51
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
52
|
Wei B, Wang L, Bosland PW, Zhang G, Zhang R. Comparative transcriptional analysis of Capsicum flower buds between a sterile flower pool and a restorer flower pool provides insight into the regulation of fertility restoration. BMC Genomics 2019; 20:837. [PMID: 31711411 PMCID: PMC6849218 DOI: 10.1186/s12864-019-6210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system is an important mechanism to produce F1 hybrid seeds. Understanding the interaction that controls restoration at a molecular level will benefit plant breeders. The CMS is caused by the interaction between mitochondrial and nuclear genes, with the CMS phenotype failing to produce functional anthers, pollen, or male gametes. Thus, understanding the complex processes of anther and pollen development is a prerequisite for understanding the CMS system. Currently it is accepted that the Rf gene in the nucleus restores the fertility of CMS, however the Rf gene has not been cloned. In this study, CMS line 8A and the Rf line R1, as well as a sterile pool (SP) of accessions and a restorer pool (RP) of accessions analyzed the differentially expressed genes (DEGs) between CMS and its fertility restorer using the conjunction of RNA sequencing and bulk segregation analysis. RESULTS A total of 2274 genes were up-regulated in R1 as compared to 8A, and 1490 genes were up-regulated in RP as compared to SP. There were 891 genes up-regulated in both restorer accessions, R1 and RP, as compared to both sterile accessions, 8A and SP. Through annotation and expression analysis of co-up-regulated expressed genes, eight genes related to fertility restoration were selected. These genes encode putative fructokinase, phosphatidylinositol 4-phosphate 5-kinase, pectate lyase, exopolygalacturonase, pectinesterase, cellulose synthase, fasciclin-like arabinogalactan protein and phosphoinositide phospholipase C. In addition, a phosphatidylinositol signaling system and an inositol phosphate metabolism related to the fertility restorer of CMS were ranked as the most likely pathway for affecting the restoration of fertility in pepper. CONCLUSIONS Our study revealed that eight genes were related to the restoration of fertility, which provides new insight into understanding the molecular mechanism of fertility restoration of CMS in Capsicum.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Paul W Bosland
- College of Agriculture, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, 88001, USA
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ru Zhang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| |
Collapse
|
53
|
Zhao Y, Man Y, Wen J, Guo Y, Lin J. Advances in Imaging Plant Cell Walls. TRENDS IN PLANT SCIENCE 2019; 24:867-878. [PMID: 31257154 DOI: 10.1016/j.tplants.2019.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 05/24/2023]
Abstract
Understanding of cell wall architecture, including the crosslinking of cell wall polymers, provides crucial information for elucidating the relationship between cell wall structure and cell function. Moreover, examination of the cell wall informs efforts to improve biomass breakdown in bioreactor conditions. Over the past decades, imaging techniques have been used extensively to reveal the structural organization and chemical composition of cell walls, but detailed imaging of the native composition and architecture of the cell wall remains challenging. Here, we review progress in the development of cell wall imaging techniques. In particular, we focus on several advanced, label-free techniques for imaging cell walls and their potential applications in investigation of the biological functions of plant cell walls.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
54
|
Kaneda M, van Oostende-Triplet C, Chebli Y, Testerink C, Bednarek SY, Geitmann A. Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during Pollen Tube Growth in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1316-1330. [PMID: 30796435 DOI: 10.1093/pcp/pcz036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/18/2019] [Indexed: 05/05/2023]
Abstract
Polarized cell growth in plants is maintained under the strict control and exquisitely choreographed balance of exocytic and endocytic membrane trafficking. The pollen tube has become a model system for rapid polar growth in which delivery of cell wall material and membrane recycling are controlled by membrane trafficking. Endocytosis plays an important role that is poorly understood. The plant AP180 N-Terminal Homolog (ANTH) proteins are putative homologs of Epsin 1 that recruits clathrin to phosphatidylinositol 4, 5-bisphosphate (PIP2) containing membranes to facilitate vesicle budding during endocytosis. Two Arabidopsis ANTH encoded by the genes AtAP180 and AtECA2 are highly expressed in pollen tubes. Pollen tubes from T-DNA inserted knockout mutant lines display significant morphological defects and unique pectin deposition. Fluorescent tagging reveals organization into dynamic foci located at the lateral flanks of the pollen tube. This precisely defined subapical domain coincides which clathrin-mediated endocytosis (CME) and PIP2 localization. Using a liposome-protein binding test, we showed that AtECA2 protein and ANTH domain recombinant proteins have strong affinity to PIP2 and phosphatidic acid containing liposomes in vitro. Taken together these data suggest that Arabidopsis ANTH proteins may play an important role in CME, proper cell wall assembly and morphogenesis.
Collapse
Affiliation(s)
- Minako Kaneda
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
| | - Chloï van Oostende-Triplet
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Present address: Cell Biology and Image Acquisition Core Facility, Faculty of Medicine, University of Ottawa, RGN 3171, 451 Smyth Road, Ottawa, ON, Canada
| | - Youssef Chebli
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, PB Wageningen, The Netherlands
| | | | - Anja Geitmann
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| |
Collapse
|
55
|
Vaz Dias F, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth. THE NEW PHYTOLOGIST 2019; 222:1434-1446. [PMID: 30628082 DOI: 10.1111/nph.15674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/28/2018] [Indexed: 05/29/2023]
Abstract
Diacylglycerol kinases (DGKs) play a major role in the production of phosphatidic acid (PtdOH) and were implicated in endomembrane trafficking and signalling cascades. In plants, the role of DGKs is less clear, as PtdOH seems to arise mostly from phospholipase D activity. Here, we investigated the function of the Arabidopsis gene encoding DGK4, which is highly expressed in pollen. In vitro, pollen tubes from homozygous dgk4 plants showed normal morphology, but reduced growth rate and altered stiffness and adhesion properties (revealed by atomic force microscopy). In vivo, dgk4 pollen was able to fertilize wild-type ovules, but self-pollination in dgk4 plants led to fewer seeds and shorter siliques. Phenotypic analysis revealed that the dgk4 mutation affects not only the male germ line but also the vegetative tissue. DGK4-green fluorescent protein fusion imaging revealed a cytosolic localization with a slightly higher signal in the subapical or apical region. dgk4 pollen tubes were found to exhibit perturbations in membrane recycling, and lipid analysis revealed a minor increase of PtdOH concomitant with decreased phosphatidylcholine, compared with wild-type. In vitro, DGK4 was found to exhibit kinase and guanylyl cyclase activity. Quantitative PCR data revealed downregulation of genes related to actin dynamics and phosphoinositide metabolism in mutant pollen, but upregulation of the DGK6 isoform. Altogether, these results are discussed considering a role of DGK4 in signalling cross-talk.
Collapse
Affiliation(s)
- Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Susana Serrazina
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Miguel Vitorino
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Margarida Godinho
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Mário Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| |
Collapse
|
56
|
He D, Lou XY, He SL, Lei YK, Lv BV, Wang Z, Zheng YB, Liu YP. Isobaric tags for relative and absolute quantitation-based quantitative proteomics analysis provides novel insights into the mechanism of cross-incompatibility between tree peony and herbaceous peony. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:417-427. [PMID: 30940329 DOI: 10.1071/fp18163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Interspecific hybridisation is the main method for improvement and breeding of tree peony (Paeonia ostii T.Hong & J.X.Zhang), but cross-incompatibility as the major factor restricting the rapid development of interspecific hybridisation. To better understand the molecular mechanisms involved in cross-incompatibility between tree peony (Paeonia ostii cv. Fengdanbai) and herbaceous peony (Paeonia lactiflora Pall. cv. Fenyunu), a quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) technology was performed on the stigma 24h after pollination. Of the 2900 proteins whose levels were quantitated, 685 proteins were differentially expressed in the stigma after hybrid pollination, in contrast to self-pollination. Functional annotation analysis showed that dysregulated proteins involved in RNA degradation, the Ca signalling pathway, the phosphatidylinositol signalling system and the mitogen-activated protein kinase (MAPK) signalling pathway may have made contributions to cross-incompatibility. The downregulated expression of enolase, DnaK (Heat Shock Proteins, HSP70), GroEL (Heat Shock Proteins, HSP60), calmodulin and glyoxalase I, and the upregulated expression of adenine nucleotide translocator indicated that the energy synthesis required by pollen tube growth, the signal pathway and the metabolic pathway related to the growth polarity of the pollen tube were blocked after hybrid pollination. Eight genes were selected to confirm their expression by quantitative real-time PCR. Compared with the STRING database, a protein-protein interaction network of the chosen proteins was constructed. These results provide fundamental and important information for research into the molecular mechanisms of cross-incompatibility in peony and should facilitate interspecific hybridisation in agricultural practice.
Collapse
Affiliation(s)
- Dan He
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China; and Henan Institute of Science and Technology, Postdoctor Researche Base, Xinxiang 453000, Henan, China
| | - Xue-Yuan Lou
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Song-Lin He
- Henan Institute of Science and Technology, Xinxiang 453000, Henan, China; and Corresponding author.
| | - Ya-Kai Lei
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Bo-Va Lv
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zheng Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yun-Bing Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yi-Ping Liu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| |
Collapse
|
57
|
Leszczuk A, Kozioł A, Szczuka E, Zdunek A. Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:9-18. [PMID: 30824065 DOI: 10.1016/j.plantsci.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/22/2023]
Abstract
Arabinogalactan proteins as cell wall structural proteins are involved in fundamental processes during plant development and growth. The aim of this study was to evaluate AGP function in the distribution of pectin, cellulose and callose along Fragaria x ananassa pollen tube and to associate the cell wall structure with local mechanical properties. We used Yariv reagent which interacts with AGPs and allows the observation of the assembly of cell walls without AGPs performing their function. Cytochemical, immunofluorescence labelling and atomic force microscope have been used to characterize the changes in cell wall structure and stiffness. It was shown that disordering of the structure of AGP present in cell walls affects the localization of cellulose, pectins and the secretion of callose. Changes in cell wall assembly are relevant to pollen tube mechanical properties. The stiffness gradient lengthwise through the axis of the pollen tube has demonstrated a significantly higher Young's modulus of the shank region than the growth zone. It has been revealed that the apex of the pollen tube cultured in the presence of Yariv reagent is stiffer (1.68 MPa) than the corresponding region of the pollen tube grown under control conditions (0.13-0.27 MPa). AGP affects the structure of the cell wall by changing the distribution of other components and the modification of their localization, and hence it plays a significant role in the mechanical properties of the cell wall.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Arkadiusz Kozioł
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Ewa Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
58
|
Hirano T, Sato MH. Diverse Physiological Functions of FAB1 and Phosphatidylinositol 3,5-Bisphosphate in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:274. [PMID: 30967882 PMCID: PMC6439278 DOI: 10.3389/fpls.2019.00274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Biological membranes are predominantly composed of structural glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Of the membrane glycerophospholipids, phosphatidylinositol (PtdIns) and its phosphorylated derivatives (phosphoinositides) constitute a minor fraction yet exert a wide variety of regulatory functions in eukaryotic cells. Phosphoinositides include PtdIns, three PtdIns monophosphates, three PtdIns bisphosphates, and one PtdIns triphosphate, in which the hydroxy groups of the inositol head group of PtdIns are phosphorylated by specific lipid kinases. Of all the phosphoinositides in eukaryotic cells, phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] constitutes the smallest fraction, yet it is a crucial lipid in animal and yeast membrane trafficking systems. Here, we review the recent findings on the physiological functions of PtdIns(3,5)P2 and its enzyme-formation of aploid and binucleate cells (FAB1)-along with the regulatory proteins of FAB1 and the downstream effector proteins of PtdIns(3,5)P2 in Arabidopsis.
Collapse
|
59
|
A Cotton ( Gossypium hirsutum) Myo-Inositol-1-Phosphate Synthase ( GhMIPS1D) Gene Promotes Root Cell Elongation in Arabidopsis. Int J Mol Sci 2019; 20:ijms20051224. [PMID: 30862084 PMCID: PMC6429088 DOI: 10.3390/ijms20051224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
Myo-inositol-1-phosphate synthase (MIPS, EC 5.5.1.4) plays important roles in plant growth and development, stress responses, and cellular signal transduction. MIPS genes were found preferably expressed during fiber cell initiation and early fast elongation in upland cotton (Gossypium hirsutum), however, current understanding of the function and regulatory mechanism of MIPS genes to involve in cotton fiber cell growth is limited. Here, by genome-wide analysis, we identified four GhMIPS genes anchoring onto four chromosomes in G. hirsutum and analyzed their phylogenetic relationship, evolutionary dynamics, gene structure and motif distribution, which indicates that MIPS genes are highly conserved from prokaryotes to green plants, with further exon-intron structure analysis showing more diverse in Brassicales plants. Of the four GhMIPS members, based on the significant accumulated expression of GhMIPS1D at the early stage of fiber fast elongating development, thereby, the GhMIPS1D was selected to investigate the function of participating in plant development and cell growth, with ectopic expression in the loss-of-function Arabidopsis mips1 mutants. The results showed that GhMIPS1D is a functional gene to fully compensate the abnormal phenotypes of the deformed cotyledon, dwarfed plants, increased inflorescence branches, and reduced primary root lengths in Arabidopsis mips1 mutants. Furthermore, shortened root cells were recovered and normal root cells were significantly promoted by ectopic expression of GhMIPS1D in Arabidopsis mips1 mutant and wild-type plants respectively. These results serve as a foundation for understanding the MIPS family genes in cotton, and suggest that GhMIPS1D may function as a positive regulator for plant cell elongation.
Collapse
|
60
|
Pinus massoniana Introgression Hybrids Display Differential Expression of Reproductive Genes. FORESTS 2019. [DOI: 10.3390/f10030230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pinus massoniana and P. hwangshanensis are two conifer species located in southern China, which are of both economic and ornamental value. Around the middle and lower reaches of the Yangtze River, P. massoniana occurs mainly at altitudes below 700 m, while P. hwangshanensis can be found above 900 m. At altitudes where the distribution of both pines overlaps, a natural introgression hybrid exists, which we will further refer to as the Z pine. This pine has a morphological character that shares attributes of both P. massoniana and P. hwangshanensis. However, compared to the other two pines, its reproductive structure, the pinecone, has an ultra-low ripening rate with seeds that germinate poorly. In this study, we aimed to find the reason for the impaired cone maturation by comparing transcriptome libraries of P. massoniana and Z pine cones at seven successive growth stages. After sequencing and assembly, we obtained unigenes and then annotated them against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Clusters of Orthologous Groups, Gene Ontology and KEGG Orthology databases. Gene expression levels were estimated and differentially expressed genes (DEGs) of the two pines were mined and analyzed. We found that several of them indeed relate to reproductive process. At every growth stage, these genes are expressed at a higher level in P. massoniana than in the Z pine. These data provide insight into understanding which molecular mechanisms are altered between P. massoniana and the Z pine that might cause changes in the reproductive process.
Collapse
|
61
|
Filipin EP, Pereira DT, Ouriques LC, Bouzon ZL, Simioni C. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:352-360. [PMID: 30472775 DOI: 10.1111/plb.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
Collapse
Affiliation(s)
- E P Filipin
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - D T Pereira
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - L C Ouriques
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - C Simioni
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
62
|
Ivanov S, Harrison MJ. Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane. THE NEW PHYTOLOGIST 2019; 221:2213-2227. [PMID: 30347433 DOI: 10.1111/nph.15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 05/11/2023]
Abstract
Phosphoinositides and phosphatidic acid are small anionic lipids that comprise a minor proportion of total membrane lipids in eukaryotic cells but influence a broad range of cellular processes including endomembrane trafficking, signaling, exocytosis and endocytosis. To investigate the spatial distribution of phosphoinositides during arbuscular mycorrhizal symbiosis, we generated fluorescent reporters of PI(4,5)P2 and PI4P, as well as phosphatidic acid and diacylglycerol and used them to monitor lipid distribution on the cytoplasmic side of membrane bilayers in colonized cortical cells. The PI4P reporter accumulated strongly on the periarbuscular membrane (PAM) and transiently labeled Golgi bodies, while the PA reporter showed differential labeling of endomembranes and the PAM. Surprisingly, the PI(4,5)P2 reporter accumulated in small, discrete regions of the PAM on the arbuscule trunks, frequently in two regions on opposing sides of the hypha. A mutant reporter with reduced PI(4,5)P2 binding capacity did not show these accumulations. The PI(4,5)P2 -rich regions were detected at all phases of arbuscule development following branching, co-localized with membrane marker proteins potentially indicating high membrane bilayer content, and were associated with an alteration in morphology of the hypha. A possible analogy to the biotrophic interfacial membrane complex formed in rice infected with Magnaporthe orzyae is discussed.
Collapse
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
63
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
64
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
65
|
Hong Y, Yuan S, Sun L, Wang X, Hong Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1038-1050. [PMID: 29604140 DOI: 10.1111/tpj.13916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate-diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)-derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD-derived PA signaling and negatively affects hyperosmotic stress tolerance.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
66
|
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 2018; 592:233-243. [PMID: 29265366 DOI: 10.1002/1873-3468.12947] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 11/07/2022]
Abstract
Proper cell wall assembly is crucial during pollen tube growth. Leucine-rich repeat extensins (LRXs) are extracellular glycoproteins which belong to the hydroxyproline-rich glycoprotein (HRGP) family. They contain a conserved N-terminal leucine-rich repeat (LRR) domain and a highly variable C-terminal extensin domain. Here, we characterized four LRX proteins (LRX8 through LRX11) from pollen of Arabidopsis thaliana. To investigate the role of LRX8-LRX11 in pollen germination and pollen tube growth, multiple T-DNA lrx mutants were obtained. The lrx mutants display abnormal pollen tubes with an irregular deposition of callose and pectin. They also show serious alterations in pollen germination and segregation ratio. Our results suggest that LRXs are involved in ensuring proper cell wall assembly during pollen tube growth.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
67
|
Takagi J, Uemura T. Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana. Methods Mol Biol 2018; 1789:155-165. [PMID: 29916078 DOI: 10.1007/978-1-4939-7856-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking. Identifying the organelle localization of a protein of interest is essential for determining the proteins physiological functions. Here, we describe methods for determining protein subcellular localization using the inhibitors brefeldin A and wortmannin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
68
|
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I. MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. THE PLANT CELL 2017; 29:3030-3050. [PMID: 29167320 PMCID: PMC5757277 DOI: 10.1105/tpc.17.00543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 11/18/2017] [Indexed: 05/19/2023]
Abstract
An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.
Collapse
Affiliation(s)
- Franziska Hempel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ralph Golbik
- Department of Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Helm
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sacha Baginsky
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
69
|
Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:862-878. [PMID: 28949047 DOI: 10.1111/tpj.13724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/22/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
The Arabidopsis phosphoinositide kinase PIP5K2 has been implicated in the control of membrane trafficking and is important for development and growth. In addition to cytosolic functions of phosphoinositides, a nuclear phosphoinositide system has been proposed, but evidence for nuclear phosphoinositides in plants is limited. Fluorescence-tagged variants of PIP5K2 reside in the nucleus of Arabidopsis root meristem cells, in addition to reported plasma membrane localization. Here we report on the interaction of PIP5K2 with alpha-importins and characterize its nuclear localization sequences (NLSs). The PIP5K2 sequence contains four putative NLSs (NLSa-NLSd) and only a PIP5K2 fragment containing NLSs is imported into nuclei of onion epidermis cells upon transient expression. PIP5K2 interacts physically with alpha-importin isoforms in cytosolic split-ubiquitin-based yeast two-hybrid tests, in dot-blot experiments and in immuno-pull-downs. A 27-amino-acid fragment of PIP5K2 containing NLSc is necessary and sufficient to mediate the nuclear import of a large cargo fusion consisting of two mCherry markers fused to RubisCO large subunit. Substitution of basic residues in NLSc results in reduced import of PIP5K2 or other cargoes into plant nuclei. The data suggest that PIP5K2 is subject to active, alpha-importin-mediated nuclear import, consistent with a nuclear role for PIP5K2 in addition to its reported cytosolic functions. The detection of both substrate and product of PIP5K2 in plant nuclei according to reporter fluorescence and immunofluorescence further supports the notion of a nuclear phosphoinositide system in plants. Variants of PIP5K2 with reduced nuclear residence might serve as tools for the future functional study of plant nuclear phosphoinositides.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Daamen
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Heinrich
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
70
|
Noack LC, Jaillais Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:22-33. [PMID: 28734137 DOI: 10.1016/j.pbi.2017.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 05/18/2023]
Abstract
Each phosphoinositide (PI, also known as phosphatidylinositol phosphate, polyphosphoinositide, PtdInsP or PIP) species is partitioned in the endomembrane system and thereby contributes to the identity of membrane compartments. However, membranes are in constant flux within this system, which raises the questions of how the spatiotemporal pattern of phosphoinositides is established and maintained within the cell. Here, we review the general mechanisms by which phosphoinositides and membrane trafficking feedbacks on each other to regulate cellular patterning. We then use the specific examples of polarized trafficking, endosomal sorting and vacuolar biogenesis to illustrate these general concepts.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
71
|
Kf de Campos M, Schaaf G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:158-168. [PMID: 29017091 DOI: 10.1016/j.pbi.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
SEC14 lipid transfer proteins are important regulators of phospholipid metabolism. Structural, genetic and cell biological studies in yeast suggest that they help phosphatidylinositol (PtdIns)/phosphoinositide (PIP) kinases to overcome their intrinsic inefficiency to recognize membrane-embedded substrate, thereby playing a key role in PIP homeostasis. Genomes of higher plants encode a high number and diversity of SEC14 proteins, often in combination with other domains. The Arabidopsis SEC14-Nlj16 protein AtSFH1, an important regulator of root hair development, plays an important role in the establishment of PIP microdomains. Key to this mechanism is a highly specific interaction of the Nlj16 domain with PtdIns(4,5)P2 and an interaction-triggered oligomerization of the protein. Nlj16/PtdIns(4,5)P2 interaction depends on a polybasic motif similar to those identified in other regulatory proteins.
Collapse
Affiliation(s)
- Marília Kf de Campos
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| |
Collapse
|
72
|
Rotsch AH, Kopka J, Feussner I, Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:129-146. [PMID: 28685881 DOI: 10.1111/tpj.13633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
While changes in the transcriptome and proteome of developing pollen have been investigated in tobacco and other species, the metabolic consequences remain rather unclear. Here, a broad range of metabolites was investigated in close succession of developmental stages. Thirteen stages of tobacco male gametophyte development were collected, ranging from tetrads to pollen tubes. Subsequently, the central metabolome and sterol composition were analyzed by GC-mass spectrometry (MS), monitoring 77 metabolites and 29 non-identified analytes. The overall results showed that development and tube growth could be divided into eight metabolic phases with the phase including mitosis I being most distinct. During maturation, compounds such as sucrose and proline accumulated. These were degraded after rehydration, while γ-aminobutyrate transiently increased, possibly deriving from proline breakdown. Sterol analysis revealed that tetrads harbor similar sterols as leaves, but throughout maturation unusual sterols increased. Lastly, two further sterols exclusively accumulated in pollen tubes. This study allows a deeper look into metabolic changes during the development of a quasi-single cell type. Metabolites accumulating during maturation might accelerate pollen germination and tube growth, protect from desiccation, and feed pollinators. Future studies of the underlying processes orchestrating the changes in metabolite levels might give valuable insights into cellular regulation of plant metabolism.
Collapse
Affiliation(s)
- Alexander H Rotsch
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
73
|
Abstract
The membranes of eukaryotic cells create hydrophobic barriers that control substance and information exchange between the inside and outside of cells and between cellular compartments. Besides their roles as membrane building blocks, some membrane lipids, such as phosphoinositides (PIs), also exert regulatory effects. Indeed, emerging evidence indicates that PIs play crucial roles in controlling polarity and growth in plants. Here, I highlight the key roles of PIs as important regulatory membrane lipids in plant development and function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06114, Germany
| |
Collapse
|
74
|
Vermeer JE, van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TW, Munnik T. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1196-1207. [PMID: 28158855 PMCID: PMC6200129 DOI: 10.1093/pcp/pcx012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 05/05/2023]
Abstract
Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.
Collapse
Affiliation(s)
- Joop E.M. Vermeer
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
- Present address: Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Ringo van Wijk
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| |
Collapse
|
75
|
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:349-374. [PMID: 28125287 DOI: 10.1146/annurev-arplant-042916-041022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)-the phosphorylated derivatives of phosphatidylinositol-are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| |
Collapse
|
76
|
Müller AO, Blersch KF, Gippert AL, Ischebeck T. Tobacco pollen tubes - a fast and easy tool for studying lipid droplet association of plant proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1055-1064. [PMID: 27943529 DOI: 10.1111/tpj.13441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 05/11/2023]
Abstract
In recent years, lipid droplets have emerged as dynamic organelles rather than inactive storage sites for triacylglycerol. The number of proteins known to be associated with lipid droplets has increased, but remains small in comparison with those found with other organelles. Also the mechanisms of how lipid droplets are recognized and bound by proteins need deeper investigation. Here, we present a fast, simple and inexpensive approach to assay proteins for their association with lipid droplets in vivo that can help to screen protein candidates or mutated variants of proteins for their association in an efficient manner. For this, a system to transiently transform Nicotiana tabacum pollen grains was used because these naturally contain lipid droplets. We designed vectors for fast cloning of genes as fusions with either mVenus or mCherry. This allowed us to assay colocalization with lipid droplets stained with Nile Red and Bodipy 505/515, respectively. We successfully tested our system not only for proteins from Arabidopsis thaliana, but also for proteins from the moss Physcomitrella patens and the alga Chlamydomonas reinhardtii. The small size of the vector used allows easy exchange of codons by site-directed mutagenesis. We used this to show that two proline residues in the proline knot of a caleosin are not essential for the binding of lipid droplets. We also demonstrated that peroxisomes are not associated with the lipid droplets in tobacco pollen tubes, which reduces the risk of false interpretation of microscopic data in our system.
Collapse
Affiliation(s)
- Anna Ophelia Müller
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Katharina Franziska Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Anna Lena Gippert
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| |
Collapse
|
77
|
Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:1659-1675. [PMID: 28082718 PMCID: PMC5338673 DOI: 10.1104/pp.16.01709] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 05/05/2023]
Abstract
The vesicle-tethering complex exocyst is one of the crucial cell polarity regulators. The EXO70 subunit is required for the targeting of the complex and is represented by many isoforms in angiosperm plant cells. This diversity could be partly responsible for the establishment and maintenance of membrane domains with different composition. To address this hypothesis, we employed the growing pollen tube, a well-established cell polarity model system, and performed large-scale expression, localization, and functional analysis of tobacco (Nicotiana tabacum) EXO70 isoforms. Various isoforms localized to different regions of the pollen tube plasma membrane, apical vesicle-rich inverted cone region, nucleus, and cytoplasm. The overexpression of major pollen-expressed EXO70 isoforms resulted in growth arrest and characteristic phenotypic deviations of tip swelling and apical invaginations. NtEXO70A1a and NtEXO70B1 occupied two distinct and mutually exclusive plasma membrane domains. Both isoforms partly colocalized with the exocyst subunit NtSEC3a at the plasma membrane, possibly forming different exocyst complex subpopulations. NtEXO70A1a localized to the small area previously characterized as the site of exocytosis in the tobacco pollen tube, while NtEXO70B1 surprisingly colocalized with the zone of clathrin-mediated endocytosis. Both NtEXO70A1a and NtEXO70B1 colocalized to different degrees with markers for the anionic signaling phospholipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. In contrast, members of the EXO70 C class, which are specifically expressed in tip-growing cells, exhibited exocytosis-related functional effects in pollen tubes despite the absence of apparent plasma membrane localization. Taken together, our data support the existence of multiple membrane-trafficking domains regulated by different EXO70-containing exocyst complexes within a single cell.
Collapse
Affiliation(s)
- Juraj Sekereš
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Jiří Šantrůček
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Nemanja Vukašinović
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.);
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| |
Collapse
|
78
|
Li Y, Tan X, Wang M, Li B, Zhao Y, Wu C, Rui Q, Wang J, Liu Z, Bao Y. Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci Rep 2017; 7:40279. [PMID: 28074928 PMCID: PMC5225640 DOI: 10.1038/srep40279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
Arabidopsis exocyst subunit SEC3A has been reported to participate in embryo development. Here we report that SEC3A is involved during pollen germination. A T-DNA insertion in SEC3A leads to an absolute, male-specific transmission defect that can be complemented by the expression of SEC3A coding sequence from the LAT52 promoter or SEC3A genomic DNA. No obvious abnormalities in the microgametogenesis are observed in the sec3a/SEC3A mutant, however, in vitro and in vivo pollen germination are defective. Further studies reveal that the callose, pectin, and cellulose are apparently not deposited at the germination site during pollen germination. SEC3A is expressed ubiquitously, including in pollen grains and pollen tubes. Notably, SEC3A-GFP fusion proteins are specifically recruited to the future pollen germination site. This particular localization pattern is independent of phosphatidylinositol 4,5-bisphosphate (PI-4,5P2), although SEC3-HIS fusion proteins are able to bind to several phosphoinositols in vitro. These results suggest that SEC3A plays an important role in the establishment of the polar site for pollen germination.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoyun Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mengru Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bingxuan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanxue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chengyun Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingchen Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Junxia Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongyuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
79
|
Ugalde JM, Rodriguez-Furlán C, Rycke RD, Norambuena L, Friml J, León G, Tejos R. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:10-19. [PMID: 27457979 DOI: 10.1016/j.plantsci.2016.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1(-/-) and pip5k2(-/-) single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis.
Collapse
Affiliation(s)
- José-Manuel Ugalde
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Cecilia Rodriguez-Furlán
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Riet De Rycke
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Lorena Norambuena
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Gabriel León
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Ricardo Tejos
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
80
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
81
|
Heilmann I. Plant phosphoinositide signaling - dynamics on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1345-1351. [PMID: 26924252 DOI: 10.1016/j.bbalip.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic membranes contain small amounts of lipids with regulatory roles. An important class of such regulatory lipids are phosphoinositides (PIs). Within membranes, PIs serve as recruitment signals, as regulators of membrane protein function or as precursors for second messenger production, thereby influencing a multitude of cellular processes with key importance for plant function and development. Plant PIs occur locally and transiently within membrane microdomains, and their abundance is strictly controlled. To understand the functions of the plant PI-network it is important to understand not only downstream PI-effects, but also to identify and characterize factors contributing to dynamic PI formation. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
82
|
Gujas B, Rodriguez-Villalon A. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation. FRONTIERS IN PLANT SCIENCE 2016; 7:103. [PMID: 26904069 PMCID: PMC4751917 DOI: 10.3389/fpls.2016.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 05/31/2023]
Abstract
In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.
Collapse
|
83
|
Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, Li E, Li S, Zhang Y. Arabidopsis RhoGDIs Are Critical for Cellular Homeostasis of Pollen Tubes. PLANT PHYSIOLOGY 2016; 170:841-56. [PMID: 26662604 PMCID: PMC4734571 DOI: 10.1104/pp.15.01600] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 05/19/2023]
Abstract
Rhos of plants (ROPs) play a key role in plant cell morphogenesis, especially in tip-growing pollen tubes and root hairs, by regulating an array of intracellular activities such as dynamic polymerization of actin microfilaments. ROPs are regulated by guanine nucleotide exchange factors (RopGEFs), GTPase activating proteins (RopGAPs), and guanine nucleotide dissociation inhibitors (RhoGDIs). RopGEFs and RopGAPs play evolutionarily conserved function in ROP signaling. By contrast, although plant RhoGDIs regulate the membrane extraction and cytoplasmic sequestration of ROPs, less clear are their positive roles in ROP signaling as do their yeast and metazoan counterparts. We report here that functional loss of all three Arabidopsis (Arabidopsis thaliana) GDIs (tri-gdi) significantly reduced male transmission due to impaired pollen tube growth in vitro and in vivo. We demonstrate that ROPs were ectopically activated at the lateral plasma membrane of the tri-gdi pollen tubes. However, total ROPs were reduced posttranslationally in the tri-gdi mutant, resulting in overall dampened ROP signaling. Indeed, a ROP5 mutant that was unable to interact with GDIs failed to induce growth, indicating the importance of the ROP-GDI interaction for ROP signaling. Functional loss of GDIs impaired cellular homeostasis, resulting in excess apical accumulation of wall components in pollen tubes, similar to that resulting from ectopic phosphatidylinositol 4,5-bisphosphate signaling. GDIs and phosphatidylinositol 4,5-bisphosphate may antagonistically coordinate to maintain cellular homeostasis during pollen tube growth. Our results thus demonstrate a more complex role of GDIs in ROP-mediated pollen tube growth.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
84
|
Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malhó R. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens. PLANT PHYSIOLOGY 2015; 169:2572-86. [PMID: 26463087 PMCID: PMC4677911 DOI: 10.1104/pp.15.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 05/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants.
Collapse
Affiliation(s)
- Laura Saavedra
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rita Catarino
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Tobias Heinz
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Ingo Heilmann
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Magdalena Bezanilla
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rui Malhó
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| |
Collapse
|
85
|
Sun J, Eklund DM, Montes-Rodriguez A, Kost B. In vivo Rac/Rop localization as well as interaction with RhoGAP and RhoGDI in tobacco pollen tubes: analysis by low-level expression of fluorescent fusion proteins and bimolecular fluorescence complementation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:83-98. [PMID: 26252733 DOI: 10.1111/tpj.12961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 05/29/2023]
Abstract
Polarized Rac/Rop GTPase signaling plays a key role in polar cell growth, which is essential for plant morphogenesis. The molecular and cellular mechanisms responsible for the polarization of Rac/Rop signaling during polar cell growth are only partially understood. Mutant variants of Rac/Rop GTPases lacking specific functions are important tools to investigate these mechanisms, and have been employed to develop a model suggesting that RhoGAP (GTPase activating protein) and RhoGDI (Guanine Nucleotide Dissociation Inhibitor) mediated recycling of Rac/Rop GTPases maintains apical polarization of Rac/Rop activity in pollen tubes, which elongate by 'tip growth' (an extreme form of polar cell growth). Despite the importance of these mutant variants for Rac/Rop functional characterization, their distinct intracellular distributions have not been thoroughly comparatively and quantitatively analyzed. Furthermore, support for the proposed RhoGAP and RhoGDI functions in apical polarization of Rac/Rop activity based on the analysis of in vivo interactions between these proteins and Rac/Rop GTPases has been missing. Here, extensive fluorescent protein tagging and bimolecular fluorescence complementation (BiFC) analyses are described of the intracellular distributions of wild type and mutant variants of the tobacco pollen tube Rac/Rop GTPase Nt-Rac5, as well as of interactions of these Nt-Rac5 variants with RhoGAP and RhoGDI proteins, in normally growing transiently transformed pollen tubes. Presented results substantially enhance our understanding of apical dynamics of pollen tube Rac/Rop signaling proteins, confirm previously proposed RhoGAP and RhoGDI functions in Rac/Rop polarization and provide important technical insights facilitating future in vivo protein localization and BiFC experiments in pollen tubes.
Collapse
Affiliation(s)
- Jia Sun
- Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07, Uppsala, Sweden
| | - D Magnus Eklund
- Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07, Uppsala, Sweden
| | | | - Benedikt Kost
- Cell Biology, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
86
|
Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E. miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 2015; 16:393. [PMID: 25981679 PMCID: PMC4434875 DOI: 10.1186/s12864-015-1610-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background miRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop. Results We analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs. Conclusions Our findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1610-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayakumar Belli Kullan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, 15 Innovation Way, 19711, Newark, DE, USA.
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, University of Rome "La Sapienza", Via Ariosto 25, 00185, Rome, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,Genomics Research Centre, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
87
|
Steinhorst L, Mähs A, Ischebeck T, Zhang C, Zhang X, Arendt S, Schültke S, Heilmann I, Kudla J. Vacuolar CBL-CIPK12 Ca(2+)-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 2015; 25:1475-82. [PMID: 25936548 DOI: 10.1016/j.cub.2015.03.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/23/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Polarized tip growth is a fundamental process of specialized eukaryotic cells like neuronal axons, fungal hyphae, and plant root hairs and pollen tubes. In pollen tubes, a tip-focused oscillating Ca(2+) gradient governs ions fluxes, vesicle transport, and cytoskeleton dynamics to ensure proper polarized cell growth [1, 2]. While a crucial role of vacuolar Ca(2+) signaling is established for cellular movements like guard cell dynamics [3-5], its contribution to polarized growth remains to be defined. Here we identified the two closely related tonoplast-localized Ca(2+)-sensor proteins CBL2 and CBL3 as crucial regulators of vacuolar dynamics and polarized pollen tube growth. Overexpression of CBL2 or CBL3 in Arabidopsis and tobacco pollen tubes affected vacuolar morphology, pollen germination, and tube growth, but did not alter actin organization, PI(4,5)P2 distribution, or tip-focused Ca(2+) oscillations. Similarly, loss of function of each single Ca(2+) sensor and cbl2/cbl3 double mutants exhibited impaired pollen tube growth in vitro and in vivo. Both Ca(2+) sensors interacted with the kinase CIPK12, which translocated from the cytoplasm to the vacuolar membrane upon this interaction. Also, overexpression of CIPK12 induced severe vacuolar phenotypes, and loss of function of CIPK12 lead to impairment of polar growth. Remarkably, co-expression of CBL2 or CBL3 with CIPK12 resulted in a phosphorylation-dependent, massively enhanced vacuolar inflation and further disruption of polar growth. Together, these findings identify an essential role of the vacuole and vacuolar Ca(2+) signaling for polarized tip growth. We propose that a faithfully balanced activity of Ca(2+)-activated CBL2/3-CIPK12 complexes fulfills fundamental functions to enable the fast growth of pollen tubes in higher plants.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Anette Mähs
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Till Ischebeck
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung Biochemie der Pflanze, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Chunxia Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Xinxin Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Sibylle Arendt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefanie Schültke
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Ingo Heilmann
- Institut für Biochemie und Biotechnologie, Abteilung Zelluläre Biochemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
| |
Collapse
|
88
|
Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M. The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1587-98. [PMID: 25716697 DOI: 10.1093/jxb/erv052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Successful establishment and maintenance of cell polarity is crucial for many aspects of plant development, cellular morphogenesis, response to pathogen attack, and reproduction. Polar cell growth depends on integrating membrane and cell-wall dynamics with signal transduction pathways, changes in ion membrane transport, and regulation of vectorial vesicle trafficking and the dynamic actin cytoskeleton. In this review, we address the critical importance of protein-membrane crosstalk in the determination of plant cell polarity and summarize the role of membrane lipids, particularly minor acidic phospholipids, in regulation of the membrane traffic. We focus on the protein-membrane interface dynamics and discuss the current state of knowledge on three partially overlapping levels of descriptions. Finally, due to their multiscale and interdisciplinary nature, we stress the crucial importance of combining different strategies ranging from microscopic methods to computational modelling in protein-membrane studies.
Collapse
Affiliation(s)
- Juraj Sekereš
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 2 Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 12844 Prague 2, Czech Republic
| | - Roman Pleskot
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 3 Institute of Organic Chemistry and Biochemistry, v. v. i., Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Přemysl Pejchar
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Viktor Žárský
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 2 Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 12844 Prague 2, Czech Republic
| | - Martin Potocký
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| |
Collapse
|
89
|
Wada Y, Kusano H, Tsuge T, Aoyama T. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:426-37. [PMID: 25477067 DOI: 10.1111/tpj.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 05/07/2023]
Abstract
Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.
Collapse
Affiliation(s)
- Yukika Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | |
Collapse
|
90
|
Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:287-98. [PMID: 25516570 DOI: 10.1093/pcp/pcu195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Present address: Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yasuyuki Suda
- RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan Present address: Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Samantha Vernhettes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
91
|
Gutkowska M, Wnuk M, Nowakowska J, Lichocka M, Stronkowski MM, Swiezewska E. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:213-24. [PMID: 25316062 PMCID: PMC4265159 DOI: 10.1093/jxb/eru412] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.
Collapse
Affiliation(s)
- Malgorzata Gutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Marta Wnuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Julita Nowakowska
- Warsaw University, Faculty of Biology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Michal M Stronkowski
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
92
|
Malhó R, Serrazina S, Saavedra L, Dias FV, Ul-Rehman R. Ion and lipid signaling in apical growth-a dynamic machinery responding to extracellular cues. FRONTIERS IN PLANT SCIENCE 2015; 6:816. [PMID: 26500662 PMCID: PMC4594336 DOI: 10.3389/fpls.2015.00816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 05/07/2023]
Abstract
Apical cell growth seems to have independently evolved throughout the major lineages of life. To a certain extent, so does our body of knowledge on the mechanisms regulating this morphogenetic process. Studies on pollen tubes, root hairs, rhizoids, fungal hyphae, even nerve cells, have highlighted tissue and cell specificities but also common regulatory characteristics (e.g., ions, proteins, phospholipids) that our focused research sometimes failed to grasp. The working hypothesis to test how apical cell growth is established and maintained have thus been shaped by the model organism under study and the type of methods used to study them. The current picture is one of a dynamic and adaptative process, based on a spatial segregation of components that network to achieve growth and respond to environmental (extracellular) cues. Here, we explore some examples of our live imaging research, namely on cyclic nucleotide gated ion channels, lipid kinases and syntaxins involved in exocytosis. We discuss how their spatial distribution, activity and concentration suggest that the players regulating apical cell growth may display more mobility than previously thought. Furthermore, we speculate on the implications of such perspective in our understanding of the mechanisms regulating apical cell growth and their responses to extracellular cues.
Collapse
Affiliation(s)
- Rui Malhó
- *Correspondence: Rui Malhó and Reiaz Ul-Rehman, BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, ,
| | | | - Laura Saavedra
- †Present address: Laura Saavedra, Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Reiaz Ul-Rehman, Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
| | | | - Reiaz Ul-Rehman
- *Correspondence: Rui Malhó and Reiaz Ul-Rehman, BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, ,
| |
Collapse
|
93
|
Yue X, Gao XQ, Zhang XS. Circadian rhythms synchronise intracellular calcium dynamics and ATP production for facilitating Arabidopsis pollen tube growth. PLANT SIGNALING & BEHAVIOR 2015; 10:e1017699. [PMID: 26039479 PMCID: PMC4622975 DOI: 10.1080/15592324.2015.1017699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 05/13/2023]
Abstract
Experimental evidences support that the circadian rhythm regulates the transcription levels of genes encoding the enzymes involved in plant metabolism. However, there is no paper to refer the correlation of the circadian rhythms and the metabolic processes for facilitating pollen tube growth. In this study, we found that many central components of the circadian clock were highly enriched and specifically present in the in vivo grown Arabidopsis pollen tubes. Our analysis also identified the significant differentially expressed genes encoding co-expressed enzymes in the consecutive steps of fatty acid β-oxidation II, pentose phosphate pathway (oxidative branch) and phosphatidic acid biosynthesis pathway in the in vivo grown Arabidopsis pollen tubes during pollination. Thus, it is implicated that the circadian rhythms of pollen tube may be adjusted and have a greater probability of the direct or indirect functional relationship with enhanced intracellular Ca(2+) dynamics and ATP production for facilitating pollen tube growth in vivo.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
- College of Information Sciences and Engineering; Shandong Agricultural University; Tai’an, Shandong, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
| |
Collapse
|
94
|
Stephan O, Cottier S, Fahlén S, Montes-Rodriguez A, Sun J, Eklund DM, Klahre U, Kost B. RISAP is a TGN-associated RAC5 effector regulating membrane traffic during polar cell growth in tobacco. THE PLANT CELL 2014; 26:4426-47. [PMID: 25387880 PMCID: PMC4277221 DOI: 10.1105/tpc.114.131078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/26/2014] [Accepted: 10/15/2014] [Indexed: 05/08/2023]
Abstract
RAC/ROP GTPases coordinate actin dynamics and membrane traffic during polar plant cell expansion. In tobacco (Nicotiana tabacum), pollen tube tip growth is controlled by the RAC/ROP GTPase RAC5, which specifically accumulates at the apical plasma membrane. Here, we describe the functional characterization of RISAP, a RAC5 effector identified by yeast (Saccharomyces cerevisiae) two-hybrid screening. RISAP belongs to a family of putative myosin receptors containing a domain of unknown function 593 (DUF593) and binds via its DUF593 to the globular tail domain of a tobacco pollen tube myosin XI. It also interacts with F-actin and is associated with a subapical trans-Golgi network (TGN) compartment, whose cytoplasmic position at the pollen tube tip is maintained by the actin cytoskeleton. In this TGN compartment, apical secretion and endocytic membrane recycling pathways required for tip growth appear to converge. RISAP overexpression interferes with apical membrane traffic and blocks tip growth. RAC5 constitutively binds to the N terminus of RISAP and interacts in an activation-dependent manner with the C-terminal half of this protein. In pollen tubes, interaction between RAC5 and RISAP is detectable at the subapical TGN compartment. We present a model of RISAP regulation and function that integrates all these findings.
Collapse
Affiliation(s)
- Octavian Stephan
- Cell Biology and Erlangen Center of Plant Science (ECROPS), University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Stephanie Cottier
- Centre of Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sara Fahlén
- Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Adriana Montes-Rodriguez
- Cell Biology and Erlangen Center of Plant Science (ECROPS), University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jia Sun
- Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - D Magnus Eklund
- Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Ulrich Klahre
- Centre of Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Benedikt Kost
- Cell Biology and Erlangen Center of Plant Science (ECROPS), University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
95
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|
96
|
Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. ANNALS OF BOTANY 2014; 114:1049-57. [PMID: 24769536 PMCID: PMC4195552 DOI: 10.1093/aob/mcu055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/26/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls. SCOPE The eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.
Collapse
Affiliation(s)
- Praveen Krishnamoorthy
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Clara Sanchez-Rodriguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ingo Heilmann
- Martin-Luther-University Halle-Wittenberg, Institute for Biochemistry, Department of Cellular Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
97
|
Yue X, Gao XQ, Wang F, Dong Y, Li X, Zhang XS. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination. PLoS One 2014; 9:e107046. [PMID: 25215523 PMCID: PMC4162560 DOI: 10.1371/journal.pone.0107046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023] Open
Abstract
It is difficult to derive all qualitative proteomic and metabolomic experimental data in male (pollen tube) and female (pistil) reproductive tissues during pollination because of the limited sensitivity of current technology. In this study, genome-scale enzyme correlation network models for plants (Arabidopsis/maize) were constructed by analyzing the enzymes and metabolic routes from a global perspective. Then, we developed a data-driven computational pipeline using the "guilt by association" principle to analyze the transcriptional coexpression profiles of enzymatic genes in the consecutive steps for metabolic routes in the fast-growing pollen tube and stigma during pollination. The analysis identified an inferred pattern of pollen tube-stigma ethanol coupling. When the pollen tube elongates in the transmitting tissue (TT) of the pistil, this elongation triggers the mobilization of energy from glycolysis in the TT cells of the pistil. Energy-rich metabolites (ethanol) are secreted that can be taken up by the pollen tube, where these metabolites are incorporated into the pollen tube's tricarboxylic acid (TCA) cycle, which leads to enhanced ATP production for facilitating pollen tube growth. In addition, our analysis also provided evidence for the cooperation of kaempferol, dTDP-alpha-L-rhamnose and cell-wall-related proteins; phosphatidic-acid-mediated Ca2+ oscillations and cytoskeleton; and glutamate degradation IV for γ-aminobutyric acid (GABA) signaling activation in Arabidopsis and maize stigmas to provide the signals and materials required for pollen tube tip growth. In particular, the "guilt by association" computational pipeline and the genome-scale enzyme correlation network models (GECN) developed in this study was initiated with experimental "omics" data, followed by data analysis and data integration to determine correlations, and could provide a new platform to assist inachieving a deeper understanding of the co-regulation and inter-regulation model in plant research.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xin-Qi Gao
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Fang Wang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - YuXiu Dong
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - XingGuo Li
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xian Sheng Zhang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
98
|
Serrazina S, Dias FV, Malhó R. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. THE NEW PHYTOLOGIST 2014; 203:784-93. [PMID: 24807078 DOI: 10.1111/nph.12836] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
In yeast and animal cells, phosphatidylinositol-3-monophosphate 5-kinases produce phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) and have been implicated in endomembrane trafficking and pH control in the vacuole. In plants, PtdIns(3,5)P2 is synthesized by the Fab1 family, four orthologs of which exist in Arabidopsis: FAB1A and FAB1B, both from the PIKfyve/Fab1 family; FAB1C and FAB1D, both without a PIKfyve domain and of unclear role. Using a reverse genetics and cell biology approach, we investigated the function of the Arabidopsis genes encoding FAB1B and FAB1D, both highly expressed in pollen. Pollen viability, germination and tube morphology were not significantly affected in homozygous mutant plants. In vivo, mutant pollen fertilized ovules leading to normal seeds and siliques. The same result was obtained when mutant ovules were fertilized with wild-type pollen. Double mutant pollen for the two genes was able to fertilize and develop plants no different from the wild-type. At the cellular level, fab1b and fab1d pollen tubes were found to exhibit perturbations in membrane recycling, vacuolar acidification and decreased production of reactive oxygen species (ROS). Subcellular imaging of FAB1B-GFP revealed that the protein localized to the endomembrane compartment, whereas FAB1D-GFP localized mostly to the cytosol and sperm cells. These results were discussed considering possible complementary roles of FAB1B and FAB1D.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências de Lisboa, BioFIG, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | | | | |
Collapse
|
99
|
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JEM, Heilmann I, Munnik T, Friml J. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis. THE PLANT CELL 2014; 26:2114-2128. [PMID: 24876254 PMCID: PMC4079372 DOI: 10.1105/tpc.114.126185] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/07/2014] [Accepted: 05/05/2014] [Indexed: 05/19/2023]
Abstract
Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning.
Collapse
Affiliation(s)
- Ricardo Tejos
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Michael Sauer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | - Hongjiang Li
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Joop E M Vermeer
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
100
|
Hopkins J, Pierre O, Kazmierczak T, Gruber V, Frugier F, Clement M, Frendo P, Herouart D, Boncompagni E. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2014; 37:658-69. [PMID: 23961805 DOI: 10.1111/pce.12185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.
Collapse
Affiliation(s)
- Julie Hopkins
- INRA 1355, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; CNRS 7254, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; UMR 'Institut Sophia Agrobiotech' Université de Nice-Sophia Antipolis (UNS), Cedex, F-06903, France
| | | | | | | | | | | | | | | | | |
Collapse
|