51
|
Hong SY, Botterweg-Paredes E, Doll J, Eguen T, Blaakmeer A, Matton S, Xie Y, Skjøth Lunding B, Zentgraf U, Guan C, Jiao Y, Wenkel S. Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. Development 2020; 147:dev.183681. [PMID: 32345745 PMCID: PMC7325436 DOI: 10.1242/dev.183681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2 In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV.
Collapse
Affiliation(s)
- Shin-Young Hong
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Esther Botterweg-Paredes
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jasmin Doll
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Tenai Eguen
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anko Blaakmeer
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Matton
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Yakun Xie
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Bjørg Skjøth Lunding
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Zentgraf
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark .,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.,NovoCrops Center, PLEN, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
52
|
Lu H, Gordon MI, Amarasinghe V, Strauss SH. Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1). Sci Rep 2020; 10:6581. [PMID: 32313054 PMCID: PMC7170949 DOI: 10.1038/s41598-020-63372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases – growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.
Collapse
Affiliation(s)
- Haiwei Lu
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Michael I Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Vindhya Amarasinghe
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
53
|
Miyakawa T, Xu Y, Tanokura M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci 2020; 77:1103-1113. [PMID: 31587093 PMCID: PMC11104851 DOI: 10.1007/s00018-019-03318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
54
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
55
|
Yuan J, Sun X, Guo T, Chao Y, Han L. Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 2020; 8:e8426. [PMID: 32002335 PMCID: PMC6979412 DOI: 10.7717/peerj.8426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Leaf senescence is a complex organized developmental stage limiting the yield of crop plants, and alfalfa is an important forage crop worldwide. However, our understanding of the molecular mechanism of leaf senescence and its influence on biomass in alfalfa is still limited. In this study, RNA sequencing was utilized to identify differentially expressed genes (DEGs) in young, mature, and senescent leaves, and the functions of key genes related to leaf senescence. A total of 163,511 transcripts and 77,901 unigenes were identified from the transcriptome, and 5,133 unigenes were differentially expressed. KEGG enrichment analyses revealed that ribosome and phenylpropanoid biosynthesis pathways, and starch and sucrose metabolism pathways are involved in leaf development and senescence in alfalfa. GO enrichment analyses exhibited that six clusters of DEGs are involved in leaf morphogenesis, leaf development, leaf formation, regulation of leaf development, leaf senescence and negative regulation of the leaf senescence biological process. The WRKY and NAC families of genes mainly consist of transcription factors that are involved in the leaf senescence process. Our results offer a novel interpretation of the molecular mechanisms of leaf senescence in alfalfa.
Collapse
Affiliation(s)
- Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Key Laboratory of Crop Growth Regulation of Hebei Province, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
56
|
Ueda H, Ito T, Inoue R, Masuda Y, Nagashima Y, Kozuka T, Kusaba M. Genetic Interaction Among Phytochrome, Ethylene and Abscisic Acid Signaling During Dark-Induced Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564. [PMID: 32508856 PMCID: PMC7253671 DOI: 10.3389/fpls.2020.00564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Leaf senescence is induced by various internal and external stimuli. Dark-induced senescence has been extensively investigated, but the detailed mechanism underlying it is not well understood. The red light/far-red light receptor phytochrome B and its downstream transcription factors, PYHTOCHROME INTERACTING FACTORs (PIFs) 4 and 5, are known to play an important role in dark-induced senescence. Furthermore, the senescence-inducing phytohormones, ethylene and abscisic acid (ABA) are reported to be involved in dark-induced senescence. In this study, we analyzed the relationship between ethylene, ABA and PIFs in dark-induced leaf senescence. A triple mutant of the core ABA signaling components; SNF1-related protein kinases 2D (SRK2D), SRK2E, and SRK2I, displayed an ABA insensitive phenotype in ABA-induced senescence, whilst the ethylene insensitive mutant ein2 demonstrated low sensitivity to ABA, suggesting that ethylene signaling is involved in ABA-induced senescence. However, the pif4 pif5 mutant did not display low sensitivity to ABA, suggesting that PIF4 and PIF5 act upstream of ABA signaling. Although PIF4 and PIF5 reportedly regulate ethylene production, the triple mutant ein2 pif4 pif5 showed a stronger delayed senescence phenotype than ein2 or pif4 pif5, suggesting that EIN2 and PIF4/PIF5 partially regulate leaf senescence independently of each other. While direct target genes for PIF4 and PIF5, such as LONG HYPOCOTYL IN FAR-RED1 (HFR1) and PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1), showed transient upregulation under dark conditions (as is seen in the shade avoidance response), expression of STAY GREEN1 (SGR1), ORESARA1 (ORE1) and other direct target genes of PIF5, continued to increase during dark incubation. It is possible that transcription factors other than PIF4 and PIF5 are involved in the upregulation of SGR1 and ORE1 at a later stage of dark-induced senescence. Possible candidates are senescence-induced senescence regulators (SIRs), which include the NAC transcription factors ORE1 and AtNAP. In fact, ORE1 is known to bind to the SGR1 promoter and promotes its expression. It is therefore inferred that the phytochrome-PIF pathway regulates initial activation of senescence and subsequently, induced SIRs reinforce leaf senescence during dark-induced senescence.
Collapse
|
57
|
Zhang Z, Xu M, Guo Y. Ring/U-Box Protein AtUSR1 Functions in Promoting Leaf Senescence Through JA Signaling Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608589. [PMID: 33391323 PMCID: PMC7772223 DOI: 10.3389/fpls.2020.608589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 05/10/2023]
Abstract
Leaf senescence is regulated by a large number of internal and environmental factors. Here, we report that AtUSR1 (U-box Senescence Related 1) which encodes a plant Ring/U-box protein, is involved in age-dependent and dark-induced leaf senescence in Arabidopsis. Expression of AtUSR1 gene in leaves was up-regulated in darkness and during aging. Plants of usr1, an AtUSR1 gene knock-down mutant, showed a significant delay in age-dependent and dark-induced leaf senescence and the delayed senescence phenotype was rescued when the AtUSR1 gene was transferred back to the mutant plants. Meanwhile, overexpression of AtUSR1 caused accelerated leaf senescence. Furthermore, the role of AtUSR1 in regulating leaf senescence is related to MYC2-mediuated jasmonic acid (JA) signaling pathway. MeJA treatments promoted the accumulation of AtUSR1 transcripts and this expression activation was dependent on the function of MYC2, a key transcription factor in JA signaling. Dual-luciferase assay results indicated that MYC2 promoted the expression of AtUSR1. Overexpression of AtUSR1 in myc2 mutant plants showed precocious senescence, while myc2 mutation alone caused a delay in leaf senescence, suggesting that AtUSR1 functions downstream to MYC2 in the JA signaling pathway in promoting leaf senescence.
Collapse
|
58
|
Exogenous Melatonin Delays Methyl Jasmonate-Triggered Senescence in Tomato Leaves. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leaf senescence represents the last stage of leaf development and is highly regulated by plant hormones and environmental factors. Leaf senescence limits growth and yields in crops, leading to a significant portion of agricultural loss. It is thus crucial to develop strategies to delay this physiological process. Melatonin, an extensively studied molecule, has been demonstrated to play a role in the regulation of leaf senescence in plants. Here, we report the role of exogenous melatonin in the alleviation of methyl jasmonate (MeJA)-induced senescence in tomato (Solanum lycopersicum) leaves. The application of melatonin led to slower degradation of chlorophyll, reduced electrolyte leakage, decreased malondialdehyde (MDA) content, and reduced reactive oxygen species (ROS) levels in tomato leaves incubated with MeJA. In addition, melatonin repressed the upregulation of senescence-related genes (SAG and SEN) and chlorophyll degradation genes (SGR1 and PAO) in tomato leaves exposed to MeJA. Furthermore, melatonin stimulated the activity of a Calvin-Benson Cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) and alleviated the inhibition of SlSBPASE (tomato SBPase gene) expression and in MeJA-treated tomato leaves, suggesting an action of melatonin on the capacity for carbon fixation during senescence. Collectively, these results support a role for melatonin in the alleviation of MeJA-induced senescence in tomato leaves. This work also presents a case study that melatonin may be a useful agent in the delay of crop senescence in agricultural practice.
Collapse
|
59
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J. Strigolactones and their crosstalk with other phytohormones. ANNALS OF BOTANY 2019; 124:749-767. [PMID: 31190074 PMCID: PMC6868373 DOI: 10.1093/aob/mcz100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a diverse class of butenolide-bearing phytohormones derived from the catabolism of carotenoids. They are associated with an increasing number of emerging regulatory roles in plant growth and development, including seed germination, root and shoot architecture patterning, nutrient acquisition, symbiotic and parasitic interactions, as well as mediation of plant responses to abiotic and biotic cues. SCOPE Here, we provide a concise overview of SL biosynthesis, signal transduction pathways and SL-mediated plant responses with a detailed discourse on the crosstalk(s) that exist between SLs/components of SL signalling and other phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates and salicylic acid. CONCLUSION SLs elicit their control on physiological and morphological processes via a direct or indirect influence on the activities of other hormones and/or integrants of signalling cascades of other growth regulators. These, among many others, include modulation of hormone content, transport and distribution within plant tissues, interference with or complete dependence on downstream signal components of other phytohormones, as well as acting synergistically or antagonistically with other hormones to elicit plant responses. Although much has been done to evince the effects of SL interactions with other hormones at the cell and whole plant levels, research attention must be channelled towards elucidating the precise molecular events that underlie these processes. More especially in the case of abscisic acid, cytokinins, gibberellin, jasmonates and salicylic acid for which very little has been reported about their hormonal crosstalk with SLs.
Collapse
Affiliation(s)
- L O Omoarelojie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - M G Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
- For correspondence. E-mail:
| |
Collapse
|
60
|
Bovet L, Cheval C, Hilfiker A, Battey J, Langlet D, Broye H, Schwaar J, Ozelley P, Lang G, Bakaher N, Laparra H, Goepfert S. Asparagine Synthesis During Tobacco Leaf Curing. PLANTS 2019; 8:plants8110492. [PMID: 31718005 PMCID: PMC6918383 DOI: 10.3390/plants8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing—a senescence-induced process that allows tobacco leaves to dry out—modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.
Collapse
|
61
|
Mwimba M, Dong X. Quantification of the humidity effect on HR by Ion leakage assay. Bio Protoc 2019; 9:e3203. [PMID: 33654999 PMCID: PMC7854056 DOI: 10.21769/bioprotoc.3203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 03/18/2019] [Indexed: 11/02/2022] Open
Abstract
We describe a protocol to measure the contribution of humidity on cell death during the effector-triggered immunity (ETI), the plant immune response triggered by the recognition of pathogen effectors by plant resistance genes. This protocol quantifies tissue cell death by measuring ion leakage due to loss of membrane integrity during the hypersensitive response (HR), the ETI-associated cell death. The method is simple and short enough to handle many biological replicates, which improves the power of test of statistical significance. The protocol is easily applicable to other environmental cues, such as light and temperature, or treatment with chemicals.
Collapse
Affiliation(s)
- Musoki Mwimba
- Department of Biology, PO Box 90338, Duke University, Durham, North Carolina 27708, USA
| | - Xinnian Dong
- Department of Biology, PO Box 90338, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
62
|
Wang H, Schippers JHM. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. Genes (Basel) 2019; 10:genes10040267. [PMID: 30987024 PMCID: PMC6523301 DOI: 10.3390/genes10040267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Aging and senescence in plants has a major impact on agriculture, such as in crop yield, the value of ornamental crops, and the shelf life of vegetables and fruits. Senescence represents the final developmental phase of the leaf and inevitably results in the death of the organ. Still, the process is completely under the control of the plant. Plants use their protein degradation systems to maintain proteostasis and transport or salvage nutrients from senescing organs to develop reproductive parts. Herein, we present an overview of current knowledge about the main protein degradation pathways in plants during senescence: The proteasome and autophagy. Although both pathways degrade proteins, autophagy appears to prevent aging, while the proteasome functions as a positive regulator of senescence.
Collapse
Affiliation(s)
- Haojie Wang
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
63
|
Lyu JI, Kim JH, Chu H, Taylor MA, Jung S, Baek SH, Woo HR, Lim PO, Kim J. Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:2320-2334. [PMID: 30266040 DOI: 10.1111/nph.15501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Leaf senescence affects plant fitness. Plants that evolve in different environments are expected to acquire distinct regulations of leaf senescence. However, the adaptive and evolutionary roles of leaf senescence are largely unknown. We investigated leaf senescence in 259 natural accessions of Arabidopsis by quantitatively assaying dark-induced senescence responses using a high-throughput chlorophyll fluorescence imaging system. A meta-analysis of our data with phenotypic and climatic information demonstrated biological and environmental links with leaf senescence. We further performed genome-wide association mapping to identify the genetic loci underlying the diversity of leaf senescence responses. We uncovered a new locus, Genetic Variants in leaf Senescence (GVS1), with high similarity to reductase, where a single nonsynonymous nucleotide substitution at GVS1 mediates the diversity of the senescence trait. Loss-of-function mutations of GVS1 in Columbia-0 delayed leaf senescence and increased sensitivity to oxidative stress, suggesting that this GVS1 variant promotes optimal responses to developmental and environmental signals. Intriguingly, gvs1 loss-of-function mutants display allele- and accession-dependent phenotypes, revealing the functional diversity of GVS1 alleles not only in leaf senescence, but also oxidative stress. Our discovery of GVS1 as the genetic basis of natural variation in senescence programs reinforces its adaptive potential in modulating life histories across diverse environments.
Collapse
Affiliation(s)
- Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Mark A Taylor
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Sukjoon Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung Hee Baek
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| |
Collapse
|
64
|
Liu P, Zhang S, Zhou B, Luo X, Zhou XF, Cai B, Jin YH, Niu D, Lin J, Cao X, Jin JB. The Histone H3K4 Demethylase JMJ16 Represses Leaf Senescence in Arabidopsis. THE PLANT CELL 2019; 31:430-443. [PMID: 30712008 PMCID: PMC6447021 DOI: 10.1105/tpc.18.00693] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/07/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
Leaf senescence is governed by a complex regulatory network involving the dynamic reprogramming of gene expression. Age-dependent induction of senescence-associated genes (SAGs) is associated with increased levels of trimethylation of histone H3 at Lys4 (H3K4me3), but the regulatory mechanism remains elusive. Here, we found that JMJ16, an Arabidopsis (Arabidopsis thaliana) JmjC-domain containing protein, is a specific H3K4 demethylase that negatively regulates leaf senescence through its enzymatic activity. Genome-wide analysis revealed a widespread coordinated upregulation of gene expression and hypermethylation of H3K4me3 at JMJ16 binding genes associated with leaf senescence in the loss-of-function jmj16 mutant as compared with the wild type. Genetic analysis indicated that JMJ16 negatively regulates leaf senescence, at least partly through repressing the expression of positive regulators of leaf senescence, WRKY53 and SAG201 JMJ16 associates with WRKY53 and SAG201 and represses their precocious expression in mature leaves by reducing H3K4me3 levels at these loci. The protein abundance of JMJ16 gradually decreases during aging, which is correlated with increased H3K4me3 levels at WRKY53 and SAG201, suggesting that the age-dependent downregulation of JMJ16 is required for the precise transcriptional activation of SAGs during leaf senescence. Thus, JMJ16 is an important regulator of leaf senescence that demethylates H3K4 at SAGs in an age-dependent manner.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Luo
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Feng Zhou
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yin Hua Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
65
|
Zhu K, Tao H, Xu S, Li K, Zafar S, Cao W, Yang Y. Overexpression of salt-induced protein (salT) delays leaf senescence in rice. Genet Mol Biol 2019; 42:80-86. [PMID: 30730528 PMCID: PMC6428123 DOI: 10.1590/1678-4685-gmb-2017-0365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Senescence, a highly programmed process, largely determines yield and quality of crops. However, knowledge about the onset and progression of leaf senescence in crop plants is still limited. Here, we report that salt-induced protein (salT), a new gene, may be involved in leaf senescence. Overexpressing salT could prolong the duration of leaves with higher concentrations of chlorophyll compared with the wild type. Moreover, overexpression of salT could delay the senescence of rice leaves though the inhibition of senescence associated genes (SAGs). Overall, the characterization of salT suggested that it is a new gene affecting the leaf senescence induced by natural and dark conditions.
Collapse
Affiliation(s)
- Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huimin Tao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Shuo Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Kaixia Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Sundus Zafar
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
66
|
Ding F, Wang M, Zhang S. Sedoheptulose-1,7-Bisphosphatase is Involved in Methyl Jasmonate- and Dark-Induced Leaf Senescence in Tomato Plants. Int J Mol Sci 2018; 19:E3673. [PMID: 30463360 PMCID: PMC6275076 DOI: 10.3390/ijms19113673] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Leaf senescence represents the final stage of leaf development and is regulated by diverse internal and environmental factors. Jasmonates (JAs) have been demonstrated to induce leaf senescence in several species; however, the mechanisms of JA-induced leaf senescence remain largely unknown in tomato plants (Solanum lycopersicum). In the present study, we tested the hypothesis that sedoheptulose-1,7-bisphosphatase (SBPase), an enzyme functioning in the photosynthetic carbon fixation in the Calvin⁻Benson cycle, was involved in methyl jasmonate (MeJA)- and dark-induced leaf senescence in tomato plants. We found that MeJA and dark induced senescence in detached tomato leaves and concomitantly downregulated the expression of SlSBPASE and reduced SBPase activity. Furthermore, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9)-mediated mutagenesis of SlSBPASE led to senescence-associated characteristics in slsbpase mutant plants, including loss of chlorophyll, repressed photosynthesis, increased membrane ion leakage, and enhanced transcript abundance of senescence-associated genes. Collectively, our data suggest that repression of SBPase by MeJA and dark treatment plays a role in JA- and dark-induced leaf senescence.
Collapse
Affiliation(s)
- Fei Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Meiling Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
67
|
Mwimba M, Karapetyan S, Liu L, Marqués J, McGinnis EM, Buchler NE, Dong X. Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat Commun 2018; 9:4290. [PMID: 30327472 PMCID: PMC6191426 DOI: 10.1038/s41467-018-06692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2018] [Indexed: 01/27/2023] Open
Abstract
Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.
Collapse
Affiliation(s)
- Musoki Mwimba
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Erin M McGinnis
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA. .,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
68
|
Tian MQ, Jiang K, Takahashi I, Li GD. Strigolactone-induced senescence of a bamboo leaf in the dark is alleviated by exogenous sugar. JOURNAL OF PESTICIDE SCIENCE 2018; 43:173-179. [PMID: 30363134 PMCID: PMC6140682 DOI: 10.1584/jpestics.d18-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) are a series of sesquiterpene lactones that serve as plant hormones to regulate plant growth and development, such as shoot branching, lateral root formation, and root hair elongation. Recently, SLs have been reported to accelerate the leaf senescence, which is also regulated by sugar signals. In this study, we utilized segments of a bamboo leaf to observe leaf senescence and confirmed that SL accelerates leaf senescence and triggers cell death under a dark condition rather than under a light condition. Further studies showed that the co-treatment of sugars suppressed SL-induced leaf senescence and cell death under dark conditions, suggesting a crosstalk between SL and the sugar signal in regulating leaf senescence.
Collapse
Affiliation(s)
- Man-qing Tian
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666, Wusu Rd, Lin’an, China
| | - Kai Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Ikuo Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Guo-dong Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666, Wusu Rd, Lin’an, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
69
|
Genetic and Physio-Biochemical Characterization of a Novel Premature Senescence Leaf Mutant in Rice ( Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19082339. [PMID: 30096885 PMCID: PMC6122088 DOI: 10.3390/ijms19082339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Premature senescence greatly affects the yield production and the grain quality in plants, although the molecular mechanisms are largely unknown. Here, we identified a novel rice premature senescence leaf 85 (psl85) mutant from ethyl methane sulfonate (EMS) mutagenesis of cultivar Zhongjian100 (the wild-type, WT). The psl85 mutant presented a distinct dwarfism and premature senescence leaf phenotype, starting from the seedling stage to the mature stage, with decreasing level of chlorophyll and degradation of chloroplast, declined photosynthetic capacity, increased content of malonaldehyde (MDA), upregulated expression of senescence-associated genes, and disrupted reactive oxygen species (ROS) scavenging system. Moreover, endogenous abscisic acid (ABA) level was significantly increased in psl85 at the late aging phase, and the detached leaves of psl85 showed more rapid chlorophyll deterioration than that of WT under ABA treatment, indicating that PSL85 was involved in ABA-induced leaf senescence. Genetic analysis revealed that the premature senescence leaf phenotype was controlled by a single recessive nuclear gene which was finally mapped in a 47 kb region on the short arm of chromosome 7, covering eight candidate open reading frames (ORFs). No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and cloning and functional analysis of the gene is currently underway.
Collapse
|
70
|
Liu W, Pei M, Zhang A. Studying on the strictly self-compatibility mechanism of 'Liuyefeitao' peach (Prunus persica L.). PLoS One 2018; 13:e0200914. [PMID: 30067848 PMCID: PMC6070229 DOI: 10.1371/journal.pone.0200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Peach (Prunus persica L.) generally exhibits self-pollination, however, they can also be pollinated by other varieties of pollen. Here we found two varieties that are different from other peaches: 'Daifei' and 'Liuyefeitao'. 'Daifei' produces less pollen, which needs artificial pollination, honeybee pollination, and the fruit setting depends on other varieties of peach pollen. 'Liuyefeitao' exhibits strictly self-pollination, hence pollen from other species is rejected. To explore the mechanism of this phenomenon, we performed a high-throughput sequencing of the stigma (including style) of 'Daifei' and 'Liuyefeitao' to explain the rejection mechanism of other varieties of pollen of 'Liuyefeitao' peach. In our study, we found one S gene, and lots of non-S-locus factors such as: F-box proteins, Ub/26S, MAPKs, RLK, and transcription factor were differential expressed between 'Daifei' and 'Liuyefeitao'. We supposed that the strictly self-compatible of 'Liuyefeitao' may result from the synthesis of these factors.
Collapse
Affiliation(s)
- Wei Liu
- Shandong Institute of Pomology, Taian, Shandong, People’s Republic of China
| | - Maosong Pei
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Anning Zhang
- Shandong Institute of Pomology, Taian, Shandong, People’s Republic of China
- * E-mail:
| |
Collapse
|
71
|
Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N, Kuhlmann M. Abscisic acid influences tillering by modulation of strigolactones in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3883-3898. [PMID: 29982677 PMCID: PMC6054196 DOI: 10.1093/jxb/ery200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/15/2018] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) represent a class of plant hormones that are involved in inhibiting shoot branching and in promoting abiotic stress responses. There is evidence that the biosynthetic pathways of SLs and abscisic acid (ABA) are functionally connected. However, little is known about the mechanisms underlying the interaction of SLs and ABA, and the relevance of this interaction for shoot architecture. Based on sequence homology, four genes (HvD27, HvMAX1, HvCCD7, and HvCCD8) involved in SL biosynthesis were identified in barley and functionally verified by complementation of Arabidopsis mutants or by virus-induced gene silencing. To investigate the influence of ABA on SLs, two transgenic lines accumulating ABA as a result of RNAi-mediated down-regulation of HvABA 8'-hydroxylase 1 and 3 were employed. LC-MS/MS analysis confirmed higher ABA levels in root and stem base tissues in these transgenic lines. Both lines showed enhanced tiller formation and lower concentrations of 5-deoxystrigol in root exudates, which was detected for the first time as a naturally occurring SL in barley. Lower expression levels of HvD27, HvMAX1, HvCCD7, and HvCCD8 indicated that ABA suppresses SL biosynthesis, leading to enhanced tiller formation in barley.
Collapse
Affiliation(s)
- Hongwen Wang
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Wanxin Chen
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, XH Amsterdam, The Netherlands
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Mohammad R Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Christiane Seiler
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Grain Quality and Nutrition Center, Metro Manila, Philippines
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| | - Markus Kuhlmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| |
Collapse
|
72
|
Lee I, Kim K, Lee S, Lee S, Hwang E, Shin K, Kim D, Choi J, Choi H, Cha JS, Kim H, Lee RA, Jeong S, Kim J, Kim Y, Nam HG, Park SK, Cho HS, Soh MS. A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3609-3623. [PMID: 29722815 PMCID: PMC6022639 DOI: 10.1093/jxb/ery164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 05/26/2023]
Abstract
A smoke-derived compound, karrikin (KAR), and an endogenous but as yet unidentified KARRIKIN INSENSITIVE2 (KAI2) ligand (KL) have been identified as chemical cues in higher plants that impact on multiple aspects of growth and development. Genetic screening of light-signaling mutants in Arabidopsis thaliana has identified a mutant designated as ply2 (pleiotropic long hypocotyl2) that has pleiotropic light-response defects. In this study, we used positional cloning to identify the molecular lesion of ply2 as a missense mutation of KAI2/HYPOSENSITIVE TO LIGHT, which causes a single amino acid substitution, Ala219Val. Physiological analysis and genetic epistasis analysis with the KL-signaling components MORE AXILLARY GROWTH2 (MAX2) and SUPPRESSOR OF MAX2 1 suggested that the pleiotropic phenotypes of the ply2 mutant can be ascribed to a defect in KL-signaling. Molecular and biochemical analyses revealed that the mutant KAI2ply2 protein is impaired in its ligand-binding activity. In support of this conclusion, X-ray crystallography studies suggested that the KAI2ply2 mutation not only results in a narrowed entrance gate for the ligand but also alters the structural flexibility of the helical lid domains. We discuss the structural implications of the Ala219 residue with regard to ligand-specific binding and signaling of KAI2, together with potential functions of KL-signaling in the context of the light-regulatory network in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Inhye Lee
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sumin Lee
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Seungjun Lee
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Eunjin Hwang
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Kihye Shin
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Dayoung Kim
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Jungki Choi
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyunmo Choi
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Rin-A Lee
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| | - Suyeong Jeong
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Yumi Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Moon-Soo Soh
- Division of Integrative Bioscience and Biotechnology, School of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
73
|
Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
Yao R, Wang L, Li Y, Chen L, Li S, Du X, Wang B, Yan J, Li J, Xie D. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2355-2365. [PMID: 29365172 PMCID: PMC5913607 DOI: 10.1093/jxb/ery014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) act as an important class of phytohormones to regulate plant shoot branching, and also serve as rhizosphere signals to mediate interactions of host plants with soil microbes and parasitic weeds. SL receptors in dicots, such as DWARF14 in Arabidopsis (AtD14), RMS3 in pea, and ShHTL7 in Striga, serve as unconventional receptors that hydrolyze SLs into a D-ring-derived intermediate CLIM and irreversibly bind CLIM to trigger SL signal transduction. Here, we show that D14 from the monocot rice can complement Arabidopsis d14 mutant and interact with the SL signaling components in Arabidopsis. Our results further reveal that rice D14, similar to SL receptors in dicots, also serves as an unconventional hormone receptor that generates and irreversibly binds the active form of SLs. These findings uncover the conserved functions of D14 proteins in monocots and dicots.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuwen Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suhua Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoxi Du
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianbin Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Correspondence: ,
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Correspondence: ,
| |
Collapse
|
75
|
Hamiaux C, Drummond RSM, Luo Z, Lee HW, Sharma P, Janssen BJ, Perry NB, Denny WA, Snowden KC. Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: Structural and functional insights. J Biol Chem 2018. [PMID: 29523686 DOI: 10.1074/jbc.ra117.001154] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N-phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.
Collapse
Affiliation(s)
- Cyril Hamiaux
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand,
| | - Revel S M Drummond
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zhiwei Luo
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hui Wen Lee
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.,the School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Prachi Sharma
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.,the School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Bart J Janssen
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Nigel B Perry
- the Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,the New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand, and
| | - William A Denny
- the Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kimberley C Snowden
- From the New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand,
| |
Collapse
|
76
|
Balic I, Vizoso P, Nilo-Poyanco R, Sanhueza D, Olmedo P, Sepúlveda P, Arriagada C, Defilippi BG, Meneses C, Campos-Vargas R. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless. PLoS One 2018; 13:e0190087. [PMID: 29320527 PMCID: PMC5761854 DOI: 10.1371/journal.pone.0190087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.
Collapse
Affiliation(s)
- Iván Balic
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
- Universidad de Los Lagos, Departamento de Acuicultura y Recursos Agroalimentarios, Osorno, Chile
| | - Paula Vizoso
- Center of Plant Propagation and Conservation (CEPROVEG), Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | | | - Dayan Sanhueza
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Patricio Olmedo
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Pablo Sepúlveda
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Cesar Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Bruno G. Defilippi
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Claudio Meneses
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| |
Collapse
|
77
|
Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F. A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. PLANT PHYSIOLOGY 2017; 174:1747-1763. [PMID: 28500268 PMCID: PMC5490923 DOI: 10.1104/pp.17.00542] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 05/17/2023]
Abstract
It is well known that abscisic acid (ABA)-induced leaf senescence and premature leaf senescence negatively affect the yield of rice (Oryza sativa). However, the molecular mechanism underlying this relationship, especially the upstream transcriptional network that modulates ABA level during leaf senescence, remains largely unknown. Here, we demonstrate a rice NAC transcription factor, OsNAC2, that participates in ABA-induced leaf senescence. Overexpression of OsNAC2 dramatically accelerated leaf senescence, whereas its knockdown lines showed a delay in leaf senescence. Chromatin immunoprecipitation-quantitative PCR, dual-luciferase, and yeast one-hybrid assays demonstrated that OsNAC2 directly activates expression of chlorophyll degradation genes, OsSGR and OsNYC3 Moreover, ectopic expression of OsNAC2 leads to an increase in ABA levels via directly up-regulating expression of ABA biosynthetic genes (OsNCED3 and OsZEP1) as well as down-regulating the ABA catabolic gene (OsABA8ox1). Interestingly, OsNAC2 is upregulated by a lower level of ABA but downregulated by a higher level of ABA, indicating a feedback repression of OsNAC2 by ABA. Additionally, reduced OsNAC2 expression leads to about 10% increase in the grain yield of RNAi lines. The novel ABA-NAC-SAGs regulatory module might provide a new insight into the molecular action of ABA to enhance leaf senescence and elucidates the transcriptional network of ABA production during leaf senescence in rice.
Collapse
Affiliation(s)
- Chanjuan Mao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Songchong Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Bo Lv
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Bin Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiabin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianmei He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Liqiong Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dandan Xi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Ming
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
78
|
Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP. The "STAY-GREEN" trait and phytohormone signaling networks in plants under heat stress. PLANT CELL REPORTS 2017; 36:1009-1025. [PMID: 28484792 DOI: 10.1007/s00299-017-2119-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 05/22/2023]
Abstract
The increasing demand for food and the heavy yield losses in primary crops due to global warming mean that there is an urgent need to improve food security. Therefore, understanding how plants respond to heat stress and its consequences, such as drought and increased soil salinity, has received much attention in plant science community. Plants exhibit stress tolerance, escape or avoidance via adaptation and acclimatization mechanisms. These mechanisms rely on a high degree of plasticity in their cellular metabolism, in which phytohormones play an important role. "STAY-GREEN" is a crucial trait for genetic improvement of several crops, which allows plants to keep their leaves on the active photosynthetic level under stress conditions. Understanding the physiological and molecular mechanisms concomitant with "STAY-GREEN" trait or delayed leaf senescence, as well as those regulating photosynthetic capability of plants under heat stress, with a certain focus on the hormonal pathways, may be a key to break the plateau of productivity associated with adaptation to high temperature. This review will discuss the recent findings that advance our understanding of the mechanisms controlling leaf senescence and hormone signaling cascades under heat stress.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam.
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
79
|
Niu Y, Qian D, Liu B, Ma J, Wan D, Wang X, He W, Xiang Y. ALA6, a P 4-type ATPase, Is Involved in Heat Stress Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1732. [PMID: 29046690 PMCID: PMC5632816 DOI: 10.3389/fpls.2017.01732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/21/2017] [Indexed: 05/19/2023]
Abstract
Maintaining lipid membrane integrity is an essential aspect of plant tolerance to high temperature. P4-type ATPases are responsible for flipping and stabilizing asymmetric phospholipids in membrane systems, though their functions in stress tolerance are not entirely clear. Aminophospholipid ATPase6 (ALA6) is a member of the P4-type ATPase family, which has 12 members in Arabidopsis thaliana. Here, we show that a loss-of-function mutant of ALA6 (ala6) exhibits clear sensitivity to heat stress, including both basal and acquired thermotolerance treatments. Overexpression of ALA6 improves seedling resistance to heat stress, while mutated ALA6 transgenic plants, in which the conserved functional site of the ALA family has a point mutation, are still susceptible to heat stress like ala6 loss-of-function mutant. In addition, ala6 displays higher ion-leakage during heat treatment, suggesting that the lipid flippase activity of ALA6 plays a vital role in heat stress responses. Transcriptome analysis reveals differences in gene expression between ala6 and wild-type plants with or without heat stress. The differentially expressed genes are involved primarily in the physiological processes of stress response, cellular compartment maintenance, macromolecule stability and energy production. Our results suggest that ALA6 is crucial for the stability of membrane when plants suffer from high temperature stress.
Collapse
Affiliation(s)
- Yue Niu
- *Correspondence: Yue Niu, Yun Xiang,
| | | | | | | | | | | | | | - Yun Xiang
- *Correspondence: Yue Niu, Yun Xiang,
| |
Collapse
|
80
|
Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics 2016; 292:325-341. [PMID: 27933381 DOI: 10.1007/s00438-016-1279-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
Abstract
S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although 'Shatian' pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of 'Shatian' pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from 'Shatian' pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from 'Shatian' pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining property of an S-RNase.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiying Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
81
|
Wu XY, Hu WJ, Luo H, Xia Y, Zhao Y, Wang LD, Zhang LM, Luo JC, Jing HC. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). PLANT MOLECULAR BIOLOGY 2016; 92:555-580. [PMID: 27586543 DOI: 10.1007/s11103-016-0532-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
This piece of the submission is being sent via mail. Leaf senescence is essential for the nutrient economy of crops and is executed by so-called senescence-associated genes (SAGs). Here we explored the monocot C4 model crop Sorghum bicolor for a holistic picture of SAG profiles by RNA-seq. Leaf samples were collected at four stages during developmental senescence, and in total, 3396 SAGs were identified, predominantly enriched in GO categories of metabolic processes and catalytic activities. These genes were enriched in 13 KEGG pathways, wherein flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism were overrepresented. Seven regions on Chromosomes 1, 4, 5 and 7 contained SAG 'hotspots' of duplicated genes or members of cupin superfamily involved in manganese ion binding and nutrient reservoir activity. Forty-eight expression clusters were identified, and the candidate orthologues of the known important senescence transcription factors such as ORE1, EIN3 and WRKY53 showed "SAG" expression patterns, implicating their possible roles in regulating sorghum leaf senescence. Comparison of developmental senescence with salt- and dark- induced senescence allowed for the identification of 507 common SAGs, 1996 developmental specific SAGs as well as 176 potential markers for monitoring senescence in sorghum. Taken together, these data provide valuable resources for comparative genomics analyses of leaf senescence and potential targets for the manipulation of genetic improvement of Sorghum bicolor.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei-Juan Hu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yan Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yi Zhao
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China
| | - Li-Dong Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Li-Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Jing-Chu Luo
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
82
|
Song Y, Zhang Z, Tan X, Jiang Y, Gao J, Lin L, Wang Z, Ren J, Wang X, Qin L, Cheng W, Qi J, Kuai B. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Sci Rep 2016; 6:29843. [PMID: 27435114 PMCID: PMC4951735 DOI: 10.1038/srep29843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022] Open
Abstract
Maize exhibits a wide range of heterotic traits, but the molecular basis of heterosis at the reproductive stage has seldom been exploited. Leaf senescence is a degenerative process which affects crop yield and quality. In this study, we observed significantly delayed ear leaf senescence in the reciprocal hybrids of B73/Mo17 and Zheng58/Chang7-2 after silking, and all the hybrids displayed larger leaf areas and higher stems with higher yields. Our time-course transcriptome analysis identified 2,826 differentially expressed genes (DEGs) between two parental lines (PP-DEGs) and 2,328 DEGs between parental lines and the hybrid (PH-DEGs) after silking. Notably, several senescence promoting genes (ZmNYE1, ZmORE1, ZmWRKY53 and ZmPIFs) exhibited underdominant expression patterns in the hybrid, whereas putative photosynthesis and carbon-fixation (ZmPEPC)-associated, starch biosynthetic (ZmAPS1, ZmAPL), gibberellin biosynthetic genes (ZmGA20OX, ZmGA3OX) expressed overdominantly. We also identified 86 transcription factors from PH-DEGs, some of which were known to regulate senescence, stress and metabolic processes. Collectively, we demonstrate a molecular association of the regulations of both ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the late developmental stage. This finding not only extends our understanding to the molecular basis of maize heterosis but also provides basic information for molecular breeding.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhe Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| | - Xianjie Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yufeng Jiang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhenhua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lanqiu Qin
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Weidong Cheng
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
83
|
Wu L, Ren D, Hu S, Li G, Dong G, Jiang L, Hu X, Ye W, Cui Y, Zhu L, Hu J, Zhang G, Gao Z, Zeng D, Qian Q, Guo L. Down-Regulation of a Nicotinate Phosphoribosyltransferase Gene, OsNaPRT1, Leads to Withered Leaf Tips. PLANT PHYSIOLOGY 2016; 171:1085-98. [PMID: 27208230 PMCID: PMC4902584 DOI: 10.1104/pp.15.01898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/03/2016] [Indexed: 05/20/2023]
Abstract
Premature leaf senescence affects plant growth and yield in rice. NAD plays critical roles in cellular redox reactions and remains at a sufficient level in the cell to prevent cell death. Although numerous factors affecting leaf senescence have been identified, few involving NAD biosynthetic pathways have been described for plants. Here, we report the cloning and characterization of Leaf Tip Senescence 1 (LTS1) in rice (Oryza sativa), a recessive mutation in the gene encoding O. sativa nicotinate phosphoribosyltransferase (OsNaPRT1) in the NAD salvage pathway. A point mutation in OsNaPRT1 leads to dwarfism and the withered leaf tip phenotype, and the lts1 mutant displays early leaf senescence compared to the wild type. Leaf nicotinate and nicotinamide contents are elevated in lts1, while NAD levels are reduced. Leaf tissue of lts1 exhibited significant DNA fragmentation and H2O2 accumulation, along with up-regulation of genes associated with senescence. The lts1 mutant also showed reduced expression of SIR2-like genes (OsSRT1 and OsSRT2) and increased acetylation of histone H3K9. Down-regulation of OsSRTs induced histone H3K9 acetylation of senescence-related genes. These results suggest that deficiency in the NAD salvage pathway can trigger premature leaf senescence due to transcriptional activation of senescence-related genes.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Gengmi Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Liang Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Weijun Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Yongtao Cui
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (L.W., D.R., S.H., G.L., G.D., L.J., X.H., W.Y., Y.C., L.Z., J.H., G.Z., Z.G., D.Z., Q.Q., L.G.); andAgricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China (S.H., Q.Q.)
| |
Collapse
|
84
|
Matthys C, Walton A, Struk S, Stes E, Boyer FD, Gevaert K, Goormachtig S. The Whats, the Wheres and the Hows of strigolactone action in the roots. PLANTA 2016; 243:1327-37. [PMID: 26895337 DOI: 10.1007/s00425-016-2483-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/29/2016] [Indexed: 05/07/2023]
Abstract
Strigolactones control various aspects of plant development, including root architecture. Here, we review how strigolactones act in the root and survey the strigolactone specificity of signaling components that affect root development. Strigolactones are a group of secondary metabolites produced in plants that have been assigned multiple roles, of which the most recent is hormonal activity. Over the last decade, these compounds have been shown to regulate various aspects of plant development, such as shoot branching and leaf senescence, but a growing body of literature suggests that these hormones play an equally important role in the root. In this review, we present all known root phenotypes linked to strigolactones. We examine the expression and presence of the main players in biosynthesis and signaling of these hormones and bring together the available information that allows us to explain how strigolactones act to modulate the root system architecture.
Collapse
Affiliation(s)
- Cedrick Matthys
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech, 78026, Versailles Cedex, France
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Unité Propre de Recherche 2301, Centre National de la Recherche Scientifique, 91198, Gif-Sur-Yvette, France
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
85
|
Uzelac B, Janošević D, Simonović A, Motyka V, Dobrev PI, Budimir S. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. PROTOPLASMA 2016; 253:259-75. [PMID: 25837009 DOI: 10.1007/s00709-015-0802-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a highly regulated final phase of leaf development preceding massive cell death. It results in the coordinated degradation of macromolecules and the subsequent nutrient relocation to other plant parts. Very little is still known about early stages of leaf senescence during normal leaf ontogeny that is not triggered by stress factors. This paper comprises an integrated study of natural leaf senescence in tobacco plants grown in vitro, using molecular, structural, and physiological information. We determined the time sequence of ultrastructural changes in mesophyll cells during leaf senescence, showing that the degradation of chloroplast ultrastructure fully correlated with changes in chlorophyll content. The earliest degenerative changes in chloroplast ultrastructure coinciding with early chromatin condensation were observed already in mature green leaves. A continuum of degradative changes in chloroplast ultrastructure, chromatin condensation and aggregation, along with progressive decrease in cytoplasm organization and electron density were observed in the course of mesophyll cells ageing. Although the total amounts of endogenous cytokinins gradually increased during leaf ontogenesis, the proportion of bioactive cytokinin forms, as well as their phosphate precursors, in total cytokinin content rapidly declined with ageing. Endogenous indole-3-acetic acid (IAA) levels were strongly reduced in senescent leaves, and a decreasing tendency was also observed for abscisic acid (ABA) levels. Senescence-associated tobacco cysteine proteases (CP, E.C. 3.4.22) CP1 and CP23 genes were induced in the initial phase of senescence. Genes encoding glutamate dehydrogenase (GDH, E.C. 1.4.1.2) and one isoform of cytosolic glutamine synthetase (GS1, E.C. 6.3.1.2) were induced in the late stage of senescence, while chloroplastic GS (GS2) gene showed a continuous decrease with leaf ageing.
Collapse
Affiliation(s)
- Branka Uzelac
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Dušica Janošević
- Institute of Botany and Botanical Garden "Jevremovac", Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, Serbia
| | - Ana Simonović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 16502, Praha 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 16502, Praha 6, Czech Republic
| | - Snežana Budimir
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
86
|
Liu J, Ji Y, Zhou J, Xing D. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence. PLANT PHYSIOLOGY 2016; 170:1714-31. [PMID: 26739232 PMCID: PMC4775102 DOI: 10.1104/pp.15.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.
Collapse
Affiliation(s)
- Jian Liu
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Yingbin Ji
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Da Xing
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.).
| |
Collapse
|
87
|
Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer FD, Beeckman T, Depuydt S, Goormachtig S. Strigolactones spatially influence lateral root development through the cytokinin signaling network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:379-89. [PMID: 26519957 PMCID: PMC4682444 DOI: 10.1093/jxb/erv478] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root-shoot junction. The cytokinin module ARABIDOPSIS HISTIDINE KINASE3 (AHK3)/ARABIDOPSIS RESPONSE REGULATOR1 (ARR1)/ARR12 was found to interact with the GR24-dependent reduction in LR development, because mutants in this pathway rendered LR development insensitive to GR24. Additionally, pharmacological analyses, mutant analyses, and gene expression analyses indicated that the affected polar auxin transport stream in mutants of the AHK3/ARR1/ARR12 module could be the underlying cause. Altogether, the data reveal that the GR24 effect on LR development depends on the hormonal landscape that results from the intimate connection with auxins and cytokinins, two main players in LR development.
Collapse
Affiliation(s)
- Lingxiang Jiang
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Cedrick Matthys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Belen Marquez-Garcia
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Carolien De Cuyper
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Lien Smet
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech, 78026 Versailles Cedex, France Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Unité Propre de Recherche 2301, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Stephen Depuydt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Ghent University Global Campus, Incheon 406-840, Korea
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
88
|
Schippers JHM, Schmidt R, Wagstaff C, Jing HC. Living to Die and Dying to Live: The Survival Strategy behind Leaf Senescence. PLANT PHYSIOLOGY 2015; 169:914-30. [PMID: 26276844 PMCID: PMC4587445 DOI: 10.1104/pp.15.00498] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence.
Collapse
Affiliation(s)
- Jos H M Schippers
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany (J.H.M.S., R.S.);Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AP, United Kingdom (C.W.); andKey Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (H.-C.J.)
| | - Romy Schmidt
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany (J.H.M.S., R.S.);Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AP, United Kingdom (C.W.); andKey Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (H.-C.J.)
| | - Carol Wagstaff
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany (J.H.M.S., R.S.);Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AP, United Kingdom (C.W.); andKey Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (H.-C.J.)
| | - Hai-Chun Jing
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany (J.H.M.S., R.S.);Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AP, United Kingdom (C.W.); andKey Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (H.-C.J.)
| |
Collapse
|
89
|
Yamada Y, Umehara M. Possible Roles of Strigolactones during Leaf Senescence. PLANTS 2015; 4:664-77. [PMID: 27135345 PMCID: PMC4844400 DOI: 10.3390/plants4030664] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.
Collapse
Affiliation(s)
- Yusuke Yamada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan.
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan.
| |
Collapse
|
90
|
Ueda H, Kusaba M. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:138-47. [PMID: 25979917 PMCID: PMC4577378 DOI: 10.1104/pp.15.00325] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/13/2015] [Indexed: 05/18/2023]
Abstract
Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf.
Collapse
Affiliation(s)
- Hiroaki Ueda
- Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
91
|
Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:19-27. [PMID: 25980973 DOI: 10.1016/j.plaphy.2015.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 05/04/2023]
Abstract
YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
| |
Collapse
|
92
|
Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4669-82. [PMID: 25991739 PMCID: PMC4507772 DOI: 10.1093/jxb/erv240] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Premature leaf senescence has a negative influence on the yield and quality of cotton, and several genes have been found to regulate leaf senescence. Howeer, many underlying transcription factors are yet to be identified. In this study, a NAP-like transcription factor (GhNAP) was isolated from Gossypium hirsutum. GhNAP has the typical NAC structure and a conserved novel subdomain in its divergent transcription activation region (TAR). GhNAP was demonstrated to be a nuclear protein, and it showed transcriptional activation activity in yeast. Furthermore, the expression of GhNAP was closely associated with leaf senescence. GhNAP could rescue the delayed-senescence phenotype of the atnap null mutant. Overexpression of GhNAP could cause precocious senescence in Arabidopsis. However, down-regulation of GhNAP delayed leaf senescence in cotton, and affected cotton yield and its fibre quality. Moreover, the expression of GhNAP can be induced by abscisic acid (ABA), and the delayed leaf senescence phenotype in GhNAPi plants might be caused by the decreased ABA level and reduced expression level of ABA-responsive genes. All of the results suggested that GhNAP could regulate the leaf senescence via the ABA-mediated pathways and was further related to the yield and quality in cotton.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Mi Ni
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
93
|
Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing. Int J Mol Sci 2015; 16:13937-58. [PMID: 26096002 PMCID: PMC4490532 DOI: 10.3390/ijms160613937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 12/02/2022] Open
Abstract
miRNAs are endogenous non-coding small RNAs with important regulatory roles in stress responses. Nitrogen (N) is an indispensable macronutrient required for plant growth and development. Previous studies have identified a variety of known and novel miRNAs responsive to low N stress in plants, including Populus. However, miRNAs involved in the cleavage of target genes and the corresponding regulatory networks in response to N stress in Populus remain largely unknown. Consequently, degradome sequencing was employed for global detection and validation of N-responsive miRNAs and their targets. A total of 60 unique miRNAs (39 conserved, 13 non-conserved, and eight novel) were experimentally identified to target 64 mRNA transcripts and 21 precursors. Among them, we further verified the cleavage of 11 N-responsive miRNAs identified previously and provided empirical evidence for the cleavage mode of these miRNAs on their target mRNAs. Furthermore, five miRNA stars (miRNA*s) were shown to have cleavage function. The specificity and diversity of cleavage sites on the targets and miRNA precursors in P. tomentosa were further detected. Identification and annotation of miRNA-mediated cleavage of target genes in Populus can increase our understanding of miRNA-mediated molecular mechanisms of woody plants adapted to low N environments.
Collapse
|
94
|
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. THE PLANT CELL 2015; 27:1634-49. [PMID: 26071420 PMCID: PMC4498205 DOI: 10.1105/tpc.15.00110] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 05/20/2023]
Abstract
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plant development, serves as an important endogenous signal to activate senescence-associated gene expression and induce leaf senescence. This study revealed one of the mechanisms underlying JA-induced leaf senescence: antagonistic interactions of the bHLH subgroup IIIe factors MYC2, MYC3, and MYC4 with the bHLH subgroup IIId factors bHLH03, bHLH13, bHLH14, and bHLH17. We showed that MYC2, MYC3, and MYC4 function redundantly to activate JA-induced leaf senescence. MYC2 binds to and activates the promoter of its target gene SAG29 (SENESCENCE-ASSOCIATED GENE29) to activate JA-induced leaf senescence. Interestingly, plants have evolved an elaborate feedback regulation mechanism to modulate JA-induced leaf senescence: The bHLH subgroup IIId factors (bHLH03, bHLH13, bHLH14, and bHLH17) bind to the promoter of SAG29 and repress its expression to attenuate MYC2/MYC3/MYC4-activated JA-induced leaf senescence. The antagonistic regulation by activators and repressors would mediate JA-induced leaf senescence at proper level suitable for plant survival in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hua Gao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
95
|
Drummond RSM, Janssen BJ, Luo Z, Oplaat C, Ledger SE, Wohlers MW, Snowden KC. Environmental control of branching in petunia. PLANT PHYSIOLOGY 2015; 168:735-51. [PMID: 25911529 PMCID: PMC4453797 DOI: 10.1104/pp.15.00486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 05/20/2023]
Abstract
Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.
Collapse
Affiliation(s)
- Revel S M Drummond
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Bart J Janssen
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Zhiwei Luo
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Carla Oplaat
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Susan E Ledger
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Mark W Wohlers
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- New Zealand Institute for Plant and Food Research, Limited, Sandringham, Auckland 1025, New Zealand
| |
Collapse
|
96
|
Oh K, Matsumoto T, Yamagami A, Ogawa A, Yamada K, Suzuki R, Sawada T, Fujioka S, Yoshizawa Y, Nakano T. YCZ-18 is a new brassinosteroid biosynthesis inhibitor. PLoS One 2015; 10:e0120812. [PMID: 25793645 PMCID: PMC4368189 DOI: 10.1371/journal.pone.0120812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 02/05/2015] [Indexed: 01/31/2023] Open
Abstract
Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation.
Collapse
Affiliation(s)
- Keimei Oh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
- * E-mail:
| | - Tadashi Matsumoto
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Ayumi Yamagami
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
| | - Atushi Ogawa
- Department of Bioproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Kazuhiro Yamada
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Ryuichiro Suzuki
- Department of Bioproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Takayuki Sawada
- Biotechnology Research Center, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Shozo Fujioka
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuko Yoshizawa
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Takeshi Nakano
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
97
|
Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1437-52. [PMID: 25540438 PMCID: PMC4339602 DOI: 10.1093/jxb/eru499] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation.
Collapse
Affiliation(s)
- Amanda Rasmussen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium Plant and Crop Sciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Seyed Abdollah Hosseini
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstrasse 3, 06466 Gatersleben, Germany
| | - Mohammed-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstrasse 3, 06466 Gatersleben, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Kuehnhaeuser Strasse 101, 99090 Erfurt, Germany
| | - Danny Geelen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium
| |
Collapse
|
98
|
Gupta S, Garg V, Kant C, Bhatia S. Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genomics 2015; 16:67. [PMID: 25759239 PMCID: PMC4340835 DOI: 10.1186/s12864-015-1293-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. RESULTS A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. CONCLUSIONS The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Vanika Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Chandra Kant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| |
Collapse
|
99
|
Zhang M, Zhang MW, Zhang L, Zhang L. Methyl jasmonate and its potential in cancer therapy. PLANT SIGNALING & BEHAVIOR 2015; 10:e1062199. [PMID: 26208889 PMCID: PMC4883903 DOI: 10.1080/15592324.2015.1062199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 05/28/2023]
Abstract
Methyl jasmonate (MeJa) is a naturally occurring hydrophobic oxylipin phytohormone. Early findings obtained from cancer cell lines suggest that MeJa is endowed with anticancer capabilities. It has been recently proposed that MeJa represents a novel agent that exhibits direct and selective actions against tumor cells without affecting normal human cells. In a previous study, I reported that MeJa itself is enough to result in the dysfunction of mitochondria and chloroplasts, as well as to activate cell death program (apoptosis), in the normal protoplasts of Arabidopsis thaliana. Indeed, this also holds true for other living plant systems in which senescence, hypersensitive response and oxidative stress have been found under MeJa action. Therefore, in this addendum to my previous article, I would like to stress that much more attention should be paid to the potential effect(s) of MeJa, or its derivatives, on healthy cells and tissues before it is used for clinical anticancer drugs, whether being used alone or in combination with other agents.
Collapse
Affiliation(s)
- Meng Zhang
- College of Life Science and Agronomy; Zhoukou Normal University; Zhoukou, China
| | - Michael W Zhang
- College of Life Science and Agronomy; Zhoukou Normal University; Zhoukou, China
| | - Lili Zhang
- College of Life Science and Agronomy; Zhoukou Normal University; Zhoukou, China
| | - Lingrui Zhang
- Southern Crop Protection and Food Research; Agriculture and Agri-Food Canada; London, ON, Canada
| |
Collapse
|
100
|
Zhang WY, Xu YC, Li WL, Yang L, Yue X, Zhang XS, Zhao XY. Transcriptional analyses of natural leaf senescence in maize. PLoS One 2014; 9:e115617. [PMID: 25532107 PMCID: PMC4274115 DOI: 10.1371/journal.pone.0115617] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML), early senescent leaves (ESL), and later senescent leaves (LSL), and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs) biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence programs. Thus, this study provides important information for understanding the mechanism of leaf senescence in maize.
Collapse
Affiliation(s)
- Wei Yang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yong Chao Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wen Lan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xun Yue
- College of Information Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- * E-mail:
| |
Collapse
|