51
|
Hoshino R, Yoshida Y, Tsukaya H. Multiple steps of leaf thickening during sun-leaf formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:738-753. [PMID: 31350790 PMCID: PMC6900135 DOI: 10.1111/tpj.14467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Plant morphological and physiological traits exhibit plasticity in response to light intensity. Leaf thickness is enhanced under high light (HL) conditions compared with low light (LL) conditions through increases in both cell number and size in the dorsoventral direction; however, the regulation of such phenotypic plasticity in leaf thickness (namely, sun- or shade-leaf formation) during the developmental process remains largely unclear. By modifying observation techniques for tiny leaf primordia in Arabidopsis thaliana, we analysed sun- and shade-leaf development in a time-course manner and found that the process of leaf thickening can be divided into early and late phases. In the early phase, anisotropic cell elongation and periclinal cell division on the adaxial side of mesophyll tissue occurred under the HL conditions used, which resulted in the dorsoventral growth of sun leaves. Anisotropic cell elongation in the palisade tissue is triggered by blue-light irradiation. We discovered that anisotropic cell elongation processes before or after periclinal cell division were differentially regulated independent of or dependent upon signalling through blue-light receptors. In contrast, during the late phase, isotropic cell expansion associated with the endocycle, which determined the final leaf thickness, occurred irrespective of the light conditions. Sucrose production was high under HL conditions, and we found that sucrose promoted isotropic cell expansion and the endocycle even under LL conditions. Our analyses based on this method of time-course observation addressed the developmental framework of sun- and shade-leaf formation.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Yuki Yoshida
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hirokazu Tsukaya
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichi444‐8787Japan
| |
Collapse
|
52
|
Delay C, Chapman K, Taleski M, Wang Y, Tyagi S, Xiong Y, Imin N, Djordjevic MA. CEP3 levels affect starvation-related growth responses of the primary root. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4763-4774. [PMID: 31173100 PMCID: PMC6760281 DOI: 10.1093/jxb/erz270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
CEPs (C-TERMINALLY ENCODED PEPTIDEs) inhibit Arabidopsis primary root growth by unknown mechanisms. We investigated how CEP3 levels control primary root growth. CEP3 peptide application decreased cell division, S-phase cell number, root meristematic cell number, and meristem zone (MZ) size in a dose- and CEP RECEPTOR1-dependent manner. Grafting showed that CEP3-dependent growth inhibition requires root and shoot CEPR1. CEP3 induced mitotic quiescence in MZ cells significantly faster than that induced by nutrient limitation alone. CEP3 also inhibited the restoration of S-phase to mitotically quiescence cells by nutrient resupply without quantitatively reducing TARGET OF RAPAMYCIN (TOR) kinase activity. In contrast, cep3-1 had an increased meristem size and S-phase cell number under nitrogen (N)-limited conditions, but not under N-sufficient conditions. Furthermore, cep3-1 meristematic cells remained in S-phase longer than wild-type cells during a sustained carbon (C) and N limitation. RNA sequencing showed that CEP3 peptide down-regulated genes involved in S-phase entry, cell wall and ribosome biogenesis, DNA replication, and meristem expansion, and up-regulated genes involved in catabolic processes and proteins and peptides that negatively control meristem expansion and root growth. Many of these genes were reciprocally regulated in cep3-1. The results suggest that raising CEP3 induces starvation-related responses that curtail primary root growth under severe nutrient limitation.
Collapse
Affiliation(s)
- Christina Delay
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT, Australia
| | - Kelly Chapman
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT, Australia
| | - Michael Taleski
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT, Australia
| | - Yaowei Wang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
- University of Chinese Academy of Sciences, Shanghai, PR China
| | - Sonika Tyagi
- Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Present address: Bioinformatics Research Group, Monash University, Clayton, VIC, Australia 3800
| | - Yan Xiong
- Shanghai Center for Plant Stress Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Nijat Imin
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT, Australia
- Correspondence: or Present address: School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael A Djordjevic
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT, Australia
- Correspondence: or Present address: School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
53
|
Guo Y, Li J, Fang Y, Wan Y, Tang J, Wei T, Jiang X, Wang R, Wang M. An event of alternative splicing affects the expression of two BnCYCD3-1-like genes in Brassica napus. Gene 2019; 694:33-41. [PMID: 30716436 DOI: 10.1016/j.gene.2018.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023]
Abstract
Two full-length cDNAs of the cyclin-D3-1-like gene, named as BnCYCD3-1-like-1 and BnCYCD3-1-like-2 respectively were obtained from Brassica napus, both of which encoded a cell cycle protein CYCD3. Alternative splicing (AS) events of the two genes' transcripts were identified, assigned as BnCYCD3-1-like-1-1, BnCYCD3-1-like-1-2, BnCYCD3-1-like-2-1 and BnCYCD3-1-like-2-2 respectively. BnCYCD3-1-like-1-1 and BnCYCD3-1-like-2-1 were both fully-spliced transcripts which encoded a complete protein containing a LXCXE motif, two cyclin boxes and a PEST domain, while other two alternative splicing transcripts both resulted in the early termination of the protein translation. BnCYCD3-1-like-2-2 retained the third intron, lacking a PEST domain, while BnCYCD3-1-like-1-2 retained all the introns, lacking the C-terminal cyclin domain and a PEST domain. The expression pattern for tissue and development specification of the AS transcripts were investigated. The results showed that the standard splicing transcripts (BnCYCD3-1-like-1-1 and BnCYCD3-1-like-2-1) with complete structural domains were found with the most abundant expression in seeds, followed by leaves, and the least expression in stems. Both of BnCYCD3-1-like-2-1 and BnCYCD3-1-like-2-2 had the highest abundance in leaves, followed by roots. In addition, by applying various biotic and abiotic stresses on Brassica napus, the variations in the expression of each transcript under stress treatment were studied. Also, it was found that AS of the cyclin-D3-1-like gene may play an important role in helping Brassica napus respond to environmental stresses by coordinating the levels of transcripts of standard splicing and alternative splicing.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jie Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yunbao Wan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiajia Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Tao Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xuefei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
54
|
Ahmad Z, Magyar Z, Bögre L, Papdi C. Cell cycle control by the target of rapamycin signalling pathway in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2275-2284. [PMID: 30918972 DOI: 10.1093/jxb/erz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.
Collapse
Affiliation(s)
- Zaki Ahmad
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - László Bögre
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
55
|
Genome-Wide Analysis of the D-type Cyclin Gene Family Reveals Differential Expression Patterns and Stem Development in the Woody Plant Prunus mume. FORESTS 2019. [DOI: 10.3390/f10020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclins, a prominent class of cell division regulators, play an extremely important role in plant growth and development. D-type cyclins (CYCDs) are the rate-limiting components of the G1 phase. In plants, studies of CYCDs are mainly concerned with herbaceous plants, yet little information is available about these genes in perennial woody plants, especially ornamental plants. Here, twelve Prunus mume CYCD (PmCYCDs) genes are identified and characterized. The PmCYCDs were named on the basis of orthologues in Arabidopsis thaliana and Oryza sativa. Gene structure and conserved domains of each subgroup CYCDs was similar to that of their orthologues in A. thaliana and O. sativa. However, PmCYCDs exhibited different tissue-specific expression patterns in root, stem, leaf, bud, and fruit organs. The results of qRT-PCR showed that all PmCYCDs, except PmCYCD5;2 and PmCYCD7;1, were primarily highly expressed in leaf buds, shoots, and stems. In addition, the transcript levels of PmCYCD genes were analyzed in roots under different treatments, including exogenous applications of NAA, 6-BA, GA3, ABA, and sucrose. Interestingly, although PmCYCDs were induced by sucrose, the extent of gene induction among PmCYCD subgroups varied. The induction of PmCYCD1;2 by hormones depended on the presence of sucrose. PmCYCD3;1 was stimulated by NAA, and induction was strengthened when sugar and hormones were applied together. Taken together, our study demonstrates that PmCYCDs are functional in plant stem development and provides a basis for selecting members of the cyclin gene family as candidate genes for ornamental plant breeding.
Collapse
|
56
|
Pomares-Viciana T, Del Río-Celestino M, Román B, Die J, Pico B, Gómez P. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC PLANT BIOLOGY 2019; 19:61. [PMID: 30727959 PMCID: PMC6366093 DOI: 10.1186/s12870-019-1632-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/04/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. RESULTS RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. CONCLUSION This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.
Collapse
Affiliation(s)
- Teresa Pomares-Viciana
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Mercedes Del Río-Celestino
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Belén Román
- Genomics and Biotechnology Department, IFAPA Research Centre Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jose Die
- Genetics Department, University of Cordoba, Av. de Medina Azahara, 5, 14071 Córdoba, Spain
| | - Belén Pico
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pedro Gómez
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| |
Collapse
|
57
|
Olszak M, Truman W, Stefanowicz K, Sliwinska E, Ito M, Walerowski P, Rolfe S, Malinowski R. Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae-driven gall formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:715-729. [PMID: 30431210 PMCID: PMC6850046 DOI: 10.1111/tpj.14156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/08/2023]
Abstract
Plasmodiophora brassicae is a soil-borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A- and B-type cyclin expression. These factors were previously described as important regulators of the G2-M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.
Collapse
Affiliation(s)
- Marcin Olszak
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - William Truman
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Karolina Stefanowicz
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and CytometryDepartment of Plant Genetics, Physiology and BiotechnologyUTP University of Science and TechnologyKaliskiego Ave. 785‐789BydgoszczPoland
| | - Masaki Ito
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Piotr Walerowski
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Stephen Rolfe
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Robert Malinowski
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| |
Collapse
|
58
|
Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M. SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion. FRONTIERS IN PLANT SCIENCE 2019; 10:503. [PMID: 31134102 PMCID: PMC6523062 DOI: 10.3389/fpls.2019.00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Plant growth is strictly controlled by cell division, elongation, and differentiation for which adequate supplies of intracellular ATP are required. However, it is unclear how changes in the amount of intracellular ATP affect cell division and growth. To reveal the specific pathway dependent on ATP concentration, we performed analyses on the Arabidopsis mitochondria mutation sd3. The mutant is tiny, a result of a low amount of ATP caused by the disruption of Tim21, a subunit of the TIM23 protein complex localized in the inner membrane of the mitochondria. Loss of function of suppressor of gamma response 1 (SOG1) also restored the dwarf phenotype of wild type treated with antimycin A, a blocker of ATP synthesis in mitochondria. The sd3 phenotype is partially restored by the introduction of sog1, suppressor of gamma response 1, and kin10/kin11, subunits of Snf1-related kinase 1 (SnRK1). Additionally, SOG1 interacted with SnRK1, and was modified by phosphorylation in planta only after treatment with antimycin A. Transcripts of several negative regulators of the endocycle were up-regulated in the sd3 mutant, and this high expression was not observed in sd3sog1 and sd3kin11. We suggest that there is a novel regulatory mechanism for the control of plant cell cycle involving SnRK1 and SOG1, which is induced by low amounts of intracellular ATP, and controls plant development.
Collapse
Affiliation(s)
- Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Woman’s University, Tokyo, Japan
| | - Yoshiharu Y. Yamamoto
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Minami Matsui,
| |
Collapse
|
59
|
Baekelandt A, Pauwels L, Wang Z, Li N, De Milde L, Natran A, Vermeersch M, Li Y, Goossens A, Inzé D, Gonzalez N. Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of CYCLIN D3 Genes. PLANT PHYSIOLOGY 2018; 178:217-232. [PMID: 29991485 PMCID: PMC6130026 DOI: 10.1104/pp.18.00327] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.
Collapse
Affiliation(s)
- Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liesbeth De Milde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Annelore Natran
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
60
|
Edwards KD, Takata N, Johansson M, Jurca M, Novák O, Hényková E, Liverani S, Kozarewa I, Strnad M, Millar AJ, Ljung K, Eriksson ME. Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees. PLANT, CELL & ENVIRONMENT 2018; 41:1468-1482. [PMID: 29520862 PMCID: PMC6001645 DOI: 10.1111/pce.13185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/30/2023]
Abstract
Trees are carbon dioxide sinks and major producers of terrestrial biomass with distinct seasonal growth patterns. Circadian clocks enable the coordination of physiological and biochemical temporal activities, optimally regulating multiple traits including growth. To dissect the clock's role in growth, we analysed Populus tremula × P. tremuloides trees with impaired clock function due to down-regulation of central clock components. late elongated hypocotyl (lhy-10) trees, in which expression of LHY1 and LHY2 is reduced by RNAi, have a short free-running period and show disrupted temporal regulation of gene expression and reduced growth, producing 30-40% less biomass than wild-type trees. Genes important in growth regulation were expressed with an earlier phase in lhy-10, and CYCLIN D3 expression was misaligned and arrhythmic. Levels of cytokinins were lower in lhy-10 trees, which also showed a change in the time of peak expression of genes associated with cell division and growth. However, auxin levels were not altered in lhy-10 trees, and the size of the lignification zone in the stem showed a relative increase. The reduced growth rate and anatomical features of lhy-10 trees were mainly caused by misregulation of cell division, which may have resulted from impaired clock function.
Collapse
Affiliation(s)
- Kieron D. Edwards
- School of Biological Sciences, C.H. Waddington BuildingUniversity of EdinburghEdinburghEH9 3BFUK
| | - Naoki Takata
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Mikael Johansson
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
- RNA Biology and Molecular PhysiologyBielefeld University33615BielefeldGermany
| | - Manuela Jurca
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
| | - Eva Hényková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Silvia Liverani
- Department of StatisticsUniversity of WarwickCoventryCV4 7ALUK
| | - Iwanka Kozarewa
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
| | - Andrew J. Millar
- School of Biological Sciences, C.H. Waddington BuildingUniversity of EdinburghEdinburghEH9 3BFUK
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Maria E. Eriksson
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| |
Collapse
|
61
|
Fukudome A, Goldman JS, Finlayson SA, Koiwa H. Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:799-812. [PMID: 29573374 DOI: 10.1111/tpj.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
De novo shoot organogenesis (DNSO) is a post-embryonic development programme that has been widely exploited by plant biotechnology. DNSO is a hormonally regulated process in which auxin and cytokinin (CK) coordinate suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery. Here we report that silencing Arabidopsis thaliana carboxyl-terminal domain (CTD) phosphatase-like 4 (CPL4RNAi ) resulted in increased phosphorylation levels of RNA polymerase II (pol II) CTD and altered lateral root development and DNSO efficiency of the host plants. Under standard growth conditions, CPL4RNAi lines produced no or few lateral roots. When induced by high concentrations of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. In contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines was observed even under 10 times less the CK required for the wild-type explants. Transcriptome analysis showed that CPL4RNAi , but not wild-type explants, expressed high levels of shoot meristem-related genes even during priming on medium with a high auxin/CK ratio, and during subsequent shoot induction with a lower auxin/CK ratio. Conversely, CPL4RNAi enhanced the inhibitory phenotype of the shoot redifferentiation defective2-1 mutation, which affected snRNA biogenesis and formation of the auxin gradient. These results indicated that CPL4 functions in multiple regulatory pathways that positively and negatively affect DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jared S Goldman
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
62
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
63
|
Zhang N, Wang Z, Bao Z, Yang L, Wu D, Shu X, Hua J. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:66-78. [PMID: 29086441 DOI: 10.1111/tpj.13757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 05/05/2023]
Abstract
Emerging evidence indicates a close connection between cell-cycle progression and the plant immune responses. In Arabidopsis, MODIFIER OF snc1-1 (MOS1) modulates a number of processes including endoreduplication and plant disease resistance, but the molecular mechanism underlying this modulation was not fully understood. Here, we provide biochemical and genetic evidence that TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factors TCP15 and its homologues are mediators of MOS1 function in the immune response and are likely to be also involved in cell-cycle control. MOS1 and TCP proteins have a direct physical interaction. They both bind to the promoter of the immune receptor gene SUPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1) and modulate its expression and consequently immune responses. MOS1 and TCP15 both affect the expression of cell-cycle genes D-type CYCLIN 3;1 (CYCD3;1), which may mediate the MOS1 function in cell-cycle modulation. In addition, CYCD3;1 overexpression upregulates immune responses, and SNC1 expression. This study investigated and revealed a role for MOS1 in transcriptional regulation through TCP15 and its homologues. This finding suggests the coordination of cell-cycle progression and plant immune responses at multiple levels.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zhixue Wang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zhilong Bao
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Leiyun Yang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
64
|
Mei Y, Yang X, Huang C, Zhang X, Zhou X. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog 2018; 14:e1006789. [PMID: 29293689 PMCID: PMC5766254 DOI: 10.1371/journal.ppat.1006789] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
65
|
Zhao C, Lasses T, Bako L, Kong D, Zhao B, Chanda B, Bombarely A, Cruz-Ramírez A, Scheres B, Brunner AM, Beers EP. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. THE NEW PHYTOLOGIST 2017; 216:76-89. [PMID: 28742236 DOI: 10.1111/nph.14704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.
Collapse
Affiliation(s)
- Chengsong Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Theres Lasses
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Laszlo Bako
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Danyu Kong
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Ben Scheres
- Plant Developmental Biology, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
66
|
Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1088-1107. [PMID: 28640939 DOI: 10.1111/tpj.13621] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 05/22/2023]
Abstract
Seed development is an intricate process regulated via a complex transcriptional regulatory network. To understand the molecular mechanisms governing seed development and seed size/weight in chickpea, we performed a comprehensive analysis of transcriptome dynamics during seed development in two cultivars with contrasting seed size/weight (small-seeded, Himchana 1 and large-seeded, JGK 3). Our analysis identified stage-specific expression for a significant proportion (>13%) of the genes in each cultivar. About one half of the total genes exhibited significant differential expression in JGK 3 as compared with Himchana 1. We found that different seed development stages can be delineated by modules of coexpressed genes. A comparative analysis revealed differential developmental stage specificity of some modules between the two cultivars. Furthermore, we constructed transcriptional regulatory networks and identified key components determining seed size/weight. The results suggested that extended period of cell division during embryogenesis and higher level of endoreduplication along with more accumulation of storage compounds during maturation determine large seed size/weight. Further, we identified quantitative trait loci-associated candidate genes harboring single nucleotide polymorphisms in the promoter sequences that differentiate small- and large-seeded chickpea cultivars. The results provide a valuable resource to dissect the role of candidate genes governing seed development and seed size/weight in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vikash K Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
67
|
Wang Q, An B, Shi H, Luo H, He C. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis. Int J Mol Sci 2017; 18:ijms18050991. [PMID: 28475148 PMCID: PMC5454904 DOI: 10.3390/ijms18050991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
68
|
Garza-Aguilar SM, Lara-Núñez A, García-Ramírez E, Vázquez-Ramos JM. Modulation of CycD3;1-CDK complexes by phytohormones and sucrose during maize germination. PHYSIOLOGIA PLANTARUM 2017; 160:84-97. [PMID: 27995635 DOI: 10.1111/ppl.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Maize CycD3;1 associates to CDKA or CDKB1;1 proteins during germination and the complexes formed develop kinase activity. These complexes appear to vary in size as germination proceeds, suggesting association to different sets of proteins. CycD3;1 and associated CDK proteins respond to phytohormones and sucrose. Results revealed a reduction in the CycD3;1 protein amount along germination in the presence of indoleacetic acid (IAA) or abscisic acid (ABA), although in the latter protein levels recover at the end of germination. While the levels of CDKA increase with IAA, they decrease with ABA. Both phytohormones, IAA and ABA, increase levels of CDKB1;1 only during the early germination times. CycD3;1 associated kinase activity is only reduced by both phytohormones towards the end of the germination period. On the other hand, lack of sucrose in the imbibition medium strongly reduces CycD3;1 protein levels without affecting the levels of neither CDKA nor CDKB1;1. The corresponding CycD3;1 associated kinase activity is also severely decreased. The presence of sucrose in the medium appears to stabilize the CycD3;1 protein levels.
Collapse
Affiliation(s)
- Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
69
|
Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nat Commun 2017; 8:15060. [PMID: 28447614 PMCID: PMC5414177 DOI: 10.1038/ncomms15060] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Mean cell size at division is generally constant for specific conditions and cell types, but the mechanisms coupling cell growth and cell cycle control with cell size regulation are poorly understood in intact tissues. Here we show that the continuously dividing fields of cells within the shoot apical meristem of Arabidopsis show dynamic regulation of mean cell size dependent on developmental stage, genotype and environmental signals. We show cell size at division and cell cycle length is effectively predicted using a two-stage cell cycle model linking cell growth and two sequential cyclin dependent kinase (CDK) activities, and experimental results concur in showing that progression through both G1/S and G2/M is size dependent. This work shows that cell-autonomous co-ordination of cell growth and cell division previously observed in unicellular organisms also exists in intact plant tissues, and that cell size may be an emergent rather than directly determined property of cells.
Collapse
|
70
|
Andrabi SBA, Tahara M, Matsubara R, Toyama T, Aonuma H, Sakakibara H, Suematsu M, Tanabe K, Nozaki T, Nagamune K. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitol Int 2017; 67:47-58. [PMID: 28344153 DOI: 10.1016/j.parint.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
Abstract
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Keio University, Tokyo, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Toyama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroka Aonuma
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Kazuyuki Tanabe
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
71
|
Romero-Arias JR, Hernández-Hernández V, Benítez M, Alvarez-Buylla ER, Barrio RA. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root. Phys Rev E 2017; 95:032410. [PMID: 28415207 DOI: 10.1103/physreve.95.032410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/06/2022]
Abstract
Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.
Collapse
Affiliation(s)
- J Roberto Romero-Arias
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Elena R Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| |
Collapse
|
72
|
Brasil JN, Costa CNM, Cabral LM, Ferreira PCG, Hemerly AS. The plant cell cycle: Pre-Replication complex formation and controls. Genet Mol Biol 2017; 40:276-291. [PMID: 28304073 PMCID: PMC5452130 DOI: 10.1590/1678-4685-gmb-2016-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.
Collapse
Affiliation(s)
- Juliana Nogueira Brasil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Universitário Christus, Fortaleza, CE, Brazil
| | - Carinne N Monteiro Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luiz Mors Cabral
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
73
|
Novikova GV, Mur LAJ, Nosov AV, Fomenkov AA, Mironov KS, Mamaeva AS, Shilov ES, Rakitin VY, Hall MA. Nitric Oxide Has a Concentration-Dependent Effect on the Cell Cycle Acting via EIN2 in Arabidopsis thaliana Cultured Cells. Front Physiol 2017; 8:142. [PMID: 28344560 PMCID: PMC5344996 DOI: 10.3389/fphys.2017.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Ethylene is known to influence the cell cycle (CC) via poorly characterized roles whilst nitric oxide (NO) has well-established roles in the animal CC but analogous role(s) have not been reported for plants. As NO and ethylene signaling events often interact we examined their role in CC in cultured cells derived from Arabidopsis thaliana wild-type (Col-0) plants and from ethylene-insensitive mutant ein2-1 plants. Both NO and ethylene were produced mainly during the first 5 days of the sub-cultivation period corresponding to the period of active cell division. However, in ein2-1 cells, ethylene generation was significantly reduced while NO levels were increased. With application of a range of concentrations of the NO donor, sodium nitroprusside (SNP) (between 20 and 500 μM) ethylene production was significantly diminished in Col-0 but unchanged in ein2-1 cells. Flow cytometry assays showed that in Col-0 cells treatments with 5 and 10 μM SNP concentrations led to an increase in S-phase cell number indicating the stimulation of G1/S transition. However, at ≥20 μM SNP CC progression was restrained at G1/S transition. In the mutant ein2-1 strain, the index of S-phase cells was not altered at 5-10 μM SNP but decreased dramatically at higher SNP concentrations. Concomitantly, 5 μM SNP induced transcription of genes encoding CDKA;1 and CYCD3;1 in Col-0 cells whereas transcription of CDKs and CYCs were not significantly altered in ein2-1 cells at any SNP concentrations examined. Hence, it is appears that EIN2 is required for full responses at each SNP concentration. In ein2-1 cells, greater amounts of NO, reactive oxygen species, and the tyrosine-nitrating peroxynitrite radical were detected, possibly indicating NO-dependent post-translational protein modifications which could stop CC. Thus, we suggest that in Arabidopsis cultured cells NO affects CC progression as a concentration-dependent modulator with a dependency on EIN2 for both ethylene production and a NO/ethylene regulatory function.
Collapse
Affiliation(s)
- Galina V. Novikova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexander V. Nosov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Artem A. Fomenkov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Kirill S. Mironov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Mamaeva
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Evgeny S. Shilov
- Department of Immunology, M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | - Victor Y. Rakitin
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
74
|
Lee DJ, Choi HJ, Moon ME, Chi YT, Ji KY, Choi D. Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O 2- and decrease in H 2 O 2. PHYSIOLOGIA PLANTARUM 2017; 159:228-243. [PMID: 27528370 DOI: 10.1111/ppl.12487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) exert both positive and negative effects on plant growth and development and therefore receive a great deal of attention in current research. A hot pepper, Capsicum annuum receptor-like kinase 1 (CaRLK1) was ectopically expressed in Nicotiana tabacum BY-2 cell and Nicotiana benthamiana plants. This ectopic expression of CaRLK1 enhanced cell division and proliferation in both heterologous systems. Apparently, CaRLK1 is involved in controlling the cell cycle, possibly by inducing expressions of cyclin B1, cyclin D3, cyclin-dependent protein kinase 3, condensin complex subunit 2 and anaphase-promoting complex subunit 11 genes. CaRLK1 overexpression also increased transcript accumulation of NADPH oxidase genes, generation of O2- and catalase (CAT) activity/protein levels. In parallel, it decreased cellular H2 O2 levels and cell size. Treatment with Tiron or diphenyleneiodonium (DPI) both decreased the cell division rate and O2- concentrations, but increased cellular H2 O2 levels. Tobacco BY-2 cells overexpressing CaRLK1 were more sensitive to amino-1,2,4-triazole (3-AT), a CAT inhibitor, than control cells, suggesting that the increased H2 O2 levels may not function as a signal for cell division and proliferation. Overexpression of CaRLK1 stimulated progression of the cell cycle from G0 /G1 phase into the S phase. It is concluded that the CaRLK1 protein plays a pivotal role in controlling the level of O2- as signaling molecule which promotes cell division, concomitant with a reduction in H2 O2 by the induction of CAT activity/protein.
Collapse
Affiliation(s)
- Dong Ju Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Hyun Jun Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Mid-Eum Moon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, South Korea
| | - Youn-Tae Chi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, South Korea
- Seed Biotechnology Institute, Institute of Green Bio Science and Technology, Pyeongchang Campus, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
75
|
Noman A, Kanwal H, Khalid N, Sanaullah T, Tufail A, Masood A, Sabir SUR, Aqeel M, He S. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris. FRONTIERS IN PLANT SCIENCE 2017; 8:1388. [PMID: 28855910 PMCID: PMC5557727 DOI: 10.3389/fpls.2017.01388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/14/2023]
Abstract
Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Hina Kanwal
- Department of Botany, Government College Women UniversityFaisalabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women UniversitySialkot, Pakistan
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Aasma Tufail
- Division of Science & Technology, Department of Botany, University of EducationLahore, Pakistan
| | - Atifa Masood
- Department of Botany, University of LahoreSargodha, Pakistan
| | - Sabeeh-ur-Rasool Sabir
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
- *Correspondence: Muhammad Aqeel
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- Shuilin He
| |
Collapse
|
76
|
Mickelson-Young L, Wear E, Mulvaney P, Lee TJ, Szymanski ES, Allen G, Hanley-Bowdoin L, Thompson W. A flow cytometric method for estimating S-phase duration in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6077-6087. [PMID: 27697785 PMCID: PMC5100020 DOI: 10.1093/jxb/erw367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The duration of the DNA synthesis stage (S phase) of the cell cycle is fundamental in our understanding of cell cycle kinetics, cell proliferation, and DNA replication timing programs. Most S-phase duration estimates that exist for plants are based on indirect measurements. We present a method for directly estimating S-phase duration by pulse-labeling root tips or actively dividing suspension cells with the halogenated thymidine analog 5-ethynl-2'-deoxyuridine (EdU) and analyzing the time course of replication with bivariate flow cytometry. The transition between G1 and G2 DNA contents can be followed by measuring the mean DNA content of EdU-labeled S-phase nuclei as a function of time after the labeling pulse. We applied this technique to intact root tips of maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.), and to actively dividing cell cultures of Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and rice. Estimates of S-phase duration in root tips were remarkably consistent, varying only by ~3-fold, although the genome sizes of the species analyzed varied >40-fold.
Collapse
Affiliation(s)
- Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick Mulvaney
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Tae-Jin Lee
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
- Present address: Syngenta Crop Protection, LLC, Research Triangle Park, NC 27709, USA
| | - Eric S Szymanski
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
- Present address: Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - George Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - William Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
77
|
García-Cruz KV, García-Ponce B, Garay-Arroyo A, Sanchez MDLP, Ugartechea-Chirino Y, Desvoyes B, Pacheco-Escobedo MA, Tapia-López R, Ransom-Rodríguez I, Gutierrez C, Alvarez-Buylla ER. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. ANNALS OF BOTANY 2016; 118:787-796. [PMID: 27474508 PMCID: PMC5055633 DOI: 10.1093/aob/mcw126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/16/2016] [Indexed: 05/08/2023]
Abstract
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components.
Collapse
Affiliation(s)
- Karla V. García-Cruz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - María De La Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Yamel Ugartechea-Chirino
- Centro de Investigación en Dinámica Celular, Facultad de Ciencias, Universidad Autónoma de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, 62209, México
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mario A. Pacheco-Escobedo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Rosalinda Tapia-López
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Ivan Ransom-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
- *For correspondence. E-mail
| |
Collapse
|
78
|
Sornay E, Dewitte W, Murray JAH. Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture. PLANT SIGNALING & BEHAVIOR 2016; 11:e1192741. [PMID: 27286190 PMCID: PMC4991333 DOI: 10.1080/15592324.2016.1192741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo, endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed number in each silique and leading to increased seed size. A similar effect on seed size was observed with other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines with unmodified inflorescences, and also upon removal of side branches and axillary stems. This phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we conclude that plant architecture is a further important factor to consider in appraising seed phenotypes.
Collapse
Affiliation(s)
- E. Sornay
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - W. Dewitte
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
| | - J. A. H. Murray
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
79
|
Considine MJ, Considine JA. On the language and physiology of dormancy and quiescence in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3189-203. [PMID: 27053719 DOI: 10.1093/jxb/erw138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being of great ecological value. However, for context and hypotheses, we draw on knowledge from annuals and other specialized plant conditions, from a perspective of the major physical, metabolic, and molecular cues that regulate cellular activity.
Collapse
Affiliation(s)
- Michael J Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia Department of Agriculture and Food Western Australia, South Perth, WA 6151 Australia Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS2 9JT, UK
| | - John A Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
80
|
Huang J, Wijeratne AJ, Tang C, Zhang T, Fenelon RE, Owen HA, Zhao D. Ectopic expression of TAPETUM DETERMINANT1 affects ovule development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1311-26. [PMID: 26685185 DOI: 10.1093/jxb/erv523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have evolved to extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control growth, development, and defense. In Arabidopsis thaliana, the EXCESS MICROSPOROCYTES1 (EMS1) LRR-RLK and its potential small protein ligand TAPETUM DETERMINANT1 (TPD1) are specifically required for anther cell differentiation; however, TPD1 and EMS1 orthologs also control megaspore mother cell proliferation in rice and maize ovules. Here, the molecular function of TPD1 was demonstrated during ovule development in Arabidopsis using a gain-of-function approach. In ovules, the EMS1 gene was primarily expressed in nucellus epidermis and chalaza, whereas the expression of TPD1 was weakly restricted to the distal end of integuments. Ectopic expression of TPD1 caused pleiotropic defects in ovule and seed development. RNA sequencing analysis showed that ectopic expression of TPD1 altered expression of auxin signaling genes and core cell-cycle genes during ovule development. Moreover, ectopic expression of TPD1 not only affected auxin response but also enhanced expression of cyclin genes CYCD3;3 and CYCA2;3 in ovules. Thus, these results provide insight into the molecular mechanism by which TPD1-EMS1 signaling controls plant development possibly via regulation of auxin signaling and cell-cycle genes.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Asela J Wijeratne
- Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| | - Chong Tang
- Department of Biochemistry and Molecular Biology, University of Nevada-Reno, Reno, NV 89557, USA
| | - Tianyu Zhang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Rebecca E Fenelon
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
81
|
Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malhó R. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens. PLANT PHYSIOLOGY 2015; 169:2572-86. [PMID: 26463087 PMCID: PMC4677911 DOI: 10.1104/pp.15.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 05/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants.
Collapse
Affiliation(s)
- Laura Saavedra
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rita Catarino
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Tobias Heinz
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Ingo Heilmann
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Magdalena Bezanilla
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rui Malhó
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| |
Collapse
|
82
|
Kumar N, Harashima H, Kalve S, Bramsiepe J, Wang K, Sizani BL, Bertrand LL, Johnson MC, Faulk C, Dale R, Simmons LA, Churchman ML, Sugimoto K, Kato N, Dasanayake M, Beemster G, Schnittger A, Larkin JC. Functional Conservation in the SIAMESE-RELATED Family of Cyclin-Dependent Kinase Inhibitors in Land Plants. THE PLANT CELL 2015; 27:3065-80. [PMID: 26546445 PMCID: PMC4682297 DOI: 10.1105/tpc.15.00489] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 05/03/2023]
Abstract
The best-characterized members of the plant-specific SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors regulate the transition from the mitotic cell cycle to endoreplication, also known as endoreduplication, an altered version of the cell cycle in which DNA is replicated without cell division. Some other family members are implicated in cell cycle responses to biotic and abiotic stresses. However, the functions of most SMRs remain unknown, and the specific cyclin-dependent kinase complexes inhibited by SMRs are unclear. Here, we demonstrate that a diverse group of SMRs, including an SMR from the bryophyte Physcomitrella patens, can complement an Arabidopsis thaliana siamese (sim) mutant and that both Arabidopsis SIM and P. patens SMR can inhibit CDK activity in vitro. Furthermore, we show that Arabidopsis SIM can bind to and inhibit both CDKA;1 and CDKB1;1. Finally, we show that SMR2 acts to restrict cell proliferation during leaf growth in Arabidopsis and that SIM, SMR1/LGO, and SMR2 play overlapping roles in controlling the transition from cell division to endoreplication during leaf development. These results indicate that differences in SMR function in plant growth and development are primarily due to differences in transcriptional and posttranscriptional regulation, rather than to differences in fundamental biochemical function.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Shweta Kalve
- Department of Biology, Molecular Plant Physiology, and Biotechnology, University of Antwerp, 2020 Antwerp, Belgium
| | - Jonathan Bramsiepe
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS-UPR2357, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Kai Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Bulelani L Sizani
- Department of Biology, Molecular Plant Physiology, and Biotechnology, University of Antwerp, 2020 Antwerp, Belgium
| | - Laura L Bertrand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Matthew C Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Christopher Faulk
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Renee Dale
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - L Alice Simmons
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Michelle L Churchman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dasanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Gerrit Beemster
- Department of Biology, Molecular Plant Physiology, and Biotechnology, University of Antwerp, 2020 Antwerp, Belgium
| | - Arp Schnittger
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS-UPR2357, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
83
|
Lee BH, Kwon SH, Lee SJ, Park SK, Song JT, Lee S, Lee MM, Hwang YS, Kim JH. The Arabidopsis thaliana NGATHA transcription factors negatively regulate cell proliferation of lateral organs. PLANT MOLECULAR BIOLOGY 2015; 89:529-538. [PMID: 26433582 DOI: 10.1007/s11103-015-0386-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
The cell proliferation process of aerial lateral organs, such as leaves and flowers, is coordinated by complex genetic networks that, in general, converge on the cell cycle. The Arabidopsis thaliana NGATHA (AtNGA) family comprises four members that belong to the B3-type transcription factor superfamily, and has been suggested to be involved in growth and development of aerial lateral organs, although its role in the cell proliferation and expansion processes remains to be resolved in more detail. In order to clarify the role of AtNGAs in lateral organ growth, we took a systematic approach using both the loss- and gain-of-functional mutants of all four members. Our results showed that overexpressors of AtNGA1 to AtNGA4 developed small, narrow lateral organs, whereas the nga1 nga2 nga3 nga4 quadruple mutant produced large, wide lateral organs. We found that cell numbers of the lateral organs were significantly affected: a decrease in overexpressors and, inversely, an increase in the quadruple mutant. Kinematic analyses on leaf growth revealed that, compared with the wild type, the overexpressors displayed a lower activity of cell proliferation and yet the mutant a higher activity. Changes in expression of cell cycle-regulating genes were well in accordance with the cell proliferation activities, establishing that the AtNGA transcription factors act as bona fide negative regulators of the cell proliferation of aerial lateral organs.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - So Hyun Kwon
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea
- Korea Evaluation Institute of Industrial Technology, Daegu, 701-300, Korea
| | - Sang-Joo Lee
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sangman Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | - Yong-sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea.
| |
Collapse
|
84
|
Centomani I, Sgobba A, D'Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. PROTOPLASMA 2015; 252:1451-9. [PMID: 25712591 DOI: 10.1007/s00709-015-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Collapse
Affiliation(s)
- Isabella Centomani
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128, Rome, Italy
| | - Silvio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
85
|
Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez MDLP, Álvarez-Buylla ER. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle. PLoS Comput Biol 2015; 11:e1004486. [PMID: 26340681 PMCID: PMC4560428 DOI: 10.1371/journal.pcbi.1004486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. In multicellular organisms, cells undergo a cyclic behavior of DNA duplication and delivery of a copy to daughter cells during cell division. In each of the main cell-cycle (CC) stages different sets of proteins are active and genes are expressed. Understanding how such cycling cellular behavior emerges and is robustly maintained in the face of changing developmental and environmental conditions, remains a fundamental challenge of biology. The molecular components that cycle through DNA duplication and citokinesis are interconnected in a complex regulatory network. Several models of such network have been proposed, although the regulatory network that robustly recovers a limit-cycle steady state that resembles the behavior of CC molecular components has been recovered only in a few cases, and no comprehensive model exists for plants. In this paper we used the plant Arabidopsis thaliana, as a study system to propose a core regulatory network to recover a cyclic attractor that mimics the oscillatory behavior of the key CC components. Our analyses show that the proposed GRN model is robust to transient alterations, and is validated with the loss- and gain-of-function mutants of the CC components. The interactions proposed for Arabidopsis thaliana CC can inspire predictions for further uncovering regulatory motifs in the CC of other organisms including human.
Collapse
Affiliation(s)
- Elizabeth Ortiz-Gutiérrez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Karla García-Cruz
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Aaron Castillo
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - María de la Paz Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| |
Collapse
|
86
|
Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariutta Y, Murray JAH. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open 2015; 4:1229-36. [PMID: 26340943 PMCID: PMC4610221 DOI: 10.1242/bio.013128] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Shunsuke Miyashima
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tiina Blomster
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Jing Zhang
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Annakaisa Elo
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Anna Karlberg
- Department of Plant Physiology, Umeå University, Umeå SE-901 87, Sweden
| | - Juha Immanen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Karolina Blajecka
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Charles W Melnyk
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Annette Alcasabas
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Celine Forzani
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Miho Matsumoto-Kitano
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ari Pekka Mähönen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | | | - Walter Dewitte
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Ykä Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - James A H Murray
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
87
|
Randall RS, Sornay E, Dewitte W, Murray JAH. AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3991-4000. [PMID: 25948704 PMCID: PMC4473993 DOI: 10.1093/jxb/erv200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant lateral aerial organ (LAO) growth is determined by the number and size of cells comprising the organ. Genetic alteration of one parameter is often accompanied by changes in the other, such that the overall effect on final LAO size is minimized, suggested to be caused by an active organ level 'compensation mechanism'. For example, the aintegumenta (ant) mutant exhibits reduced cell number but increased cell size in LAOs. The ANT transcription factor regulates the duration of the cell division phase of LAO growth, and its ectopic expression is correlated with increased levels of the cell cycle regulator CYCD3;1. This has previously led to the suggestion that ANT regulates CYCD3;1. It is shown here that while ANT is required for normal cell proliferation in petals, CYCD3;1 is not, suggesting that ANT does not regulate CYCD3;1 during petal growth. Moreover CYCD3;1 expression was similar in wild-type and ant-9 flowers. In contrast to the compensatory changes between cell size and number in ant mutants, cycd3;1 mutants show increased petal cell size unaccompanied by changes in cell number, leading to larger organs. However, loss of CYCD3;1 in the ant-9 mutant background leads to a phenotype consistent with compensation mechanisms. These apparently arbitrary examples of compensation are reconciled through a model of LAO growth in which distinct phases of division and cell expansion occupy differing lengths of a defined overall growth window. This leads to the proposal that many observations of 'compensation mechanisms' might alternatively be more simply explained as emergent properties of LAO development.
Collapse
Affiliation(s)
- Ricardo S Randall
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Emily Sornay
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Walter Dewitte
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
88
|
Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, Davies KA, Lau OS, Matos JL, Hachez C, Lanctot A, Vatén A, Birnbaum KD, Bergmann DC. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev Cell 2015; 33:107-18. [PMID: 25850675 DOI: 10.1016/j.devcel.2015.01.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/30/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
Abstract
Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.
Collapse
Affiliation(s)
- Jessika Adrian
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Bastiaan O R Bargmann
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Kelli A Davies
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - On Sun Lau
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Charles Hachez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Amy Lanctot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kenneth D Birnbaum
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
89
|
Saito T, Tuan PA, Katsumi-Horigane A, Bai S, Ito A, Sekiyama Y, Ono H, Moriguchi T. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring. TREE PHYSIOLOGY 2015; 35:653-62. [PMID: 26063707 DOI: 10.1093/treephys/tpv043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/09/2015] [Indexed: 05/03/2023]
Abstract
We periodically investigated the lateral flower bud morphology of 1-year shoots of 'Kosui' pears (Pyrus pyrifolia Nakai) in terms of dormancy progression, using magnetic resonance imaging. The size of flower buds did not change significantly during endodormancy, but rapid enlargement took place at the end of the ecodormancy stage. To gain insight into the physiological status during this period, we analyzed gene expression related to cell cycle-, cell expansion- and water channel-related genes, namely cyclin (CYC), expansin (EXPA), tonoplast intrinsic proteins (TIP) and plasma membrane intrinsic proteins (PIP). Constant but low expression of pear cyclin genes (PpCYCD3s) was observed in the transition phase from endodormancy to ecodormancy. The expression levels of PpCYCD3s were consistent with few changes in flower bud size, but up-regulated before the sprouting stage. In contrast, the expression of pear expansin and water channel-related genes (PpEXPA2, PpPIP2A, PpPIP2B, PpIδTIP1A and PpIδTIP1B) were low until onset of the rapid enlargement stage of flower buds. However, expression of these genes rapidly increased during sprouting along with a gradual increase of free water content in the floral primordia of buds. Taken together, these results suggest that flower bud size tends to stay constant until the endodormancy phase transition. Rapid enlargement of flower buds observed in March is partly due to the enhancement of the cell cycle. Then, sprouting takes place concomitant with the increase in cell expansion and free water movement.
Collapse
Affiliation(s)
- Takanori Saito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Pham Anh Tuan
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Akemi Katsumi-Horigane
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Yasuyo Sekiyama
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroshi Ono
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
90
|
Takei M, Yoshida S, Kawai T, Hasegawa M, Suzuki Y. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:43-51. [PMID: 25437243 DOI: 10.1016/j.jinsphys.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 05/04/2023]
Abstract
Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects.
Collapse
Affiliation(s)
- Mami Takei
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Sayaka Yoshida
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Takashi Kawai
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Morifumi Hasegawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Yoshihito Suzuki
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan.
| |
Collapse
|
91
|
Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun 2014; 5:5628. [DOI: 10.1038/ncomms6628] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/21/2014] [Indexed: 11/09/2022] Open
|
92
|
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JAH. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol 2014; 24:1939-44. [PMID: 25127220 PMCID: PMC4148176 DOI: 10.1016/j.cub.2014.07.019] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells [1] and providing a pool of cells able to replace damaged stem cells [2, 3]. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC [4]. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC. WOX5 prevents divisions at the root stem cell niche center to initiate quiescence WOX5 suppresses CYCD expression in the quiescent center to restrict cell divisions WOX5 binds to the CYCD3;3 promoter CYCD3;3 and CYCD1;1 stimulate division during formation of the columella
Collapse
Affiliation(s)
- Celine Forzani
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Ernst Aichinger
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Emily Sornay
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Viola Willemsen
- Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Laux
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Walter Dewitte
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | - James A H Murray
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
93
|
Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. PLANT MOLECULAR BIOLOGY 2014; 85:259-75. [PMID: 24532380 DOI: 10.1007/s11103-014-0181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 02/06/2014] [Indexed: 05/08/2023]
Abstract
Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.
Collapse
Affiliation(s)
- Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
94
|
Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H, Xu N, Zhong M, Qiao Z, Tang Y, Song R. Proline responding1 Plays a Critical Role in Regulating General Protein Synthesis and the Cell Cycle in Maize. THE PLANT CELL 2014; 26:2582-2600. [PMID: 24951479 PMCID: PMC4114953 DOI: 10.1105/tpc.114.125559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 05/18/2023]
Abstract
Proline, an important amino acid, accumulates in many plant species. Besides its role in plant cell responses to environmental stresses, the potential biological functions of proline in growth and development are unclear. Here, we report cloning and functional characterization of the maize (Zea mays) classic mutant proline responding1 (pro1) gene. This gene encodes a Δ1-pyrroline-5- carboxylate synthetase that catalyzes the biosynthesis of proline from glutamic acid. Loss of function of Pro1 significantly inhibits proline biosynthesis and decreases its accumulation in the pro1 mutant. Proline deficiency results in an increased level of uncharged tRNApro AGG accumulation and triggers the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the pro1 mutant, leading to a general reduction in protein synthesis in this mutant. Proline deficiency also downregulates major cyclin genes at the transcriptional level, causing cell cycle arrest and suppression of cell proliferation. These processes are reversible when external proline is supplied to the mutant, suggesting that proline plays a regulatory role in the cell cycle transition. Together, the results demonstrate that proline plays an important role in the regulation of general protein synthesis and the cell cycle transition in plants.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| | - Jushan Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| | - Xiangyu Fan
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Xin Sun
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hongli Qin
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Nan Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Mingyu Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhenyi Qiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| |
Collapse
|
95
|
Dehghan Nayeri F. Identification of transcription factors linked to cell cycle regulation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e972864. [PMID: 25482767 PMCID: PMC4622563 DOI: 10.4161/15592316.2014.972864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/04/2023]
Abstract
Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovered TFs that are involved in the control of cell cycle progression. With the aid of multi-parallel quantitative RT-PCR, the expression changes of 1880 TFs represented in the Arabidopsis TF platform was monitored in Arabidopsis synchronous MM2d cells during a 19 h period representing different time points corresponding to the 4 cell cycle phases after treatment of MM2d cells with Aphidicolin. Comparative TF expression analyses performed on synchronous cells resulted in the identification of 239 TFs differentially expressed during the cell cycle, while about one third of TFs were constitutively expressed through all time points. Phase-specific TFs were also identified.
Collapse
Affiliation(s)
- Fatemeh Dehghan Nayeri
- Max-Planck Institute of Molecular Plant Physiology; Am Mühlenberg 1; Potsdam-Golm, Germany
- Department of Agricultural Biotechnology; Faculty of Engineering and Technology; Imam Khomeini International University; Qazvin, Iran
| |
Collapse
|
96
|
YAMASAKI S, SHIGETO H, ASHIHARA Y, NOGUCHI N. Continuous Long-term UV-B Irradiation Reduces Division and Expansion of Epidermal Cells in True Leaves, but Accelerates Developmental Stages Such as True Leaf Unfolding and Male Flower Bud Production in Cucumber (Cucumis sativus L.) Seedlings. ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.52.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
97
|
Li J, Wei H, Liu T, Zhao PX. GPLEXUS: enabling genome-scale gene association network reconstruction and analysis for very large-scale expression data. Nucleic Acids Res 2013; 42:e32. [PMID: 24178033 PMCID: PMC3950724 DOI: 10.1093/nar/gkt983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate construction and interpretation of gene association networks (GANs) is challenging, but crucial, to the understanding of gene function, interaction and cellular behavior at the genome level. Most current state-of-the-art computational methods for genome-wide GAN reconstruction require high-performance computational resources. However, even high-performance computing cannot fully address the complexity involved with constructing GANs from very large-scale expression profile datasets, especially for the organisms with medium to large size of genomes, such as those of most plant species. Here, we present a new approach, GPLEXUS (http://plantgrn.noble.org/GPLEXUS/), which integrates a series of novel algorithms in a parallel-computing environment to construct and analyze genome-wide GANs. GPLEXUS adopts an ultra-fast estimation for pairwise mutual information computing that is similar in accuracy and sensitivity to the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) method and runs ∼1000 times faster. GPLEXUS integrates Markov Clustering Algorithm to effectively identify functional subnetworks. Furthermore, GPLEXUS includes a novel ‘condition-removing’ method to identify the major experimental conditions in which each subnetwork operates from very large-scale gene expression datasets across several experimental conditions, which allows users to annotate the various subnetworks with experiment-specific conditions. We demonstrate GPLEXUS’s capabilities by construing global GANs and analyzing subnetworks related to defense against biotic and abiotic stress, cell cycle growth and division in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jun Li
- Plant Biology Division, the Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA and School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
98
|
Shen Q, Wang YT, Tian H, Guo FQ. Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. MOLECULAR PLANT 2013; 6:1214-25. [PMID: 23239827 DOI: 10.1093/mp/sss148] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cytokinin and nitric oxide (NO) have been characterized as signaling molecules to trigger cell division in tissue culture. Here, we show that the hypocotyl and root explants of Arabidopsis NO-deficient mutant nos1/noa1 exhibit severe defects in callus induction and shoot regeneration in response to cytokinin. Accordingly, depletion of NO caused by a NO scavenger leads to a severe inhibitory effect on callus induction. Moreover, cytokinin-induced NO production is impaired in nos1/noa1 in which cytokinin-triggered activation of cell cycle gene CYCD3;1 is inhibited, indicating that NO may act downstream of cytokinin in the control of cell proliferation through CYCD3;1. This hypothesis is further confirmed by the genetic evidence that constitutive expression of CYCD3;1 complements the defects of nos1/noa1 mutant in meristematic activity in shoot, root, and floral tissues as well as in cytokinin-induced callus initiation and shoot regeneration. Furthermore, we show that NO deficiency caused by loss of NOS1/NOA1 impairs cellular development such as the duration of the mitotic phase and timing of the transition to endocycles in nos1/noa1 mutant leaves, which can be reverted by constitutive expression of CYCD3;1. Taken together, these results demonstrate that NO mediates transcriptional activation of CYCD3;1 in regulating the mitotic cycles in response to cytokinins.
Collapse
Affiliation(s)
- Qi Shen
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research Shanghai, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
99
|
Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:920-34. [PMID: 23566016 DOI: 10.1111/tpj.12178] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 05/02/2023]
Abstract
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Jégu T, Latrasse D, Delarue M, Mazubert C, Bourge M, Hudik E, Blanchet S, Soler MN, Charon C, De Veylder L, Raynaud C, Bergounioux C, Benhamed M. Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation. PLANT PHYSIOLOGY 2013; 161:1694-705. [PMID: 23426196 PMCID: PMC3613449 DOI: 10.1104/pp.112.212357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/01/2013] [Indexed: 05/18/2023]
Abstract
Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.
Collapse
|