51
|
Han F, Yuan K, Kong C, Zhang X, Yang L, Zhuang M, Zhang Y, Li Z, Wang Y, Fang Z, Lv H. Fine mapping and candidate gene identification of the genic male-sterile gene ms3 in cabbage 51S. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2651-2661. [PMID: 30238254 DOI: 10.1007/s00122-018-3180-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/03/2018] [Indexed: 05/27/2023]
Abstract
The ms3 gene responsible for a male-sterile phenotype in cabbage was mapped to a 187.4-kb genomic fragment. The gene BoTPD1, a homolog of Arabidopsis TPD1, was identified as a strong candidate gene. Cabbage 51S is a spontaneous male-sterile mutant. Phenotypic investigation revealed defects in anther cell differentiation, with failure to form the tapetum layer and complete abortion of microsporocytes before the tetrad stage. Genetic analysis indicated that this male sterility was controlled by a single recessive gene, ms3. Using an F2 population, we mapped ms3 to a 187.4-kb interval. BoTPD1 was identified as a candidate from this interval. Sequence analysis revealed an intronic 182-bp insertion in 51S that interrupted the conserved motif at the 5' splicing site of the third intron, possibly resulting in a truncated transcript. Analyses of BoTPD1 homologous proteins revealed evolutionarily conserved roles in anther cell fate determination during reproductive development. RT-PCR showed that BoTPD1 was expressed in various tissues, excluding the root, and high expression levels were detected in anthers and buds. A BoTPD1-specific marker based on the 182-bp insertion cosegregated with male sterility and can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Fengqing Han
- Germplasm Innovation in Northwest China, Ministry of Agriculture; College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Kaiwen Yuan
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Congcong Kong
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Germplasm Innovation in Northwest China, Ministry of Agriculture; College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
52
|
Qi YH, Mao FF, Zhou ZQ, Liu DC, Deng XY, Li JW, Mei FZ. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2018; 255:1651-1665. [PMID: 29717349 DOI: 10.1007/s00709-018-1256-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Collapse
Affiliation(s)
- Yuan-Hong Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Mao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Cheng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
53
|
Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Li Z, Fang Z, Lv H. iTRAQ-Based Proteomic Analysis of Ogura-CMS Cabbage and Its Maintainer Line. Int J Mol Sci 2018; 19:E3180. [PMID: 30326665 PMCID: PMC6214076 DOI: 10.3390/ijms19103180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ogura cytoplasmic male sterility (CMS) contributes considerably to hybrid seed production in Brassica crops. To detect the key protein species and pathways involved in Ogura-CMS, we analysed the proteome of the cabbage Ogura-CMS line CMS01-20 and its corresponding maintainer line F01-20 using the isobaric tags for the relative and absolute quantitation (iTRAQ) approach. In total, 162 differential abundance protein species (DAPs) were identified between the two lines, of which 92 were down-accumulated and 70 were up-accumulated in CMS01-20. For energy metabolism in the mitochondrion, eight DAPs involved in oxidative phosphorylation were down-accumulated in CMS01-20, whereas in the tricarboxylic acid (TCA) cycle, five DAPs were up-accumulated, which may compensate for the decreased respiration capacity and may be associated with the elevated O2 consumption rate in Ogura-CMS plants. Other key protein species and pathways involved in pollen wall assembly and programmed cell death (PCD) were also identified as being male-sterility related. Transcriptome profiling revealed 3247 differentially expressed genes between the CMS line and the fertile line. In a conjoint analysis of the proteome and transcriptome data, 30 and 9 protein species/genes showed the same and opposite accumulation patterns, respectively. Nine noteworthy genes involved in sporopollenin synthesis, callose wall degeneration, and oxidative phosphorylation were presumably associated with the processes leading to male sterility, and their expression levels were validated by qRT-PCR analysis. This study will improve our understanding of the protein species involved in pollen development and the molecular mechanisms underlying Ogura-CMS.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, The National Key Laboratory of Vegetable GermplasmInnovation, The Enterprise key Laboratory of Tianjin Vegetable Genetics and Breeding, Jinjing Road,Xiqing District, Tianjin 300384, China.
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biologyand Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
54
|
Chen L, Ding X, Zhang H, He T, Li Y, Wang T, Li X, Jin L, Song Q, Yang S, Gai J. Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics 2018; 19:663. [PMID: 30208848 PMCID: PMC6134632 DOI: 10.1186/s12864-018-5054-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a natural phenomenon of pollen abortion caused by the interaction between cytoplasmic genes and nuclear genes. CMS is a simple and effective pollination control system, and plays an important role in crop heterosis utilization. Circular RNAs (circRNAs) are a vital type of non-coding RNAs, which play crucial roles in microRNAs (miRNAs) function and post-transcription control. To explore the expression profile and possible functions of circRNAs in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput deep sequencing coupled with RNase R enrichment strategy was conducted. RESULTS CircRNA libraries were constructed from flower buds of NJCMS1A and its maintainer NJCMS1B with three biological replicates. A total of 2867 circRNAs were identified, with 1009 circRNAs differentially expressed between NJCMS1A and NJCMS1B based on analysis of high-throughput sequencing. Of the 12 randomly selected circRNAs with different expression levels, 10 showed consistent expression patterns based on high-throughput sequencing and quantitative real-time PCR analyses. Tissue specific expression patterns were also verified with two circRNAs by quantitative real-time PCR. Most parental genes of differentially expressed circRNAs were mainly involved in biological processes such as metabolic process, biological regulation, and reproductive process. Moreover, 83 miRNAs were predicted from the differentially expressed circRNAs, some of which were strongly related to pollen development and male fertility; The functions of miRNA targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the target mRNAs were significantly enriched in signal transduction and programmed cell death. Furthermore, a total of 165 soybean circRNAs were predicted to contain at least one internal ribosome entry site (IRES) element and an open reading frame, indicating their potential to encode polypeptides or proteins. CONCLUSIONS Our study indicated that the circRNAs might participate in the regulation of flower and pollen development, which could provide a new insight into the molecular mechanisms of CMS in soybean.
Collapse
Affiliation(s)
- Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoqiang Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ling Jin
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705 USA
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
55
|
Yang L, Wu Y, Zhang M, Zhang J, Stewart JM, Xing C, Wu J, Jin S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. PLANT MOLECULAR BIOLOGY 2018; 97:537-551. [PMID: 30066309 DOI: 10.1007/s11103-018-0757-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/14/2018] [Indexed: 05/26/2023]
Abstract
Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.
Collapse
Affiliation(s)
- Li Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
56
|
Makarenko MS, Kornienko IV, Azarin KV, Usatov AV, Logacheva MD, Markin NV, Gavrilova VA. Mitochondrial genomes organization in alloplasmic lines of sunflower ( Helianthus annuus L.) with various types of cytoplasmic male sterility. PeerJ 2018; 6:e5266. [PMID: 30057860 PMCID: PMC6061164 DOI: 10.7717/peerj.5266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/29/2018] [Indexed: 01/19/2023] Open
Abstract
Background Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, that is often associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. Investigation of the CMS phenomenon promotes understanding of fundamental issues of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus L.). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11,852 bp inversion, 4,732 bp insertion, 451 bp deletion and 18 variant sites. In the mtDNA of HA89 (PET2) CMS line we determined 27.5 kb and 106.5 kb translocations, 711 bp and 3,780 bp deletions, as well as, 5,050 bp and 15,885 bp insertions. There are also 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line. Discussion The observed mitochondrial reorganizations in PET1 resulted in only one new open reading frame formation (orfH522), and PET2 mtDNA rearrangements led to the elimination of orf777, duplication of atp6 gene and appearance of four new ORFs with transcription activity specific for the HA89 (PET2) CMS line—orf645, orf2565, orf228 and orf285. Orf228 and orf285 are the atp9 chimeric ORFs, containing transmembrane domains and possibly may impact on mitochondrial membrane potential. So orf228 and orf285 may be the cause for the appearance of the PET2 CMS phenotype, while the contribution of other mtDNA reorganizations in CMS formation is negligible.
Collapse
Affiliation(s)
| | - Igor V Kornienko
- Southern Federal University, Rostov-on-Don, Russia.,Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | | | | | - Maria D Logacheva
- Moscow State University, Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | | | - Vera A Gavrilova
- The N.I. Vavilov All Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| |
Collapse
|
57
|
Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Curr Biol 2018; 28:1614-1619.e3. [PMID: 29731304 DOI: 10.1016/j.cub.2018.03.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I.
Collapse
|
58
|
Broda M, Millar AH, Van Aken O. Mitophagy: A Mechanism for Plant Growth and Survival. TRENDS IN PLANT SCIENCE 2018; 23:434-450. [PMID: 29576328 DOI: 10.1016/j.tplants.2018.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
Mitophagy is a conserved cellular process that is important for autophagic removal of damaged mitochondria to maintain a healthy mitochondrial population. Mitophagy also appears to occur in plants and has roles in development, stress response, senescence, and programmed cell death. However, many of the genes that control mitophagy in yeast and animal cells are absent from plants, and no plant proteins marking defunct mitochondria for autophagic degradation are yet known. New insights implicate general autophagy-related proteins in mitophagy, affecting the senescence of plant tissues. Mitophagy control and its importance for energy metabolism, survival, signaling, and cell death in plants are discussed. Furthermore, we suggest mitochondrial membrane proteins containing ATG8-interacting motifs, which might serve as mitophagy receptor proteins in plant mitochondria.
Collapse
Affiliation(s)
- Martyna Broda
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
59
|
Bhatnagar-Mathur P, Gupta R, Reddy PS, Reddy BP, Reddy DS, Sameerkumar CV, Saxena RK, Sharma KK. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. PLANT MOLECULAR BIOLOGY 2018; 97:131-147. [PMID: 29667000 DOI: 10.1007/s11103-018-0728-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well.
Collapse
Affiliation(s)
- Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| | - Ranadheer Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Bommineni Pradeep Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Dumbala Srinivas Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - C V Sameerkumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Rachit Kumar Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
60
|
Reddemann A, Horn R. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower. Int J Mol Sci 2018; 19:E806. [PMID: 29534485 PMCID: PMC5877667 DOI: 10.3390/ijms19030806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS) systems represent ideal mutants to study the role of mitochondria in pollen development. In sunflower, CMS PET2 also has the potential to become an alternative CMS source for commercial sunflower hybrid breeding. CMS PET2 originates from an interspecific cross of H. petiolaris and H. annuus as CMS PET1, but results in a different CMS mechanism. Southern analyses revealed differences for atp6, atp9 and cob between CMS PET2, CMS PET1 and the male-fertile line HA89. A second identical copy of atp6 was present on an additional CMS PET2-specific fragment. In addition, the atp9 gene was duplicated. However, this duplication was followed by an insertion of 271 bp of unknown origin in the 5' coding region of the atp9 gene in CMS PET2, which led to the creation of two unique open reading frames orf288 and orf231. The first 53 bp of orf288 are identical to the 5' end of atp9. Orf231 consists apart from the first 3 bp, being part of the 271-bp-insertion, of the last 228 bp of atp9. These CMS PET2-specific orfs are co-transcribed. All 11 editing sites of the atp9 gene present in orf231 are fully edited. The anther-specific reduction of the co-transcript in fertility-restored hybrids supports the involvement in male-sterility based on CMS PET2.
Collapse
Affiliation(s)
- Antje Reddemann
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.
| |
Collapse
|
61
|
Heng S, Gao J, Wei C, Chen F, Li X, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:455-466. [PMID: 29301015 PMCID: PMC5853284 DOI: 10.1093/jxb/erx443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 05/22/2023]
Abstract
Cytoplasmic male sterility (CMS) is primarily caused by chimeric genes located in the mitochondrial genomes. In Brassica juncea, orf288 has been identified as a CMS-associated gene in the hau CMS line; however, neither the specific abortive stage nor the molecular function of the gene have been determined. We therefore characterized the hau CMS line, and found that defective mitochondria affect the development of archesporial cells during the L2 stage, leading to male sterility. The expression level of the orf288 transcript was higher in the male-sterility line than in the fertility-restorer line, although no significant differences were apparent at the protein level. The toxicity region of ORF288 was found to be located near the N-terminus and repressed growth of Escherichia coli. However, transgenic expression of different portions of ORF288 indicated that the region that causes male sterility resides between amino acids 73 and 288, the expression of which in E. coli did not result in growth inhibition. Transcriptome analysis revealed a wide range of genes involved in anther development and mitochondrial function that were differentially expressed in the hau CMS line. This study provides new insights into the hau CMS mechanism by which orf288 affects the fertility of Brassica juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chao Wei
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Fengyi Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xianwen Li
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence:
| |
Collapse
|
62
|
Heng S, Gao J, Wei C, Chen F, Li X, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29301015 DOI: 10.5061/dryad.9s68p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cytoplasmic male sterility (CMS) is primarily caused by chimeric genes located in the mitochondrial genomes. In Brassica juncea, orf288 has been identified as a CMS-associated gene in the hau CMS line; however, neither the specific abortive stage nor the molecular function of the gene have been determined. We therefore characterized the hau CMS line, and found that defective mitochondria affect the development of archesporial cells during the L2 stage, leading to male sterility. The expression level of the orf288 transcript was higher in the male-sterility line than in the fertility-restorer line, although no significant differences were apparent at the protein level. The toxicity region of ORF288 was found to be located near the N-terminus and repressed growth of Escherichia coli. However, transgenic expression of different portions of ORF288 indicated that the region that causes male sterility resides between amino acids 73 and 288, the expression of which in E. coli did not result in growth inhibition. Transcriptome analysis revealed a wide range of genes involved in anther development and mitochondrial function that were differentially expressed in the hau CMS line. This study provides new insights into the hau CMS mechanism by which orf288 affects the fertility of Brassica juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chao Wei
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Fengyi Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xianwen Li
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
63
|
Zhou S, Hong Q, Li Y, Li Q, Li R, Zhang H, Wang M, Yuan X. Macroautophagy occurs in distal TMV-uninfected root tip tissue of tomato taking place systemic PCD. PROTOPLASMA 2018; 255:3-9. [PMID: 28551700 DOI: 10.1007/s00709-017-1125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Autophagy is an important mechanism for recycling cell materials upon encountering stress conditions. Our previous studies had shown that TMV infection could lead to systemic PCD in the distal uninfected tissues, including root tip and shoot tip tissues. But it is not clear whether there is autophagy in the distal apical meristem of TMV-induced plants. To better understand the autophagy process during systemic PCD, here we investigated the formation and type of autophagy in the root meristem cells occurring PCD. Transmission electron microscopy assay revealed that the autophagic structures formed by the fusion of vesicles, containing the sequestered cytoplasm, multilamellar bodies, and degraded mitochondria. In the PCD progress, many mitochondria appeared degradation with blurred inner membrane structure. And the endoplasmic reticulum was broke into small fragments. Finally, the damaged mitochodria were engulfed and degraded by the autophagosomes. These results indicated that during the systemic PCD process of root tip cells, the classical macroautophagy occurred, and the cell contents and damaged organelles (mitochondria) would be self-digested by autophagy.
Collapse
Affiliation(s)
- Shumin Zhou
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Hong
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Li
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qi Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruisha Li
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongli Zhang
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mao Wang
- College of Biology, China Agriculture University, Beijing, 100094, China.
| | - Xiaojun Yuan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
64
|
Štorchová H. The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants. Int J Mol Sci 2017; 18:E2429. [PMID: 29144434 PMCID: PMC5713397 DOI: 10.3390/ijms18112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The interactions between mitochondria and nucleus substantially influence plant development, stress response and morphological features. The prominent example of a mitochondrial-nuclear interaction is cytoplasmic male sterility (CMS), when plants produce aborted anthers or inviable pollen. The genes responsible for CMS are located in mitochondrial genome, but their expression is controlled by nuclear genes, called fertility restorers. Recent explosion of high-throughput sequencing methods enabled to study transcriptomic alterations in the level of non-coding RNAs under CMS biogenesis. We summarize current knowledge of the role of nucleus encoded regulatory non-coding RNAs (long non-coding RNA, microRNA as well as small interfering RNA) in CMS. We also focus on the emerging data of non-coding RNAs encoded by mitochondrial genome and their possible involvement in mitochondrial-nuclear interactions and CMS development.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic.
| |
Collapse
|
65
|
Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. THE NEW PHYTOLOGIST 2017; 213:1222-1241. [PMID: 27735062 DOI: 10.1111/nph.14214] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 05/22/2023]
Abstract
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Anna Maria Agresta
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Silvia Donnini
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Christian Gehl
- Institute of Horticulture Production Systems, Leibniz University of Hannover, Herrenhaeuser Str. 2, 30419, Hannover, Germany
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
66
|
Wang S, Zhang Y, Song Q, Fang Z, Chen Z, Zhang Y, Zhang L, Zhang L, Niu N, Ma S, Wang J, Yao Y, Hu Z, Zhang G. Mitochondrial Dysfunction Causes Oxidative Stress and Tapetal Apoptosis in Chemical Hybridization Reagent-Induced Male Sterility in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2217. [PMID: 29367855 PMCID: PMC5767846 DOI: 10.3389/fpls.2017.02217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC), excessive production of reactive oxygen species (ROS) and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Zhengwu Fang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
| | - Zheng Chen
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yamin Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lili Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yaqin Yao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| |
Collapse
|
67
|
Meng L, Liu Z, Zhang L, Hu G, Song X. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi. BREEDING SCIENCE 2016; 66:752-761. [PMID: 28163591 PMCID: PMC5282749 DOI: 10.1270/jsbbs.16039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/14/2016] [Indexed: 05/05/2023]
Abstract
Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.
Collapse
Affiliation(s)
- Liying Meng
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Zihan Liu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Gan Hu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Xiyue Song
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| |
Collapse
|
68
|
Yu J, Meng Z, Liang W, Behera S, Kudla J, Tucker MR, Luo Z, Chen M, Xu D, Zhao G, Wang J, Zhang S, Kim YJ, Zhang D. A Rice Ca2+ Binding Protein Is Required for Tapetum Function and Pollen Formation. PLANT PHYSIOLOGY 2016; 172:1772-1786. [PMID: 27663411 PMCID: PMC5100779 DOI: 10.1104/pp.16.01261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/19/2016] [Indexed: 05/21/2023]
Abstract
In flowering plants, successful male reproduction requires the sophisticated interaction between somatic anther wall layers and reproductive cells. Timely degradation of the innermost tissue of the anther wall layer, the tapetal layer, is critical for pollen development. Ca2+ is a well-known stimulus for plant development, but whether it plays a role in affecting male reproduction remains elusive. Here we report a role of Defective in Exine Formation 1 (OsDEX1) in rice (Oryza sativa), a Ca2+ binding protein, in regulating rice tapetal cell degradation and pollen formation. In osdex1 anthers, tapetal cell degeneration is delayed and degradation of the callose wall surrounding the microspores is compromised, leading to aborted pollen formation and complete male sterility. OsDEX1 is expressed in tapetal cells and microspores during early anther development. Recombinant OsDEX1 is able to bind Ca2+ and regulate Ca2+ homeostasis in vitro, and osdex1 exhibited disturbed Ca2+ homeostasis in tapetal cells. Phylogenetic analysis suggested that OsDEX1 may have a conserved function in binding Ca2+ in flowering plants, and genetic complementation of pollen wall defects of an Arabidopsis (Arabidopsis thaliana) dex1 mutant confirmed its evolutionary conservation in pollen development. Collectively, these findings suggest that OsDEX1 plays a fundamental role in the development of tapetal cells and pollen formation, possibly via modulating the Ca2+ homeostasis during pollen development.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhaolu Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Smrutisanjita Behera
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jörg Kudla
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Matthew R Tucker
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Siyi Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.);
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K);
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| |
Collapse
|
69
|
Gaborieau L, Brown GG. Comparative genomic analysis of the compound Brassica napus Rf locus. BMC Genomics 2016; 17:834. [PMID: 27782804 PMCID: PMC5080715 DOI: 10.1186/s12864-016-3117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022] Open
Abstract
Background The plant trait of cytoplasmically-inherited male sterility (CMS) and its suppression by nuclear restorer-of-fertility (Rf) genes can be viewed as a genetic arms race between the mitochondrial and nuclear genomes. Most nuclear Rf genes have been shown to encode P-type pentatricopeptide repeat proteins (PPRs). Phylogenetic analysis of P-class PPRs from sequenced plants genomes has shown that Rf-proteins cluster in a distinct clade of P-class PPRs, RFL-PPRs, that display hallmarks of positive evolutionary selection. Genes encoding RFL-PPRs (RFLs) within a given plant genome tend to be closely related both in sequence and position, but a detailed understanding of how such species-specific expansion occurs is lacking. In the canola, (oilseed rape) species Brassica napus, previous work has indicated the nuclear restorer genes for the two native forms of CMS, Rfn (for nap CMS) and Rfp (pol CMS), represent alternate haplotypes, or alleles, of a single nuclear locus. Results Fine genetic mapping indicates that Rfn does indeed localize to the same genomic region as Rfp. We find this region is enriched in RFL genes, three of which, based on their position and expression, represent potential candidates for Rfn; one of these genes, designated PPR4, is a preferred candidate in that it is not expressed in the nap CMS line. Comparison of the corresponding regions of the genomes of B. rapa, B. oleracea, Arabidopsis thaliana and A. lyrata provides insight into the expansion of this group of RFL genes in different lines of evolutionary descent. Conclusions Unlike other nuclear restorer loci containing multiple RFL genes, the RFL genes in the Rf region of B. napus are not present in tandem arrays but rather are dispersed in genomic location. The genes do not share similar flanking non-coding regions and do not contain introns, indicating that they have duplicated primarily through a retrotransposition-mediated process. In contrast, segmental duplication has been responsible for the distribution of the 10 sequences we annotated as RFL genes in the corresponding region of the A. lyrata genome. Our observations define the Brassica Rf locus and indicate that different mechanisms may be responsible for the proliferation of RFL genes even among closely related genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lydiane Gaborieau
- Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC, H3A 1B1, Canada
| | - Gregory G Brown
- Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC, H3A 1B1, Canada.
| |
Collapse
|
70
|
Li J, Ding X, Han S, He T, Zhang H, Yang L, Yang S, Gai J. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J Proteomics 2016; 138:72-82. [PMID: 26921830 DOI: 10.1016/j.jprot.2016.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. BIOLOGICAL SIGNIFICANCE Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean.
Collapse
Affiliation(s)
- Jiajia Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shaohuai Han
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
71
|
Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1357-68. [PMID: 26685186 PMCID: PMC4762380 DOI: 10.1093/jxb/erv531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Martin Lehmann
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Fabio Marco Casiraghi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Peter Geigenberger
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Naoko K Nishizawa
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| |
Collapse
|
72
|
Cheng XX, Yu M, Zhang N, Zhou ZQ, Xu QT, Mei FZ, Qu LH. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2016; 253:311-27. [PMID: 25854793 DOI: 10.1007/s00709-015-0811-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.
Collapse
Affiliation(s)
- Xiang-Xu Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Qiu-Tao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fang-Zhu Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liang-Huan Qu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
73
|
Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. PLANT PHYSIOLOGY 2016; 170:1611-23. [PMID: 26697896 PMCID: PMC4775127 DOI: 10.1104/pp.15.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
After meiosis, tapetal cells in the innermost anther wall layer undergo program cell death (PCD)-triggered degradation. This step is essential for microspore development and pollen wall maturation. We identified a key gene, Defective Tapetum Cell Death 1 (DTC1), that controls this degeneration by modulating the dynamics of reactive oxygen species (ROS) during rice male reproduction. Mutants defective in DTC1 exhibit phenotypes of an enlarged tapetum and middle layer with delayed degeneration, causing male sterility. The gene is preferentially expressed in the tapetal cells during early anther development. In dtc1 anthers, expression of genes encoding secretory proteases or lipid transporters is significantly reduced, while transcripts of PCD regulatory genes, e.g. UDT1, TDR1, and EAT1/DTD, are not altered. Moreover, levels of DTC1 transcripts are diminished in udt1, tdr, and eat1 anthers. These results suggest that DTC1 functions downstream of those transcription factor genes and upstream of the genes encoding secretory proteins. DTC1 protein interacts with OsMT2b, a ROS scavenger. Whereas wild-type plants accumulate large amounts of ROS in their anthers at Stage 9 of development, those levels remain low during all stages of development in dtc1 anthers. These findings indicate that DTC1 is a key regulator for tapetum PCD by inhibiting ROS-scavenging activity.
Collapse
Affiliation(s)
- Jakyung Yi
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Sunok Moon
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Yang-Seok Lee
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Lu Zhu
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Wanqi Liang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Dabing Zhang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Ki-Hong Jung
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| |
Collapse
|
74
|
Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci U S A 2015; 112:14984-9. [PMID: 26578814 DOI: 10.1073/pnas.1511748112] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS) has been extensively used for hybrid seed production in many major crops. Honglian CMS (HL-CMS) is one of the three major types of CMS in rice and has contributed greatly to food security worldwide. The HL-CMS trait is associated with an aberrant chimeric mitochondrial transcript, atp6-orfH79, which causes pollen sterility and can be rescued by two nonallelic restorer-of-fertility (Rf) genes, Rf5 or Rf6. Here, we report the identification of Rf6, which encodes a novel pentatricopeptide repeat (PPR) family protein with a characteristic duplication of PPR motifs 3-5. RF6 is targeted to mitochondria, where it physically associates with hexokinase 6 (OsHXK6) and promotes the processing of the aberrant CMS-associated transcript atp6-orfH79 at nucleotide 1238, which ensures normal pollen development and restores fertility. The duplicated motif 3 of RF6 is essential for RF6-OsHXK6 interactions, processing of the aberrant transcript, and restoration of fertility. Furthermore, reductions in the level of OsHXK6 result in atp6-orfH79 transcript accumulation and male sterility. Together these results reveal a novel mechanism for CMS restoration by which RF6 functions with OsHXK6 to restore HL-CMS fertility. The present study also provides insight into the function of hexokinase 6 in regulating mitochondrial RNA metabolism and may facilitate further exploitation of heterosis in rice.
Collapse
|
75
|
Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency. PLoS One 2015; 10:e0129141. [PMID: 26107946 PMCID: PMC4479487 DOI: 10.1371/journal.pone.0129141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondria, as recently suggested, might be involved in iron sensing and signalling pathways in plant cells. For a better understanding of the role of these organelles in mediating the Fe deficiency responses in plant cells, it is crucial to provide a full overview of their modifications occurring under Fe-limited conditions. The aim of this work is to characterize the ultrastructural as well as the biochemical changes occurring in leaf mitochondria of cucumber (Cucumis sativus L.) plants grown under Fe deficiency. Methodology/Results Mitochondrial ultrastructure was investigated by transmission electron microscopy (TEM) and electron tomography techniques, which allowed a three-dimensional (3D) reconstruction of cellular structures. These analyses reveal that mitochondria isolated from cucumber leaves appear in the cristae junction model conformation and that Fe deficiency strongly alters both the number and the volume of cristae. The ultrastructural changes observed in mitochondria isolated from Fe-deficient leaves reflect a metabolic status characterized by a respiratory chain operating at a lower rate (orthodox-like conformation) with respect to mitochondria from control leaves. Conclusions To our knowledge, this is the first report showing a 3D reconstruction of plant mitochondria. Furthermore, these results suggest that a detailed characterization of the link between changes in the ultrastructure and functionality of mitochondria during different nutritional conditions, can provide a successful approach to understand the role of these organelles in the plant response to Fe deficiency.
Collapse
|
76
|
Wang S, Zhang G, Song Q, Zhang Y, Li Z, Guo J, Niu N, Ma S, Wang J. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One 2015; 10:e0119557. [PMID: 25803723 PMCID: PMC4372346 DOI: 10.1371/journal.pone.0119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.
Collapse
Affiliation(s)
- Shuping Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Qilu Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| |
Collapse
|
77
|
Habarugira I, Hendriks T, Quillet MC, Hilbert JL, Rambaud C. Effects of nuclear genomes on anther development in cytoplasmic male sterile chicories (Cichorium intybus L.): morphological analysis. ScientificWorldJournal 2015; 2015:529521. [PMID: 25861678 PMCID: PMC4377467 DOI: 10.1155/2015/529521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/24/2015] [Indexed: 12/04/2022] Open
Abstract
The Cichorium intybus flower development in fertile, cytoplasmic male sterility (CMS 524) and various phenotypes carrying the 524 male sterile cytoplasm was investigated macroscopically and by light microscopy. The development was similar in fertile and in male sterile florets up to meiosis, and then it was affected in anther wall structure and pollen grain development in male sterile floret. In the male sterile plants, the tapetum intrusion after meiosis was less remarkable, the microspores started to abort at vacuolate stage, the connective tissue collapsed, and endothecium failed to expand normally and did not undergo cell wall lignification, which prevented anther opening since the septum and stomium were not disrupted. Crosses undertaken in order to introduce the CMS 524 into two different nuclear backgrounds gave rise to morphologically diversified progenies due to different nuclear-mitochondrial interactions. Macroscopic and cytological investigations showed that pollen-donor plants belonging to Jupiter population had potential capacity to restore fertility while the CC line could be considered as a sterility maintainer.
Collapse
Affiliation(s)
- Ildephonse Habarugira
- UMR 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
- University of Rwanda-Collège of Education, P.O. Box 5039, Kigali, Rwanda
| | - Theo Hendriks
- UMR 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
- Laboratoire Evolution Ecologie Paléontologie, Bât SN2, Cité Scientifique, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
| | - Marie-Christine Quillet
- UMR 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
- Laboratoire Evolution Ecologie Paléontologie, Bât SN2, Cité Scientifique, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
| | - Jean-Louis Hilbert
- UMR 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
- Laboratoire Régional de Recherche en Agroalimentaire et Biotechnologie, Institut Charles Viollette, Bât SN2, Cité Scientifique, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
| | - Caroline Rambaud
- UMR 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
- Laboratoire Régional de Recherche en Agroalimentaire et Biotechnologie, Institut Charles Viollette, Bât SN2, Cité Scientifique, Université Lille 1, Sciences et Technologies, 59655 Villeneuve-d'Ascq, France
| |
Collapse
|
78
|
Yang P, Han J, Huang J. Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JA-CMS cotton. PLoS One 2014; 9:e112320. [PMID: 25372034 PMCID: PMC4221291 DOI: 10.1371/journal.pone.0112320] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is the failure to produce functional pollen, which is inherited maternally. And it is known that anther development is modulated through complicated interactions between nuclear and mitochondrial genes in sporophytic and gametophytic tissues. However, an unbiased transcriptome sequencing analysis of CMS in cotton is currently lacking in the literature. This study compared differentially expressed (DE) genes of floral buds at the sporogenous cells stage (SS) and microsporocyte stage (MS) (the two most important stages for pollen abortion in JA-CMS) between JA-CMS and its fertile maintainer line JB cotton plants, using the Illumina HiSeq 2000 sequencing platform. A total of 709 (1.8%) DE genes including 293 up-regulated and 416 down-regulated genes were identified in JA-CMS line comparing with its maintainer line at the SS stage, and 644 (1.6%) DE genes with 263 up-regulated and 381 down-regulated genes were detected at the MS stage. By comparing the two stages in the same material, there were 8 up-regulated and 9 down-regulated DE genes in JA-CMS line and 29 up-regulated and 9 down-regulated DE genes in JB maintainer line at the MS stage. Quantitative RT-PCR was used to validate 7 randomly selected DE genes. Bioinformatics analysis revealed that genes involved in reduction-oxidation reactions and alpha-linolenic acid metabolism were down-regulated, while genes pertaining to photosynthesis and flavonoid biosynthesis were up-regulated in JA-CMS floral buds compared with their JB counterparts at the SS and/or MS stages. All these four biological processes play important roles in reactive oxygen species (ROS) homeostasis, which may be an important factor contributing to the sterile trait of JA-CMS. Further experiments are warranted to elucidate molecular mechanisms of these genes that lead to CMS.
Collapse
Affiliation(s)
- Peng Yang
- Department of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
- Department of Rural Development, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinfeng Han
- Department of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jinling Huang
- Department of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
- * E-mail:
| |
Collapse
|
79
|
Choi DS, Kim NH, Hwang BK. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. PLANT PHYSIOLOGY 2014; 166:1298-311. [PMID: 25237129 PMCID: PMC4226358 DOI: 10.1104/pp.114.246736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
80
|
Reardon W, Gallagher P, Nolan KM, Wright H, Cardeñosa-Rubio MC, Bragalini C, Lee CS, Fitzpatrick DA, Corcoran K, Wolff K, Nugent JM. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago. THE NEW PHYTOLOGIST 2014; 202:716-725. [PMID: 24460533 DOI: 10.1111/nph.12682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/29/2013] [Indexed: 05/18/2023]
Abstract
The gene network that specifies flower shape in Antirrhinum majus (bilateral floral symmetry or zygomorphy) includes two MYB-class genes - RADIALIS (RAD) and DIVARICATA (DIV). RAD is involved in establishing the dorsal identity program and its role is to regulate the domain of activity of DIV (the ventral identity program) by restricting it to ventral regions of the flower. Plantago is in the same family as Antirrhinum but has small, radially symmetrical (actinomorphic) flowers derived from a zygomorphic ancestral state. Here we investigate the MYB-class floral symmetry genes and the role they have played in the evolution of derived actinomorphy in Plantago lanceolata. A DIV ortholog (PlDIV) but no RAD ortholog was identified in P. lanceolata. PlDIV is expressed across all petals and stamens later in flower development, which is consistent with the loss of RAD gene function. PlDIV expression in anther sporogenous tissue also suggests that PlDIV was co-opted to regulate cell proliferation during the early stages of pollen development. These results indicate that evolution of derived actinomorphy in Plantago involved complete loss of dorsal gene function, resulting in expansion of the domain of expression of the ventral class of floral symmetry genes.
Collapse
Affiliation(s)
- Wesley Reardon
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Pauline Gallagher
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Katie M Nolan
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Hayley Wright
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | - Claudia Bragalini
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Chui-Sang Lee
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Killian Corcoran
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Kirsten Wolff
- School of Biology, Newcastle University, Ridley Building, Newcastle, NE1 7RU, UK
| | - Jacqueline M Nugent
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
81
|
Shearman JR, Sangsrakru D, Ruang-areerate P, Sonthirod C, Uthaipaisanwong P, Yoocha T, Poopear S, Theerawattanasuk K, Tragoonrung S, Tangphatsornruang S. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript. BMC PLANT BIOLOGY 2014; 14:45. [PMID: 24512148 PMCID: PMC3925788 DOI: 10.1186/1471-2229-14-45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/07/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. RESULTS We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. CONCLUSIONS The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility.
Collapse
Affiliation(s)
- Jeremy R Shearman
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Panthita Ruang-areerate
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Pichahpuk Uthaipaisanwong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Supannee Poopear
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Kanikar Theerawattanasuk
- Rubber Research Institute of Thailand (RRIT), Department of Agriculture, Ministry of Agriculture and Cooperatives, 50 Phaholyothin Road, Chatuchack, Bangkok 10900, Thailand
| | - Somvong Tragoonrung
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
82
|
Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J. The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis [corrected]. THE PLANT CELL 2013; 25:4014-27. [PMID: 24179128 PMCID: PMC3877808 DOI: 10.1105/tpc.113.117283] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/29/2013] [Accepted: 10/15/2013] [Indexed: 05/03/2023]
Abstract
The assembly of respiratory complexes is a multistep process, requiring coordinate expression of mitochondrial and nuclear genes and cofactor biosynthesis. We functionally characterized the iron-sulfur protein required for NADH dehydrogenase (INDH) in the model plant Arabidopsis thaliana. An indh knockout mutant lacked complex I but had low levels of a 650-kD assembly intermediate, similar to mutations in the homologous NUBPL (nucleotide binding protein-like) in Homo sapiens. However, heterozygous indh/+ mutants displayed unusual phenotypes during gametogenesis and resembled mutants in mitochondrial translation more than mutants in complex I. Gradually increased expression of INDH in indh knockout plants revealed a significant delay in reassembly of complex I, suggesting an indirect role for INDH in the assembly process. Depletion of INDH protein was associated with decreased (35)S-Met labeling of translation products in isolated mitochondria, whereas the steady state levels of several mitochondrial transcripts were increased. Mitochondrially encoded proteins were differentially affected, with near normal levels of cytochrome c oxidase subunit2 and Nad7 but little Nad6 protein in the indh mutant. These data suggest that INDH has a primary role in mitochondrial translation that underlies its role in complex I assembly.
Collapse
Affiliation(s)
- Mateusz M. Wydro
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pia Sharma
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jonathan M. Foster
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katrine Bych
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Etienne H. Meyer
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
83
|
Flores-Rentería L, Orozco-Arroyo G, Cruz-García F, García-Campusano F, Alfaro I, Vázquez-Santana S. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae). ANNALS OF BOTANY 2013; 112:789-800. [PMID: 23877075 PMCID: PMC3747795 DOI: 10.1093/aob/mct141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described. METHODS The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD. KEY RESULTS PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption. CONCLUSIONS Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.
Collapse
Affiliation(s)
- Lluvia Flores-Rentería
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, UNAM México, DF 04510 México
| | - Gregorio Orozco-Arroyo
- Departamento de Bioquímica, Facultad de Química, UNAM, Conjunto E. México, DF 04510 México
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, UNAM, Conjunto E. México, DF 04510 México
| | - Florencia García-Campusano
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, UNAM México, DF 04510 México
| | - Isabel Alfaro
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, UNAM México, DF 04510 México
| | - Sonia Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, UNAM México, DF 04510 México
- For correspondence. E-mail
| |
Collapse
|
84
|
Vigani G, Tarantino D, Murgia I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. FRONTIERS IN PLANT SCIENCE 2013; 4:316. [PMID: 23967005 PMCID: PMC3744851 DOI: 10.3389/fpls.2013.00316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/28/2013] [Indexed: 05/23/2023]
Abstract
In plants, intracellular Fe trafficking must satisfy chloroplasts' and mitochondrial demands for Fe without allowing its accumulation in the organelles in dangerous redox-active forms. Protein ferritin is involved in such homeostatic control, however its functional role in mitochondria, differently from its role in chloroplasts, is still matter of debate. To test ferritin functionality as a 24-mer Fe-storage complex in mitochondria, cucumber seedlings were grown under different conditions of Fe supply (excess, control, deficiency) and mitochondria were purified from the roots. A ferritin monomer of around 25 KDa was detected by SDS-PAGE in Fe-excess root mitochondria, corresponding to the annotated Csa5M215130/XP_004163524 protein: such a monomer is barely detectable in the control mitochondria and not at all in the Fe-deficient ones. Correspondingly, the ferritin 24-mer complex is abundant in root mitochondria from Fe-excess plants and it stores Fe as Fe(III): such a complex is also detectable, though to a much smaller extent, in control mitochondria, but not in Fe-deficient ones. Cucumber ferritin Csa5M215130/XP_004163524 is therefore a functional Fe(III)-store in root mitochondria and its abundance is dependent on the Fe nutritional status of the plant.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Delia Tarantino
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Irene Murgia
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| |
Collapse
|
85
|
Cavaiuolo M, Cocetta G, Ferrante A. The Antioxidants Changes in Ornamental Flowers during Development and Senescence. Antioxidants (Basel) 2013; 2:132-55. [PMID: 26784342 PMCID: PMC4665434 DOI: 10.3390/antiox2030132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| |
Collapse
|
86
|
Abstract
SIGNIFICANCE For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. RECENT ADVANCES Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. CRITICAL ISSUES Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. FUTURE DIRECTIONS Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling.
Collapse
|
87
|
Kobayashi H, Ikeda TM, Nagata K. Spatial and temporal progress of programmed cell death in the developing starchy endosperm of rice. PLANTA 2013; 237:1393-400. [PMID: 23404671 DOI: 10.1007/s00425-013-1854-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/24/2013] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is the genetically regulated disassembly of cells, and occurs in the endosperm of cereals during seed maturation. Since PCD determines the lifetime of cells, it can affect endosperm growth and, therefore, cereal yield. However, the features and mechanisms of PCD in the developing starchy endosperm in the Poaceae remain unclear. In the present study, we investigated the characteristics of PCD in developing starchy endosperm of rice (Oryza sativa L.) by fluorescence microscopy, focusing on the spatial and temporal progress of PCD-associated responses. Cell death commenced in the central region of starchy endosperm, and then spread to the peripheral region. PCD-associated responses, such as mitochondrial membrane permeabilization and activation of the protease that cleaves the amino acid sequence VEID, showed similar spatial patterns to that of cell death, but preceded cell death. Degradation of nuclear DNA could not be detected in developing starchy endosperm by the TUNEL assay. These results indicated that PCD in developing starchy endosperm of rice proceeds via a highly organized pattern. In addition, these results suggested that PCD in developing starchy endosperm of rice is characterized by the involvement of mitochondrial signaling and the activity of a caspase-like protease that cleaves the VEID sequence.
Collapse
Affiliation(s)
- Hidekazu Kobayashi
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Hiroshima, 721-8514, Japan.
| | | | | |
Collapse
|
88
|
A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 2013; 45:573-7. [PMID: 23502780 DOI: 10.1038/ng.2570] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/05/2013] [Indexed: 11/08/2022]
Abstract
Plant cytoplasmic male sterility (CMS) results from incompatibilities between the organellar and nuclear genomes and prevents self pollination, enabling hybrid crop breeding to increase yields. The Wild Abortive CMS (CMS-WA) has been exploited in the majority of 'three-line' hybrid rice production since the 1970s, but the molecular basis of this trait remains unknown. Here we report that a new mitochondrial gene, WA352, which originated recently in wild rice, confers CMS-WA because the protein it encodes interacts with the nuclear-encoded mitochondrial protein COX11. In CMS-WA lines, WA352 accumulates preferentially in the anther tapetum, thereby inhibiting COX11 function in peroxide metabolism and triggering premature tapetal programmed cell death and consequent pollen abortion. WA352-induced sterility can be suppressed by two restorer-of-fertility (Rf) genes, suggesting the existence of different mechanisms to counteract deleterious cytoplasmic factors. Thus, CMS-related cytoplasmic-nuclear incompatibility is driven by a detrimental interaction between a newly evolved mitochondrial gene and a conserved, essential nuclear gene.
Collapse
|
89
|
Agrawal B, Czymmek KJ, Sparks DL, Bais HP. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 2013; 288:7351-62. [PMID: 23322782 PMCID: PMC3591643 DOI: 10.1074/jbc.m112.406645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/20/2012] [Indexed: 02/02/2023] Open
Abstract
Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.
Collapse
Affiliation(s)
- Bhavana Agrawal
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
| | - Kirk J. Czymmek
- Biological Sciences, University of Delaware, Newark, Delaware 19716
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
| | - Donald L. Sparks
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
- the Center for Critical Zone Research, Newark, Delaware 19711
| | - Harsh P. Bais
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
- the Center for Critical Zone Research, Newark, Delaware 19711
| |
Collapse
|
90
|
Yan X, Dong C, Yu J, Liu W, Jiang C, Liu J, Hu Q, Fang X, Wei W. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics 2013; 14:26. [PMID: 23324545 PMCID: PMC3556089 DOI: 10.1186/1471-2164-14-26] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. RESULTS In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste) and 253,507 (Fer) distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs). In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE) data. CONCLUSIONS A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in Nsa line, fertility restoration and improved agronomic traits in NR1 line. Further study of the unknown tags which were specifically expressed in Fer will help to explore desirable agronomic traits from wild species.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Caihua Dong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wanghui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jia Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Qiong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaoping Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| |
Collapse
|
91
|
Ji J, Huang W, Yin C, Gong Z. Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes. Int J Mol Sci 2013; 14:1050-68. [PMID: 23296278 PMCID: PMC3565306 DOI: 10.3390/ijms14011050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
Cytoplasmic male sterility (CMS) in pepper (Capsicum annuum L.) has been associated with novel genes in the mitochondria, such as orf507 and Ψatp6-2. Plant sterility has been proved to result from the rearrangement of the mitochondrial genome. Previous studies have demonstrated that orf507 is co-transcribed with the cox II gene, and Ψatp6-2 is truncated at the 3' region of the atp6-2 that is found in the maintainer line. Until this time, little has been known about the relationship between the novel gene and the function of its corresponding enzyme in mitochondria from the CMS pepper line. Moreover, the aberrant function of the mitochondrial enzymes is seldom reported in pepper. In this study, we observed that anther abortion occurred after the tetrad stage in the CMS line (HW203A), which was accompanied by premature programmed cell death (PCD) in the tapetum. The spatiotemporal expression patterns of orf507 and Ψatp6-2 were analyzed together with the corresponding enzyme activities to investigate the interactions of the genes and mitochondrial enzymes. The two genes were both highly expressed in the anther. The orf507 was down-regulated in HW203A (CMS line), with nearly no expression in HW203B (the maintainer line). In contrast, the cytochrome c oxidase activity in HW203A showed the opposite trend, reaching its highest peak at the tetrad stage when compared with HW203B at the same stage. The Ψatp6-2 in the CMS line was also down-regulated, but it was up-regulated in the maintainer line. The corresponding F(1)F(o)-ATPase activity in the CMS line was gradually decreased along with the development of the anther, which showed the same trend for Ψatp6-2 gene expression. On the contrary, with up-regulated gene expression of atp6-2 in the maintainer line, the F(1)F(o)-ATPase activity sharply decreased after the initial development stage, but gradually increased following the tetrad stage, which was contrary to what happened in the CMS line. Taken together, all these results may provide evidence for the involvement of aberrant mitochondrial cytochrome c oxidase and F(1)F(o)-ATPase in CMS pepper anther abortion. Moreover, the novel orf507 and Ψatp6-2 genes in the mitochondria may be involved in the dysfunction of the cytochrome c oxidase and F(1)F(o)-ATPase, respectively, which are responsible for the abortion of anthers in the CMS line.
Collapse
Affiliation(s)
- Jiaojiao Ji
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Wei Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuanchuan Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-029-8708-2102; Fax: +86-029-8708-2613
| |
Collapse
|
92
|
Higashitani A. High temperature injury and auxin biosynthesis in microsporogenesis. FRONTIERS IN PLANT SCIENCE 2013; 4:47. [PMID: 23483842 PMCID: PMC3593198 DOI: 10.3389/fpls.2013.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/24/2013] [Indexed: 05/08/2023]
Abstract
Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High temperature (HT) injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to HT. I and my colleagues recently demonstrated that HT causes cell proliferation arrest and represses auxin signaling in a tissue-specific manner in the anther cells of barley and Arabidopsis. HT also caused comprehensive alterations in transcription. The application of auxin at the same time blocked the transcriptional alterations, led to the production of normal pollen grains, and restored the normal seed setting rate under increasing temperatures. Although synthetic auxins have been used widely as potent and selective herbicides, these recent results indicate that auxin is useful for the promotion of fertility and maintenance of crop yields under the threat of global warming.
Collapse
Affiliation(s)
- Atsushi Higashitani
- *Correspondence: Atsushi Higashitani, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan. e-mail:
| |
Collapse
|
93
|
Liu G, Tian H, Huang YQ, Hu J, Ji YX, Li SQ, Feng YQ, Guo L, Zhu YG. Alterations of mitochondrial protein assembly and jasmonic acid biosynthesis pathway in Honglian (HL)-type cytoplasmic male sterility rice. J Biol Chem 2012; 287:40051-60. [PMID: 23027867 PMCID: PMC3501019 DOI: 10.1074/jbc.m112.382549] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/12/2012] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the mitochondrial chimeric gene orfH79 is the cause for abortion of microspores in Honglian cytoplasmic male sterile rice, yet little is known regarding its mechanism of action. In this study, we used a mass spectrometry-based quantitative proteomics strategy to compare the mitochondrial proteome between the sterile line Yuetai A and its fertile near-isogenic line Yuetai B. We discovered a reduced quantity of specific proteins in mitochondrial complexes in Yuetai A compared with Yuetai B, indicating a defect in mitochondrial complex assembly in the sterile line. Western blotting showed that ORFH79 protein and ATP1 protein, an F(1) sector component of complex V, are both associated with large protein complexes of similar size. Respiratory complex activity assays and transmission electron microscopy revealed functional and morphological defects in the mitochondria of Yuetai A when compared with Yuetai B. In addition, we identified one sex determination TASSELSEED2-like protein increased in Yuetai A, leading to the discovery of an aberrant variation of the jasmonic acid pathway during the development of microspores.
Collapse
Affiliation(s)
- Gai Liu
- From the State Key Laboratory of Hybrid Rice and
| | - Han Tian
- State Key Laboratory of Virology, College of Life Sciences, and
| | - Yun-Qing Huang
- the Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Hu
- From the State Key Laboratory of Hybrid Rice and
| | - Yan-Xiao Ji
- From the State Key Laboratory of Hybrid Rice and
| | - Shao-Qing Li
- From the State Key Laboratory of Hybrid Rice and
| | - Yu-Qi Feng
- the Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, and
- the Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ying-Guo Zhu
- From the State Key Laboratory of Hybrid Rice and
| |
Collapse
|
94
|
Huang L, Xiang J, Liu J, Rong T, Wang J, Lu Y, Tang Q, Wen W, Cao M. Expression characterization of genes for CMS-C in maize. PROTOPLASMA 2012; 249:1119-27. [PMID: 22160189 DOI: 10.1007/s00709-011-0358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/28/2011] [Indexed: 05/25/2023]
Abstract
Cytoplasmic male sterility (CMS)-C is one of the most attractive sources of male sterility in the production of hybrid maize. However, the abortion mechanism of CMS-C is currently unknown. The major aim of this work was to characterize the expression of genes and proteins during pollen abortion. The materials assayed included CMS-C line C48-2, its maintainer line N48-2, and fertile F(1) (C48-2 × 18 white). A total of 20 unique genes and 25 proteins were identified by suppression subtractive hybridization and 2-D electrophoresis, respectively. Most of the genes and proteins identified are closely related to energy metabolism, stress responses, molecular chaperones, and cell death, which are generally considered to be essential to pollen development. Based on the function of these identified genes and proteins, reactive oxygen species in isolated mitochondria and DNA fragments were analyzed. The results from this study indicate that the oxidative stress which was associated with the specific expression patterns of some genes may be the physiological cause for the abortion of premature microspores in the maize CMS-C line.
Collapse
Affiliation(s)
- Ling Huang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education/Key Laboratory of Maize Biology and Genetic Breeding on Southwest, Ministry of Agriculture, Ya'an, 625014, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F. Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. PLANTA 2012; 236:225-38. [PMID: 22328126 DOI: 10.1007/s00425-012-1602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/26/2012] [Indexed: 05/13/2023]
Abstract
In Opuntia stenopetala, flowers initiate as hermaphrodite; however, at maturity, only the stamens in male flowers and the gynoecium in female flowers become functional. At early developmental stages, growth and morphogenesis of the gynoecium in male flowers cease, forming a short style lacking stigmatic tissue at maturity. Here, an analysis of the masculinization process of this species and its relationship with auxin metabolism during gynoecium morphogenesis is presented. Histological analysis and scanning electron microscopy were performed; auxin levels were immunoanalyzed and exogenous auxin was applied to developing gynoecia. Male flower style-tissue patterning revealed morphological defects in the vascular bundles, stylar canal, and transmitting tissue. These features are similar to those observed in Arabidopsis thaliana mutant plants affected in auxin transport, metabolism, or signaling. Notably, when comparing auxin levels between male and female gynoecia from O. stenopetala at an early developmental stage, we found that they were particularly low in the male gynoecium. Consequently, exogenous auxin application on male gynoecia partially restored the defects of gynoecium development. We therefore hypothesize that, the arrest in male flower gynoecia patterning could be related to altered auxin homeostasis; alternatively, the addition of auxin could compensate for the lack of another unknown factor affecting male flower gynoecium development.
Collapse
Affiliation(s)
- Gregorio Orozco-Arroyo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000. Col. Universidad Nacional Autónoma de México, 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
96
|
Kim C, Meskauskiene R, Zhang S, Lee KP, Lakshmanan Ashok M, Blajecka K, Herrfurth C, Feussner I, Apel K. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. THE PLANT CELL 2012; 24:3026-39. [PMID: 22797473 PMCID: PMC3426130 DOI: 10.1105/tpc.112.100479] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 05/18/2023]
Abstract
Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.
Collapse
Affiliation(s)
- Chanhong Kim
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Rasa Meskauskiene
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Shengrui Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
| | - Keun Pyo Lee
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Munusamy Lakshmanan Ashok
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Karolina Blajecka
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37073 Gottingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37073 Gottingen, Germany
| | - Klaus Apel
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
- Address correspondence to
| |
Collapse
|
97
|
Lord CEN, Gunawardena AHLAN. Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 2012; 91:603-13. [PMID: 22512890 DOI: 10.1016/j.ejcb.2012.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein level, and also by filling in gaps detailing plant apoptotic factors not yet amalgamated within the literature.
Collapse
Affiliation(s)
- Christina E N Lord
- Dalhousie University, Department of Biology, 1355 Oxford Street Halifax, Nova Scotia, B3H 4R2 Canada.
| | | |
Collapse
|
98
|
Pattanayak GK, Venkataramani S, Hortensteiner S, Kunz L, Christ B, Moulin M, Smith AG, Okamoto Y, Tamiaki H, Sugishima M, Greenberg JT. Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:589-600. [PMID: 21988537 PMCID: PMC3274588 DOI: 10.1111/j.1365-313x.2011.04814.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 (+) sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as being cell non-autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.
Collapse
Affiliation(s)
- Gopal K. Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Sujatha Venkataramani
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | - Lukas Kunz
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Michael Moulin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, United Kingdom
| | - Yukihiro Okamoto
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
99
|
Lord CEN, Wertman JN, Lane S, Gunawardena AHLAN. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death? BMC PLANT BIOLOGY 2011; 11:102. [PMID: 21645374 PMCID: PMC3118178 DOI: 10.1186/1471-2229-11-102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/06/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. RESULTS The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. CONCLUSIONS Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.
Collapse
Affiliation(s)
- Christina EN Lord
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | - Jaime N Wertman
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | - Stephanie Lane
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, B3H 4R2, Canada
| | | |
Collapse
|
100
|
Phan HA, Iacuone S, Li SF, Parish RW. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. THE PLANT CELL 2011; 23:2209-24. [PMID: 21673079 PMCID: PMC3160043 DOI: 10.1105/tpc.110.082651] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/18/2011] [Accepted: 05/29/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana MYB80 (formerly MYB103) is expressed in the tapetum and microspores between anther developmental stages 6 and 10. MYB80 encodes a MYB transcription factor that is essential for tapetal and pollen development. Using microarray analysis of anther mRNA, we identified 404 genes differentially expressed in the myb80 mutant. Employing the glucocorticoid receptor system, the expression of 79 genes was changed when MYB80 function was restored in the myb80 mutant following induction by dexamethasone. Thirty-two genes were analyzed using chromatin immunoprecipitation, and three were identified as direct targets of MYB80. The genes encode a glyoxal oxidase (GLOX1), a pectin methylesterase (VANGUARD1), and an A1 aspartic protease (UNDEAD). All three genes are expressed in the tapetum and microspores. Electrophoretic mobility shift assays confirmed that MYB80 binds to all three target promoters, with the preferential binding site containing the CCAACC motif. TUNEL assays showed that when UNDEAD expression was silenced using small interfering RNA, premature tapetal and pollen programmed cell death occurred, resembling the myb80 mutant phenotype. UNDEAD possesses a mitochondrial targeting signal and may hydrolyze an apoptosis-inducing protein(s) in mitochondria. The timing of tapetal programmed cell death is critical for pollen development, and the MYB80/UNDEAD system may regulate that timing.
Collapse
|