD) of the abaxial surface. Stomatal size and the aperture of adaxial and abaxial leaf surfaces were higher in the AM than non-AM plants under elevated CO2 and salinity stress. AM plants showed higher stomatal conductance (g s ) and maximum rate of g s to water vapor (g smax ) compared with non-AM plants. Moreover, leaf water potential (Ψ) was increased and carbon isotope discrimination (Δ13C) was decreased by AM colonization, and both were significantly associated with stomatal conductance. The results suggest that AM symbiosis alters stomatal morphology by changing SD and the size of the guard cells and stomatal pores, thereby improving the stomatal conductance and water relations of wheat leaves under combined elevated CO2 and salinity stress.
Collapse
Affiliation(s)
- Xiancan Zhu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Xiancan Zhu
| | - Qingjun Cao
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Luying Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaoqin Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wenying Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Hua Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
100
|
Stauder R, Welsch R, Camagna M, Kohlen W, Balcke GU, Tissier A, Walter MH. Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. FRONTIERS IN PLANT SCIENCE 2018; 9:255. [PMID: 29545815 PMCID: PMC5838088 DOI: 10.3389/fpls.2018.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides "just in time"-delivery of precursors for apocarotenoid formation.
Collapse
Affiliation(s)
- Ron Stauder
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Ralf Welsch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maurizio Camagna
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Gerd U. Balcke
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Michael H. Walter
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
- *Correspondence: Michael H. Walter,
| |
Collapse
|