51
|
Gautier AT, Cochetel N, Merlin I, Hevin C, Lauvergeat V, Vivin P, Mollier A, Ollat N, Cookson SJ. Scion genotypes exert long distance control over rootstock transcriptome responses to low phosphate in grafted grapevine. BMC PLANT BIOLOGY 2020; 20:367. [PMID: 32746781 PMCID: PMC7398338 DOI: 10.1186/s12870-020-02578-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grafting is widely used in horticulture and rootstocks are known to modify scion growth and adaptation to soil conditions. However, the role of scion genotype in regulating rootstock development and functioning has remained largely unexplored. In this study, reciprocal grafts of two grapevine genotypes were produced as well as the corresponding homo-graft controls. These plants were subjected to a low phosphate (LP) treatment and transcriptome profiling by RNA sequencing was done on root samples collected 27 h after the onset of the LP treatment. RESULTS A set of transcripts responsive to the LP treatment in all scion/rootstock combinations was identified. Gene expression patterns associated with genetic variation in response to LP were identified by comparing the response of the two homo-grafts. In addition, the scion was shown to modify root transcriptome responses to LP in a rootstock dependent manner. A weighted gene co-expression network analysis identified modules of correlated genes; the analysis of the association of these modules with the phosphate treatment, and the scion and rootstock genotype identified potential hub genes. CONCLUSIONS This study provides insights into the response of grafted grapevine to phosphate supply and identifies potential shoot-to-root signals that could vary between different grapevine genotypes.
Collapse
Affiliation(s)
- Antoine T Gautier
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
- Crop Production and Biostimulation Laboratory, Université Libre de Bruxelles, Campus Plaine, B-1050, Brussels, Belgium
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Isabelle Merlin
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Cyril Hevin
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Philippe Vivin
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Alain Mollier
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Sarah J Cookson
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, 33882, Villenave d'Ornon, France.
| |
Collapse
|
52
|
Rasouli F, Kiani-Pouya A, Zhang H, Shabala S. Developing and validating protocols for mechanical isolation of guard-cell enriched epidermal peels for omics studies. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:803-814. [PMID: 32513383 DOI: 10.1071/fp20085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Stomata, which are microscopic valves on the leaf surface formed by two guard cells (GC), play a critical role in the regulation of leaf water and gas exchange and, hence, determine plant adaptive potential. However, little data is available on GC biochemistry, protein abundance and gene expression, mainly due to technical difficulties and challenges in isolating sufficient amounts of high-quality pure GC. In the present study we applied some modifications to the mechanical isolation of guard-cell to generalise this method for diverse growth conditions as well as plant species. Epidermal peel fragments enriched in guard cells were mechanically isolated from quinoa, spinach and sugar beet leaves grown at two conditions (normal and salt stress). Multiple analysis was performed to confirm the suitability and superiority of the modified technique to the original method. At the first step, the viability and purity of GC-enriched epidermal fragments were assessed under the microscope. Then, the RNA integrity, gene expression, and 1D SDS-PAGE tests were performed to validate the suitability of this technique for omics studies. The data revealed a wide range of proteins as well as a high integrity of RNA extracted from guard cell samples. The expression level of several GC-specific genes and mesophyll-dominant genes were investigated using a comparative analysis of transcriptome datasets of GC and whole-leaf samples. We found that Rubisco and photosynthesis-related proteins such as chlorophyll a/b binding protein were substantially higher in the whole leaf compared with the GCs. More importantly, GC-specific genes such as OST1, SLAC1, MYB60, FAMA and HT1 were highly expressed in the GCs, confirming that our guard cell preparation was highly enriched in GC gene transcripts. Real-time quantitative reverse transcription PCR further confirmed the efficacy of the GC isolation technique for exploring responses of GC to diverse types of stress at the molecular level.
Collapse
Affiliation(s)
- Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Ali Kiani-Pouya
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Heng Zhang
- Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, 528000 Foshan, China; and Corresponding author.
| |
Collapse
|
53
|
Khezri G, Baghban Kohneh Rouz B, Ofoghi H, Davarpanah SJ. Heterologous expression of biologically active Mambalgin-1 peptide as a new potential anticancer, using a PVX-based viral vector in Nicotiana benthamiana. PLANT CELL, TISSUE AND ORGAN CULTURE 2020; 142:241-251. [PMID: 32836586 PMCID: PMC7323601 DOI: 10.1007/s11240-020-01838-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Mambalgin-1 is a peptide that acts as a potent analgesic through inhibiting acid-sensing ion channels (ASIC) in nerve cells. Research has shown that ASIC channels are involved in the proliferation and growth of cancer cells; therefore, Mambalgin-1 can be a potential anti-cancer by inhibiting these channels. In the present study, the Nicotiana benthamiana codon optimized Mambalgin-1 gene was synthesized and cloned in PVX (potato virus X) viral vector. The two cultures of Agrobacterium containing Mambalgin-1 and P19 silencing suppressor genes were co-agroinfiltrated into N. benthamiana leaves. Five days post infiltration, the production of recombinant Mambalgin-1 was determined by western blotting. For biological activity, MTT (3(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide) was analyzed for the cytotoxicity recombinant Mambalgin-1 from the transformed plants on nervous (SH-SY5Y) and breast (MCF7) cancer cells. The results showed that the plants expressing open reading frame of Mambalgin-1 showed recombinant 7.4 kDa proteins in the entire plant extract. In the MTT test, it was found that Mambalgin-1 had cytotoxic effects on SH-SY5Y cancer cells, yet no effects on MCF7 cancer cells were observed. According to the results, the expression of the biologically active recombinant Mambalgin-1 in the transformed plant leaves was confirmed and Mambalgin-1 can also have anti-cancer (inhibition of ASIC channels) potential along with its already known analgesic effect.
Collapse
Affiliation(s)
- Ghaffar Khezri
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Seyed Javad Davarpanah
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Yan H, Cheng Y, Wang L, Chen W. Function analysis of RNase E in the filamentous cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 2020; 171:194-202. [PMID: 32590060 DOI: 10.1016/j.resmic.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
RNase E is an endoribonuclease and plays a central role in RNA metabolism. Cyanobacteria, as ancient oxygen-producing photosynthetic bacteria, also contain RNase E homologues. Here, we introduced mutations into the S1 subdomain (F53A), the 5'-sensor subdomain (R160A), and the DNase I subdomain (D296A) according to the key activity sites of Escherichia coli RNase E. The results of degradation assays demonstrated that Asp296 is important to RNase E activity in Anabaena sp. PCC 7120 (hereafter PCC 7120). The docking model of RNase E in PCC 7120 (AnaRne) and RNA suggested a possible recognition mechanism of AnaRne to RNA. Moreover, overexpression of AnaRne and its N-terminal catalytic domain (AnaRneN) in vivo led to the abnormal cell division and inhibited the growth of PCC 7120. The quantitative analysis showed a significant decrease of ftsZ transcription in the case of overexpression of AnaRne or AnaRneN and ftsZ mRNA could be directly degraded by AnaRne through degradation assays in vitro, indicating that AnaRne was related to the expression of ftsZ and eventually affected cell division. In essence, our studies expand the understanding of the structural and functional evolutionary basis of RNase E and lay a foundation for further analysis of RNA metabolism in cyanobacteria.
Collapse
Affiliation(s)
- Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yarui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
55
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
56
|
Abstract
Crop loss due to soil salinization is an increasing threat to agriculture worldwide. This review provides an overview of cellular and physiological mechanisms in plant responses to salt. We place cellular responses in a time- and tissue-dependent context in order to link them to observed phases in growth rate that occur in response to stress. Recent advances in phenotyping can now functionally or genetically link cellular signaling responses, ion transport, water management, and gene expression to growth, development, and survival. Halophytes, which are naturally salt-tolerant plants, are highlighted as success stories to learn from. We emphasize that (a) filling the major knowledge gaps in salt-induced signaling pathways, (b) increasing the spatial and temporal resolution of our knowledge of salt stress responses, (c) discovering and considering crop-specific responses, and (d) including halophytes in our comparative studies are all essential in order to take our approaches to increasing crop yields in saline soils to the next level.
Collapse
Affiliation(s)
- Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
57
|
Abdel-Hameed AAE, Prasad KVSK, Jiang Q, Reddy ASN. Salt-Induced Stability of SR1/CAMTA3 mRNA Is Mediated by Reactive Oxygen Species and Requires the 3' End of Its Open Reading Frame. PLANT & CELL PHYSIOLOGY 2020; 61:748-760. [PMID: 31917443 DOI: 10.1093/pcp/pcaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Soil salinity, a prevalent abiotic stress, causes enormous losses in global crop yields annually. Previous studies have shown that salt stress-induced reprogramming of gene expression contributes to the survival of plants under this stress. However, mechanisms regulating gene expression in response to salt stress at the posttranscriptional level are not well understood. In this study, we show that salt stress increases the level of Signal Responsive 1 (SR1) mRNA, a member of signal-responsive Ca2+/calmodulin-regulated transcription factors, by enhancing its stability. We present multiple lines of evidence indicating that reactive oxygen species generated by NADPH oxidase activity mediate salt-induced SR1 transcript stability. Using mutants impaired in either nonsense-mediated decay, XRN4 or mRNA decapping pathways, we show that neither the nonsense-mediated mRNA decay pathway, XRN4 nor the decapping of SR1 mRNA is required for its decay. We analyzed the salt-induced accumulation of eight truncated versions of the SR1 coding region (∼3 kb) in the sr1 mutant background. This analysis identified a 500-nt region at the 3' end of the SR1 coding region to be required for the salt-induced stability of SR1 mRNA. Potential mechanisms by which this region confers SR1 transcript stability in response to salt are discussed.
Collapse
Affiliation(s)
- Amira A E Abdel-Hameed
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Kasavajhala V S K Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Qiyan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
58
|
Szabo EX, Reichert P, Lehniger MK, Ohmer M, de Francisco Amorim M, Gowik U, Schmitz-Linneweber C, Laubinger S. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome. THE PLANT CELL 2020; 32:871-887. [PMID: 32060173 PMCID: PMC7145469 DOI: 10.1105/tpc.19.00214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Transcriptome analysis by RNA sequencing (RNA-seq) has become an indispensable research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady state transcriptome, which contains valuable information about RNA populations at a given time but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing, have been used to provide information about RNA synthesis rates in plants. Here, we demonstrate that RNA labeling with the modified, nontoxic uridine analog 5-ethynyl uridine (5-EU) in Arabidopsis (Arabidopsis thaliana) seedlings provides insight into plant transcriptome dynamics. Pulse labeling with 5-EU revealed nascent and unstable RNAs, RNA processing intermediates generated by splicing, and chloroplast RNAs. Pulse-chase experiments with 5-EU allowed us to determine RNA stabilities without the need for chemical transcription inhibitors such as actinomycin and cordycepin. Inhibitor-free, genome-wide analysis of polyadenylated RNA stability via 5-EU pulse-chase experiments revealed RNAs with shorter half-lives than those reported after chemical inhibition of transcription. In summary, our results indicate that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates and suggest that polyadenylated RNAs have low stability in plants. Our technique lays the foundation for easy, affordable, nascent transcriptome analysis and inhibitor-free analysis of RNA stability in plants.
Collapse
Affiliation(s)
- Emese Xochitl Szabo
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Philipp Reichert
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | | | - Marilena Ohmer
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
| | | | - Udo Gowik
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
| | | | - Sascha Laubinger
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
59
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
60
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
61
|
Sakuraba Y, Kim D, Han SH, Kim SH, Piao W, Yanagisawa S, An G, Paek NC. Multilayered Regulation of Membrane-Bound ONAC054 Is Essential for Abscisic Acid-Induced Leaf Senescence in Rice. THE PLANT CELL 2020; 32:630-649. [PMID: 31911455 PMCID: PMC7054035 DOI: 10.1105/tpc.19.00569] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/22/2019] [Accepted: 01/01/2020] [Indexed: 05/18/2023]
Abstract
In most plants, abscisic acid (ABA) induces premature leaf senescence; however, the mechanisms of ABA signaling during leaf senescence remain largely unknown. Here, we show that the rice (Oryza sativa) NAM/ATAF1/2/CUC2 (NAC) transcription factor ONAC054 plays an important role in ABA-induced leaf senescence. The onac054 knockout mutants maintained green leaves, while ONAC054-overexpressing lines showed early leaf yellowing under dark- and ABA-induced senescence conditions. Genome-wide microarray analysis showed that ABA signaling-associated genes, including ABA INSENSITIVE5 (OsABI5) and senescence-associated genes, including STAY-GREEN and NON-YELLOW COLORING1 (NYC1), were significantly down-regulated in onac054 mutants. Chromatin immunoprecipitation and protoplast transient assays showed that ONAC054 directly activates OsABI5 and NYC1 by binding to the mitochondrial dysfunction motif in their promoters. ONAC054 activity is regulated by proteolytic processing of the C-terminal transmembrane domain (TMD). We found that nuclear import of ONAC054 requires cleavage of the putative C-terminal TMD. Furthermore, the ONAC054 transcript (termed ONAC054α) has an alternatively spliced form (ONAC054β), with seven nucleotides inserted between intron 5 and exon 6, truncating ONAC054α protein at a premature stop codon. ONAC054β lacks the TMD and thus localizes to the nucleus. These findings demonstrate that the activity of ONAC054, which is important for ABA-induced leaf senescence in rice, is precisely controlled by multilayered regulatory processes.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Dami Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
62
|
Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, Bentsink L. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. PLANT PHYSIOLOGY 2020; 182:378-392. [PMID: 31527088 PMCID: PMC6945870 DOI: 10.1104/pp.19.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/01/2019] [Indexed: 05/20/2023]
Abstract
The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjors van der Horst
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan H G Cordewener
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Twan A H P America
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
63
|
Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. PLANT PHYSIOLOGY 2020; 182:255-271. [PMID: 31753844 PMCID: PMC6945872 DOI: 10.1104/pp.19.00832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Low temperature is an important environmental stress that adversely affects rice (Oryza sativa) growth and productivity. Splicing of pre-mRNA is a crucial posttranscriptional regulatory step in gene expression in plants and is sensitive to temperature. DEAD-box RNA helicases belong to an RNA helicase family involved in the rearrangement of ribonucleoprotein complexes and the modification of RNA structure and are therefore involved in all aspects of RNA metabolism. In this study, we demonstrate that the rate of pre-mRNA splicing is reduced in rice at low temperatures and that the DEAD-box RNA Helicase42 (OsRH42) is necessary to support effective splicing of pre-mRNA during mRNA maturation at low temperatures. OsRH42 expression is tightly coupled to temperature fluctuation, and OsRH42 is localized in the splicing speckles and interacts directly with U2 small nuclear RNA. Retarded pre-mRNA splicing and plant growth defects were exhibited by OsRH42-knockdown transgenic lines at low temperatures, thus indicating that OsRH42 performs an essential role in ensuring accurate pre-mRNA splicing and normal plant growth under low ambient temperature. Unexpectedly, our results show that OsRH42 overexpression significantly disrupts the pre-mRNA splicing pathway, causing retarded plant growth and reducing plant cold tolerance. Combined, these results indicate that accurate control of OsRH42 homeostasis is essential for rice plants to respond to changes in ambient temperature. In addition, our study presents the molecular mechanism of DEAD-box RNA helicase function in pre-mRNA splicing, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Wen-Shan Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| |
Collapse
|
64
|
Kawa D, Meyer AJ, Dekker HL, Abd-El-Haliem AM, Gevaert K, Van De Slijke E, Maszkowska J, Bucholc M, Dobrowolska G, De Jaeger G, Schuurink RC, Haring MA, Testerink C. SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. PLANT PHYSIOLOGY 2020; 182:361-377. [PMID: 31570508 PMCID: PMC6945840 DOI: 10.1104/pp.19.00818] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ahmed M Abd-El-Haliem
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Gent, Belgium
- VIB Center for Medical Biotechnology, 9000 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Gent, Belgium
- VIB Center for Plant Systems Biology, 9052 Gent, Belgium
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Gent, Belgium
- VIB Center for Plant Systems Biology, 9052 Gent, Belgium
| | - Robert C Schuurink
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Michel A Haring
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
65
|
Launay A, Cabassa-Hourton C, Eubel H, Maldiney R, Guivarc’h A, Crilat E, Planchais S, Lacoste J, Bordenave-Jacquemin M, Clément G, Richard L, Carol P, Braun HP, Lebreton S, Savouré A. Proline oxidation fuels mitochondrial respiration during dark-induced leaf senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6203-6214. [PMID: 31504781 PMCID: PMC6859731 DOI: 10.1093/jxb/erz351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a form of developmentally programmed cell death that allows the remobilization of nutrients and cellular materials from leaves to sink tissues and organs. Among the catabolic reactions that occur upon senescence, little is known about the role of proline catabolism. In this study, the involvement in dark-induced senescence of proline dehydrogenases (ProDHs), which catalyse the first and rate-limiting step of proline oxidation in mitochondria, was investigated using prodh single- and double-mutants with the help of biochemical, proteomic, and metabolomic approaches. The presence of ProDH2 in mitochondria was confirmed by mass spectrometry and immunogold labelling in dark-induced leaves of Arabidopsis. The prodh1 prodh2 mutant exhibited enhanced levels of most tricarboxylic acid cycle intermediates and free amino acids, demonstrating a role of ProDH in mitochondrial metabolism. We also found evidence of the involvement and the importance of ProDH in respiration, with proline as an alternative substrate, and in remobilization of proline during senescence to generate glutamate and energy that can then be exported to sink tissues and organs.
Collapse
Affiliation(s)
- Alban Launay
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Régis Maldiney
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Anne Guivarc’h
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Emilie Crilat
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Séverine Planchais
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Present address: Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, F-75005 Paris, France
| | - Marianne Bordenave-Jacquemin
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, UMR 1318, INRA-AgroParisTech, Centre INRA Versailles, Versailles Cedex, France
| | - Luc Richard
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Pierre Carol
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| | - Arnould Savouré
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| |
Collapse
|
66
|
The Rho-Independent Transcription Terminator for the porA Gene Enhances Expression of the Major Outer Membrane Protein and Campylobacter jejuni Virulence in Abortion Induction. Infect Immun 2019; 87:IAI.00687-19. [PMID: 31570559 DOI: 10.1128/iai.00687-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Its porA gene encodes the major outer membrane protein (MOMP) that is abundantly expressed and has important physiological functions, including a key role in systemic infection and abortion induction in pregnant animals. Despite the importance of porA in C. jejuni pathogenesis, mechanisms modulating its expression levels remain elusive. At the 3' end of the porA transcript, there is a Rho-independent transcription terminator (named T porA in this study). Whether T porA affects the expression and function of MOMP remains unknown and is investigated in this study. Green fluorescent protein (GFP) fusion constructs with the porA promoter at the 5' end and an intact T porA or no T porA at the 3' end of the gfp coding sequence revealed that both the transcript level of gfp and its fluorescence signals were more than 2-fold higher in the construct with T porA than in the one without T porA Real-time quantitative PCR (qRT-PCR) analysis of the porA mRNA and immunoblot detection of MOMP in C. jejuni showed that disruption of T porA significantly reduced the porA transcript level and the expression of MOMP. An mRNA decay assay demonstrated that disruption of T porA resulted in a shortened transcript half-life of the upstream gfp or porA gene, indicating that T porA enhances mRNA stability. In the guinea pig model, the C. jejuni construct with an interrupted T porA was significantly attenuated in abortion induction. Together, these results indicate that T porA enhances the expression level of MOMP by stabilizing its mRNA and influences the virulence of C. jejuni.
Collapse
|
67
|
The Recovery from Sulfur Starvation Is Independent from the mRNA Degradation Initiation Enzyme PARN in Arabidopsis. PLANTS 2019; 8:plants8100380. [PMID: 31569782 PMCID: PMC6843384 DOI: 10.3390/plants8100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
Abstract
When plants are exposed to sulfur limitation, they upregulate the sulfate assimilation pathway at the expense of growth-promoting measures. Upon cessation of the stress, however, protective measures are deactivated, and growth is restored. In accordance with these findings, transcripts of sulfur-deficiency marker genes are rapidly degraded when starved plants are resupplied with sulfur. Yet it remains unclear which enzymes are responsible for the degradation of transcripts during the recovery from starvation. In eukaryotes, mRNA decay is often initiated by the cleavage of poly(A) tails via deadenylases. As mutations in the poly(A) ribonuclease PARN have been linked to altered abiotic stress responses in Arabidopsis thaliana, we investigated the role of PARN in the recovery from sulfur starvation. Despite the presence of putative PARN-recruiting AU-rich elements in sulfur-responsive transcripts, sulfur-depleted PARN hypomorphic mutants were able to reset their transcriptome to pre-starvation conditions just as readily as wildtype plants. Currently, the subcellular localization of PARN is disputed, with studies reporting both nuclear and cytosolic localization. We detected PARN in cytoplasmic speckles and reconciled the diverging views in literature by identifying two PARN splice variants whose predicted localization is in agreement with those observations.
Collapse
|
68
|
Chiam NC, Fujimura T, Sano R, Akiyoshi N, Hiroyama R, Watanabe Y, Motose H, Demura T, Ohtani M. Nonsense-Mediated mRNA Decay Deficiency Affects the Auxin Response and Shoot Regeneration in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2000-2014. [PMID: 31386149 DOI: 10.1093/pcp/pcz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.
Collapse
Affiliation(s)
- Nyet-Cheng Chiam
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyo Fujimura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Nobuhiro Akiyoshi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
69
|
Kesarwani AK, Lee HC, Ricca PG, Sullivan G, Faiss N, Wagner G, Wunderling A, Wachter A. Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1986-1999. [PMID: 31368494 DOI: 10.1093/pcp/pcz141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG) 7, but not UPF2, are under feedback control in both dicots. In the monocot investigated in this study, only SMG7 was slightly induced upon NMD inhibition. The detection of the endogenous NMD factor proteins in Arabidopsis thaliana substantiated a negative correlation between NMD activity and SMG7 amounts. Furthermore, evidence was provided that SMG7 is required for the dephosphorylation of UPF1. Our comprehensive and comparative study of NMD feedback control in plants reveals complex and species-specific attenuation of this RNA surveillance pathway, with critical implications for the numerous functions of NMD in physiology and stress responses.
Collapse
Affiliation(s)
- Anil K Kesarwani
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Patrizia G Ricca
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Sullivan
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Anna Wunderling
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
70
|
Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W, Li R, Pitzalis N, Heinlein M, Zhang S, Genovesio A, Colot V, Kragler F. m 5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Curr Biol 2019; 29:2465-2476.e5. [PMID: 31327714 DOI: 10.1016/j.cub.2019.06.042] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.
Collapse
Affiliation(s)
- Lei Yang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Valentina Perrera
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Eleftheria Saplaoura
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Federico Apelt
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Amira Kramdi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Justyna Olas
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Wenna Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany; China Agricultural University, 17 Qinghua East Road, 100080 Haidian, Beijing, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China; Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, China
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany.
| |
Collapse
|
71
|
Joshi P, Seki T, Kitamura S, Bergano A, Lee B, Perera RJ. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells. RNA Biol 2019; 16:1355-1363. [PMID: 31179855 DOI: 10.1080/15476286.2019.1629769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA half-life is closely related to its cellular physiological function, so stability determinants may have regulatory functions. Micro(mi)RNAs have primarily been studied with respect to post-transcriptional mRNA regulation and target degradation. Here we study the impact of the tumour suppressive melanoma miRNA miR-211 on transcriptome stability and phenotype in the non-pigmented melanoma cell line, A375. Using 5'-bromouridine IP chase (BRIC)-seq, transcriptome-wide RNA stability profiles revealed highly regulated genes and pathways important in this melanoma cell line. By combining BRIC-seq, RNA-seq and in silico predictions, we identified both existing and novel direct miR-211 targets. We validated DUSP3 as one such novel miR-211 target, which itself sustains colony formation and invasion in A375 cells via MAPK/PI3K signalling. miRNAs have the capacity to control RNA turnover as a gene expression mechanism, and RNA stability profiling is an excellent tool for interrogating functionally relevant gene regulatory pathways and miRNA targets when combined with other high-throughput and in silico approaches.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Medical and Biological Laboratories , Nagoya , Japan
| | | | - Andrea Bergano
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
72
|
Zhang H, Zhong H, Zhang S, Shao X, Ni M, Cai Z, Chen X, Xia Y. NAD tagSeq reveals that NAD +-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:12072-12077. [PMID: 31142650 PMCID: PMC6575590 DOI: 10.1073/pnas.1903683116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 5' end of a eukaryotic mRNA transcript generally has a 7-methylguanosine (m7G) cap that protects mRNA from degradation and mediates almost all other aspects of gene expression. Some RNAs in Escherichia coli, yeast, and mammals were recently found to contain an NAD+ cap. Here, we report the development of the method NAD tagSeq for transcriptome-wide identification and quantification of NAD+-capped RNAs (NAD-RNAs). The method uses an enzymatic reaction and then a click chemistry reaction to label NAD-RNAs with a synthetic RNA tag. The tagged RNA molecules can be enriched and directly sequenced using the Oxford Nanopore sequencing technology. NAD tagSeq can allow more accurate identification and quantification of NAD-RNAs, as well as reveal the sequences of whole NAD-RNA transcripts using single-molecule RNA sequencing. Using NAD tagSeq, we found that NAD-RNAs in Arabidopsis were produced by at least several thousand genes, most of which are protein-coding genes, with the majority of these transcripts coming from <200 genes. For some Arabidopsis genes, over 5% of their transcripts were NAD capped. Gene ontology terms overrepresented in the 2,000 genes that produced the highest numbers of NAD-RNAs are related to photosynthesis, protein synthesis, and responses to cytokinin and stresses. The NAD-RNAs in Arabidopsis generally have the same overall sequence structures as the canonical m7G-capped mRNAs, although most of them appear to have a shorter 5' untranslated region (5' UTR). The identification and quantification of NAD-RNAs and revelation of their sequence features can provide essential steps toward understanding the functions of NAD-RNAs.
Collapse
Affiliation(s)
- Hailei Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong Special Administrative Region (HKSAR), China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong Special Administrative Region (HKSAR), China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong Special Administrative Region (HKSAR), China
- Centre for Soybean Research, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, HKSAR, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Xiaojian Shao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, HKSAR, China
| | - Min Ni
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong Special Administrative Region (HKSAR), China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, HKSAR, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong Special Administrative Region (HKSAR), China;
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, HKSAR, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, HKSAR, China
| |
Collapse
|
73
|
Sajeev N, Bai B, Bentsink L. Seeds: A Unique System to Study Translational Regulation. TRENDS IN PLANT SCIENCE 2019; 24:487-495. [PMID: 31003894 DOI: 10.1016/j.tplants.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Seeds accumulate mRNA during their development and have the ability to store these mRNAs over extended periods of time. On imbibition, seeds transform from a quiescent dry state (no translation) to a fully active metabolic state, and selectively translate subsets of these stored mRNA. Thus, seeds provide a unique developmentally regulated 'on/off' switch for translation. Additionally, there is extensive translational control during seed germination. Here we discuss new findings and hypotheses linked to mRNA fate and the role of translational regulation in seeds. Translation is an understated yet important mode of gene regulation. We propose seeds as a novel system to study developmentally and physiologically regulated translation.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl.
| |
Collapse
|
74
|
Millar AJ, Urquiza U, Freeman PL, Hume A, Plotkin GD, Sorokina O, Zardilis A, Zielinski T. Practical steps to digital organism models, from laboratory model species to 'Crops in silico. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2403-2418. [PMID: 30615184 DOI: 10.1093/jxb/ery435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
A recent initiative named 'Crops in silico' proposes that multi-scale models 'have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts' in plant science, particularly directed to crop species. To that end, the group called for 'a paradigm shift in plant modelling, from largely isolated efforts to a connected community'. 'Wet' (experimental) research has been especially productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model species allowed the emergence of an Arabidopsis research community. Parts of this community invested in 'dry' (theoretical) research, under the rubric of Systems Biology. Our past research combined concepts from Systems Biology and crop modelling. Here we outline the approaches that seem most relevant to connected, 'digital organism' initiatives. We illustrate the scale of experimental research required, by collecting the kinetic parameter values that are required for a quantitative, dynamic model of a gene regulatory network. By comparison with the Systems Biology Markup Language (SBML) community, we note computational resources and community structures that will help to realize the potential for plant Systems Biology to connect with a broader crop science community.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Uriel Urquiza
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- EPCC, Bayes Centre, University of Edinburgh, Edinburgh, UK
| | - Gordon D Plotkin
- Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Oxana Sorokina
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Argyris Zardilis
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
75
|
Palovaara J, Weijers D. Adapting INTACT to analyse cell-type-specific transcriptomes and nucleocytoplasmic mRNA dynamics in the Arabidopsis embryo. PLANT REPRODUCTION 2019; 32:113-121. [PMID: 30430248 DOI: 10.1007/s00497-018-0347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 05/06/2023]
Abstract
In the early embryo of vascular plants, the different cell types and stem cells of the seedling are specified as the embryo develops from a zygote towards maturity. How the key steps in cell and tissue specification are instructed by genome-wide transcriptional activity is poorly understood. Progress in defining transcriptional regulation at the genome-wide level in plant embryos has been hampered by difficulties associated with capturing cell-type-specific transcriptomes in this small and inaccessible structure. We recently adapted a two-component genetic nucleus labelling system called INTACT to isolate nuclei from distinct cell types at different stages of Arabidopsis thaliana embryogenesis. We have used these to generate a transcriptomic atlas of embryo development following microarray-based expression profiling. Here, we present a general description of the adapted INTACT procedure, including the two-component labelling system, seed isolation, nuclei preparation and purification, as well as transcriptomic profiling. We also compare nuclear and cellular transcriptomes from the early Arabidopsis embryo to assess nucleocytoplasmic differences and discuss how these differences can be used to infer regulation of gene activity.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Molecular Genetics, University of Bremen, 28359, Bremen, Germany
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
76
|
Gorshkov O, Chernova T, Mokshina N, Gogoleva N, Suslov D, Tkachenko A, Gorshkova T. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2019; 8:E47. [PMID: 30791461 PMCID: PMC6409982 DOI: 10.3390/plants8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Tatyana Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420021 Kazan, Russia.
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander Tkachenko
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| |
Collapse
|
77
|
Song QA, Catlin NS, Brad Barbazuk W, Li S. Computational analysis of alternative splicing in plant genomes. Gene 2019; 685:186-195. [PMID: 30321657 DOI: 10.1016/j.gene.2018.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/16/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant species. Finally, we discuss the outlook of integrating other genomic data with splicing analyses to identify regulatory mechanisms of AS on genome-wide scale.
Collapse
Affiliation(s)
- Qi A Song
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Nathan S Catlin
- Department of Biology, University of Florida, Gainesville, FL 32611, United States of America
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL 32611, United States of America; Genetics Institute, University of Florida, Gainesville, FL 32611, United States of America
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America.
| |
Collapse
|
78
|
Lai WS, Arvola RM, Goldstrohm AC, Blackshear PJ. Inhibiting transcription in cultured metazoan cells with actinomycin D to monitor mRNA turnover. Methods 2019; 155:77-87. [PMID: 30625384 DOI: 10.1016/j.ymeth.2019.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Decay of transcribed mRNA is a key determinant of steady state mRNA levels in cells. Global analysis of mRNA decay in cultured cells has revealed amazing heterogeneity in rates of decay under normal growth conditions, with calculated half-lives ranging from several minutes to many days. The factors that are responsible for this wide range of decay rates are largely unknown, although our knowledge of trans-acting RNA binding proteins and non-coding RNAs that can control decay rates is increasing. Many methods have been used to try to determine mRNA decay rates under various experimental conditions in cultured cells, and transcription inhibitors like actinomycin D have probably the longest history of any technique for this purpose. Despite this long history of use, the actinomycin D method has been criticized as prone to artifacts, and as ineffective for some promoters. With appropriate guidelines and controls, however, it can be a versatile, effective technique for measuring endogenous mRNA decay in cultured mammalian and insect cells, as well as the decay of exogenously-expressed transcripts. It can be used readily on a genome-wide level, and is remarkably cost-effective. In this short review, we will discuss our utilization of this approach in these cells; we hope that these methods will allow more investigators to apply this useful technique to study mRNA decay under the appropriate conditions.
Collapse
Affiliation(s)
- Wi S Lai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Rene M Arvola
- The Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Aaron C Goldstrohm
- The Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States; The Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
79
|
Diamos AG, Mason HS. Chimeric 3' flanking regions strongly enhance gene expression in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1971-1982. [PMID: 29637682 PMCID: PMC6230951 DOI: 10.1111/pbi.12931] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 05/24/2023]
Abstract
Plants represent a promising platform for the highly scalable production of recombinant proteins. Previously, we identified the tobacco extensin terminator lacking its intron as an element that reduced transcript read-through and improved recombinant protein production in a plant-based system. In this study, we systematically compared nonreplicating plant expression vectors containing over 20 commonly used or newly identified terminators from diverse sources. We found that eight gene terminators enhance reporter gene expression significantly more than the commonly used 35S and NOS terminators. The intronless extensin terminator provided a 13.6-fold increase compared with the NOS terminator. Combining terminators in tandem produced large synergistic effects, with many combinations providing a >25-fold increase in expression. Addition of the tobacco Rb7 or TM6 matrix attachment region (MAR) strongly enhanced protein production when added to most terminators, with the Rb7 MAR providing the greatest enhancement. Using deletion analysis, the full activity of the 1193 bp Rb7 MAR was found to require only a 463-bp region at its 3' end. Combined terminators and MAR together provided a >60-fold increase compared with the NOS terminator alone. These combinations were then placed in a replicating geminiviral vector, providing a total of >150-fold enhancement over the original NOS vector, corresponding to an estimated yield of 3-5 g recombinant protein per kg leaf fresh weight or around 50% of the leaf total soluble protein. These results demonstrate the importance of 3' flanking regions in optimizing gene expression and show great potential for 3' flanking regions to improve DNA-based recombinant protein production systems.
Collapse
Affiliation(s)
- Andrew G. Diamos
- Center for Immunotherapy, Vaccines and VirotherapyBiodesign Institute at ASU, and School of Life SciencesArizona State UniversityTempeAZUSA
| | - Hugh S. Mason
- Center for Immunotherapy, Vaccines and VirotherapyBiodesign Institute at ASU, and School of Life SciencesArizona State UniversityTempeAZUSA
| |
Collapse
|
80
|
Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 2018; 9:5056. [PMID: 30498193 PMCID: PMC6265284 DOI: 10.1038/s41467-018-07500-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression and plant development. Here, we identified 6,510 lncRNAs in Arabidopsis under normal or stress conditions. We found that the expression of natural antisense transcripts (NATs) that are transcribed in the opposite direction of protein-coding genes often positively correlates with and is required for the expression of their cognate sense genes. We further characterized MAS, a NAT-lncRNA produced from the MADS AFFECTING FLOWERING4 (MAF4) locus. MAS is induced by cold and indispensable for the activation of MAF4 transcription and suppression of precocious flowering. MAS activates MAF4 by interacting with WDR5a, one core component of the COMPASS-like complexes, and recruiting WDR5a to MAF4 to enhance histone 3 lysine 4 trimethylation (H3K4me3). Our study greatly extends the repertoire of lncRNAs in Arabidopsis and reveals a role for NAT-lncRNAs in regulating gene expression in vernalization response and likely in other biological processes.
Collapse
|
81
|
Mishev K, Lu Q, Denoo B, Peurois F, Dejonghe W, Hullaert J, De Rycke R, Boeren S, Bretou M, De Munck S, Sharma I, Goodman K, Kalinowska K, Storme V, Nguyen LSL, Drozdzecki A, Martins S, Nerinckx W, Audenaert D, Vert G, Madder A, Otegui MS, Isono E, Savvides SN, Annaert W, De Vries S, Cherfils J, Winne J, Russinova E. Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. THE PLANT CELL 2018; 30:2573-2593. [PMID: 30018157 PMCID: PMC6241273 DOI: 10.1105/tpc.18.00145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Small GTP-binding proteins from the ADP-ribosylation factor (ARF) family are important regulators of vesicle formation and cellular trafficking in all eukaryotes. ARF activation is accomplished by a protein family of guanine nucleotide exchange factors (GEFs) that contain a conserved catalytic Sec7 domain. Here, we identified and characterized Secdin, a small-molecule inhibitor of Arabidopsis thaliana ARF-GEFs. Secdin application caused aberrant retention of plasma membrane (PM) proteins in late endosomal compartments, enhanced vacuolar degradation, impaired protein recycling, and delayed secretion and endocytosis. Combined treatments with Secdin and the known ARF-GEF inhibitor Brefeldin A (BFA) prevented the BFA-induced PM stabilization of the ARF-GEF GNOM, impaired its translocation from the Golgi to the trans-Golgi network/early endosomes, and led to the formation of hybrid endomembrane compartments reminiscent of those in ARF-GEF-deficient mutants. Drug affinity-responsive target stability assays revealed that Secdin, unlike BFA, targeted all examined Arabidopsis ARF-GEFs, but that the interaction was probably not mediated by the Sec7 domain because Secdin did not interfere with the Sec7 domain-mediated ARF activation. These results show that Secdin and BFA affect their protein targets through distinct mechanisms, in turn showing the usefulness of Secdin in studies in which ARF-GEF-dependent endomembrane transport cannot be manipulated with BFA.
Collapse
Affiliation(s)
- Kiril Mishev
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Bram Denoo
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - François Peurois
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Wim Dejonghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Hullaert
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- VIB BioImaging Core, 9052 Ghent, Belgium
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6708 Wageningen, The Netherlands
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Steven De Munck
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Isha Sharma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kaija Goodman
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Kamila Kalinowska
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Le Son Long Nguyen
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Andrzej Drozdzecki
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Sara Martins
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Wim Nerinckx
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, 9052 Ghent, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, 9052 Ghent, Belgium
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Marisa S Otegui
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Erika Isono
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Sacco De Vries
- Laboratory of Biochemistry, Wageningen University, 6708 Wageningen, The Netherlands
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Johan Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
82
|
Speth C, Szabo EX, Martinho C, Collani S, Zur Oven-Krockhaus S, Richter S, Droste-Borel I, Macek B, Stierhof YD, Schmid M, Liu C, Laubinger S. Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. eLife 2018; 7:37078. [PMID: 30152752 PMCID: PMC6135607 DOI: 10.7554/elife.37078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/22/2018] [Indexed: 01/16/2023] Open
Abstract
Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.
Collapse
Affiliation(s)
- Corinna Speth
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Emese Xochitl Szabo
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| | - Claudia Martinho
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Silvio Collani
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | | | - Sandra Richter
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | | | - Boris Macek
- Proteome Centre, University of Tuebingen, Tuebingen, Germany
| | - York-Dieter Stierhof
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Markus Schmid
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | - Chang Liu
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Sascha Laubinger
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
83
|
Liu MJ, Sugimoto K, Uygun S, Panchy N, Campbell MS, Yandell M, Howe GA, Shiu SH. Regulatory Divergence in Wound-Responsive Gene Expression between Domesticated and Wild Tomato. THE PLANT CELL 2018; 30:1445-1460. [PMID: 29743197 PMCID: PMC6096591 DOI: 10.1105/tpc.18.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of transcriptional regulatory mechanisms is central to how stress response and tolerance differ between species. However, it remains largely unknown how divergence in cis-regulatory sites and, subsequently, transcription factor (TF) binding specificity contribute to stress-responsive expression divergence, particularly between wild and domesticated species. By profiling wound-responsive gene transcriptomes in wild Solanum pennellii and domesticated S. lycopersicum, we found extensive wound response divergence and identified 493 S. lycopersicum and 278 S. pennellii putative cis-regulatory elements (pCREs) that were predictive of wound-responsive gene expression. Only 24-52% of these wound response pCREs (depending on wound response patterns) were consistently enriched in the putative promoter regions of wound-responsive genes across species. In addition, between these two species, their differences in pCRE site sequences were significantly and positively correlated with differences in wound-responsive gene expression. Furthermore, ∼11-39% of pCREs were specific to only one of the species and likely bound by TFs from different families. These findings indicate substantial regulatory divergence in these two plant species that diverged ∼3-7 million years ago. Our study provides insights into the mechanistic basis of how the transcriptional response to wounding is regulated and, importantly, the contribution of cis-regulatory components to variation in wound-responsive gene expression between a wild and a domesticated plant species.
Collapse
Affiliation(s)
- Ming-Jung Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Koichi Sugimoto
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Sahra Uygun
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
| | - Nicholas Panchy
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
| | - Michael S Campbell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
- USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
84
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
85
|
Foo M, Gherman I, Zhang P, Bates DG, Denby KJ. A Framework for Engineering Stress Resilient Plants Using Genetic Feedback Control and Regulatory Network Rewiring. ACS Synth Biol 2018; 7:1553-1564. [PMID: 29746091 DOI: 10.1021/acssynbio.8b00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.
Collapse
Affiliation(s)
- Mathias Foo
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Iulia Gherman
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Peijun Zhang
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Declan G. Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine J. Denby
- Department of Biology and Centre for Novel Agricultural Products, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
86
|
Morris RJ. On the selectivity, specificity and signalling potential of the long-distance movement of messenger RNA. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:1-7. [PMID: 29220690 DOI: 10.1016/j.pbi.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 05/23/2023]
Abstract
Messenger RNA (mRNA) can move through the vascular system in plants. Until recently the transport of mRNA had been demonstrated only for a few well-documented cases, leading to the suggestion that transport was selective and specific. The extent of this long-distance transport has now been shown to be on the genomic scale with thousands of transcripts covering broad regions of gene ontological space. In light of this recent data, I revisit proposed mechanisms of transport of mRNA and critically assess their potential role in signalling.
Collapse
Affiliation(s)
- Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom.
| |
Collapse
|
87
|
Ma F, Lin P, Chen Q, Lu X, Zhang YE, Wu CI. Direct measurement of pervasive weak repression by microRNAs and their role at the network level. BMC Genomics 2018; 19:362. [PMID: 29764374 PMCID: PMC5952853 DOI: 10.1186/s12864-018-4757-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A gene regulatory network (GRN) comprises many weak links that are often regulated by microRNAs. Since miRNAs rarely repress their target genes by more than 30%, doubts have been expressed about the biological relevance of such weak effects. These doubts raise the possibility of under-estimation as miRNA repression is usually estimated indirectly from equilibrium expression levels. RESULTS To measure miRNA repression directly, we inhibited transcript synthesis in Drosophila larvae and collected time-course data on mRNA abundance, the decline of which reflects transcript degradation. The rate of target degradation in the absence of miR310s, a moderately expressed miRNA family, was found to decrease by 5 to 15%. A conventional analysis that does not remove transcript synthesis yields an estimate of 6.5%, within the range of the new estimates. These data permit further examinations of the repression mechanisms by miRNAs including seed matching types, APA (alternative polyadenylation) sites, effects of other highly-expressed miRNAs and the length of 3'UTR. Our direct measurements suggest the latter two factors have a measurable effect on decay rate. CONCLUSION The direct measurement confirms pervasive weak repression by miRNAs, supporting the conclusions based on indirect assays. The confirmation suggests that this weak repression may indeed be miRNAs' main function. In this context, we discuss the recent proposal that weak repression is "cumulatively powerful" in stabilizing GRNs.
Collapse
Affiliation(s)
- Fuqiang Ma
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Lin
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Qingjian Chen
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chung-I Wu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
88
|
Scofield S, Murison A, Jones A, Fozard J, Aida M, Band LR, Bennett M, Murray JAH. Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development 2018; 145:dev157081. [PMID: 29650590 PMCID: PMC5992597 DOI: 10.1242/dev.157081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/21/2018] [Indexed: 01/29/2023]
Abstract
The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, yet the components and structure of the STM gene regulatory network (GRN) are largely unknown. Here, we show that transcriptional regulators are overrepresented among STM-regulated genes and, using these as GRN components in Bayesian network analysis, we infer STM GRN associations and reveal regulatory relationships between STM and factors involved in multiple aspects of SAM function. These include hormone regulation, TCP-mediated control of cell differentiation, AIL/PLT-mediated regulation of pluripotency and phyllotaxis, and specification of meristem-organ boundary zones via CUC1. We demonstrate a direct positive transcriptional feedback loop between STM and CUC1, despite their distinct expression patterns in the meristem and organ boundary, respectively. Our further finding that STM activates expression of the CUC1-targeting microRNA miR164c combined with mathematical modelling provides a potential solution for this apparent contradiction, demonstrating that these proposed regulatory interactions coupled with STM mobility could be sufficient to provide a mechanism for CUC1 localisation at the meristem-organ boundary. Our findings highlight the central role for the STM GRN in coordinating SAM functions.
Collapse
Affiliation(s)
- Simon Scofield
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Alexander Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Angharad Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - John Fozard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Leah R Band
- Centre for Plant Integrative Biology, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
89
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
90
|
Zhang L, Vertes A. Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
91
|
Zhang L, Vertes A. Single‐Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew Chem Int Ed Engl 2018; 57:4466-4477. [DOI: 10.1002/anie.201709719] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
92
|
Rosenthal SH, Diamos AG, Mason HS. An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves. PLANT MOLECULAR BIOLOGY 2018; 96:429-443. [PMID: 29429129 DOI: 10.1007/s11103-018-0708-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/01/2018] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE We have found interesting features of a plant gene (extensin) 3' flanking region, including extremely efficient polyadenylation which greatly improves transient expression of transgenes when an intron is removed. Its use will greatly benefit studies of gene expression in plants, research in molecular biology, and applications for recombinant proteins. Plants are a promising platform for the production of recombinant proteins. To express high-value proteins in plants efficiently, the optimization of expression cassettes using appropriate regulatory sequences is critical. Here, we characterize the activity of the tobacco extensin (Ext) gene terminator by transient expression in Nicotiana benthamiana, tobacco, and lettuce. Ext is a member of the hydroxyproline-rich glycoprotein (HRGP) superfamily and constitutes the major protein component of cell walls. The present study demonstrates that the Ext terminator with its native intron removed increased transient gene expression up to 13.5-fold compared to previously established terminators. The enhanced transgene expression was correlated with increased mRNA accumulation and reduced levels of read-through transcripts, which could impair gene expression. Analysis of transcript 3'-ends found that the majority of polyadenylated transcripts were cleaved at a YA dinucleotide downstream from a canonical AAUAAA motif and a UG-rich region, both of which were found to be highly conserved among related extensin terminators. Deletion of either of these regions eliminated most of the activity of the terminator. Additionally, a 45 nt polypurine sequence ~ 175 nt upstream from the polyadenylation sites was found to also be necessary for the enhanced expression. We conclude that the use of Ext terminator has great potential to benefit the production of recombinant proteins in plants.
Collapse
Affiliation(s)
- Sun Hee Rosenthal
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Andrew G Diamos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Hugh S Mason
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA.
| |
Collapse
|
93
|
Ueno D, Yamasaki S, Demura T, Kato K. Comprehensive analysis of mRNA internal cleavage sites in Arabidopsis thaliana. J Biosci Bioeng 2018; 125:723-728. [PMID: 29358038 DOI: 10.1016/j.jbiosc.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 02/07/2023]
Abstract
The major obstacle of efficient transgene expression seems to be gene silencing, and one of the important factors in gene silencing is mRNA stability. Regulation of mRNA stability is an important aspect of the control of gene expression. mRNAs are degraded by both exonucleolytic digestion and endonucleolytic cleavage. However, with the exception of small RNA-guided cleavage, the mechanisms underlying endonucleolytic cleavage-dependent RNA degradation remain to be elucidated. High-throughput approaches for genome-wide profiling of RNA cleavage sites, collectively termed degradome sequencing, have been developed by several groups. These analyses have contributed to the identification of mRNA cleavage sites in plants, but due to selection of poly (A) mRNA in library preparation, these approaches cannot identify cleavage sites in a fully accurate manner. To address this issue, we developed a new experimental method, truncated RNA end sequencing (TREseq), which enabled us to accurately identify many cleavage sites. TREseq can also be used to estimate the efficiency of mRNA cleavage, revealing differences in base frequencies near cleavage sites that reflect differences in cleavage efficiency. These results will contribute to gain important knowledge about the stability of the transgene mRNA in the future.
Collapse
Affiliation(s)
- Daishin Ueno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shotaro Yamasaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
94
|
Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A 2018; 115:E1485-E1494. [PMID: 29386391 DOI: 10.1073/pnas.1712312115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The decay of mRNA plays a vital role in modulating mRNA abundance, which, in turn, influences cellular and organismal processes. In plants and metazoans, three distinct pathways carry out the decay of most cytoplasmic mRNAs: The mRNA decapping complex, which requires the scaffold protein VARICOSE (VCS), removes a protective 5' cap, allowing for 5' to 3' decay via EXORIBONUCLEASE4 (XRN4, XRN1 in metazoans and yeast), and both the exosome and SUPPRESSOR OF VCS (SOV)/DIS3L2 degrade RNAs in the 3' to 5' direction. However, the unique biological contributions of these three pathways, and whether they degrade specialized sets of transcripts, are unknown. In Arabidopsis, the participation of SOV in RNA homeostasis is also unclear, because Arabidopsis sov mutants have a normal phenotype. We carried out mRNA decay analyses in wild-type, sov, vcs, and vcs sov seedlings, and used a mathematical modeling approach to determine decay rates and quantify gene-specific contributions of VCS and SOV to decay. This analysis revealed that VCS (decapping) contributes to decay of 68% of the transcriptome, and, while it initiates degradation of mRNAs with a wide range of decay rates, it especially contributes to decay of short-lived RNAs. Only a few RNAs were clear SOV substrates in that they decayed more slowly in sov mutants. However, 4,506 RNAs showed VCS-dependent feedback in sov that modulated decay rates, and, by inference, transcription, to maintain RNA abundances, suggesting that these RNAs might also be SOV substrates. This feedback was shown to be independent of siRNA activity.
Collapse
|
95
|
Wawer I, Golisz A, Sulkowska A, Kawa D, Kulik A, Kufel J. mRNA Decapping and 5'-3' Decay Contribute to the Regulation of ABA Signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:312. [PMID: 29593767 PMCID: PMC5857609 DOI: 10.3389/fpls.2018.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Defects in RNA processing and degradation pathways often lead to developmental abnormalities, impaired hormonal signaling and altered resistance to abiotic and biotic stress. Here we report that components of the 5'-3' mRNA decay pathway, DCP5, LSM1-7 and XRN4, contribute to a proper response to a key plant hormone abscisc acid (ABA), albeit in a different manner. Plants lacking DCP5 are more sensitive to ABA during germination, whereas lsm1a lsm1b and xrn4-5 mutants are affected at the early stages of vegetative growth. In addition, we show that DCP5 and LSM1 regulate mRNA stability and act in translational repression of the main components of the early ABA signaling, PYR/PYL ABA receptors and SnRK2s protein kinases. mRNA decapping DCP and LSM1-7 complexes also appear to modulate ABA-dependent expression of stress related transcription factors from the AP2/ERF/DREB family that in turn affect the level of genes regulated by the PYL/PYR/RCAR-PP2C-SnRK2 pathway. These observations suggest that ABA signaling through PYL/PYR/RCAR receptors and SnRK2s kinases is regulated directly and indirectly by the cytoplasmic mRNA decay pathway.
Collapse
Affiliation(s)
- Izabela Wawer
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- *Correspondence: Izabela Wawer
| | - Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Sulkowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Dorota Kawa
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Joanna Kufel
| |
Collapse
|
96
|
Yamada T, Imamachi N, Onoguchi-Mizutani R, Imamura K, Suzuki Y, Akimitsu N. 5'-Bromouridine IP Chase (BRIC)-Seq to Determine RNA Half-Lives. Methods Mol Biol 2018; 1720:1-13. [PMID: 29236247 DOI: 10.1007/978-1-4939-7540-2_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of RNA stability at genome-wide level is an advanced method in RNA biology that examines the half-life of each transcript. In particular, a pulse-labeling method using uridine analogs enables the determination of half-life of each transcript under physiologically undisturbed conditions. The technique involves pulse labeling of endogenous RNAs in mammalian cells with 5'-bromouridine (BrU), followed by measuring the chronological decrease of BrU-labeled RNAs using deep sequencing (BRIC-seq). Here, we describe a detailed protocol and technical tips for BRIC-seq.
Collapse
Affiliation(s)
| | - Naoto Imamachi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Katsutoshi Imamura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | |
Collapse
|
97
|
Nelson SK, Ariizumi T, Steber CM. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. FRONTIERS IN PLANT SCIENCE 2017; 8:2158. [PMID: 29312402 PMCID: PMC5744475 DOI: 10.3389/fpls.2017.02158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR), a biological process that occurs at 5-15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months) were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE) and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1) were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
| | - Tohru Ariizumi
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture–Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
98
|
Dubreuil C, Ji Y, Strand Å, Grönlund A. A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development. Sci Rep 2017; 7:13884. [PMID: 29066729 PMCID: PMC5655028 DOI: 10.1038/s41598-017-13473-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The components required for photosynthesis are encoded in two separate genomes, the nuclear and the plastid. To address how synchronization of the two genomes involved can be attained in early light-signalling during chloroplast development we have formulated and experimentally tested a mathematical model simulating light sensing and the following signalling response. The model includes phytochrome B (PhyB), the phytochrome interacting factor 3 (PIF3) and putative regulatory targets of PIF3. Closed expressions of the phyB and PIF3 concentrations after light exposure are derived, which capture the relevant timescales in the response of genes regulated by PIF3. Sequence analysis demonstrated that the promoters of the nuclear genes encoding sigma factors (SIGs) and polymerase-associated proteins (PAPs) required for expression of plastid encoded genes, contain the cis-elements for binding of PIF3. The model suggests a direct link between light inputs via PhyB-PIF3 to the plastid transcription machinery and control over the expression of photosynthesis components both in the nucleus and in the plastids. Using a pluripotent Arabidopsis cell culture in which chloroplasts develop from undifferentiated proplastids following exposure to light, we could experimentally verify that the expression of SIGs and PAPs in response to light follow the calculated expression of a PhyB-PIF3 regulated gene.
Collapse
Affiliation(s)
- Carole Dubreuil
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Yan Ji
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Andreas Grönlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden.
| |
Collapse
|
99
|
Chen T, van Steensel B. Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genet 2017; 13:e1006929. [PMID: 28771467 PMCID: PMC5557608 DOI: 10.1371/journal.pgen.1006929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/15/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic mRNAs undergo a cycle of transcription, nuclear export, and degradation. A major challenge is to obtain a global, quantitative view of these processes. Here we measured the genome-wide nucleocytoplasmic dynamics of mRNA in Drosophila cells by metabolic labeling in combination with cellular fractionation. By mathematical modeling of these data we determined rates of transcription, export and cytoplasmic decay for 5420 genes. We characterized these kinetic rates and investigated links with mRNA features, RNA-binding proteins (RBPs) and chromatin states. We found prominent correlations between mRNA decay rate and transcript size, while nuclear export rates are linked to the size of the 3'UTR. Transcription, export and decay rates are each associated with distinct spectra of RBPs. Specific classes of genes, such as those encoding cytoplasmic ribosomal proteins, exhibit characteristic combinations of rate constants, suggesting modular control. Binding of splicing factors is associated with faster rates of export, and our data suggest coordinated regulation of nuclear export of specific functional classes of genes. Finally, correlations between rate constants suggest global coordination between the three processes. Our approach provides insights into the genome-wide nucleocytoplasmic kinetics of mRNA and should be generally applicable to other cell systems. All mRNAs start from production in the nucleus, undergo exportation through nuclear pores and finally are degraded in the cytoplasm. A comprehensive characterization of the kinetic rates of all mRNAs is an important prerequisite for a global understanding of the regulation of the transcriptome and the cell. By conducting a time-series experiment and building a mathematical model, we trace the dynamics of mRNAs from the nucleus to the cytoplasm and determine the rates at each kinetic step at transcriptome-wide level. This information allows us to associate mRNA kinetic rates with a wealth of biological features and made some intriguing discoveries. We show mRNA decay is positively linked to transcript length while mRNA export is negatively linked to the length of the 3' UTR. We show binding of splicing factors is associated with faster rates of mRNA export. We provide evidence for global coordination between nuclear export an decay of mRNA. We show genes sharing specific functions tend to have similar nucleoplasmic kinetics, in which ribosomal proteins possessing special kinetic features exclusively stand out. Altogether, our integrated approach to quantitatively determine the rates of kinetic steps on a gene-by-gene basis provides a blueprint to obtain the global understanding of RNA regulation.
Collapse
Affiliation(s)
- Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
100
|
Crisp PA, Ganguly DR, Smith AB, Murray KD, Estavillo GM, Searle I, Ford E, Bogdanović O, Lister R, Borevitz JO, Eichten SR, Pogson BJ. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis. THE PLANT CELL 2017; 29:1836-1863. [PMID: 28705956 PMCID: PMC5590493 DOI: 10.1105/tpc.16.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 05/19/2023]
Abstract
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Gonzalo M Estavillo
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Ozren Bogdanović
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Justin O Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| |
Collapse
|