51
|
Yuan TT, Xu HH, Li J, Lu YT. Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:297-309. [PMID: 31403703 DOI: 10.1111/nph.16115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lateral roots (LRs), which form in the plant postembryonically, determine the architecture of the root system. While negative regulatory factors that inhibit LR formation and are counteracted by auxin exist in the pericycle, these factors have not been characterised. Here, we report that SHI-RELATED SEQUENCE5 (SRS5) is an intrinsic negative regulator of LR formation and that auxin signalling abolishes this inhibitory effect of SRS5. Whereas LR primordia (LRPs) and LRs were fewer and less dense in SRS5ox and Pro35S:SRS5-GFP plants than in the wild-type, they were more abundant and denser in the srs5-2 loss-of-function mutant. SRS5 inhibited LR formation by directly downregulating the expression of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) and LBD29. Auxin repressed SRS5 expression. Auxin-mediated repression of SRS5 expression was not observed in the arf7-1 arf19-1 double mutant, likely because ARF7 and ARF19 bind to the promoter of SRS5 and inhibit its expression in response to auxin. Taken together, our data reveal that SRS5 negatively regulates LR formation by repressing the expression of LBD16 and LBD29 and that auxin releases this inhibitory effect through ARF7 and ARF19.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Heng-Hao Xu
- Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
52
|
Singh S, Yadav S, Singh A, Mahima M, Singh A, Gautam V, Sarkar AK. Auxin signaling modulates LATERAL ROOT PRIMORDIUM1 (LRP1) expression during lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:87-100. [PMID: 31483536 DOI: 10.1111/tpj.14520] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Auxin signaling mediated by various auxin/indole-3-acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin-inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin-dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs-ARFs modules during LR development. We showed that auxin-mediated induction of LRP1 is lost in emerging LRs of slr-1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1-induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mahima Mahima
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
53
|
Jing T, Ardiansyah R, Xu Q, Xing Q, Müller-Xing R. Reprogramming of Cell Fate During Root Regeneration by Transcriptional and Epigenetic Networks. FRONTIERS IN PLANT SCIENCE 2020; 11:317. [PMID: 32269581 PMCID: PMC7112134 DOI: 10.3389/fpls.2020.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Many plant species are able to regenerate adventitious roots either directly from aerial organs such as leaves or stems, in particularly after detachment (cutting), or indirectly, from over-proliferating tissue termed callus. In agriculture, this capacity of de novo root formation from cuttings can be used to clonally propagate several important crop plants including cassava, potato, sugar cane, banana and various fruit or timber trees. Direct and indirect de novo root regeneration (DNRR) originates from pluripotent cells of the pericycle tissue, from other root-competent cells or from non-root-competent cells that first dedifferentiate. Independently of their origin, the cells convert into root founder cells, which go through proliferation and differentiation subsequently forming functional root meristems, root primordia and the complete root. Recent studies in the model plants Arabidopsis thaliana and rice have identified several key regulators building in response to the phytohormone auxin transcriptional networks that are involved in both callus formation and DNRR. In both cases, epigenetic regulation seems essential for the dynamic reprogramming of cell fate, which is correlated with local and global changes of the chromatin states that might ensure the correct spatiotemporal expression pattern of the key regulators. Future approaches might investigate in greater detail whether and how the transcriptional key regulators and the writers, erasers, and readers of epigenetic modifications interact to control DNRR.
Collapse
Affiliation(s)
- Tingting Jing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Rhomi Ardiansyah
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qijiang Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Qian Xing,
| | - Ralf Müller-Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Ralf Müller-Xing, ;
| |
Collapse
|
54
|
Goh T, Toyokura K, Yamaguchi N, Okamoto Y, Uehara T, Kaneko S, Takebayashi Y, Kasahara H, Ikeyama Y, Okushima Y, Nakajima K, Mimura T, Tasaka M, Fukaki H. Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:749-760. [PMID: 31310684 DOI: 10.1111/nph.16065] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/26/2019] [Indexed: 05/11/2023]
Abstract
Lateral root (LR) formation in Arabidopsis thaliana is initiated by asymmetric division of founder cells, followed by coordinated cell proliferation and differentiation for patterning new primordia. The sequential developmental processes of LR formation are triggered by a localized auxin response. LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), an auxin-inducible transcription factor, is one of the key regulators linking auxin response in LR founder cells to LR initiation. We identified key genes for LR formation that are activated by LBD16 in an auxin-dependent manner. LBD16 targets identified include the transcription factor gene PUCHI, which is required for LR primordium patterning. We demonstrate that LBD16 activity is required for the auxin-inducible expression of PUCHI. We show that PUCHI expression is initiated after the first round of asymmetric cell division of LR founder cells and that premature induction of PUCHI during the preinitiation phase disrupts LR primordium formation. Our results indicate that LR initiation requires the sequential induction of transcription factors LBD16 and PUCHI.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 13 Toyonaka, Osaka, 560-0043, Japan
- Faculty of Science and Engineering, Konan University, Kobe, 658-5801, Japan
| | - Nobutoshi Yamaguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yoshie Okamoto
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takeo Uehara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Shutaro Kaneko
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509, Japan
| | - Yumiko Takebayashi
- Center for Sustainable Resource Science, Riken, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroyuki Kasahara
- Center for Sustainable Resource Science, Riken, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509, Japan
| | - Yoshifumi Ikeyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yoko Okushima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Masao Tasaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| |
Collapse
|
55
|
Goh T. Long-term live-cell imaging approaches to study lateral root formation in Arabidopsis thaliana. Microscopy (Oxf) 2019; 68:4-12. [PMID: 30476201 DOI: 10.1093/jmicro/dfy135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Lateral roots comprise the majority of the branching root system and are important for acquiring nutrients and water from soil in addition to providing anchorage. Lateral roots develop post-embryonically from existing root parts and originate from a subset of specified pericycle cells (lateral root founder cells) located deep inside roots. Small numbers of these specified pericycle cells undergo several rounds of cell division to create a dome-shaped primordium, which eventually organizes a meristem, an essential region for plant growth with active cell division, and emerges from its parental root as a lateral root. Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. Lateral root formation is an example of the successful application of live-cell imaging approaches to understand various aspects of developmental events in plants, including cell fate determination, cell proliferation, cell-to-cell interaction and cell wall modification. Here I review the recent progress in understanding the molecular mechanisms of lateral root formation and the contribution of live-cell imaging approaches.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan
| |
Collapse
|
56
|
Vilches Barro A, Stöckle D, Thellmann M, Ruiz-Duarte P, Bald L, Louveaux M, von Born P, Denninger P, Goh T, Fukaki H, Vermeer JEM, Maizel A. Cytoskeleton Dynamics Are Necessary for Early Events of Lateral Root Initiation in Arabidopsis. Curr Biol 2019; 29:2443-2454.e5. [PMID: 31327713 DOI: 10.1016/j.cub.2019.06.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
How plant cells re-establish differential growth to initiate organs is poorly understood. Morphogenesis of lateral roots relies on the asymmetric cell division of initially symmetric founder cells. This division is preceded by the tightly controlled asymmetric radial expansion of these cells. The cellular mechanisms that license and ensure the coordination of these events are unknown. Here, we quantitatively analyze microtubule and F-actin dynamics during lateral root initiation. Using mutants and pharmacological and tissue-specific genetic perturbations, we show that dynamic reorganization of both microtubule and F-actin networks is necessary for the asymmetric expansion of the founder cells. This cytoskeleton remodeling intertwines with auxin signaling in the pericycle and endodermis in order for founder cells to acquire a basic polarity required for initiating lateral root development. Our results reveal the conservation of cell remodeling and polarization strategies between the Arabidopsis zygote and lateral root founder cells. We propose that coordinated, auxin-driven reorganization of the cytoskeleton licenses asymmetric cell growth and divisions during embryonic and post-embryonic organogenesis.
Collapse
Affiliation(s)
- Amaya Vilches Barro
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dorothee Stöckle
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Paola Ruiz-Duarte
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Lotte Bald
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Marion Louveaux
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Patrick von Born
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Philipp Denninger
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
57
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
58
|
Brady SM. Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. THE PLANT CELL 2019; 31:1188-1189. [PMID: 31048335 PMCID: PMC6588301 DOI: 10.1105/tpc.19.00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Siobhan M Brady
- Department of Plant Biology and Genome CenterUniversity of CaliforniaDavis, California 95616
| |
Collapse
|
59
|
EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci U S A 2019; 116:8597-8602. [PMID: 30944225 PMCID: PMC6486723 DOI: 10.1073/pnas.1820882116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In plants, postembryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires the tight coordination of asymmetric cell division in adjacent pericycle cells. We identified EXPANSIN A1 (EXPA1) as a cell wall modifying enzyme controlling the divisions marking lateral root initiation. Loss of EXPA1 leads to defects in the first asymmetric pericycle cell divisions and the radial swelling of the pericycle during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.
Collapse
|
60
|
Cho C, Jeon E, Pandey SK, Ha SH, Kim J. LBD13 positively regulates lateral root formation in Arabidopsis. PLANTA 2019; 249:1251-1258. [PMID: 30627888 DOI: 10.1007/s00425-018-03087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/29/2018] [Indexed: 05/26/2023]
Abstract
Lateral Organ Boundaries Domain 13 (LBD13), which is expressed in emerged lateral roots and encodes a transcriptional activator, plays an important role in lateral root formation in Arabidopsis. Lateral roots (LRs) are major determinants of root system architecture, contributing to the survival strategies of plants. Members of the LBD gene family encode plant-specific transcription factors that play key roles in plant organ development. Several LBD genes, such as LBD14, 16, 18, 29, and 33, have been shown to play important roles in regulating LR development in Arabidopsis. In the present study, we show that LBD13 is expressed in emerged LRs and LR meristems of elongated LRs and regulates LR formation in Arabidopsis. Transient gene expression assays with Arabidopsis protoplasts showed that LBD13 is localized to the nucleus and harbors transcription-activating potential. Knock-down of LBD13 expression by RNA interference resulted in reduced LR formation, whereas overexpression of LBD13 enhanced LR formation in transgenic Arabidopsis. Analysis of β-glucuronidase (GUS) expression under the control of the LBD13 promoter showed that GUS staining was detected in LRs emerged from the primary root, but not in LR primordia. Moreover, both the distribution of LR primordium number and developmental kinetics of LR primordia were not affected either by knock-down or by overexpression of LBD13. Taken together, these results suggest that LBD13 is a nuclear-localized transcriptional activator and controls LR formation during or after LR emergence.
Collapse
Affiliation(s)
- Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Se Hoon Ha
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea.
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
61
|
Torres-Martínez HH, Rodríguez-Alonso G, Shishkova S, Dubrovsky JG. Lateral Root Primordium Morphogenesis in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:206. [PMID: 30941149 PMCID: PMC6433717 DOI: 10.3389/fpls.2019.00206] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
62
|
Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Yssel AEJ, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Van Deynze A, Simons A, Yana-Shapiro H, Van de Peer Y, Xu X, Yang H, Wang J, Liu X. The draft genomes of five agriculturally important African orphan crops. Gigascience 2019; 8:giy152. [PMID: 30535374 PMCID: PMC6405277 DOI: 10.1093/gigascience/giy152] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution. RESULTS Here, we present draft genome information for five agriculturally, biologically, medicinally, and economically important underutilized plants native to Africa: Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors, and starch biosynthesis-related genes in these genomes. CONCLUSIONS These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.
Collapse
Affiliation(s)
- Yue Chang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Huan Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Min Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xuezhu Liao
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yuan Fu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Robert Kariba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Samuel Muthemba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Prasad S Hendre
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Sean Mayes
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- Biosciences, University of Nottingham Malaysia Campus, Jalan Broga 43500 Semenyih, Selangor, Malaysia
- Crops For the Future, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Wai Kuan Ho
- Biosciences, University of Nottingham Malaysia Campus, Jalan Broga 43500 Semenyih, Selangor, Malaysia
- Crops For the Future, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Anna E J Yssel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Presidor Kendabie
- Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Sibo Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Linzhou Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Alice Muchugi
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Ramni Jamnadass
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Haorong Lu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Shufeng Peng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Allen Van Deynze
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
- University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Anthony Simons
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Howard Yana-Shapiro
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
- University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Xin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Fuyang, BGI-Shenzhen, Fuyang 236009, China
| |
Collapse
|
63
|
Kortz A, Hochholdinger F, Yu P. Cell Type-Specific Transcriptomics of Lateral Root Formation and Plasticity. FRONTIERS IN PLANT SCIENCE 2019; 10:21. [PMID: 30809234 PMCID: PMC6379339 DOI: 10.3389/fpls.2019.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Lateral roots are a major determinant of root architecture and are instrumental for the efficient uptake of water and nutrients. Lateral roots consist of multiple cell types each expressing a unique transcriptome at a given developmental stage. Therefore, transcriptome analyses of complete lateral roots provide only average gene expression levels integrated over all cell types. Such analyses have the risk to mask genes, pathways and networks specifically expressed in a particular cell type during lateral root formation. Cell type-specific transcriptomics paves the way for a holistic understanding of the programming and re-programming of cells such as pericycle cells, involved in lateral root initiation. Recent discoveries have advanced the molecular understanding of the intrinsic genetic control of lateral root initiation and elongation. Moreover, the impact of nitrate availability on the transcriptional regulation of lateral root formation in Arabidopsis and cereals has been studied. In this review, we will focus on the systemic dissection of lateral root formation and its interaction with environmental nitrate through cell type-specific transcriptome analyses. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in plants.
Collapse
Affiliation(s)
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
64
|
Motte H, Beeckman T. The evolution of root branching: increasing the level of plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:785-793. [PMID: 30481325 DOI: 10.1093/jxb/ery409] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/26/2023]
Abstract
Plant roots and root systems are indispensable for water and nutrient foraging, and are a major evolutionary achievement for plants to cope with dry land conditions. The ability of roots to branch contributes substantially to their capacity to explore the soil for water and nutrients, and led ~400 million years ago to the successful colonization of land by plants, eventually even in arid regions. During this colonization, different forms of root branching evolved, reinforcing step by step the phenotypic plasticity of the root system. Whereas the lycophytes, the most ancient land plants with roots, only branch at the root tip, ferns are able to form roots laterally in a fixed pattern along the main root. Finally, roots of seed plants show the highest phenotypic plasticity, because lateral roots can possibly, dependent on internal and/or external signals, be produced at almost any position along the main root. The competence to form lateral roots in seed plants is based on the presence of internal cell files with stem cell-like features. Despite the dissimilarities between the different clades, a number of genetic modules seem to be co-opted in order to acquire root branching capacity. In this review, starting from the lateral root pathways in seed plants, we review root branching in the different land plant lineages and discuss the hitherto described genetic modules that contribute to their root branching capacity. We try to obtain insight into how land plants have acquired an increasing root branching plasticity during evolution that contributed to the successful colonization of our planet by seed plants.
Collapse
Affiliation(s)
- Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
65
|
Lee HW, Cho C, Pandey SK, Park Y, Kim MJ, Kim J. LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:46. [PMID: 30704405 PMCID: PMC6357364 DOI: 10.1186/s12870-019-1659-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/24/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a complex genetic trait, which is controlled by various endogenous and environmental cues. Auxin is known to play a central role in AR formation; however, the mechanisms underlying this role are not well understood. RESULTS In this study, we showed that a previously identified auxin signaling module, AUXIN RESPONSE FACTOR(ARF)7/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN(LBD)16/LBD18 via AUXIN1(AUX1)/LIKE-AUXIN3 (LAX3) auxin influx carriers, which plays important roles in lateral root formation, is involved in AR formation in Arabidopsis. In aux1, lax3, arf7, arf19, lbd16 and lbd18 single mutants, we observed reduced numbers of ARs than in the wild type. Double and triple mutants exhibited an additional decrease in AR numbers compared with the corresponding single or double mutants, respectively, and the aux1 lax3 lbd16 lbd18 quadruple mutant was devoid of ARs. Expression of LBD16 or LBD18 under their own promoters in lbd16 or lbd18 mutants rescued the reduced number of ARs to wild-type levels. LBD16 or LBD18 fused to a dominant SRDX repressor suppressed promoter activity of the cell cycle gene, Cyclin-Dependent Kinase(CDK)A1;1, to some extent. Expression of LBD16 or LBD18 was significantly reduced in arf7 and arf19 mutants during AR formation in a light-dependent manner, but not in arf6 and arf8. GUS expression analysis of promoter-GUS reporter transgenic lines revealed overlapping expression patterns for LBD16, LBD18, ARF7, ARF19 and LAX3 in AR primordia. CONCLUSION These results suggest that the ARF7/ARF19-LBD16/LBD18 transcriptional module via the AUX1/LAX3 auxin influx carriers plays an important role in AR formation in Arabidopsis.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Shashank K. Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Yoona Park
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186 South Korea
| |
Collapse
|
66
|
DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW. Curr Biol 2019; 29:520-529.e6. [PMID: 30686737 PMCID: PMC6370950 DOI: 10.1016/j.cub.2018.12.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/12/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
To create a three-dimensional structure, plants rely on oriented cell divisions and cell elongation. Oriented cell divisions are specifically important in procambium cells of the root to establish the different vascular cell types [1, 2]. These divisions are in part controlled by the auxin-controlled TARGET OF MONOPTEROS5 (TMO5) and LONESOME HIGHWAY (LHW) transcription factor complex [3, 4, 5, 6, 7]. Loss-of-function of tmo5 or lhw clade members results in strongly reduced vascular cell file numbers, whereas ectopic expression of both TMO5 and LHW can ubiquitously induce periclinal and radial cell divisions in all cell types of the root meristem. TMO5 and LHW interact only in young xylem cells, where they promote expression of two direct target genes involved in the final step of cytokinin (CK) biosynthesis, LONELY GUY3 (LOG3) and LOG4 [8, 9] Therefore, CK was hypothesized to act as a mobile signal from the xylem to trigger divisions in the neighboring procambium cells [3, 6]. To unravel how TMO5/LHW-dependent cytokinin regulates cell proliferation, we analyzed the transcriptional responses upon simultaneous induction of both transcription factors. Using inferred network analysis, we identified AT2G28510/DOF2.1 as a cytokinin-dependent downstream target gene. We further showed that DOF2.1 controls specific procambium cell divisions without inducing other cytokinin-dependent effects such as the inhibition of vascular differentiation. In summary, our results suggest that DOF2.1 and its closest homologs control vascular cell proliferation, thus leading to radial expansion of the root. DOF2.1 acts as a major transcriptional hub downstream of TMO5/LHW The CK-inducible DOF2.1 is sufficient to trigger periclinal and radial cell divisions DOF transcription factors redundantly regulate specific procambium divisions
Collapse
|
67
|
Jing H, Strader LC. Interplay of Auxin and Cytokinin in Lateral Root Development. Int J Mol Sci 2019; 20:ijms20030486. [PMID: 30678102 PMCID: PMC6387363 DOI: 10.3390/ijms20030486] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
The spacing and distribution of lateral roots are critical determinants of plant root system architecture. In addition to providing anchorage, lateral roots explore the soil to acquire water and nutrients. Over the past several decades, we have deepened our understanding of the regulatory mechanisms governing lateral root formation and development. In this review, we summarize these recent advances and provide an overview of how auxin and cytokinin coordinate the regulation of lateral root formation and development.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
68
|
Chiatante D, Rost T, Bryant J, Scippa GS. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. ANNALS OF BOTANY 2018; 122:697-710. [PMID: 29394314 PMCID: PMC6215048 DOI: 10.1093/aob/mcy003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
Background The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.
Collapse
Affiliation(s)
- Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, Varese, Italy
| | - Thomas Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - John Bryant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
69
|
Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S, Sturrock C, Xuan W, Novák O, Ljung K, Fernandez MA, Rodriguez PL, Dodd IC, De Smet I, Chaumont F, Batoko H, Périlleux C, Lynch JP, Bennett MJ, Beeckman T, Draye X. The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Curr Biol 2018; 28:3165-3173.e5. [DOI: 10.1016/j.cub.2018.07.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
70
|
Chen Y, Xie Y, Song C, Zheng L, Rong X, Jia L, Luo L, Zhang C, Qu X, Xuan W. A comparison of lateral root patterning among dicot and monocot plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:201-211. [PMID: 30080605 DOI: 10.1016/j.plantsci.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Lateral root branching along the primary root involves complex gene regulatory networks in model plant Arabidopsis. However, it is largely unclarified whether different plant species share a common mechanism to pattern the lateral root along the primary axis. In this study, we assessed the development pattern of lateral root among several dicot and monocot plants, including Arabidopsis, tomato, Medicago, Nicotiana, rice, and ryegrass by using an agar-gel culture system. Our results reveal a regular-spaced distribution pattern of lateral roots along the primary root axis of both dicot and monocot plants. Meanwhile, the root patterning is tightly controlled by root bending and the plant hormone auxin. However, nitrogen and phosphate starvations trigger distinguished root growth patterns among different plant species. Our studies strongly suggest a partially shared signaling pathway underlying root patterning of various plant species, and also provide a foundation for further identification of genes associated with root development.
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuanming Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Caihong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lulu Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiong Rong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Long Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxiao Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
71
|
Perez-Garcia P, Moreno-Risueno MA. Stem cells and plant regeneration. Dev Biol 2018; 442:3-12. [PMID: 29981693 DOI: 10.1016/j.ydbio.2018.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Multicellular organisms show the ability to replace damage cells, tissues and even whole organs through regeneration mechanisms. Plants show a remarkable regenerative potential. While the basic principles of plant regeneration have been known for a number of decades, the molecular and cellular mechanisms underlying such principles are currently starting to emerge. Some of these mechanisms point to the existence of highly reprogrammable cells. Developmental plasticity is a hallmark for stem cells, and stem cells are responsible for the generation of distinctive cell types forming plants. In the last years, a number of players and molecular mechanism regulating stem cell maintenance have been described, and some of them have also been involved in regenerative processes. These discoveries in plant stem cell regulation and regeneration invite us to rethink several of the classical concepts in plant biology such as cell fate specification and even the actual meaning of what we consider stem cells in plants. In this review we will cover some of these discoveries, focusing on the role of the plant stem cell function and regulation during cell and organ regeneration.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Miguel A Moreno-Risueno
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
72
|
Pandey SK, Lee HW, Kim MJ, Cho C, Oh E, Kim J. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:233-251. [PMID: 29681137 DOI: 10.1111/tpj.13945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| |
Collapse
|
73
|
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:155-167. [PMID: 28992266 DOI: 10.1093/jxb/erx223] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Collapse
Affiliation(s)
- Yujuan Du
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| | - Ben Scheres
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| |
Collapse
|
74
|
Jeon E, Young Kang N, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:2190-2201. [PMID: 29040694 DOI: 10.1093/pcp/pcx153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family members play key roles in diverse aspects of plant development. Previous studies have shown that LBD16, 18, 29 and 33 are critical for integrating the plant hormone auxin to control lateral root development in Arabidopsis thaliana. In the present study, we show that LBD14 is expressed exclusively in the root where it promotes lateral root (LR) emergence. Repression of LBD14 expression by ABA correlates with the inhibitory effects of ABA on LR emergence. Transient gene expression assays with Arabidopsis protoplasts demonstrated that LBD14 is a nuclear-localized transcriptional activator. The knock-down of LBD14 expression by RNA interference (RNAi) resulted in reduced LR formation by delaying both LR primordium development and LR emergence, whereas overexpression of LBD14 in Arabidopsis enhances LR formation. We show that ABA (but not other plant hormones such as auxin, brassinosteroids and cytokinin) specifically down-regulated β-glucuronidase (GUS) expression under the control of the LBD14 promoter in transgenic Arabidopsis during LR development from initiation to emergence and endogenous LBD14 transcript levels in the root. Moreover, RNAi of LBD14 enhanced the LR suppression in response to ABA, whereas LBD14 overexpression did not alter the ABA-mediated suppression of LR formation. Taken together, these results suggest that LBD14 promoting LR formation is one of the critical factors regulated by ABA to inhibit LR growth, contributing to the regulation of the Arabidopsis root system architecture in response to ABA.
Collapse
Affiliation(s)
- Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
75
|
Manzano C, Pallero-Baena M, Silva-Navas J, Navarro Neila S, Casimiro I, Casero P, Garcia-Mina JM, Baigorri R, Rubio L, Fernandez JA, Norris M, Ding Y, Moreno-Risueno MA, Del Pozo JC. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5103-5116. [PMID: 29106622 DOI: 10.1093/jxb/erx324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development.
Collapse
Affiliation(s)
- Concepción Manzano
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Mercedes Pallero-Baena
- Facultad de Ciencias. Dept. de Anatomía, Biología Celular y Zoología. Universidad de Extremadura. 06006-Badajoz, Spain
| | - J Silva-Navas
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Sara Navarro Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ilda Casimiro
- Facultad de Ciencias. Dept. de Anatomía, Biología Celular y Zoología. Universidad de Extremadura. 06006-Badajoz, Spain
| | - Pedro Casero
- Facultad de Ciencias. Dept. de Anatomía, Biología Celular y Zoología. Universidad de Extremadura. 06006-Badajoz, Spain
| | - Jose M Garcia-Mina
- Departamento de Biología Ambiental, Grupo BACh. Facultad de Ciencias. Universidad de Navarra31008 Pamplona, Spain
| | - Roberto Baigorri
- Departamento de Biología Ambiental, Grupo BACh. Facultad de Ciencias. Universidad de Navarra 31008 Pamplona, Spain
- Technical and Development Department, Timac Agro-Grupo Roullier, c/Barrio Féculas s/n, 31580 Lodosa, Navarra, Spain
| | - Lourdes Rubio
- Departamento de Biología Vegetal (Fisiología Vegetal). Facultad de Ciencias. Universidad de Málaga. Campus de Teatinos S/N. 29071 Málaga, Spain
| | - Jose A Fernandez
- Departamento de Biología Vegetal (Fisiología Vegetal). Facultad de Ciencias. Universidad de Málaga. Campus de Teatinos S/N. 29071 Málaga, Spain
| | - Matthew Norris
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
76
|
PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. Proc Natl Acad Sci U S A 2017; 114:11709-11714. [PMID: 29078398 PMCID: PMC5676933 DOI: 10.1073/pnas.1714410114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Root architecture is an important trait that is shaped by the formation of primary roots, lateral roots, and adventitious roots. Here, we show that three PLETHORA (PLT) transcription factors are the key molecular triggers for the de novo organ patterning during Arabidopsis lateral root formation. PLT3, PLT5, and PLT7 redundantly regulate the correct initiation of formative cell divisions in incipient lateral root primordia and the proper establishment of gene expression programs that lead to the formation of a new growth axis. Plant development is characterized by repeated initiation of meristems, regions of dividing cells that give rise to new organs. During lateral root (LR) formation, new LR meristems are specified to support the outgrowth of LRs along a new axis. The determination of the sequential events required to form this new growth axis has been hampered by redundant activities of key transcription factors. Here, we characterize the effects of three PLETHORA (PLT) transcription factors, PLT3, PLT5, and PLT7, during LR outgrowth. In plt3plt5plt7 triple mutants, the morphology of lateral root primordia (LRP), the auxin response gradient, and the expression of meristem/tissue identity markers are impaired from the “symmetry-breaking” periclinal cell divisions during the transition between stage I and stage II, wherein cells first acquire different identities in the proximodistal and radial axes. Particularly, PLT1, PLT2, and PLT4 genes that are typically expressed later than PLT3, PLT5, and PLT7 during LR outgrowth are not induced in the mutant primordia, rendering “PLT-null” LRP. Reintroduction of any PLT clade member in the mutant primordia completely restores layer identities at stage II and rescues mutant defects in meristem and tissue establishment. Therefore, all PLT genes can activate the formative cell divisions that lead to de novo meristem establishment and tissue patterning associated with a new growth axis.
Collapse
|
77
|
Zemlyanskaya EV, Wiebe DS, Omelyanchuk NA, Levitsky VG, Mironova VV. Meta-analysis of transcriptome data identified TGTCNN motif variants associated with the response to plant hormone auxin in Arabidopsis thaliana L. J Bioinform Comput Biol 2017; 14:1641009. [PMID: 27122321 DOI: 10.1142/s0219720016410092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Auxin is the major regulator of plant growth and development. It regulates gene expression via a family of transcription factors (ARFs) that bind to auxin responsive elements (AuxREs) in the gene promoters. The canonical AuxREs found in regulatory regions of many auxin responsive genes contain the TGTCTC core motif, whereas ARF binding site is a degenerate TGTCNN with TGTCGG strongly preferred. Thereby two questions arise: which TGTCNN variants are functional AuxRE cores and whether different TGTCNN variants have distinct functional roles? In this study, we performed meta-analysis of microarray data to reveal TGTCNN variants essential for auxin response and to characterize their functional features. Our results indicate that four TGTCNN motifs (TGTCTC, TGTCCC, TGTCGG, and TGTCTG) are associated with auxin up-regulation and two (TGTCGG, TGTCAT) with auxin down-regulation, but to a lesser extent. The genes having some of these motifs in their regulatory regions showed time-specific auxin response. Functional annotation of auxin up- and down-regulated genes also revealed GO terms specific for the auxin-regulated genes with certain TGTCNN variants in their promoters. Our results provide an idea that various TGTCNN motifs may play distinct roles in the auxin regulation of gene expression.
Collapse
Affiliation(s)
- Elena V Zemlyanskaya
- * Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia.,† Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - Daniil S Wiebe
- * Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia.,† Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - Nadezhda A Omelyanchuk
- * Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia.,† Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - Victor G Levitsky
- * Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia.,† Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| | - Victoria V Mironova
- * Department for Systems Biology, Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk 630090, Russia.,† Laboratory of Computational Transcriptomics and Evolutionary Bioinformatics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
| |
Collapse
|
78
|
Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B, Hayashi KI, Zhang X, Zhao Z, De Smet I, Ding Z. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 2017; 18:1213-1230. [PMID: 28600354 DOI: 10.15252/embr.201643806] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022] Open
Abstract
Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al-induced auxin signaling. Al stress triggers a local cytokinin response in the root-apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up-regulated specifically in the root-apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum-induced root growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Bing Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Wenjing Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Bruno Müller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| |
Collapse
|
79
|
Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett MJ, Downie JA, Swarup R, Oldroyd G, Murray JD. MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. PLANT PHYSIOLOGY 2017; 174:326-338. [PMID: 28363992 PMCID: PMC5411133 DOI: 10.1104/pp.16.01473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/25/2017] [Indexed: 05/22/2023]
Abstract
Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of Medicago truncatula. This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation. Gene expression studies identified MtLAX2, a paralogue of Arabidopsis (Arabidopsis thaliana) AUX1, as being induced at early stages of nodule development. MtLAX2 is expressed in nodule primordia, the vasculature of developing nodules, and at the apex of mature nodules. The MtLAX2 promoter contains several auxin response elements, and treatment with indole-acetic acid strongly induces MtLAX2 expression in roots. mtlax2 mutants displayed root phenotypes similar to Arabidopsis aux1 mutants, including altered root gravitropism, fewer lateral roots, shorter root hairs, and auxin resistance. In addition, the activity of the synthetic DR5-GUS auxin reporter was strongly reduced in mtlax2 roots. Following inoculation with rhizobia, mtlax2 roots developed fewer nodules, had decreased DR5-GUS activity associated with infection sites, and had decreased expression of the early auxin responsive gene ARF16a Our data indicate that MtLAX2 is a functional analog of Arabidopsis AUX1 and is required for the accumulation of auxin during nodule formation in tissues underlying sites of rhizobial infection.
Collapse
Affiliation(s)
- Sonali Roy
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Fran Robson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jodi Lilley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Cheng-Wu Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Xiaofei Cheng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jiangqi Wen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Simon Walker
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Donna Cousins
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Caitlin Bone
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Malcolm J Bennett
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - J Allan Downie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Ranjan Swarup
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Giles Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jeremy D Murray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.);
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.);
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.);
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| |
Collapse
|
80
|
Yang ZB, He C, Ma Y, Herde M, Ding Z. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition. PLANT PHYSIOLOGY 2017; 173:1420-1433. [PMID: 27932419 PMCID: PMC5291015 DOI: 10.1104/pp.16.01756] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 05/04/2023]
Abstract
Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress.
Collapse
|
81
|
Herrbach V, Chirinos X, Rengel D, Agbevenou K, Vincent R, Pateyron S, Huguet S, Balzergue S, Pasha A, Provart N, Gough C, Bensmihen S. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:569-583. [PMID: 28073951 PMCID: PMC6055581 DOI: 10.1093/jxb/erw474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 05/29/2023]
Abstract
Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula. This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes.
Collapse
Affiliation(s)
| | - Ximena Chirinos
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Rémy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Stéphanie Huguet
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Sandrine Balzergue
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Asher Pasha
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
82
|
Zanetti ME, Rípodas C, Niebel A. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:645-654. [PMID: 27939756 DOI: 10.1016/j.bbagrm.2016.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
NF-Ys are heterotrimeric transcription factors composed by the NF-YA, NF-YB and NF-YC subunits. In plants, NF-Y subunits are encoded by multigene families whose members show structural and functional diversifications. An increasing number of NF-Y genes has been shown to play key roles during different stages of root nodule and arbuscular mycorrhizal symbiosis, as well as during the interaction of plants with pathogenic microorganisms. Individual members of the NF-YA and NF-YB families have also been implicated in the development of primary and lateral roots. In addition, different members of the NF-YA and NF-YB gene families from mono- and di-cotyledonous plants have been involved in plant responses to water and nutrient scarcity. This review presents the most relevant and striking results concerning these NF-Y subunits. A phylogenetic analysis of the functionally characterized NF-Y genes revealed that, across plant species, NF-Y proteins functioning in the same biological process tend to belong to common phylogenetic groups. Finally, we discuss the forthcoming challenges of plant NF-Y research, including the detailed dissection of expression patterns, the elucidation of functional specificities as well as the characterization of the potential NF-Y-mediated epigenetic mechanisms by which they control the expression of their target genes. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, calle 115 y 49 s/n, CP 1900, La Plata, Argentina.
| | - Carolina Rípodas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre, National de la Recherche Scientifique, 31326 Castanet-Tolosan, France
| | - Andreas Niebel
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre, National de la Recherche Scientifique, 31326 Castanet-Tolosan, France.
| |
Collapse
|
83
|
Ristova D, Carré C, Pervent M, Medici A, Kim GJ, Scalia D, Ruffel S, Birnbaum KD, Lacombe B, Busch W, Coruzzi GM, Krouk G. Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 2016; 9:rs13. [PMID: 27811143 DOI: 10.1126/scisignal.aaf2768] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants form the basis of the food webs that sustain animal life. Exogenous factors, such as nutrients and sunlight, and endogenous factors, such as hormones, cooperate to control both the growth and the development of plants. We assessed how Arabidopsis thaliana integrated nutrient and hormone signaling pathways to control root growth and development by investigating the effects of combinatorial treatment with the nutrients nitrate and ammonium; the hormones auxin, cytokinin, and abscisic acid; and all binary combinations of these factors. We monitored and integrated short-term genome-wide changes in gene expression over hours and long-term effects on root development and architecture over several days. Our analysis revealed trends in nutrient and hormonal signal crosstalk and feedback, including responses that exhibited logic gate behavior, which means that they were triggered only when specific combinations of signals were present. From the data, we developed a multivariate network model comprising the signaling molecules, the early gene expression modulation, and the subsequent changes in root phenotypes. This multivariate network model pinpoints several genes that play key roles in the control of root development and may help understand how eukaryotes manage multifactorial signaling inputs.
Collapse
Affiliation(s)
- Daniela Ristova
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.,Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Clément Carré
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.,Institut Montpelliérain Alexander Grothendieck, Place Eugene Bataillon, 34090 Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Anna Medici
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Grace Jaeyoon Kim
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Domenica Scalia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sandrine Ruffel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Benoît Lacombe
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.
| |
Collapse
|
84
|
Porco S, Larrieu A, Du Y, Gaudinier A, Goh T, Swarup K, Swarup R, Kuempers B, Bishopp A, Lavenus J, Casimiro I, Hill K, Benkova E, Fukaki H, Brady SM, Scheres B, Péret B, Bennett MJ. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development 2016; 143:3340-9. [PMID: 27578783 DOI: 10.1242/dev.136283] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.
Collapse
Affiliation(s)
- Silvana Porco
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Antoine Larrieu
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yujuan Du
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Britta Kuempers
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Institute of Plant Sciences, 21 Altenbergrain, Bern 3006, Switzerland
| | - Ilda Casimiro
- Departamento Anatomia, Biologia Celular Y Zoologia, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben Scheres
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Benjamin Péret
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Centre National de la Recherche Scientifique, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro, 2 Place Pierre Viala, Montpellier 34060, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
85
|
Jeon J, Cho C, Lee MR, Van Binh N, Kim J. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis. THE PLANT CELL 2016; 28:1828-43. [PMID: 27432872 PMCID: PMC5006697 DOI: 10.1105/tpc.15.00909] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/24/2016] [Accepted: 07/14/2016] [Indexed: 05/18/2023]
Abstract
Lateral roots (LRs) are a major determinant of the root system architecture in plants, and developmental plasticity of LR formation is critical for the survival of plants in changing environmental conditions. In Arabidopsis thaliana, genetic pathways have been identified that regulate LR branching in response to numerous environmental cues, including some nutrients, salt, and gravity. However, it is not known how genetic components are involved in the LR adaptation response to cold. Here, we demonstrate that CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3, encoding APETALA2 transcription factors, play an important role in regulating Arabidopsis LR initiation under cold stress. Analysis of LR developmental kinetics demonstrated that both CRF2 and CRF3 regulate LR initiation. crf2 and crf3 single mutants exhibited decreased LR initiation under cold stress compared with the wild type, and the crf2 crf3 double mutants showed additively decreased LR densities compared with the single mutants. Conversely, CRF2 or CRF3 overexpression caused increased LR densities. CRF2 was induced by cold via a subset of the cytokinin two-component signaling (TCS) pathway, whereas CRF3 was upregulated by cold via TCS-independent pathways. Our results suggest that CRF2 and CRF3 respond to cold via TCS-dependent and TCS-independent pathways and control LR initiation and development, contributing to LR adaptation to cold stress.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | - Mi Rha Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | - Nguyen Van Binh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| |
Collapse
|
86
|
Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo MF, Dedeyne L, Demol H, Lavenus J, Audenaert D, Gevaert K, Beeckman T, De Smet I. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4889-99. [PMID: 27296247 PMCID: PMC4983111 DOI: 10.1093/jxb/erw231] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand-receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation.
Collapse
Affiliation(s)
- Ianto Roberts
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Stephanie Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Elisabeth Stes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - An Staes
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Lise Dedeyne
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Hans Demol
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Julien Lavenus
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
87
|
Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 2016; 143:3328-39. [PMID: 27402709 PMCID: PMC5047660 DOI: 10.1242/dev.136465] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. Summary: Reactive oxygen species promote cell wall remodeling of cells overlying the sites of lateral root formation, thereby contributing to lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- Université Catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve B-1348, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Riet de Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ana Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Claire Périlleux
- PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus, 4 Chemin de la Vallée, Liège B-4000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Xavier Draye
- Université Catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
88
|
Abstract
In this study, Marhavý et al. investigate the role of auxin in the early lateral root initiation and identify a dual, spatiotemporally distinct role of auxin during the early phases of lateral root organogenesis. Using a cell ablation technique that can eliminate a single cell in the developing root, they show that auxin can relieve inhibition of pericycle meristematic activity by cell-to-cell interactions in the endodermis and defines the orientation of the cell division plane to initiate the lateral root developmental program in the pericycle. To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.
Collapse
|
89
|
Şener DD, Oğul H. Retrieving relevant time-course experiments: a study on Arabidopsis microarrays. IET Syst Biol 2016; 10:87-93. [PMID: 27187987 DOI: 10.1049/iet-syb.2015.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
Collapse
Affiliation(s)
- Duygu Dede Şener
- Department of Computer Engineering, Başkent University, Baglica Campus TR-06810, Ankara, Turkey.
| | - Hasan Oğul
- Department of Computer Engineering, Başkent University, Baglica Campus TR-06810, Ankara, Turkey
| |
Collapse
|
90
|
Yu P, Baldauf JA, Lithio A, Marcon C, Nettleton D, Li C, Hochholdinger F. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns. PLANT PHYSIOLOGY 2016; 170:1783-98. [PMID: 26811190 PMCID: PMC4775145 DOI: 10.1104/pp.15.01885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/24/2016] [Indexed: 05/18/2023]
Abstract
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Jutta A Baldauf
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Andrew Lithio
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Caroline Marcon
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Dan Nettleton
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| | - Frank Hochholdinger
- Department of Plant Nutrition, China Agricultural University, 100193 Beijing, China (P.Y., C.L.);Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany (P.Y., J.A.B., C.M., F.H.); andDepartment of Statistics, Iowa State University, Ames, Iowa 50011-1210 (A.L., D.N.)
| |
Collapse
|
91
|
Li G, Ma J, Tan M, Mao J, An N, Sha G, Zhang D, Zhao C, Han M. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genomics 2016; 17:150. [PMID: 26923909 PMCID: PMC4770530 DOI: 10.1186/s12864-016-2484-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions. To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB) mutant at the branching stage. RESULTS The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and diameter, and root weight. Biological function categories of differentially expressed genes were significantly enriched in processes associated with hormone signal transduction and intracellular activity, with processes related to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and cytokinin contents and reduced expression of MrPIN1, MrARF, MrAHP, most MrCRE1 genes, and cell growth-related genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALF1 and MrALF4 tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance and nitrogen metabolism were reduced in MB-grafted roots as well. CONCLUSIONS Our findings suggest that root growth and development of rootstock are mainly influenced by sugar metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of scions are related to root growth and development, resistance and activity of rootstocks.
Collapse
Affiliation(s)
- Guofang Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Ming Tan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jiangping Mao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Na An
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Guangli Sha
- Institute of agricultural science, Qingdao, Shandong, 266000, China.
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
92
|
Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J. Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:377-92. [PMID: 26296956 DOI: 10.1111/pce.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.
Collapse
Affiliation(s)
- Penghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Naomi Gonzales
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingqing Guo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Honghong Hu
- College of Life Science and technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
93
|
Crombez H, Roberts I, Vangheluwe N, Motte H, Jansen L, Beeckman T, Parizot B. Lateral Root Inducible System in Arabidopsis and Maize. J Vis Exp 2016:e53481. [PMID: 26862837 DOI: 10.3791/53481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Ianto Roberts
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Nick Vangheluwe
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Hans Motte
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Leentje Jansen
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University;
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| |
Collapse
|
94
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
95
|
Khan MA, Gemenet DC, Villordon A. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:1584. [PMID: 27847508 PMCID: PMC5088196 DOI: 10.3389/fpls.2016.01584] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/07/2016] [Indexed: 05/19/2023]
Abstract
The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive 'green revolution.' In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses.
Collapse
Affiliation(s)
- M. A. Khan
- International Potato CenterLima, Peru
- *Correspondence: M. A. Khan,
| | | | | |
Collapse
|
96
|
Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2015; 38:2208-22. [PMID: 25311360 DOI: 10.1111/pce.12467] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/01/2014] [Indexed: 05/06/2023]
Abstract
Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice.
Collapse
Affiliation(s)
- Heming Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tengfei Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongsheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
97
|
Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:56-69. [PMID: 26252246 DOI: 10.1111/tpj.12958] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 05/19/2023]
Abstract
The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.
Collapse
Affiliation(s)
- Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Xiao Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
98
|
Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. TRENDS IN PLANT SCIENCE 2015; 20:586-594. [PMID: 26205171 DOI: 10.1016/j.tplants.2015.06.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 05/20/2023]
Abstract
Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen species (ROS) production, together with salt stress-induced abscisic acid (ABA) accumulation, are brought into the context of long-term salt stress-specific responses and alteration of plant growth. Salt-induced quiescent and recovery growth phases rely on modification of cell cycle activity, cell expansion, and cell wall extensibility. The period of initial growth arrest varies among different organs, leading to altered plant morphology. Studying stress-induced changes in growth dynamics can be used for screening to discover novel genes contributing to salt stress tolerance in model species and crops.
Collapse
Affiliation(s)
- Magdalena M Julkowska
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
99
|
Ghorbani S, Lin YC, Parizot B, Fernandez A, Njo MF, Van de Peer Y, Beeckman T, Hilson P. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5257-69. [PMID: 26195730 PMCID: PMC4526923 DOI: 10.1093/jxb/erv346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes.
Collapse
Affiliation(s)
- Sarieh Ghorbani
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ana Fernandez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Pierre Hilson
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Saclay Plant Sciences, INRA, route de Saint-Cyr, 78026 Versailles, France
| |
Collapse
|
100
|
Lee HW, Cho C, Kim J. Lateral Organ Boundaries Domain16 and 18 Act Downstream of the AUXIN1 and LIKE-AUXIN3 Auxin Influx Carriers to Control Lateral Root Development in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:1792-806. [PMID: 26059335 PMCID: PMC4528759 DOI: 10.1104/pp.15.00578] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/08/2015] [Indexed: 05/22/2023]
Abstract
Several members of the Lateral Organ Boundaries Domain (LBD)/Asymmetric Leaves2-Like (ASL) gene family have been identified to play important roles in Arabidopsis (Arabidopsis thaliana) lateral root (LR) development during auxin response, but their functional relationship with auxin transporters has not been established yet. Here, we show that the AUXIN1 (AUX1) and LIKE-AUXIN3 (LAX3) auxin influx carriers are required for auxin signaling that activates LBD16/ASL18 and LBD18/ASL20 to control LR development. The lax3 mutant phenotype was not significantly enhanced when combined with lbd16 or lbd18. However, LBD18 overexpression could rescue the defects in LR emergence in lax3 with concomitant expression of the LBD18 target genes. Genetic and gene expression analyses indicated that LBD16 and LBD18 act with AUX1 to regulate LR initiation and LR primordium development, and that AUX1 and LAX3 are needed for auxin-responsive expression of LBD16 and LBD18. LBD18:SUPERMAN REPRESSIVE DOMAIN X in the lbd18 mutant inhibited LR initiation and LR primordium development in response to a gravitropic stimulus and suppressed promoter activities of the cell cycle genes Cyclin-Dependent Kinase A1;1 and CYCLINB1;1. Taken together, these results suggest that LBD16 and LBD18 are important regulators of LR initiation and development downstream of AUX1 and LAX3.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|