51
|
Fang L, Zhang Z, Zhao T, Zhou N, Mei H, Huang X, Wang F, Si Z, Han Z, Lu S, Hu Y, Guan X, Zhang T. Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1770-1785. [PMID: 35633313 PMCID: PMC9398350 DOI: 10.1111/pbi.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
After polyploidization originated from one interspecific hybridization event in Gossypium, Gossypium barbadense evolved to produce extra-long staple fibres than Gossypium hirsutum (Upland cotton), which produces a higher fibre yield. The genomic diversity between G. barbadense and G. hirsutum thus provides a genetic basis for fibre trait variation. Recently, rapid accumulation of gene disruption or deleterious mutation was reported in allotetraploid cotton genomes, with unknown impacts on fibre traits. Here, we identified gene disruptions in allotetraploid G. hirsutum (18.14%) and G. barbadense (17.38%) through comparison with their presumed diploid progenitors. Relative to conserved genes, these disrupted genes exhibited faster evolution rate, lower expression level and altered gene co-expression networks. Within a module regulating fibre elongation, a hub gene experienced gene disruption in G. hirsutum after polyploidization, with a 2-bp deletion in the coding region of GhNPLA1D introducing early termination of translation. This deletion was observed in all of the 34 G. hirsutum landraces and 36 G. hirsutum cultivars, but not in 96% of 57 G. barbadense accessions. Retrieving the disrupted gene GhNPLA1D using its homoeolog GhNPLA1A achieved longer fibre length in G. hirsutum. Further enzyme activity and lipids analysis confirmed that GhNPLA1A encodes a typical phospholipase A and promotes cotton fibre elongation via elevating intracellular levels of linolenic acid and 34:3 phosphatidylinositol. Our work opens a strategy for identifying disrupted genes and retrieving their functions in ways that can provide valuable resources for accelerating fibre trait enhancement in cotton breeding.
Collapse
Affiliation(s)
- Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang UniversitySanyaChina
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research InstituteNanjing Agricultural UniversityNanjingChina
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Na Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research InstituteNanjing Agricultural UniversityNanjingChina
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xingqi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Fang Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research InstituteNanjing Agricultural UniversityNanjingChina
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
52
|
Chen H, Li S, Zhao W, Deng J, Yan Z, Zhang T, Wen SA, Guo H, Li L, Yuan J, Zhang H, Ma L, Zheng J, Gao M, Pang Y. A Peptidomic Approach to Identify Novel Antigen Biomarkers for the Diagnosis of Tuberculosis. Infect Drug Resist 2022; 15:4617-4626. [PMID: 36003990 PMCID: PMC9394730 DOI: 10.2147/idr.s373652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Here, we conducted a peptidomic study in murine model to identify novel antigen biomarkers for the diagnosis of tuberculosis (TB) with improved performance. Methods Four recombinant proteins, including Mycobacterium tuberculosis protein 32 (MPT32), Mycobacterium tuberculosis protein 64 (MPT64), culture filtrate protein 10 (CFP10), and phosphate ABC transporter substrate-binding lipoprotein (PstS1) were expressed and intravenously injected into BALB/c mice. The serum were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of candidate peptides in serum of suspected TB patients were determined using competitive enzyme-linked immunosorbent assay. Results A total of 65 peptides from 4 MTB precursor recombinant proteins were identified in mouse serum by LC-MS/MS, of which 5 peptides were selected as candidates for serological analysis. The concentrations of peptides MPT64-2, CFP10-2 and PstS1-2 in TB patients were significantly higher than those in non-TB patients. MPT64-2 exhibited the most promising sensitivity (81.4%), followed by PstS1-2 and CFP10-2. In addition, PstS1-2 had the highest specificity (93.3%), followed by CFP10-2 and MPT64-2. According to the area under the curve (AUC), MPT64-2 (AUC = 0.863), PstS1-2 (AUC = 0.812) and CFP10-2 (AUC = 0.809) exhibited better diagnostic validity. Conclusion We develop an effective approach to identify new antigen biomarkers via LC-MS/MS-based peptidomics. Multiple peptides exhibit promising efficacy in diagnosis of active TB patients.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Weijie Zhao
- Clinical Trial Agency Office, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jiaheng Deng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Tingting Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shu' An Wen
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Haiping Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Lei Li
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Jianfeng Yuan
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jianhua Zheng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|
53
|
Shi Z, Chen X, Xue H, Jia T, Meng F, Liu Y, Luo X, Xiao G, Zhu S. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:785-799. [PMID: 35653239 PMCID: PMC9544170 DOI: 10.1111/tpj.15852] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.
Collapse
Affiliation(s)
- Zemin Shi
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xia Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huidan Xue
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'an710021China
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710012China
| | - Tingting Jia
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Funing Meng
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunfei Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaomin Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| | - Guanghui Xiao
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| |
Collapse
|
54
|
Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks. Genes (Basel) 2022; 13:genes13060954. [PMID: 35741716 PMCID: PMC9222338 DOI: 10.3390/genes13060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.
Collapse
|
55
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
56
|
Molecular Regulation of Cotton Fiber Development: A Review. Int J Mol Sci 2022; 23:ijms23095004. [PMID: 35563394 PMCID: PMC9101851 DOI: 10.3390/ijms23095004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton (Gossypium spp.) is an economically important natural fiber crop. The quality of cotton fiber has a substantial effect on the quality of cotton textiles. The identification of cotton fiber development-related genes and exploration of their biological functions will not only enhance our understanding of the elongation and developmental mechanisms of cotton fibers but also provide insights that could aid the cultivation of new cotton varieties with improved fiber quality. Cotton fibers are single cells that have been differentiated from the ovule epidermis and serve as a model system for research on single-cell differentiation, growth, and fiber production. Genes and fiber formation mechanisms are examined in this review to shed new light on how important phytohormones, transcription factors, proteins, and genes linked to fiber development work together. Plant hormones, which occur in low quantities, play a critically important role in regulating cotton fiber development. Here, we review recent research that has greatly contributed to our understanding of the roles of different phytohormones in fiber development and regulation. We discuss the mechanisms by which phytohormones regulate the initiation and elongation of fiber cells in cotton, as well as the identification of genes involved in hormone biosynthetic and signaling pathways that regulate the initiation, elongation, and development of cotton fibers.
Collapse
|
57
|
Heterologous Expression of Jatropha curcas Fatty Acyl-ACP Thioesterase A (JcFATA) and B (JcFATB) Affects Fatty Acid Accumulation and Promotes Plant Growth and Development in Arabidopsis. Int J Mol Sci 2022; 23:ijms23084209. [PMID: 35457027 PMCID: PMC9029028 DOI: 10.3390/ijms23084209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.
Collapse
|
58
|
Jiang J, Shi Z, Ma F, Liu K. Identification of key proteins related to high-quality fiber in Upland cotton via proteomics analysis. PLANT CELL REPORTS 2022; 41:893-904. [PMID: 35094124 DOI: 10.1007/s00299-021-02825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The dynamics of cotton fiber elongation and microfibirl deposition orientation were delineated; advanced ethylene synthesis and redox reaction homeostasis may be crucial for high-quality fiber formation. Fiber length, strength, and fineness determine the use and commercial value of cotton fiber, but their underlying molecular mechanisms remain obscure. We compared the dynamic change trajectories of length, diameter and microfibril orientation angle of the fibers produced by an introgression line SY6167 which generates high-quality fibers even better than Sea island cotton with those of the common-quality fibers from TM-1 across 5 to 30 days post anthesis (DPA). The proteomes were profiled and compared at six representative time points using 2-DE and MS/MS. 14 proteins differentially expressed inside each of cotton line temporally and significantly different tween the two lines were identified. The dynamic change trajectories of fiber length and microfibril angle are close to "s" and reverse "s" growth curves, respectively. SY6167 and TM-1 fibers entered the logarithmic elongation phase simultaneously at 10 DPA, and SY6167 kept elongating logarithmically for 2 more days than TM-1. In parallel to logarithmic elongation, microfibril orientation angles dived sharply, and SY6167 declined faster for a shorter duration than TM-1. 53% of the identified proteins are related to redox homeostasis, and most of them are expressed at higher levels in SY6167 during logarithmic elongation. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO) started to accumulate at 16 DPA in SY6167, and its encoding genes were highly expressed at this stage, with a much higher level than TM-1. These findings suggest high-quality fibers are associated with high expression of the proteins related to stress and redox homeostasis, the continuously elevated expression of ethylene synthesis ACO gene may play an essential role.
Collapse
Affiliation(s)
- Jiuhua Jiang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhonghui Shi
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangfang Ma
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
59
|
Richmond BL, Coelho CL, Wilkinson H, McKenna J, Ratchinski P, Schwarze M, Frost M, Lagunas B, Gifford ML. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13681. [PMID: 35362177 PMCID: PMC9324854 DOI: 10.1111/ppl.13681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Maximillian Schwarze
- School of Life SciencesUniversity of WarwickCoventryUK
- School of BiosciencesBirminghamUK
| | - Matthew Frost
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Miriam L. Gifford
- School of Life SciencesUniversity of WarwickCoventryUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryUK
| |
Collapse
|
60
|
Identification and Analysis of the EIN3/EIL Gene Family in Populus × xiaohei T. S. Hwang et Liang: Expression Profiling during Stress. FORESTS 2022. [DOI: 10.3390/f13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ethylene-insensitive 3-like (EIN3/EIL) gene family, as a transcriptional activator in plants, not only plays an important role in the ethylene-signaling pathway in regulating plant growth and development but also participates in the defense against various biotic and abiotic stresses. However, there are few studies on the functions of EIN3/EIL genes in woody plants. Populus × xiaohei is a kind of tree species with strong drought resistance and salt-alkali tolerance and, thus, is an ideal subject for studying abiotic stress mechanisms in trees. Eight EIN3/EIL genes were cloned from Populus × xiaohei. Bioinformatic analysis showed that the PsnEIN3/EIL gene contained a highly conserved EIN3 domain, N-terminal sites rich in proline and glutamine, and other EIN3/EIL family structural characteristics. The results of a multi-species phylogenetic analysis showed that the family EIN3/EIL proteins were divided into three groups (A, B, and C). EIL3 and EIL4 belonged to groups A and B, while EIL2 and EIN3 generally belonged to group C. Analysis of tissue expression characteristics showed that PsnEIN3/EIL was expressed in different tissues and was involved in the development of stem nodes and leaves. The response analysis of the expression of PsnEIN3/EIL under abscisic acid (ABA) and abiotic stresses (salts, heavy metals, alkaline conditions, and drought) showed changes in expression, suggesting that PsnEIN3/EIL may be involved in the processes of plant hormone responses to salts, heavy metals, alkaline conditions, and drought. This study provides a foundation for further elucidation of the functions of EIN3/EIL genes in forest growth and development and abiotic stress responses.
Collapse
|
61
|
Prasad P, Khatoon U, Verma RK, Aalam S, Kumar A, Mohapatra D, Bhattacharya P, Bag SK, Sawant SV. Transcriptional Landscape of Cotton Fiber Development and Its Alliance With Fiber-Associated Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:811655. [PMID: 35283936 PMCID: PMC8908376 DOI: 10.3389/fpls.2022.811655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cotton fiber development is still an intriguing question to understand fiber commitment and development. At different fiber developmental stages, many genes change their expression pattern and have a pivotal role in fiber quality and yield. Recently, numerous studies have been conducted for transcriptional regulation of fiber, and raw data were deposited to the public repository for comprehensive integrative analysis. Here, we remapped > 380 cotton RNAseq data with uniform mapping strategies that span ∼400 fold coverage to the genome. We identified stage-specific features related to fiber cell commitment, initiation, elongation, and Secondary Cell Wall (SCW) synthesis and their putative cis-regulatory elements for the specific regulation in fiber development. We also mined Exclusively Expressed Transcripts (EETs) that were positively selected during cotton fiber evolution and domestication. Furthermore, the expression of EETs was validated in 100 cotton genotypes through the nCounter assay and correlated with different fiber-related traits. Thus, our data mining study reveals several important features related to cotton fiber development and improvement, which were consolidated in the "CottonExpress-omics" database.
Collapse
Affiliation(s)
- Priti Prasad
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uzma Khatoon
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Rishi Kumar Verma
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahre Aalam
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Ajay Kumar
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Sumit K. Bag
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samir V. Sawant
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
62
|
Rui C, Chen X, Xu N, Wang J, Zhang H, Li S, Huang H, Fan Y, Zhang Y, Lu X, Wang D, Gao W, Ye W. Identification and Structure Analysis of KCS Family Genes Suggest Their Reponding to Regulate Fiber Development in Long-Staple Cotton Under Salt-Alkaline Stress. Front Genet 2022; 13:812449. [PMID: 35186036 PMCID: PMC8850988 DOI: 10.3389/fgene.2022.812449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Plant 3-ketoacyl-CoA synthase (KCS) gene family catalyzed a β ketoacyl-CoA synthase, which was the rate-limiting enzyme for the synthesis of very long chain fatty acids (VLCFAs). Gossypium barbadense was well-known not only for high-quality fiber, which was perceived as a cultivated species of Gossypium. In this study, a total of 131 KCS genes were identified in four cotton species, there were 38, 44, 26, 23 KCS genes in the G. barbadense, the G. hirsutum, the G. arboreum and G. raimondii, respectively. The gene structure and expression pattern were analyzed. GBKCS genes were divided into six subgroups, the chromosome distribution of members of the family were mapped. The prediction of cis-acting elements of the GBKCS gene promoters suggested that the GBKCS genes may be involved in hormone signaling, defense and the stress response. Collinearity analysis on the KCS genes of the four cotton species were formulated. Tandem duplication played an indispensable role in the evolution of the KCS gene family. Specific expression analysis of 20 GBKCS genes indicated that GBKCS gene were widely expressed in the first 25 days of fiber development. Among them, GBKCS3, GBKCS8, GBKCS20, GBKCS34 were expressed at a high level in the initial long-term level of the G. barbadense fiber. This study established a foundation to further understanding of the evolution of KCS genes and analyze the function of GBKCS genes.
Collapse
Affiliation(s)
- Cun Rui
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Hong Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Hui Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| |
Collapse
|
63
|
Pei L, Huang X, Liu Z, Tian X, You J, Li J, Fang DD, Lindsey K, Zhu L, Zhang X, Wang M. Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation. Genome Biol 2022; 23:45. [PMID: 35115029 PMCID: PMC8812185 DOI: 10.1186/s13059-022-02616-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. RESULTS To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. CONCLUSIONS This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
64
|
Yang R, Yang Z, Peng Z, He F, Shi L, Dong Y, Ren M, Zhang Q, Geng G, Zhang S. Integrated transcriptomic and proteomic analysis of Tritipyrum provides insights into the molecular basis of salt tolerance. PeerJ 2022; 9:e12683. [PMID: 35036157 PMCID: PMC8710252 DOI: 10.7717/peerj.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Soil salinity is a major environmental stress that restricts crop growth and yield. Methods Here, crucial proteins and biological pathways were investigated under salt-stress and recovery conditions in Tritipyrum ‘Y1805’ using the data-independent acquisition proteomics techniques to explore its salt-tolerance mechanism. Results In total, 44 and 102 differentially expressed proteins (DEPs) were identified in ‘Y1805’ under salt-stress and recovery conditions, respectively. A proteome-transcriptome-associated analysis revealed that the expression patterns of 13 and 25 DEPs were the same under salt-stress and recovery conditions, respectively. ‘Response to stimulus’, ‘antioxidant activity’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, ‘signal transduction’, ‘transport and catabolism’ and ‘biosynthesis of other secondary metabolites’ were present under both conditions in ‘Y1805’. In addition, ‘energy metabolism’ and ‘lipid metabolism’ were recovery-specific pathways, while ‘antioxidant activity’, and ‘molecular function regulator’ under salt-stress conditions, and ‘virion’ and ‘virion part’ during recovery, were ‘Y1805’-specific compared with the salt-sensitive wheat ‘Chinese Spring’. ‘Y1805’ contained eight specific DEPs related to salt-stress responses. The strong salt tolerance of ‘Y1805’ could be attributed to the strengthened cell walls, reactive oxygen species scavenging, osmoregulation, phytohormone regulation, transient growth arrest, enhanced respiration, transcriptional regulation and error information processing. These data will facilitate an understanding of the molecular mechanisms of salt tolerance and aid in the breeding of salt-tolerant wheat.
Collapse
Affiliation(s)
- Rui Yang
- Guizhou University, Guiyang, China
| | | | - Ze Peng
- Guizhou University, Guiyang, China
| | - Fang He
- Guizhou University, Guiyang, China
| | - Luxi Shi
- Guizhou University, Guiyang, China
| | | | - Mingjian Ren
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | | | | | - Suqin Zhang
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| |
Collapse
|
65
|
CAO S, MENG L, MA C, BA L, LEI J, JI N, WANG R. Effect of ozone treatment on physicochemical parameters and ethylene biosynthesis inhibition in Guichang Kiwifruit. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sen CAO
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Lingshuai MENG
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Chao MA
- Guizhou Engineering Research Center for Fruit Processing, China
| | - Liangjie BA
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Jiqing LEI
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Ning JI
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Rui WANG
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| |
Collapse
|
66
|
Mei H, Qi B, Han Z, Zhao T, Guo M, Han J, Zhang J, Guan X, Hu Y, Zhang T, Fang L. Subgenome Bias and Temporal Postponement of Gene Expression Contributes to the Distinctions of Fiber Quality in Gossypium Species. FRONTIERS IN PLANT SCIENCE 2021; 12:819679. [PMID: 35003198 PMCID: PMC8733733 DOI: 10.3389/fpls.2021.819679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As two cultivated widely allotetraploid cotton species, although Gossypium hirsutum and Gossypium barbadense evolved from the same ancestor, they differ in fiber quality; the molecular mechanism of that difference should be deeply studied. Here, we performed RNA-seq of fiber samples from four G. hirsutum and three G. barbadense cultivars to compare their gene expression patterns on multiple dimensions. We found that 15.90-37.96% of differentially expressed genes showed biased expression toward the A or D subgenome. In particular, interspecific biased expression was exhibited by a total of 330 and 486 gene pairs at 10 days post-anthesis (DPA) and 20 DPA, respectively. Moreover, 6791 genes demonstrated temporal differences in expression, including 346 genes predominantly expressed at 10 DPA in G. hirsutum (TM-1) but postponed to 20 DPA in G. barbadense (Hai7124), and 367 genes predominantly expressed at 20 DPA in TM-1 but postponed to 25 DPA in Hai7124. These postponed genes mainly participated in carbohydrate metabolism, lipid metabolism, plant hormone signal transduction, and starch and sucrose metabolism. In addition, most of the co-expression network and hub genes involved in fiber development showed asymmetric expression between TM-1 and Hai7124, like three hub genes detected at 10 DPA in TM-1 but not until 25 DPA in Hai7124. Our study provides new insights into interspecific expression bias and postponed expression of genes associated with fiber quality, which are mainly tied to asymmetric hub gene network. This work will facilitate further research aimed at understanding the mechanisms underlying cotton fiber improvement.
Collapse
Affiliation(s)
- Huan Mei
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bowen Qi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Menglan Guo
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Hu
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
67
|
Lian XY, Gao HN, Jiang H, Liu C, Li YY. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. PLANT CELL REPORTS 2021; 40:2357-2368. [PMID: 34468851 DOI: 10.1007/s00299-021-02776-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
We found that the apple wax related gene played a role in changing plant epidermal permeability and enhancing plant resistance to drought stress by increasing wax accumulation. The content and composition of epidermal wax in plants are affected by genetic and environmental factors. The KCS gene encodes the β-ketoalionyl-CoA synthetase, which is a rate-limiting enzyme in the synthesis of very-long-chain fatty acids (VLCFAs). In this study, we identified the MdKCS2 gene from apple as a homolog of Arabidopsis AtKCS2. The KCS protein is localized on the endoplasmic reticulum membrane. MdKCS2 exhibited the highest expression in apple pericarp, and was induced by abiotic stresses, such as drought and salt. Transgenic analysis indicated that the MdKCS2 improved the resistance to abiotic stress in apple calli. Ectopic expression of MdKCS2 in Arabidopsis increased the content of wax in leaves and stems, changed the permeability of cuticle of leaves, and enhanced plant drought resistance.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, 32601, USA
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
68
|
Household Clusters of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Suzhou, China. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5565549. [PMID: 34664026 PMCID: PMC8520496 DOI: 10.1155/2021/5565549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023]
Abstract
Objectives The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus causing substantial morbidity and mortality worldwide. We performed a cross-sectional investigation of SARS-CoV-2 clusters in Suzhou to determine the transmissibility of the virus among close contacts and to assess the demographic and clinical characteristics between index and secondary cases. Methods We review the clustered patients with SARS-CoV-2 infections in Suzhou between 22 January and 29 February 2020. The demographic and clinical characteristics were compared between index and secondary cases. We calculated the basic reproduction number (R0) among close contacts with SLI model. Results By 22 February, 87 patients with SARS-CoV-2 infection were reported, including 50 sporadic and 37 clustered cases, who were generated from 13 clusters. On admission, 5 (20.8%) out of 24 secondary cases were asymptomatic. The male ratio of index cases was significantly higher than that of secondary cases. Additionally, the index cases were more likely to have fever and increased CRP levels than the secondary cases. The R0 values of clusters displayed a significantly declining trend over time for all clusters. The relative risk of infection in blood-related contacts of cases versus unrelated contacts was 1.60 for SARS-CoV-2 (95% CI: 0.42-2.95). Conclusions In conclusion, SARS-CoV-2 has great person-to-person transmission capability among close contacts. The secondary cases are more prone to have mild symptoms than index cases. There is no increased RR of secondary infection in blood relatives versus unrelated contacts. The high rate of asymptomatic SARS-CoV-2 infections highlights the urgent need to enhance active case finding strategy for early detection of infectious patients.
Collapse
|
69
|
Chen Q, Xu F, Wang L, Suo X, Wang Q, Meng Q, Huang L, Ma C, Li G, Luo M. Sphingolipid Profile during Cotton Fiber Growth Revealed That a Phytoceramide Containing Hydroxylated and Saturated VLCFA Is Important for Fiber Cell Elongation. Biomolecules 2021; 11:biom11091352. [PMID: 34572565 PMCID: PMC8466704 DOI: 10.3390/biom11091352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Cotton fiber is a single-celled seed trichrome that arises from the epidermis of the ovule’s outer integument. The fiber cell displays high polar expansion and thickens but not is disrupted by cell division. Therefore, it is an ideal model for studying the growth and development of plant cells. Sphingolipids are important components of membranes and are also active molecules in cells. However, the sphingolipid profile during fiber growth and the differences in sphingolipid metabolism at different developmental stages are still unclear. In this study, we detected that there were 6 classes and 95 molecular species of sphingolipids in cotton fibers by ultrahigh performance liquid chromatography-MS/MS (UHPLC-MS/MS). Among these, the phytoceramides (PhytoCer) contained the most molecular species, and the PhytoCer content was highest, while that of sphingosine-1-phosphate (S1P) was the lowest. The content of PhytoCer, phytoceramides with hydroxylated fatty acyls (PhytoCer-OHFA), phyto-glucosylceramides (Phyto-GluCer), and glycosyl-inositol-phospho-ceramides (GIPC) was higher than that of other classes in fiber cells. With the development of fiber cells, phytosphingosine-1-phosphate (t-S1P) and PhytoCer changed greatly. The sphingolipid molecular species Ceramide (Cer) d18:1/26:1, PhytoCer t18:1/26:0, PhytoCer t18:0/26:0, PhytoCer t18:1/h20:0, PhytoCer t18:1/h26:0, PhytoCer t18:0/h26:0, and GIPC t18:0/h16:0 were significantly enriched in 10-DPA fiber cells while Cer d18:1/20:0, Cer d18:1/22:0, and GIPC t18:0/h18:0 were significantly enriched in 20-DPA fiber cells, indicating that unsaturated PhytoCer containing hydroxylated and saturated very long chain fatty acids (VLCFA) play some role in fiber cell elongation. Consistent with the content analysis results, the related genes involved in long chain base (LCB) hydroxylation and unsaturation as well as VLCFA synthesis and hydroxylation were highly expressed in rapidly elongating fiber cells. Furthermore, the exogenous application of a potent inhibitor of serine palmitoyltransferase, myriocin, severely blocked fiber cell elongation, and the exogenous application of sphingosine antagonized the inhibition of myriocin for fiber elongation. Taking these points together, we concluded that sphingolipids play crucial roles in fiber cell elongation and SCW deposition. This provides a new perspective for further studies on the regulatory mechanism of the growth and development of cotton fiber cells.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaodong Suo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Correspondence:
| |
Collapse
|
70
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, Laing WA, Schaffer RJ, Atkinson RG, Allan AC. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC PLANT BIOLOGY 2021; 21:411. [PMID: 34496770 PMCID: PMC8425125 DOI: 10.1186/s12870-021-03154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.
Collapse
Affiliation(s)
- Niels J. Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Mickaël Pellan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Lei Zhang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | | | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198 New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
71
|
Wang NN, Li Y, Chen YH, Lu R, Zhou L, Wang Y, Zheng Y, Li XB. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and elongation in cotton (Gossypium hirsutum). THE PLANT CELL 2021; 33:2736-2752. [PMID: 34043792 PMCID: PMC8408482 DOI: 10.1093/plcell/koab153] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/15/2021] [Indexed: 05/25/2023]
Abstract
Cotton, one of the most important crops in the world, produces natural fiber materials for the textile industry. WRKY transcription factors play important roles in plant development and stress responses. However, little is known about whether and how WRKY transcription factors regulate fiber development of cotton so far. In this study, we show that a fiber-preferential WRKY transcription factor, GhWRKY16, positively regulates fiber initiation and elongation. GhWRKY16-silenced transgenic cotton displayed a remarkably reduced number of fiber protrusions on the ovule and shorter fibers compared to the wild-type. During early fiber development, GhWRKY16 directly binds to the promoters of GhHOX3, GhMYB109, GhCesA6D-D11, and GhMYB25 to induce their expression, thereby promoting fiber initiation and elongation. Moreover, GhWRKY16 is phosphorylated by the mitogen-activated protein kinase GhMPK3-1 at residues T-130 and S-260. Phosphorylated GhWRKY16 directly activates the transcription of GhMYB25, GhHOX3, GhMYB109, and GhCesA6D-D11 for early fiber development. Thus, our data demonstrate that GhWRKY16 plays a crucial role in fiber initiation and elongation, and that GhWRKY16 phosphorylation by GhMPK3-1 is essential for the transcriptional activation on downstream genes during the fiber development of cotton.
Collapse
Affiliation(s)
- Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yi-Hao Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rui Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
72
|
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. MEMBRANES 2021; 11:membranes11070471. [PMID: 34202386 PMCID: PMC8307351 DOI: 10.3390/membranes11070471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cotton fiber is an extremely elongated single cell derived from the ovule epidermis and is an ideal model for studying cell development. The plasma membrane is tremendously expanded and accompanied by the coordination of various physiological and biochemical activities on the membrane, one of the three major systems of a eukaryotic cell. This review compiles the recent progress and advances for the roles of the membrane in cotton fiber development: the functions of membrane lipids, especially the fatty acids, sphingolipids, and phytosterols; membrane channels, including aquaporins, the ATP-binding cassette (ABC) transporters, vacuolar invertase, and plasmodesmata; and the regulation mechanism of membrane proteins, such as membrane binding enzymes, annexins, and receptor-like kinases.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Qian Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Li Huang
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Ming Luo
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
- Correspondence:
| |
Collapse
|
73
|
Huang G, Huang JQ, Chen XY, Zhu YX. Recent Advances and Future Perspectives in Cotton Research. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:437-462. [PMID: 33428477 DOI: 10.1146/annurev-arplant-080720-113241] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A0-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of GoPGF in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.
Collapse
Affiliation(s)
- Gai Huang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Xian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
74
|
Wang X, Miao Y, Cai Y, Sun G, Jia Y, Song S, Pan Z, Zhang Y, Wang L, Fu G, Gao Q, Ji G, Wang P, Chen B, Peng Z, Zhang X, Wang X, Ding Y, Hu D, Geng X, Wang L, Pang B, Gong W, He S, Du X. Large-fragment insertion activates gene GaFZ (Ga08G0121) and is associated with the fuzz and trichome reduction in cotton (Gossypium arboreum). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1110-1124. [PMID: 33369825 PMCID: PMC8196653 DOI: 10.1111/pbi.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Cotton seeds are typically covered by lint and fuzz fibres. Natural 'fuzzless' mutants are an ideal model system for identifying genes that regulate cell initiation and elongation. Here, using a genome-wide association study (GWAS), we identified a ~ 6.2 kb insertion, larINDELFZ , located at the end of chromosome 8, composed of a ~ 5.0 kb repetitive sequence and a ~ 1.2 kb fragment translocated from chromosome 12 in fuzzless Gossypium arboreum. The presence of larINDELFZ was associated with a fuzzless seed and reduced trichome phenotypes in G. arboreum. This distant insertion was predicted to be an enhancer, located ~ 18 kb upstream of the dominant-repressor GaFZ (Ga08G0121). Ectopic overexpression of GaFZ in Arabidopsis thaliana and G. hirsutum suggested that GaFZ negatively modulates fuzz and trichome development. Co-expression and interaction analyses demonstrated that GaFZ might impact fuzz fibre/trichome development by repressing the expression of genes in the very-long-chain fatty acid elongation pathway. Thus, we identified a novel regulator of fibre/trichome development while providing insights into the importance of noncoding sequences in cotton.
Collapse
Affiliation(s)
- Xiaoyang Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Crop Information CenterCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Gaofei Sun
- College of Computer Science and Information EngineeringAnyang Institute of TechnologyAnyangChina
| | - Yinhua Jia
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Song Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoe Pan
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yuanming Zhang
- Crop Information CenterCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liyuan Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Guoyong Fu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Qiong Gao
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Gaoxiang Ji
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Pengpeng Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Baojun Chen
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhen Peng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiao Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yi Ding
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Daowu Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaoli Geng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Liru Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Baoyin Pang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Wenfang Gong
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest TreesMinistry of EducationCentral South University of Forestry and Technology, Ministry of EducationChangshaChina
| | - Shoupu He
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiongming Du
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
75
|
Sarfraz Z, Iqbal MS, Geng X, Iqbal MS, Nazir MF, Ahmed H, He S, Jia Y, Pan Z, Sun G, Ahmad S, Wang Q, Qin H, Liu J, Liu H, Yang J, Ma Z, Xu D, Yang J, Zhang J, Li Z, Cai Z, Zhang X, Zhang X, Huang A, Yi X, Zhou G, Li L, Zhu H, Pang B, Wang L, Sun J, Du X. GWAS Mediated Elucidation of Heterosis for Metric Traits in Cotton ( Gossypium hirsutum L.) Across Multiple Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:565552. [PMID: 34093598 PMCID: PMC8173050 DOI: 10.3389/fpls.2021.565552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
For about a century, plant breeding has widely exploited the heterosis phenomenon-often considered as hybrid vigor-to increase agricultural productivity. The ensuing F1 hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis. Although cotton is among the highly valued crops, its improvement programs that involve the exploitation of heterosis are still limited in terms of significant accomplishments to make it broadly applicable in different agro-ecological zones. Here, F1 hybrids were derived from mating a diverse Upland Cotton germplasm with commercially valuable cultivars in the Line × Tester fashion and evaluated across multiple environments for 10 measurable traits. These traits were dissected into five different heterosis types and specific combining ability (SCA). Subsequent genome-wide predictions along-with association analyses uncovered a set of 298 highly significant key single nucleotide polymorphisms (SNPs)/Quantitative Trait Nucleotides (QTNs) and 271 heterotic Quantitative Trait Nucleotides (hQTNs) related to agronomic and fiber quality traits. The integration of a genome wide association study with RNA-sequence analysis yielded 275 candidate genes in the vicinity of key SNPs/QTNs. Fiber micronaire (MIC) and lint percentage (LP) had the maximum number of associated genes, i.e., each with 45 related to QTNs/hQTNs. A total of 54 putative candidate genes were identified in association with HETEROSIS of quoted traits. The novel players in the heterosis mechanism highlighted in this study may prove to be scientifically and biologically important for cotton biologists, and for those breeders engaged in cotton fiber and yield improvement programs.
Collapse
Affiliation(s)
- Zareen Sarfraz
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Muhammad Shahid Iqbal
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
- Cotton Research Institute, Ayub Agricultural Research Institute, Multan, Pakistan
| | - Xiaoli Geng
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Muhammad Sajid Iqbal
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
- Cotton Research Institute, Ayub Agricultural Research Institute, Multan, Pakistan
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Haris Ahmed
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, China
| | - Saghir Ahmad
- Cotton Research Institute, Ayub Agricultural Research Institute, Multan, Pakistan
| | - Qinglian Wang
- Henan Institute of Science and Technology, Xinxiang, China
| | - Hongde Qin
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jinhai Liu
- Zhongmian Seed Technologies Co., Ltd., Zhengzhou, China
| | - Hui Liu
- Jing Hua Seed Industry Technologies Inc., Jingzhou, China
| | - Jun Yang
- Cotton Research Institute of Jiangxi Province, Jiujiang, China
| | - Zhiying Ma
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | - Dongyong Xu
- Guoxin Rural Technical Service Association, Hebei, China
| | - Jinlong Yang
- Zhongmian Seed Technologies Co., Ltd., Zhengzhou, China
| | | | - Zhikun Li
- Key Laboratory for Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding, China
| | - Zhongmin Cai
- Zhongmian Seed Technologies Co., Ltd., Zhengzhou, China
| | | | - Xin Zhang
- Henan Institute of Science and Technology, Xinxiang, China
| | - Aifen Huang
- Sanyi Seed Industry of Changde in Hunan Inc., Changde, China
| | - Xianda Yi
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guanyin Zhou
- Zhongmian Seed Technologies Co., Ltd., Zhengzhou, China
| | - Lin Li
- Zhongli Company of Shandong, Shandong, China
| | - Haiyong Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Liru Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Junling Sun
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| |
Collapse
|
76
|
Foix L, Nadal A, Zagorščak M, Ramšak Ž, Esteve-Codina A, Gruden K, Pla M. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genomics 2021; 22:360. [PMID: 34006221 PMCID: PMC8132438 DOI: 10.1186/s12864-021-07571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rosaceae species are economically highly relevant crops. Their cultivation systems are constrained by phytopathogens causing severe losses. Plants respond to invading pathogens through signaling mechanisms, a component of which are of them being plant elicitor peptides (Peps). Exogenous application of Peps activates defense mechanisms and reduces the symptoms of pathogen infection in various pathosystems. We have previously identified the Rosaceae Peps and showed, in an ex vivo system, that their topical application efficiently enhanced resistance to the bacterial pathogen Xanthomonas arboricola pv. pruni (Xap). RESULTS Here we demonstrate the effectiveness of Prunus persica peptides PpPep1 and PpPep2 in protecting peach plants in vivo at nanomolar doses, with 40% reduction of the symptoms following Xap massive infection. We used deep sequencing to characterize the transcriptomic response of peach plants to preventive treatment with PpPep1 and PpPep2. The two peptides induced highly similar massive transcriptomic reprogramming in the plant. One hour, 1 day and 2 days after peptide application there were changes in expression in up to 8% of peach genes. We visualized the transcriptomics dynamics in a background knowledge network and detected the minor variations between plant responses to PpPep1 and PpPep2, which might explain their slightly different protective effects. By designing a P. persica Pep background knowledge network, comparison of our data and previously published immune response datasets was possible. CONCLUSIONS Topical application of P. persica Peps mimics the PTI natural response and protects plants against massive Xap infection. This makes them good candidates for deployment of natural, targeted and environmental-friendly strategies to enhance resistance in Prunus species and prevent important biotic diseases.
Collapse
Affiliation(s)
- Laura Foix
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain.
| |
Collapse
|
77
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
78
|
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC PLANT BIOLOGY 2021; 21:70. [PMID: 33526015 PMCID: PMC7852143 DOI: 10.1186/s12870-021-02840-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trichomes play a key role in the development of plants and exist in a wide variety of species. RESULTS In this paper, it was reviewed that the structure and morphology characteristics of trichomes, alongside the biological functions and classical regulatory mechanisms of trichome development in plants. The environment factors, hormones, transcription factor, non-coding RNA, etc., play important roles in regulating the initialization, branching, growth, and development of trichomes. In addition, it was further investigated the atypical regulation mechanism in a non-model plant, found that regulating the growth and development of tea (Camellia sinensis) trichome is mainly affected by hormones and the novel regulation factors. CONCLUSIONS This review further displayed the complex and differential regulatory networks in trichome initiation and development, provided a reference for basic and applied research on trichomes in plants.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Chao Shen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Pinghong Meng
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China
| | - Guofei Tan
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China.
| | - Litang Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
79
|
Guo AH, Su Y, Huang Y, Wang YM, Nie HS, Zhao N, Hua JP. QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:661-685. [PMID: 33386428 PMCID: PMC7843563 DOI: 10.1007/s00122-020-03721-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/31/2020] [Indexed: 05/04/2023]
Abstract
QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.) under salt stress and normal conditions. Based on three datasets of (1) salt stress, (2) normal growth, and (3) the difference value between salt stress and normal conditions, 51, 70, and 53 QTL were mapped, respectively. Three QTL for fiber length (FL) (qFL-Chr1-1, qFL-Chr5-5, and qFL-Chr24-4) were detected under both salt and normal conditions and explained 4.26%, 9.38%, and 3.87% of average phenotypic variation, respectively. Seven genes within intervals of two stable QTL (qFL-Chr1-1 and qFL-Chr5-5) were highly expressed in lines with extreme long fiber. A total of 35 QTL clusters comprised of 107 QTL were located on 18 chromosomes and exhibited pleiotropic effects. Thereinto, two clusters were responsible for improving five fiber quality traits, and 6 influenced FL and fiber strength (FS). The QTL with positive effect for fiber length exhibited active effects on fatty acid synthesis and elongation, but the ones with negative effect played passive roles on fatty acid degradation under salt stress.
Collapse
Affiliation(s)
- An-Hui Guo
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Ying Su
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yu-Mei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Hu-Shuai Nie
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China
| | - Jin-Ping Hua
- Laboratory of Cotton Genetics; Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian district, Beijing, 100193, China.
| |
Collapse
|
80
|
Zhou F, Zheng B, Wang F, Cao A, Xie S, Chen X, Schick JA, Jin X, Li H. Genome-Wide Analysis of MDHAR Gene Family in Four Cotton Species Provides Insights into Fiber Development via Regulating AsA Redox Homeostasis. PLANTS 2021; 10:plants10020227. [PMID: 33503886 PMCID: PMC7912408 DOI: 10.3390/plants10020227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Monodehydroasorbate reductase (MDHAR) (EC1.6.5.4), a key enzyme in ascorbate-glutathione recycling, plays important roles in cell growth, plant development and physiological response to environmental stress via control of ascorbic acid (AsA)-mediated reduction/oxidation (redox) regulation. Until now, information regarding MDHAR function and regulatory mechanism in Gossypium have been limited. Herein, a genome-wide identification and comprehensive bioinformatic analysis of 36 MDHAR family genes in four Gossypium species, Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, were performed, indicating their close evolutionary relationship. Expression analysis of GhMDHARs in different cotton tissues and under abiotic stress and phytohormone treatment revealed diverse expression features. Fiber-specific expression analysis showed that GhMDHAR1A/D, 3A/D and 4A/D were preferentially expressed in fiber fast elongating stages to reach peak values in 15-DPA fibers, with corresponding coincident observances of MDHAR enzyme activity, AsA content and ascorbic acid/dehydroascorbic acid (AsA/DHA) ratio. Meanwhile, there was a close positive correlation between the increase of AsA content and AsA/DHA ratio catalyzed by MDHAR and fiber elongation development in different fiber-length cotton cultivars, suggesting the potential important function of MDHAR for fiber growth. Following H2O2 stimulation, GhMDHAR demonstrated immediate responses at the levels of mRNA, enzyme, the product of AsA and corresponding AsA/DHA value, and antioxidative activity. These results for the first time provide a comprehensive systemic analysis of the MDHAR gene family in plants and the four cotton species and demonstrate the contribution of MDHAR to fiber elongation development by controlling AsA-recycling-mediated cellular redox homeostasis.
Collapse
Affiliation(s)
- Fangfang Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Bowen Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Joel A. Schick
- Genetics and Cellular Engineering Group, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany;
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Correspondence: (X.J.); (H.L.)
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Correspondence: (X.J.); (H.L.)
| |
Collapse
|
81
|
Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. PLANT MOLECULAR BIOLOGY 2021; 105:193-204. [PMID: 33037987 DOI: 10.1007/s11103-020-01080-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.
Collapse
Affiliation(s)
- Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
82
|
Kewlani P, Tewari DC, Singh L, Negi VS, Bhatt ID, Pande V. Saturated and Polyunsaturated Fatty Acids Rich Populations of <i>Prinsepia utilis</i> Royle in Western Himalaya. J Oleo Sci 2021; 71:481-491. [DOI: 10.5650/jos.ess21262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Laxman Singh
- G. B. Pant National Institute of Himalayan Environment
| | | | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus
| |
Collapse
|
83
|
Salih H, Wang X, Chen B, Jia Y, Gong W, Du X. Identification, characterization and expression profiling of circular RNAs in the early cotton fiber developmental stages. Genomics 2020; 113:356-365. [PMID: 33338632 DOI: 10.1016/j.ygeno.2020.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 11/27/2022]
Abstract
Circular RNA is one of the endogenous non-coding RNAs with a covalently closed loop structure and largely involved in regulating gene expression. However, the abundance of circular RNAs and their regulatory functions during the early stages of fiber development are still not known. In this work, we conducted high-throughput sequencing of the Ligonlintless-1 and its wild-type at 0 DPA, 8 DPA and stem. A total of 2811 circular RNAs were identified and unevenly distributed across cotton chromosomes. We found 34, 142 and 27 circular RNAs were differentially expressed between Ligonlintless-1 and wild-type at 0 DPA, 8 DPA and stem, respectively. Both circular RNA-microRNA-mRNA network and MeJA treatment results in Ligonlintless-1 and wild-type might provide a strong indication of four circular RNAs and ghr_miR169b being important biological molecular associating with fiber development. The results provide new insight into the putative molecular function of circular RNAs in the regulation of fiber development.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China; Crop Sciences department, Zalingei University, Central Darfur, Sudan
| | - Xiao Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Baojun Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China.
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China.
| |
Collapse
|
84
|
Gu Q, Ke H, Liu Z, Lv X, Sun Z, Zhang M, Chen L, Yang J, Zhang Y, Wu L, Li Z, Wu J, Wang G, Meng C, Zhang G, Wang X, Ma Z. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3395-3408. [PMID: 32894321 DOI: 10.1007/s00122-020-03676-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 05/18/2023]
Abstract
A high-density linkage map of an intraspecific RIL population was constructed using 6187 bins to identify QTLs for fibre quality- and yield-related traits in upland cotton by whole-genome resequencing. Good fibre quality and high yield are important production goals in cotton (Gossypium hirsutum L.), which is a leading natural fibre crop worldwide. However, a greater understanding of the genetic variants underlying fibre quality- and yield-related traits is still required. In this study, a large-scale population including 588 F7 recombinant inbred lines, derived from an intraspecific cross between the upland cotton cv. Nongdamian13, which exhibits high quality, and Nongda601, which exhibits a high yield, was genotyped by using 232,946 polymorphic single-nucleotide polymorphisms obtained via a whole-genome resequencing strategy with 4.3-fold genome coverage. We constructed a high-density bin linkage map containing 6187 bin markers spanning 4478.98 cM with an average distance of 0.72 cM. We identified 58 individual quantitative trait loci (QTLs) and 25 QTL clusters harbouring 94 QTLs, and 119 previously undescribed QTLs controlling 13 fibre quality and yield traits across eight environments. Importantly, the QTL counts for fibre quality in the Dt subgenome were more than two times that in the At subgenome, and chromosome D02 harboured the greatest number of QTLs and clusters. Furthermore, we discovered 24 stable QTLs for fibre quality and 12 stable QTLs for yield traits. Four novel major stable QTLs related to fibre length, fibre strength and lint percentage, and seven previously unreported candidate genes with significantly differential expression between the two parents were identified and validated by RNA-seq. Our research provides valuable information for improving the fibre quality and yield in cotton breeding.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liting Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
85
|
Zaini PA, Feinberg NG, Grilo FS, Saxe HJ, Salemi MR, Phinney BS, Crisosto CH, Dandekar AM. Comparative Proteomic Analysis of Walnut ( Juglans regia L.) Pellicle Tissues Reveals the Regulation of Nut Quality Attributes. Life (Basel) 2020; 10:E314. [PMID: 33261033 PMCID: PMC7760677 DOI: 10.3390/life10120314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with 'Chandler' and 'Tulare' among the cultivars more widely grown. 'Chandler' produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. Comparison between the genotypes also revealed the common and specific protein repertoires, totaling 321 pellicle proteins with differential abundance at harvest stage. The proteomics data provides clues on antioxidant, secondary, and hormonal metabolism that could be involved in the loss of quality in the pellicles during processing for commercialization.
Collapse
Affiliation(s)
- Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Filipa S. Grilo
- Department of Food Sciences and Technology, University of California, Davis, CA 95616, USA;
| | - Houston J. Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Carlos H. Crisosto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| |
Collapse
|
86
|
Lin J, Li Y, Hu X, Chi W, Zeng S, Xu J. Discovery of novel 3‐{[(5,5‐dimethyl‐4,5‐dihydroisoxazol‐3‐yl)sulfonyl]methyl}benzo[d]isoxazole analogs as promising very long chain fatty acids inhibitors. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jian Lin
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
- College of Chemistry Biology and Environmental Engineering Xiangnan University Chenzhou China
| | - Yitao Li
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
| | - Xiaoyun Hu
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
| | - Weilin Chi
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
| | - Shuiming Zeng
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
| | - Junxing Xu
- Dongguan HEC Pesticides R&D Co., Ltd. Dongguan China
| |
Collapse
|
87
|
Roch L, Prigent S, Klose H, Cakpo CB, Beauvoit B, Deborde C, Fouillen L, van Delft P, Jacob D, Usadel B, Dai Z, Génard M, Vercambre G, Colombié S, Moing A, Gibon Y. Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5823-5836. [PMID: 32592486 PMCID: PMC7540837 DOI: 10.1093/jxb/eraa302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.
Collapse
Affiliation(s)
- Léa Roch
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Holger Klose
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Bertrand Beauvoit
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Laetitia Fouillen
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Pierre van Delft
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Daniel Jacob
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Björn Usadel
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhanwu Dai
- UMR 1287 EGFV, INRAE, Univ. Bordeaux, Bordeaux Sci Agro, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Annick Moing
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| |
Collapse
|
88
|
Wang Q, Du X, Zhou Y, Xie L, Bie S, Tu L, Zhang N, Yang X, Xiao S, Zhang X. The β-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5615-5630. [PMID: 32443155 DOI: 10.1093/jxb/eraa254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 05/05/2023]
Abstract
Cold stress is a key environmental factor that affects plant development and productivity. In this study, RNA-seq in cotton following cold-stress treatment resulted in the identification of 5239 differentially expressed genes (DEGs) between two cultivars with differing sensitivity to low temperatures, among which GhKCS13 was found to be involved in the response. Transgenic plants overexpressing GhKCS13 showed increased sensitivity to cold stress. KEGG analysis of 418 DEGs in both GhKCS13-overexpressing and RNAi lines after treatment at 4 °C indicated that lipid biosynthesis and linoleic acid metabolism were related to cold stress. ESI-MS/MS analysis showed that overexpression of GhKCS13 led to modifications in the composition of sphingolipids and glycerolipids in the leaves, which might alter the fluidity of the cell membrane under cold conditions. In particular, differences in levels of jasmonic acid (JA) in GhKCS13 transgenic lines suggested that, together with lysophospholipids, it might mediate the cold-stress response. Our results suggest that overexpression of GhKCS13 probably causes remodeling of lipids in the endoplasmic reticulum and biosynthesis of lipid-derived JA in chloroplasts, which might account for the increased sensitivity to cold stress in the transgenic plants. Complex interactions between lipid components, lipid signaling molecules, and JA appear to determine the response to cold stress in cotton.
Collapse
Affiliation(s)
- Qiongshan Wang
- Economic Crop Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu Bie
- Economic Crop Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Na Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
89
|
Fumonisin B1-Induced Changes in Cotton Fiber Elongation Revealed by Sphingolipidomics and Proteomics. Biomolecules 2020; 10:biom10091258. [PMID: 32878249 PMCID: PMC7564794 DOI: 10.3390/biom10091258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids are essential biomolecules and membrane components, but their regulatory role in cotton fiber development is poorly understood. Here, we found that fumonisin B1 (FB1)—a sphingolipid synthesis inhibitor—could block fiber elongation severely. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we detected 95 sphingolipids that were altered by FB1 treatment; of these, 29 (mainly simple sphingolipids) were significantly increased, while 33 (mostly complex sphingolipids) were significantly decreased. A quantitative analysis of the global proteome, using an integrated quantitative approach with tandem mass tag (TMT) labeling and LC-MS/MS, indicated the upregulation of 633 and the downregulation of 672 proteins after FB1 treatment. Most differentially expressed proteins (DEPs) were involved in processes related to phenylpropanoid and flavonoid biosynthesis. In addition, up to 20 peroxidases (POD) were found to be upregulated, and POD activity was also increased by the inhibitor. To our knowledge, this is the first report on the effects of FB1 treatment on cotton fiber and ovule sphingolipidomics and proteomics. Our findings provide target metabolites and biological pathways for cotton fiber improvement.
Collapse
|
90
|
Zhou Z, Dong Y, Li C, Wang D, Lv Y, Lv P, Pang Y. Determining the optimal puncture site of CT-guided transthoracic needle aspiration biopsy for the diagnosis of tuberculosis. J Thorac Dis 2020; 12:3987-3994. [PMID: 32944310 PMCID: PMC7475607 DOI: 10.21037/jtd-19-3293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The purpose of this study was to determine the optimal puncture site of computed tomography (CT)-guided transthoracic needle aspiration biopsy for the diagnosis of tuberculosis (TB) by the comparison of clinical and radiological characteristics of TB patients stratified to different histopathological results. Methods We retrospectively analysed the data of clinically diagnosed TB patients with negative laboratory results between July 2016 and June 2018. Biopsy specimens were obtained from patients for Ziehl-Neelsen (Z-N) staining and TB-DNA. Results For the 356 TB patients, the positive rate of TB-DNA was 70.9%, which was significantly higher than that of Z-N staining (46.4%, P<0.001). The positive rate of lesions from upper lobe (76.4%, 155/203) was significantly higher than that from lower lobe (63.1%, 89/141, P=0.008). The mean of ΔCT density for positive histologic group (12.84±6.81 HU) was lower than that for negative histologic group (28.32±9.82 HU, P<0.001). ROC curve analysis revealed that a density-based cut-off value of 20.5 HU should be set as the cut-off values for determining the optimal puncture site. Conclusions Our data demonstrates that the molecular diagnostics has superiority over Z-N staining for detecting MTB from lung aspirates. The lung biopsies from upper lobe were more likely to yield positive histologic results than those from lower lobe. In addition, the enhancement of 20.5 HU by CT scans should be set as the cut-off values for determining the optimal puncture site that would facilitate an efficient diagnosis of pulmonary TB.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Radiology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yujie Dong
- Department of Pathology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Chenghai Li
- Department of Radiology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Dongpo Wang
- Department of Radiology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yan Lv
- Department of Radiology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Pingxin Lv
- Department of Radiology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| |
Collapse
|
91
|
Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar KM, Mujtaba M. Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. Int J Biol Macromol 2020; 163:1301-1313. [PMID: 32679330 DOI: 10.1016/j.ijbiomac.2020.07.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023]
Abstract
Cotton is among the most important fiber crops for the textile-based industry, thanks to its cellulose-rich mature fibers. The fiber initiation and elongation are one of the best models for deciphering mechanisms of single-cell differentiation and growth, that also target of fiber development programs. During the last couple of decades, high yielding omics approaches (genomics, transcriptomics, and proteomics), have helped in the identification of several genes and gene products involved in fiber development along with functional relationship to phytohormones. For example, MYB transcription factor family and Sus gene family have been evidenced by controlling cotton fiber initiation. Most importantly, the biosynthesis, responses, and transporting of phytohormones is documented to participate in the initiation of cotton fibers. Herein, in this review, the reliable genetic evidence by manipulating the above genes in cotton have been summarized to describe the relationships among key phytohormones, transcription factors, proteins, and downstream fiber growth-related genes such as Sus. The effect of other important factors such as ROS, fatty acid metabolism, and actin (globular multi-functional proteins) over fiber development has also been discussed. The challenges and deficiencies in the research of cotton fiber development have been mentioned along with a future perspective to discover new crucial genes using multiple omics analysis.
Collapse
Affiliation(s)
- Lichen Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Guifeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China; Shandong Cotton Production Technical Guidance Station, Jinan, Shandong 250100, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Sumeyye Altunok
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey
| | - Zongqin Feng
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06100 Ankara, Turkey
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey.
| |
Collapse
|
92
|
Cao JF, Zhao B, Huang CC, Chen ZW, Zhao T, Liu HR, Hu GJ, Shangguan XX, Shan CM, Wang LJ, Zhang TZ, Wendel JF, Guan XY, Chen XY. The miR319-Targeted GhTCP4 Promotes the Transition from Cell Elongation to Wall Thickening in Cotton Fiber. MOLECULAR PLANT 2020; 13:1063-1077. [PMID: 32422188 DOI: 10.1016/j.molp.2020.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 05/08/2023]
Abstract
Plant cell growth involves a complex interplay among cell-wall expansion, biosynthesis, and, in specific tissues, secondary cell wall (SCW) deposition, yet the coordination of these processes remains elusive. Cotton fiber cells are developmentally synchronous, highly elongated, and contain nearly pure cellulose when mature. Here, we report that the transcription factor GhTCP4 plays an important role in balancing cotton fiber cell elongation and wall synthesis. During fiber development the expression of miR319 declines while GhTCP4 transcript levels increase, with high levels of the latter promoting SCW deposition. GhTCP4 interacts with a homeobox-containing factor, GhHOX3, and repressing its transcriptional activity. GhTCP4 and GhHOX3 function antagonistically to regulate cell elongation, thereby establishing temporal control of fiber cell transition to the SCW stage. We found that overexpression of GhTCP4A upregulated and accelerated activation of the SCW biosynthetic pathway in fiber cells, as revealed by transcriptome and promoter activity analyses, resulting in shorter fibers with varied lengths and thicker walls. In contrast, GhTCP4 downregulation led to slightly longer fibers and thinner cell walls. The GhHOX3-GhTCP4 complex may represent a general mechanism of cellular development in plants since both are conserved factors in many species, thus providing us a potential molecular tool for the design of fiber traits.
Collapse
Affiliation(s)
- Jun-Feng Cao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Chen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ting Zhao
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong-Ru Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guan-Jing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chun-Min Shan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Zhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xue-Ying Guan
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| |
Collapse
|
93
|
Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1905-1917. [PMID: 32632733 DOI: 10.1007/s11427-020-1728-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Brassinosteroid (BR), a steroid phytohormone, whose signaling transduction pathways include a series of phosphorylation and dephosphorylation events, and GSK3s are the main negative regulator kinases. BRs have been shown to play vital roles in cotton fiber elongation. However, the underlying mechanism is still elusive. In this study, fibers of a BR-defective mutant Pagoda 1 (pag1), and its corresponding wild-type (ZM24) were selected for a comparative global phosphoproteome analysis at critical developmental time points: fast-growing stage (10 days after pollination (DPA)) and secondary cell wall synthesis stage (20 DPA). Based on the substrate characteristics of GSK3, 900 potential substrates were identified. Their GO and KEGG annotation results suggest that BR functions in fiber development by regulating GhSKs (GSK3s of Gossypium hirsutum L.) involved microtubule cytoskeleton organization, and pathways of glucose, sucrose and lipid metabolism. Further experimental results revealed that among the GhSK members identified, GhSK13 not only plays a role in BR signaling pathway, but also functions in developing fiber by respectively interacting with an AP2-like ethylene-responsive factor GhAP2L, a nuclear transcription factor Gh_DNF_YB19, and a homeodomain zipper member GhHDZ5. Overall, our phosphoproteomic research advances the understanding of fiber development controlled by BR signal pathways especially through GhSKs, and also offers numbers of target proteins for improving cotton fiber quality.
Collapse
|
94
|
Li XZ, Jin F, Zhang JG, Deng YF, Shu W, Qin JM, Ma X, Pang Y. Treatment of coronavirus disease 2019 in Shandong, China: a cost and affordability analysis. Infect Dis Poverty 2020; 9:78. [PMID: 32600426 PMCID: PMC7322714 DOI: 10.1186/s40249-020-00689-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is now a global public threat. Given the pandemic of COVID-19, the economic impact of COVID-19 is essential to add value to the policy-making process. We retrospectively conducted a cost and affordability analysis to determine the medical costs of COVID-19 patients in China, and also assess the factors affecting their costs. Methods This analysis was retrospectively conducted in Shandong Provincial Chest Hospital between 24 January and 16 March 2020. The total direct medical expenditures were analyzed by cost factors. We also assessed affordability by comparing the simulated out-of-pocket expenditure of COVID-19 cases relative to the per capita disposable income. Differences between groups were tested by student t test and Mann-Whitney test when appropriate. A multiple logistic regression model was built to determine the risk factors associated with high cost. Results A total of 70 COVID-19 patients were included in the analysis. The overall mean cost was USD 6827 per treated episode. The highest mean cost was observed in drug acquisition, accounting for 45.1% of the overall cost. Total mean cost was significantly higher in patients with pre-existing diseases compared to those without pre-existing diseases. Pre-existing diseases and the advanced disease severity were strongly associated with higher cost. Around USD 0.49 billion were expected for clinical manage of COVID-19 in China. Among rural households, the proportions of health insurance coverage should be increased to 70% for severe cases, and 80% for critically ill cases to avoid catastrophic health expenditure. Conclusions Our data demonstrate that clinical management of COVID-19 patients incurs a great financial burden to national health insurance. The cost for drug acquisition is the major contributor to the medical cost, whereas the risk factors for higher cost are pre-existing diseases and severity of COVID-19. Improvement of insurance coverage will need to address the barriers of rural patients to avoid the occurrence of catastrophic health expenditure.
Collapse
Affiliation(s)
- Xue-Zheng Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Feng Jin
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Jian-Guo Zhang
- Department of Planning and Finance, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun-Feng Deng
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Wei Shu
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Jing-Min Qin
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Xin Ma
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China. .,Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China. .,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China.
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
95
|
Lian XY, Wang X, Gao HN, Jiang H, Mao K, You CX, Li YY, Hao YJ. Genome wide analysis and functional identification of MdKCS genes in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:299-312. [PMID: 32251955 DOI: 10.1016/j.plaphy.2020.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
96
|
Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu Y. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 2020; 52:516-524. [PMID: 32284579 PMCID: PMC7203013 DOI: 10.1038/s41588-020-0607-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Upon assembling the first Gossypium herbaceum (A1) genome and substantially improving the existing Gossypium arboreum (A2) and Gossypium hirsutum ((AD)1) genomes, we showed that all existing A-genomes may have originated from a common ancestor, referred to here as A0, which was more phylogenetically related to A1 than A2. Further, allotetraploid formation was shown to have preceded the speciation of A1 and A2. Both A-genomes evolved independently, with no ancestor-progeny relationship. Gaussian probability density function analysis indicates that several long-terminal-repeat bursts that occurred from 5.7 million years ago to less than 0.61 million years ago contributed compellingly to A-genome size expansion, speciation and evolution. Abundant species-specific structural variations in genic regions changed the expression of many important genes, which may have led to fiber cell improvement in (AD)1. Our findings resolve existing controversial concepts surrounding A-genome origins and provide valuable genomic resources for cotton genetic improvement.
Collapse
Affiliation(s)
- Gai Huang
- Institute for Advanced Studies, Wuhan University, Wuhan, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Richard G Percy
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX, USA
| | | | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - James E Frelichowski
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX, USA
| | - Jiang Hu
- Nextomics Biosciences Institute, Wuhan, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - John Z Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX, USA.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
| |
Collapse
|
97
|
Hu W, Chen L, Qiu X, Wei J, Lu H, Sun G, Ma X, Yang Z, Zhu C, Hou Y, Han X, Sun C, Hu R, Cai Y, Zhang H, Li F, Shen G. AKR2A participates in the regulation of cotton fibre development by modulating biosynthesis of very-long-chain fatty acids. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:526-539. [PMID: 31350932 PMCID: PMC6953204 DOI: 10.1111/pbi.13221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 05/17/2023]
Abstract
The biosynthesis of very-long-chain fatty acids (VLCFAs) and their transport are required for fibre development. However, whether other regulatory factors are involved in this process is unknown. We report here that overexpression of an Arabidopsis gene ankyrin repeat-containing protein 2A (AKR2A) in cotton promotes fibre elongation. RNA-Seq analysis was employed to elucidate the mechanisms of AKR2A in regulating cotton fibre development. The VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased in AKR2A transgenic lines. In addition, AKR2A promotes fibre elongation by regulating ethylene and synergizing with the accumulation of auxin and hydrogen peroxide. Analysis of RNA-Seq data indicates that AKR2A up-regulates transcript levels of genes involved in VLCFAs' biosynthesis, ethylene biosynthesis, auxin and hydrogen peroxide signalling, cell wall and cytoskeletal organization. Furthermore, AKR2A interacted with KCS1 in Arabidopsis both in vitro and in vivo. Moreover, the VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased significantly in seeds of AKR2A-overexpressing lines and AKR2A/KCS1 co-overexpressing lines, while AKR2A mutants are the opposite trend. Our results uncover a novel cotton fibre growth mechanism by which the critical regulator AKR2A promotes fibre development via activating hormone signalling cascade by mediating VLCFA biosynthesis. This study provides a potential candidate gene for improving fibre yield and quality through genetic engineering.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lin Chen
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiaoyun Qiu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jia Wei
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hongling Lu
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Guochang Sun
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiongfeng Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chunquan Zhu
- National Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yuqi Hou
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao Han
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chunyan Sun
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Rongbin Hu
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Yifan Cai
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Hong Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTXUSA
| | - Fuguang Li
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Guoxin Shen
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
98
|
Salih H, He S, Li H, Peng Z, Du X. Investigation of the EIL/EIN3 Transcription Factor Gene Family Members and Their Expression Levels in the Early Stage of Cotton Fiber Development. PLANTS (BASEL, SWITZERLAND) 2020; 9:E128. [PMID: 31968683 PMCID: PMC7020184 DOI: 10.3390/plants9010128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR, CAAS), State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; (H.S.); (S.H.); (H.L.); (Z.P.)
- Department of Crop Science, College of Agriculture, Zalingei University, P.O. BOX 6, Central Darfur, Sudan
| | - Shoupu He
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR, CAAS), State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; (H.S.); (S.H.); (H.L.); (Z.P.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Hongge Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR, CAAS), State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; (H.S.); (S.H.); (H.L.); (Z.P.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Peng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR, CAAS), State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; (H.S.); (S.H.); (H.L.); (Z.P.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiongming Du
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR, CAAS), State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; (H.S.); (S.H.); (H.L.); (Z.P.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
99
|
He S, Wang P, Zhang YM, Dai P, Nazir MF, Jia Y, Peng Z, Pan Z, Sun J, Wang L, Sun G, Du X. Introgression Leads to Genomic Divergence and Responsible for Important Traits in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:929. [PMID: 32774337 PMCID: PMC7381389 DOI: 10.3389/fpls.2020.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/06/2023]
Abstract
Understanding the genetic diversity and population structure of germplasms is essential when selecting parents for crop breeding. The genomic changes that occurred during the domestication and improvement of Upland cotton (Gossypium hirsutum) remains poorly understood. Besides, the available genetic resources from cotton cultivars are limited. By applying restriction site-associated DNA marker sequencing (RAD-seq) technology to 582 tetraploid cotton accessions, we confirmed distinct genomic regions on chromosomes A06 and A08 in Upland cotton cultivar subgroups. Based on the pedigree, reported QTLs, introgression analyses, and genome-wide association study (GWAS), we suggest that these divergent regions might have resulted from the introgression of exotic lineages of G. hirsutum landraces and their wild relatives. These regions were the typical genomic signatures that might be responsible for maturity and fiber quality on chromosome A06 and chromosome A08, respectively. Moreover, these genomic regions are located in the putative pericentromeric regions, implying that their application will be challenging. In the study, based on high-density SNP markers, we reported two genomic signatures on chromosomes A06 and A08, which might originate from the introgression events in the Upland cotton population. Our study provides new insights for understanding the impact of historic introgressions on population divergence and important agronomic traits of modern Upland cotton cultivars.
Collapse
Affiliation(s)
- Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengpeng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panhong Dai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junling Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- Department of Computer Science and Information Engineering, Data Mining Institute, Anyang Institute of Technology, Anyang, China
- *Correspondence: Gaofei Sun, ; Xiongming Du,
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Gaofei Sun, ; Xiongming Du,
| |
Collapse
|
100
|
Kang MJ, Shin AY, Shin Y, Lee SA, Lee HR, Kim TD, Choi M, Koo N, Kim YM, Kyeong D, Subramaniyam S, Park EJ. Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata. Sci Rep 2019; 9:13161. [PMID: 31511588 PMCID: PMC6739505 DOI: 10.1038/s41598-019-49618-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/28/2019] [Indexed: 01/27/2023] Open
Abstract
Nut weight is one of the most important traits that can affect a chestnut grower's returns. Due to the long juvenile phase of chestnut trees, the selection of desired characteristics at early developmental stages represents a major challenge for chestnut breeding. In this study, we identified single nucleotide polymorphisms (SNPs) in transcriptomic regions, which were significantly associated with nut weight in chestnuts (Castanea crenata), using a genome-wide association study (GWAS). RNA-sequencing (RNA-seq) data were generated from large and small nut-bearing trees, using an Illumina HiSeq. 2000 system, and 3,271,142 SNPs were identified. A total of 21 putative SNPs were significantly associated with chestnut weight (false discovery rate [FDR] < 10-5), based on further analyses. We also applied five machine learning (ML) algorithms, support vector machine (SVM), C5.0, k-nearest neighbour (k-NN), partial least squares (PLS), and random forest (RF), using the 21 SNPs to predict the nut weights of a second population. The average accuracy of the ML algorithms for the prediction of chestnut weights was greater than 68%. Taken together, we suggest that these SNPs have the potential to be used during marker-assisted selection to facilitate the breeding of large chestnut-bearing varieties.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Forest Biotechnology Division, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Younhee Shin
- Research and Development Center, Insillicogen Inc, Yongin, 16954, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang-A Lee
- Forest Biotechnology Division, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Hyo-Ryeon Lee
- Forest Biotechnology Division, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Tae-Dong Kim
- Forest Biotechnology Division, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Mina Choi
- Plant Resources Industry Division, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dongsoo Kyeong
- Research and Development Center, Insillicogen Inc, Yongin, 16954, Republic of Korea
- Laboratory of Developmental Biology and Genomics, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Eung-Jun Park
- Forest Biotechnology Division, National Institute of Forest Science, Suwon, 16631, Republic of Korea.
| |
Collapse
|