51
|
|
52
|
Nanjareddy K, Arthikala MK, Gómez BM, Blanco L, Lara M. Differentially expressed genes in mycorrhized and nodulated roots of common bean are associated with defense, cell wall architecture, N metabolism, and P metabolism. PLoS One 2017; 12:e0182328. [PMID: 28771548 PMCID: PMC5542541 DOI: 10.1371/journal.pone.0182328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
Legumes participate in two important endosymbiotic associations, with phosphorus-acquiring arbuscular mycorrhiza (AM, soil fungi) and with nitrogen-fixing bacterial rhizobia. These divergent symbionts share a common symbiotic signal transduction pathway that facilitates the establishment of mycorrhization and nodulation in legumes. However, the unique and shared downstream genes essential for AM and nodule development have not been identified in crop legumes. Here, we used ion torrent next-generation sequencing to perform comparative transcriptomics of common bean (Phaseolus vulgaris) roots colonized by AM or rhizobia. We analyzed global gene expression profiles to identify unique and shared differentially expressed genes (DEGs) that regulate these two symbiotic interactions, and quantitatively compared DEG profiles. We identified 3,219 (1,959 upregulated and 1,260 downregulated) and 2,645 (1,247 upregulated and 1,398 downregulated) unigenes that were differentially expressed in response to mycorrhizal or rhizobial colonization, respectively, compared with uninoculated roots. We obtained quantitative expression profiles of unique and shared genes involved in processes related to defense, cell wall structure, N metabolism, and P metabolism in mycorrhized and nodulated roots. KEGG pathway analysis indicated that most genes involved in jasmonic acid and salicylic acid signaling, N metabolism, and inositol phosphate metabolism are variably expressed during symbiotic interactions. These combined data provide valuable information on symbiotic gene signaling networks that respond to mycorrhizal and rhizobial colonization, and serve as a guide for future genetic strategies to enhance P uptake and N-fixing capacity to increase the net yield of this valuable grain legume.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Brenda-Mariana Gómez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Lourdes Blanco
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México, México
| | - Miguel Lara
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México, México
| |
Collapse
|
53
|
Taylor A, Qiu YL. Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:489-501. [PMID: 28353400 DOI: 10.1094/mpmi-10-16-0218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Alexander Taylor
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| | - Yin-Long Qiu
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| |
Collapse
|
54
|
Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N, Nakagawa T, Barker DG, Genre A. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. THE NEW PHYTOLOGIST 2017; 214:1440-1446. [PMID: 28369864 DOI: 10.1111/nph.14539] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/28/2017] [Indexed: 05/18/2023]
Abstract
The rice lysin-motif (LysM) receptor-like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short-chain chitin oligomers (Myc-COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca2+ ) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS-YC2.60 was used to monitor nuclear Ca2+ signaling following root treatment with either crude fungal exudates or purified Myc-COs. Compared with wild-type rice, Ca2+ spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor-like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc-COs. These findings provide direct evidence that the bi-functional OsCERK1 plays a central role in perceiving short-chain Myc-CO signals and activating the downstream conserved symbiotic signal transduction pathway.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, Castanet-Tolosan, 31326, France
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Martina Capozzi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Naoya Takeda
- National Institute for Basic Biology (NIBB)/SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tomomi Nakagawa
- National Institute for Basic Biology (NIBB)/SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - David G Barker
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, Castanet-Tolosan, 31326, France
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| |
Collapse
|
55
|
Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 2017; 8:14534. [PMID: 28230048 PMCID: PMC5331223 DOI: 10.1038/ncomms14534] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.
Collapse
|
56
|
Kühn C. Review: Post-translational cross-talk between brassinosteroid and sucrose signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:75-81. [PMID: 27181949 DOI: 10.1016/j.plantsci.2016.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 05/29/2023]
Abstract
A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability.
Collapse
Affiliation(s)
- Christina Kühn
- Humboldt University of Berlin, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115 Berlin, Germany.
| |
Collapse
|
57
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
58
|
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Curr Biol 2016; 26:987-98. [PMID: 27020747 DOI: 10.1016/j.cub.2016.01.069] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 01/19/2023]
Abstract
Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals.
Collapse
Affiliation(s)
- Priya Pimprikar
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Samy Carbonnel
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Michael Paries
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Katja Katzer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Verena Klingl
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Monica J Bohmer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Leonhard Karl
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Daniela S Floss
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Martin Parniske
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany.
| |
Collapse
|
59
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
60
|
Qiao Z, Pingault L, Nourbakhsh-Rey M, Libault M. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process. FRONTIERS IN PLANT SCIENCE 2016; 7:34. [PMID: 26858743 PMCID: PMC4732000 DOI: 10.3389/fpls.2016.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.
Collapse
|
61
|
Genre A, Russo G. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions? FRONTIERS IN PLANT SCIENCE 2016; 7:96. [PMID: 26909085 PMCID: PMC4754458 DOI: 10.3389/fpls.2016.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/02/2023]
Abstract
Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.
Collapse
|
62
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
63
|
Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. THE NEW PHYTOLOGIST 2015; 208:241-56. [PMID: 25967282 DOI: 10.1111/nph.13445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.
Collapse
Affiliation(s)
- Dennis B Holt
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Dörte Meyer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
64
|
Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. THE NEW PHYTOLOGIST 2015; 208:224-240. [PMID: 25919491 DOI: 10.1111/nph.13427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Myc-LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo-chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc-LCOs we aimed to analyse Myc-LCO-induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA-seq) was performed on roots of Medicago truncatula wild-type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc-LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc-LCO-regulation of transcriptomic reprogramming were highlighted: DMI3- and NSP1-dependent; DMI3-dependent and NSP1-independent; and DMI3- and NSP1-independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1-dependent and -independent pathways downstream of DMI3. Our data also indicate significant Myc-LCO-activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP.
Collapse
Affiliation(s)
- Céline Camps
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Avenue de l'Agrobiopole, Auzeville-Tolosane, F-31326, Castanet-Tolosan, France
| | - David Rengel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Sébastien Carrère
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Christine Hervé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Frédéric Debellé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Pascal Gamas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Clare Gough
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| |
Collapse
|
65
|
Groten K, Pahari NT, Xu S, Miloradovic van Doorn M, Baldwin IT. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis. PLoS One 2015; 10:e0136234. [PMID: 26291081 PMCID: PMC4546398 DOI: 10.1371/journal.pone.0136234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large-scale gene expression studies across different species induce of a core set of genes of similar functions. However, additional factors seem to influence the overall pattern of gene expression, resulting in high variability among independent studies with different hosts. We conclude that VIGS is a powerful tool with which to investigate the function of genes involved in plant-AMF interactions but that inoculum strength can strongly influence the outcome of the interaction.
Collapse
Affiliation(s)
- Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Nabin T. Pahari
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Maja Miloradovic van Doorn
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
66
|
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. PLANT & CELL PHYSIOLOGY 2015; 56:1490-511. [PMID: 26009592 DOI: 10.1093/pcp/pcv071] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
67
|
Abstract
Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system.
Collapse
|
68
|
Chen J, Gutjahr C, Bleckmann A, Dresselhaus T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. MOLECULAR PLANT 2015; 8:595-611. [PMID: 25660409 DOI: 10.1016/j.molp.2015.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 05/25/2023]
Abstract
Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.
Collapse
Affiliation(s)
- Junyi Chen
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Caroline Gutjahr
- Faculty of Biology Genetics, Biocenter Martinsried, University of Munich (LMU), Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
69
|
Appels R, Nystrom J, Webster H, Keeble-Gagnere G. Discoveries and advances in plant and animal genomics. Funct Integr Genomics 2015; 15:121-9. [PMID: 25763751 PMCID: PMC4361718 DOI: 10.1007/s10142-015-0434-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/04/2022]
Abstract
Plant and animal genomics is a broad area of research with respect to the biological issues covered because it continues to deal with the structure and function of genetic material underpinning all organisms. This mini-review utilizes the plenary lectures from the Plant and Animal Genome Conference as a basis for summarizing the trends in the genome-level studies of organisms.
Collapse
Affiliation(s)
- Rudi Appels
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Perth, Australia, 6150,
| | | | | | | |
Collapse
|
70
|
Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. PLANT PHYSIOLOGY 2015; 167:854-71. [PMID: 25560877 PMCID: PMC4348782 DOI: 10.1104/pp.114.255430] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development.
Collapse
Affiliation(s)
- Li Xue
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Haitao Cui
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Benjamin Buer
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Vinod Vijayakumar
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Pierre-Marc Delaux
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Stefanie Junkermann
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| |
Collapse
|
71
|
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. FRONTIERS IN PLANT SCIENCE 2015; 6:667. [PMID: 26441999 PMCID: PMC4585188 DOI: 10.3389/fpls.2015.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection.
Collapse
Affiliation(s)
- Aline Banhara
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Regina Kühner
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Cluster of Excellence on Plant Sciences, Botanical Institute, University of CologneCologne, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
- *Correspondence: Martin Parniske, Genetics, Faculty of Biology, University of Munich (LMU), Großhaderner Strasse 4, 82152 Martinsried, Germany
| |
Collapse
|
72
|
Ried MK, Antolín-Llovera M, Parniske M. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 2014; 3:03891. [PMID: 25422918 PMCID: PMC4243133 DOI: 10.7554/elife.03891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.
Collapse
Affiliation(s)
| | | | - Martin Parniske
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
73
|
Zuccaro A, Lahrmann U, Langen G. Broad compatibility in fungal root symbioses. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:135-45. [PMID: 24929298 DOI: 10.1016/j.pbi.2014.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 05/13/2023]
Abstract
Plants associate with a wide range of beneficial fungi in their roots which facilitate plant mineral nutrient uptake in exchange for carbohydrates and other organic metabolites. These associations play a key role in shaping terrestrial ecosystems and are widely believed to have promoted the evolution of land plants. To establish compatibility with their host, root-associated fungi have evolved diverse colonization strategies with distinct morphological, functional and genomic specializations as well as different degrees of interdependence. They include obligate biotrophic arbuscular mycorrhizal (AM), and facultative biotrophic ectomycorrhizal (ECM) interactions but are not restricted to these well-characterized symbioses. There is growing evidence that root endophytic associations, which due to their inconspicuous nature have been often overlooked, can be of mutualistic nature and represent important players in natural and managed environments. Recent research into the biology and genomics of root associations revealed fascinating insight into the phenotypic and trophic plasticity of these fungi and underlined genomic traits associated with biotrophy and saprotrophy. In this review we will consider the commonalities and differences of AM and ECM associations and contrast them with root endophytes.
Collapse
Affiliation(s)
- Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; University of Cologne, Botanical Institute, Cluster of Excellence on Plant Science (CEPLAS), Cologne, Germany.
| | - Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregor Langen
- Justus Liebig University, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Giessen, Germany
| |
Collapse
|
74
|
Yue J, Li C, Liu Y, Yu J. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis. PLoS One 2014; 9:e100772. [PMID: 24967625 PMCID: PMC4072699 DOI: 10.1371/journal.pone.0100772] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.
Collapse
Affiliation(s)
- Jing Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwei Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Yoon HJ, Hossain MS, Held M, Hou H, Kehl M, Tromas A, Sato S, Tabata S, Andersen SU, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:811-21. [PMID: 24661810 PMCID: PMC4282747 DOI: 10.1111/tpj.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 03/05/2014] [Indexed: 05/05/2023]
Abstract
A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Hwi Joong Yoon
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Marilyn Kehl
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Alexandre Tromas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Stig Uggerhøj Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
- *For correspondence (e-mail )
| |
Collapse
|
76
|
Stauffer E, Maizel A. Post-transcriptional regulation in root development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:679-96. [PMID: 24827552 DOI: 10.1002/wrna.1239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 11/08/2022]
Abstract
Plants constantly adapt their root system to the changing environmental conditions. This developmental plasticity is underpinned by changes in the profile of the mRNA expressed. Here we review how post-transcriptional modulation of gene expression control root development and growth. In particular we focus on the role of small RNA-mediated post-transcriptional regulation processes. Small RNAs play an important role in fine tuning gene expression during root formation and patterning, development of lateral organs and symbiosis, nutrient homeostasis, and other stress-related responses. We also highlight the impact of alternative splicing on root development and the establishment of symbiotic structures as well as the emerging role of long noncoding RNAs in root physiology.
Collapse
Affiliation(s)
- Eva Stauffer
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
77
|
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. ACTA ACUST UNITED AC 2014; 55:928-41. [DOI: 10.1093/pcp/pcu024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
78
|
Schmitz AM, Harrison MJ. Signaling events during initiation of arbuscular mycorrhizal symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:250-61. [PMID: 24386977 DOI: 10.1111/jipb.12155] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/26/2013] [Indexed: 05/18/2023]
Abstract
Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.
Collapse
Affiliation(s)
- Alexa M Schmitz
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA; Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
79
|
Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, Sato S, Tabata S, Perry J, Wang TL, Szczyglowski K. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. THE PLANT CELL 2014; 26:678-94. [PMID: 24585837 PMCID: PMC3967033 DOI: 10.1105/tpc.113.119362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 05/21/2023]
Abstract
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.
Collapse
MESH Headings
- Alleles
- Arabidopsis/drug effects
- Arabidopsis/growth & development
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Escherichia coli
- Gene Expression Regulation, Plant/drug effects
- Lotus/drug effects
- Lotus/genetics
- Lotus/growth & development
- Lotus/microbiology
- Mesorhizobium
- Models, Biological
- Molecular Sequence Data
- Multigene Family
- Mutation/genetics
- Organogenesis/drug effects
- Organogenesis/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Saccharomyces cerevisiae/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
| | - Christian Huynh
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818,
Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818,
Japan
| | | | | | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
- Address correspondence to
| |
Collapse
|
80
|
Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, Sato S, Tabata S, Perry J, Wang TL, Szczyglowski K. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. THE PLANT CELL 2014. [PMID: 24585837 DOI: 10.1105/tpc.113.119382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.
Collapse
MESH Headings
- Alleles
- Arabidopsis/drug effects
- Arabidopsis/growth & development
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Escherichia coli
- Gene Expression Regulation, Plant/drug effects
- Lotus/drug effects
- Lotus/genetics
- Lotus/growth & development
- Lotus/microbiology
- Mesorhizobium
- Models, Biological
- Molecular Sequence Data
- Multigene Family
- Mutation/genetics
- Organogenesis/drug effects
- Organogenesis/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Saccharomyces cerevisiae/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Russo G, Spinella S, Sciacca E, Bonfante P, Genre A. Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC PLANT BIOLOGY 2013; 13:224. [PMID: 24369773 PMCID: PMC3880239 DOI: 10.1186/1471-2229-13-224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Repeated oscillations in intracellular calcium (Ca2+) concentration, known as Ca2+ spiking signals, have been described in plants for a limited number of cellular responses to biotic or abiotic stimuli and most notably the common symbiotic signaling pathway (CSSP) which mediates the recognition by their plant hosts of two endosymbiotic microbes, arbuscular mycorrhizal (AM) fungi and nitrogen fixing rhizobia. The detailed analysis of the complexity and variability of the Ca2+ spiking patterns which have been revealed in recent studies requires both extensive datasets and sophisticated statistical tools. RESULTS As a contribution, we have developed automated Ca2+ spiking analysis (CaSA) software that performs i) automated peak detection, ii) statistical analyses based on the detected peaks, iii) autocorrelation analysis of peak-to-peak intervals to highlight major traits in the spiking pattern.We have evaluated CaSA in two experimental studies. In the first, CaSA highlighted unpredicted differences in the spiking patterns induced in Medicago truncatula root epidermal cells by exudates of the AM fungus Gigaspora margarita as a function of the phosphate concentration in the growth medium of both host and fungus. In the second study we compared the spiking patterns triggered by either AM fungal or rhizobial symbiotic signals. CaSA revealed the existence of different patterns in signal periodicity, which are thought to contribute to the so-called Ca2+ signature. CONCLUSIONS We therefore propose CaSA as a useful tool for characterizing oscillatory biological phenomena such as Ca2+ spiking.
Collapse
Affiliation(s)
- Giulia Russo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Salvatore Spinella
- Dipartimento di Informatica, Università di Torino, C.So Svizzera, 185, 10149 Torino, Italy
| | - Eva Sciacca
- Dipartimento di Informatica, Università di Torino, C.So Svizzera, 185, 10149 Torino, Italy
| | - Paola Bonfante
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Andrea Genre
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
82
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
83
|
Abstract
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Institute of Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany; ,
| | | |
Collapse
|
84
|
Checker VG, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. PLANT CELL REPORTS 2013; 32:1729-41. [PMID: 23942844 DOI: 10.1007/s00299-013-1483-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Group1 remorins may help the plants to optimize their growth under adverse conditions by their involvement in mediating osmotic stress responses in plants. ABSTRACT Mulberry (Morus indica), a deciduous woody tree, serves as the cardinal component of the sericulture industry. Genomic endeavors in sequencing of mulberry ESTs provided clues to stress-specific clones, but their functional relevance remains fragmentary. Therefore in this study, we assessed the functional significance of a remorin gene family member that was identified in leaf ESTs. Remorins represent a large, plant-specific multigene family gaining importance in recent times with respect to their role in plant-microbe interactions, although their role in response to environmental stresses remains speculative as in vivo functions of remorin genes are limited. Mulberry remorin (MiREM) localizes to plasma membrane and is ubiquitously present in all plant organs. Expression analysis of MiREM by northern analysis reveals that its transcript increases under different abiotic stress conditions especially during dehydration and salt stress, implicating it in regulation of stress signaling pathways. Concomitantly, transgenic Arabidopsis plants overexpressing heterologous remorin show tolerance to dehydration and salinity at the germination and seedling stages as revealed by percentage germination, root inhibition assays, fresh weight and activity of photosystem II. This study predicts the possible function of group 1 remorin gene in mediating osmotic stress thus bringing novel perspectives in understanding the function of remorins in plant abiotic stress responses.
Collapse
Affiliation(s)
- Vibha G Checker
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
85
|
Murray JD, Cousins DR, Jackson KJ, Liu C. Signaling at the root surface: the role of cutin monomers in mycorrhization. MOLECULAR PLANT 2013; 6:1381-3. [PMID: 23935010 PMCID: PMC3777838 DOI: 10.1093/mp/sst090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 05/03/2023]
Affiliation(s)
- Jeremy D. Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Donna R. Cousins
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Kirsty J. Jackson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Chengwu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
86
|
Rech SS, Heidt S, Requena N. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:711-25. [PMID: 23662629 DOI: 10.1111/tpj.12242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/04/2023]
Abstract
Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the root cortex of Medicago truncatula. Both proteins are only induced during mycorrhiza formation and belong to large families whose members are also mycorrhiza-specific. Furthermore, the interaction between KPI106 and SCP1 analysed using the yeast two-hybrid system is specific, indicating that each family member might have a defined counterpart. In silico docking analysis predicted a putative P1 residue in KPI106 (Lys173) that fits into the catalytic pocket of SCP1, suggesting that KPI106 might inhibit the enzyme activity by mimicking the protease substrate. In vitro mutagenesis of the Lys173 showed that this residue is important in determining the strength and specificity of the interaction. The RNA interference (RNAi) inactivation of the serine carboxypeptidase SCP1 produces aberrant mycorrhizal development with an increased number of septated hyphae and degenerate arbuscules, a phenotype also observed when overexpressing KPI106. Protease and inhibitor are both secreted as observed when expressed in Nicotiana benthamiana epidermal cells. Taken together we envisage a model in which the protease SCP1 is secreted in the apoplast where it produces a peptide signal critical for proper fungal development within the root. KPI106 also at the apoplast would modulate the spatial and/or temporal activity of SCP1 by competing with the protease substrate.
Collapse
Affiliation(s)
- Stefanie S Rech
- Department of Molecular Phytopathology, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76187, Germany
| | | | | |
Collapse
|
87
|
Arthikala MK, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. PLANT AND CELL PHYSIOLOGY 2013; 54:1391-402. [PMID: 23788647 DOI: 10.1093/pcp/pct089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
88
|
Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O, Bacht M, Graf M, Maboreke H, Fleischmann F, Grams TEE, Ruess L, Schädler M, Brandl R, Scheu S, Schrey SD, Grosse I, Buscot F. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2013; 199:529-540. [PMID: 23672230 DOI: 10.1111/nph.12317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/02/2013] [Indexed: 05/09/2023]
Abstract
Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.
Collapse
Affiliation(s)
- Mika T Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - Sabine Recht
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Florence Kurth
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
| | - Sarah Mailänder
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Markus Bönn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - Maren Neef
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Oguzhan Angay
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- TEEG: Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Michael Bacht
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Marcel Graf
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | - Hazel Maboreke
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Fleischmann
- Section Pathology of Woody Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Thorsten E E Grams
- TEEG: Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Liliane Ruess
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Martin Schädler
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Roland Brandl
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | - Silvia D Schrey
- IMIT-Physiological Ecology of Plants, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
89
|
Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, Findlay K, Wang TL, Parniske M. Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:117-129. [PMID: 23627596 DOI: 10.1111/tpj.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi form nutrient-acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM-defective mutants via a microscopic screen of an ethyl methanesulfonate-mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild-type-like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.
Collapse
Affiliation(s)
- Martin Groth
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Sonja Kosuta
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Kristina Haage
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Simone Liesel Hardel
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Miriam Schaub
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Andreas Brachmann
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kim Findlay
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 2-4, 82152, Martinsried, Germany
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
90
|
Kim YK, Kim S, Um JH, Kim K, Choi SK, Um BH, Kang SW, Kim JW, Takaichi S, Song SB, Lee CH, Kim HS, Kim KW, Nam KH, Lee SH, Kim YH, Park HM, Ha SH, Verma DPS, Cheon CI. Functional implication of β-carotene hydroxylases in soybean nodulation. PLANT PHYSIOLOGY 2013; 162:1420-33. [PMID: 23700351 PMCID: PMC3707551 DOI: 10.1104/pp.113.215020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/14/2013] [Indexed: 05/27/2023]
Abstract
Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation.
Collapse
Affiliation(s)
| | | | - Ji-Hyun Um
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Kyunga Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Sun-Kang Choi
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Byung-Hun Um
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Suk-Woo Kang
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Jee-Woong Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Shinichi Takaichi
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Seok-Bo Song
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Choon-Hwan Lee
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Ho-Seung Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Ki Woo Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Kyoung Hee Nam
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Suk-Ha Lee
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Yul-Ho Kim
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Hyang-Mi Park
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Sun-Hwa Ha
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | - Desh Pal S. Verma
- Department of Biological Science (Y.-K.K., S.K., J.-H.U., K.H.N. C.-I.C.) and Department of Statistics (K.K.), Sookmyung Women’s University, Seoul 140–742, Korea
- Gangneung Science Industry Foundation, Gangneung 210-340, Korea (S.-K.C.)
- Natural Products Research Center, KIST Gangneung Institute, Gangneung 210-340, Korea (B.-H.U., S.-W.K.)
- Electron Microscopy Laboratory, Dental Research Institute (J.-W.K.), and School of Plant Science (S.-H.L.), Seoul National University, Seoul 151-742, Korea
- Department of Biology, Nippon Medical School, Nakahara, Kawasaki 113-8602, Japan (S.T.)
- Department of Functional Crops, National Institute of Crop Science, Milyang 441-857, Korea (S.-B.S.)
- Department of Molecular Biology, Pusan National University, Busan 609-735, Korea (C.-H.L., H.-S.K.)
- School of Ecological and Environmental Systems, Kyungpook National University, Sangju 702-701, Korea (K.W.K.)
- National Institute of Crop Science, Suwon 441-857, Korea (Y.-H.K., H.-M.P.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (S.-H.H.); and
- Biotechnology Center, Ohio State University, Columbus, Ohio 43210 (D.P.S.V.)
| | | |
Collapse
|
91
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
92
|
Chan PK, Biswas B, Gresshoff PM. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:395-408. [PMID: 23452324 DOI: 10.1111/jipb.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.
Collapse
Affiliation(s)
- Pick Kuen Chan
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
93
|
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the social network of higher plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:118-27. [PMID: 23246268 DOI: 10.1016/j.pbi.2012.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/22/2023]
Abstract
In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.
Collapse
|
94
|
Binder A, Parniske M. Analysis of the Lotus japonicus nuclear pore NUP107-160 subcomplex reveals pronounced structural plasticity and functional redundancy. FRONTIERS IN PLANT SCIENCE 2013; 4:552. [PMID: 24478780 PMCID: PMC3897872 DOI: 10.3389/fpls.2013.00552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 05/07/2023]
Abstract
Mutations in the Lotus japonicus nucleoporin genes, NUP85, NUP133, and NENA (SEH1), lead to defects in plant-microbe symbiotic signaling. The homologous proteins in yeast and vertebrates are part of the conserved NUP84/NUP107-160 subcomplex, which is an essential component of the nuclear pore scaffold and has a pivotal role in nuclear pore complex (NPC) assembly. Loss and down-regulation of NUP84/NUP107-160 members has previously been correlated with a variety of growth and molecular defects, however, in L. japonicus only surprisingly specific phenotypes have been reported. We investigated whether Lotus nup85, nup133, and nena mutants exhibit general defects in NPC composition and distribution. Whole mount immunolocalization confirmed a typical nucleoporin-like localization for NUP133, which was unchanged in the nup85-1 mutant. Severe NPC clustering and aberrations in the nuclear envelope have been reported for Saccharomyces cerevisiae nup85 and nup133 mutants. However, upon transmission electron microscopy analysis of L. japonicus nup85, nup133 and nena, we detected only a slight reduction in the average distances between neighboring NPCs in nup133. Using quantitative immunodetection on protein-blots we observed that loss of individual nucleoporins affected the protein levels of other NUP107-160 complex members. Unlike the single mutants, nup85/nup133 double mutants exhibited severe temperature dependent growth and developmental defects, suggesting that the loss of more than one NUP107-160 member affects basal functions of the NPC.
Collapse
Affiliation(s)
| | - Martin Parniske
- *Correspondence: Martin Parniske, Faculty of Biology, Genetics, University of Munich, Großhaderner Straße 4, 82152 Martinsried, Germany e-mail:
| |
Collapse
|
95
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
96
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.00186/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
97
|
Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GE, Downie JA, Etzler ME. Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. PLANT PHYSIOLOGY 2013; 161:556-67. [PMID: 23136382 PMCID: PMC3532285 DOI: 10.1104/pp.112.206110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/01/2012] [Indexed: 05/06/2023]
Abstract
Nodulation in legumes requires the recognition of rhizobially made Nod factors. Genetic studies have revealed that the perception of Nod factors involves LysM domain receptor-like kinases, while biochemical approaches have identified LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LNP) as a Nod factor-binding protein. Here, we show that antisense inhibition of LNP blocks nodulation in Lotus japonicus. This absence of nodulation was due to a defect in Nod factor signaling based on the observations that the early nodulation gene NODULE INCEPTION was not induced and that both Nod factor-induced perinuclear calcium spiking and calcium influx at the root hair tip were blocked. However, Nod factor did induce root hair deformation in the LNP antisense lines. LNP is also required for infection by the mycorrhizal fungus Glomus intraradices, suggesting that LNP plays a role in the common signaling pathway shared by the rhizobial and mycorrhizal symbioses. Taken together, these observations indicate that LNP acts at a novel position in the early stages of symbiosis signaling. We propose that LNP functions at the earliest stage of the common nodulation and mycorrhization symbiosis signaling pathway downstream of the Nod factor receptors; it may act either by influencing signaling via changes in external nucleotides or in conjunction with the LysM receptor-like kinases for recognition of Nod factor.
Collapse
Affiliation(s)
| | | | - Gurpreet Kalsi
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Alan Rose
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Jiri Stiller
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Anne Edwards
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Fang Xie
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Peter M. Gresshoff
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - Giles E.D. Oldroyd
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | - J. Allan Downie
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (N.J.R., G.K., A.R., M.E.E.)
- John Innes Centre, Norwich NR4 7UH, United Kingdom (G.M., A.E., F.X., G.E.D.O., J.A.D.)
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia (J.S., P.M.G.)
| | | |
Collapse
|
98
|
Nair A, Bhargava S. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes. PLANT SIGNALING & BEHAVIOR 2012; 7:1578-83. [PMID: 23221680 PMCID: PMC3578896 DOI: 10.4161/psb.20156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant.
Collapse
|
99
|
Harrison MJ. Cellular programs for arbuscular mycorrhizal symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:691-8. [PMID: 23036821 DOI: 10.1016/j.pbi.2012.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/08/2012] [Accepted: 08/12/2012] [Indexed: 05/03/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, AM fungi colonize root cortical cells to obtain carbon from the plant, while assisting the plant with the acquisition of mineral nutrients from the soil. Within the root cells, the fungal hyphae inhabit membrane-bound compartments that the plant establishes to accommodate the fungal symbiont. Recent data provide new insights into the events associated with development of the symbiosis including signaling for the formation of a cellular apparatus that guides hyphal growth through the cell. Plant genes that play key roles in a cellular program for the accommodation of microbial symbionts have been identified. In the inner cortical cells, tightly regulated changes in gene expression accompanied by a transient reorientation of secretion, enables the cell to build and populate the periarbuscular membrane with its unique complement of transporter proteins. Similarities between the cellular events for development of the periarbuscular membrane and cell plate formation are emerging.
Collapse
Affiliation(s)
- Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| |
Collapse
|
100
|
Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M. Negative regulation of CCaMK is essential for symbiotic infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:572-84. [PMID: 22775286 DOI: 10.1111/j.1365-313x.2012.05098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium-spiking signal involve a calcium- and calmodulin-dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk-14 exerts cell-specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell-type-specific integration of symbiotic signalling.
Collapse
Affiliation(s)
- Jinqiu Liao
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|