51
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
52
|
Zhang Z, Wang J, Xing G, Li M, Li S. Integrating physiology, genetics, and transcriptome to decipher a new thermo-sensitive and light-sensitive virescent leaf gene mutant in cucumber. FRONTIERS IN PLANT SCIENCE 2022; 13:972620. [PMID: 36051299 PMCID: PMC9424728 DOI: 10.3389/fpls.2022.972620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Chloroplasts are the material basis of photosynthesis, and temperature and light severely affect chloroplast development and thus influence photosynthetic efficiency. This study identified a spontaneous virescent leaf mutant, SC311Y, whose cotyledons and true leaves were yellow and gradually turned green. However, temperature and light affected the process of turning green. In addition, this mutant (except at the seedling stage) had ruffled leaves with white stripes, sterile males, and poorly fertile female flowers. Genetic characteristics analysis revealed that the recessive gene controlled the virescent leaf. Two F2 populations mapped v-3 to the interval of 33.54-35.66 Mb on chromosome 3. In this interval, BSA-Seq, RNA-Seq, and cDNA sequence analyses revealed only one nonsynonymous mutation in the Csa3G042730 gene, which encoded the RNA exosome supercomplex subunit resurrection1 (RST1). Csa3G042730 was predicted to be the candidate gene controlling the virescent leaf, and the candidate gene may regulate chloroplast development by regulating plastid division2 (PDV2). A transcriptome analysis showed that different factors caused the reduced chlorophyll and carotenoid content in the mutants. To our knowledge, this study is the first report of map-based cloning related to virescent leaf, male-sterile, and chloroplast RNA regulation in cucumber. The results could accelerate the study of the RNA exosome supercomplex for the dynamic regulation of chloroplast RNA.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- *Correspondence: Meilan Li,
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- Sen Li,
| |
Collapse
|
53
|
Bhuria M, Goel P, Kumar S, Singh AK. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13635. [PMID: 35080785 DOI: 10.1111/ppl.13635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
AtUSP17 is a multiple stress-inducible gene that encodes a universal stress protein (USP) in Arabidopsis thaliana. In the present study, we functionally characterized AtUSP17 using its knock-down mutant, Atusp17, and AtUSP17-overexpression lines (WTOE). The overexpression of AtUSP17 in wild-type and Atusp17 mutant Arabidopsis plants resulted in higher sensitivity to salt stress during seed germination than WT and Atusp17 mutant lines. In addition, the WTOE and FC lines exhibited higher abscisic acid (ABA) sensitivity than Atusp17 mutant during germination. The exogenous application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was able to rescue the salt hypersensitive phenotype of WTOE lines. In contrast, AgNO3 , an ethylene action inhibitor, further blocked the effect of ACC during germination. The addition of ACC under salt stress resulted in reduced reactive oxygen species (ROS) accumulation, expression of ABA-responsive genes, improved proline synthesis, increased expression of positive regulators of ethylene signaling and antioxidant defense genes with enhanced antioxidant enzyme activities. The WTOE lines exhibited salt sensitivity even at the adult plant stage, while Atusp17 mutant exhibited higher salt tolerance with higher chlorophyll, relative water content and lower electrolyte leakage as compared with WT. The BAR interaction viewer database and available literature mining identified AtUSP17-interacting proteins, which include RGS1, RACK1C and PRN1 involved in G-protein signaling, which play a crucial role in salt stress responses. Based on the present study and available literature, we proposed a model in which AtUSP17 negatively mediates salt tolerance in Arabidopsis through modulation of ethylene, ABA, ROS, and G-protein signaling and responses.
Collapse
Affiliation(s)
- Monika Bhuria
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Parul Goel
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sanjay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
54
|
Yang Z, Liu M, Ding S, Zhang Y, Yang H, Wen X, Chi W, Lu C, Lu Q. Plastid Deficient 1 Is Essential for the Accumulation of Plastid-Encoded RNA Polymerase Core Subunit β and Chloroplast Development in Arabidopsis. Int J Mol Sci 2021; 22:ijms222413648. [PMID: 34948448 PMCID: PMC8705867 DOI: 10.3390/ijms222413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Plastid-encoded RNA polymerase (PEP)-dependent transcription is an essential process for chloroplast development and plant growth. It is a complex event that is regulated by numerous nuclear-encoded proteins. In order to elucidate the complex regulation mechanism of PEP activity, identification and characterization of PEP activity regulation factors are needed. Here, we characterize Plastid Deficient 1 (PD1) as a novel regulator for PEP-dependent gene expression and chloroplast development in Arabidopsis. The PD1 gene encodes a protein that is conserved in photoautotrophic organisms. The Arabidopsis pd1 mutant showed albino and seedling-lethal phenotypes. The plastid development in the pd1 mutant was arrested. The PD1 protein localized in the chloroplasts, and it colocalized with nucleoid protein TRXz. RT-quantitative real-time PCR, northern blot, and run-on analyses indicated that the PEP-dependent transcription in the pd1 mutant was dramatically impaired, whereas the nuclear-encoded RNA polymerase-dependent transcription was up-regulated. The yeast two-hybrid assays and coimmunoprecipitation experiments showed that the PD1 protein interacts with PEP core subunit β (PEP-β), which has been verified to be essential for chloroplast development. The immunoblot analysis indicated that the accumulation of PEP-β was barely detected in the pd1 mutant, whereas the accumulation of the other essential components of the PEP complex, such as core subunits α and β′, were not affected in the pd1 mutant. These observations suggested that the PD1 protein is essential for the accumulation of PEP-β and chloroplast development in Arabidopsis, potentially by direct interaction with PEP-β.
Collapse
Affiliation(s)
- Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Mingxin Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
| | - Huixia Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Wei Chi
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
- Correspondence: (C.L.); (Q.L.)
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.L.); (Q.L.)
| |
Collapse
|
55
|
Identification of a Novel Mutation Exacerbated the PSI Photoinhibition in pgr5/ pgrl1 Mutants; Caution for Overestimation of the Phenotypes in Arabidopsis pgr5-1 Mutant. Cells 2021; 10:cells10112884. [PMID: 34831107 PMCID: PMC8616342 DOI: 10.3390/cells10112884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
PSI photoinhibition is usually avoided through P700 oxidation. Without this protective mechanism, excess light represents a potentially lethal threat to plants. PGR5 is suggested to be a major component of cyclic electron transport around PSI and is important for P700 oxidation in angiosperms. The known Arabidopsis PGR5 deficient mutant, pgr5-1, is incapable of P700 oxidation regulation and has been used in numerous photosynthetic studies. However, here it was revealed that pgr5-1 was a double mutant with exaggerated PSI photoinhibition. pgr5-1 significantly reduced growth compared to the newly isolated PGR5 deficient mutant, pgr5hope1. The introduction of PGR5 into pgr5-1 restored P700 oxidation regulation, but remained a pale-green phenotype, indicating that pgr5-1 had additional mutations. Both pgr5-1 and pgr5hope1 tended to cause PSI photoinhibition by excess light, but pgr5-1 exhibited an enhanced reduction in PSI activity. Introducing AT2G17240, a candidate gene for the second mutation into pgr5-1 restored the pale-green phenotype and partially restored PSI activity. Furthermore, a deficient mutant of PGRL1 complexing with PGR5 significantly reduced PSI activity in the double-deficient mutant with AT2G17240. From these results, we concluded that AT2G17240, named PSI photoprotection 1 (PTP1), played a role in PSI photoprotection, especially in PGR5/PGRL1 deficient mutants.
Collapse
|
56
|
Cheong MS, Choe H, Jeong MS, Yoon YE, Jung HS, Lee YB. Different Inhibitory Effects of Erythromycin and Chlortetracycline on Early Growth of Brassica campestris Seedlings. Antibiotics (Basel) 2021; 10:antibiotics10101273. [PMID: 34680853 PMCID: PMC8532913 DOI: 10.3390/antibiotics10101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Veterinary antibiotics, including erythromycin (Ery) and chlortetracycline (CTC), are often detected in agricultural land. Although these contaminants affect plant growth and development, their effects on crops remain elusive. In this study, the effects of Ery and CTC on plant growth were investigated and compared by analyzing transcript abundance in Brassica campestris seedlings. Treatment with Ery and/or CTC reduced chlorophyll content in leaves and photosynthetic efficiency. Examination of the chloroplast ultrastructure revealed the presence of abnormally shaped plastids in response to Ery and CTC treatments. The antibiotics produced similar phenotypes of lower accumulation of photosynthetic genes, including RBCL and LHCB1.1. Analysis of the transcript levels revealed that Ery and CTC differentially down-regulated genes involved in the tetrapyrrole biosynthetic pathway and primary root growth. In the presence of Ery and CTC, chloroplasts were undeveloped and photosynthesis efficiency was reduced. These results suggest that both Ery and CTC individually affect gene expression and influence plant physiological activity, independently of one another.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Young-Eun Yoon
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
- Correspondence: ; Tel.: +82-55-772-1967
| |
Collapse
|
57
|
Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, Li P, Li P, Hu X, Bao H, Huo H, Smalle J, Wang S. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep 2021; 36:109384. [PMID: 34260941 DOI: 10.1016/j.celrep.2021.109384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.
Collapse
Affiliation(s)
- Yong Zhuang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ming Wei
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chengcheng Ling
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yangxuan Liu
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdul Karim Amin
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pengwei Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xufan Hu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Huaxu Bao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL 32703, USA
| | - Jan Smalle
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
58
|
Zhang J, Bai Z, Ouyang M, Xu X, Xiong H, Wang Q, Grimm B, Rochaix JD, Zhang L. The DnaJ proteins DJA6 and DJA5 are essential for chloroplast iron-sulfur cluster biogenesis. EMBO J 2021; 40:e106742. [PMID: 33855718 DOI: 10.15252/embj.2020106742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Fe-S clusters are ancient, ubiquitous and highly essential prosthetic groups for numerous fundamental processes of life. The biogenesis of Fe-S clusters is a multistep process including iron acquisition, sulfur mobilization, and cluster formation. Extensive studies have provided deep insights into the mechanism of the latter two assembly steps. However, the mechanism of iron utilization during chloroplast Fe-S cluster biogenesis is still unknown. Here we identified two Arabidopsis DnaJ proteins, DJA6 and DJA5, that can bind iron through their conserved cysteine residues and facilitate iron incorporation into Fe-S clusters by interactions with the SUF (sulfur utilization factor) apparatus through their J domain. Loss of these two proteins causes severe defects in the accumulation of chloroplast Fe-S proteins, a dysfunction of photosynthesis, and a significant intracellular iron overload. Evolutionary analyses revealed that DJA6 and DJA5 are highly conserved in photosynthetic organisms ranging from cyanobacteria to higher plants and share a strong evolutionary relationship with SUFE1, SUFC, and SUFD throughout the green lineage. Thus, our work uncovers a conserved mechanism of iron utilization for chloroplast Fe-S cluster biogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zechen Bai
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Ouyang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Haibo Xiong
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
59
|
Li C, Liu Y, Liu X, Mai KKK, Li J, Guo X, Zhang C, Li H, Kang BH, Hwang I, Lu H. Chloroplast thylakoid ascorbate peroxidase PtotAPX plays a key role in chloroplast development by decreasing hydrogen peroxide in Populus tomentosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4333-4354. [PMID: 33884422 DOI: 10.1093/jxb/erab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Chloroplast development is a complex process that is critical to the growth and development of plants. However, the detailed mechanism of chloroplast development in woody plants remains unclear. In this study, we showed that chloroplasts with elaborate thylakoids could develop from proplastids in the cells of calli derived from leaf tissues of Populus tomentosa upon exposure to light. Chloroplast development was confirmed at the molecular and cellular levels. Transcriptome analysis revealed that genes related to photoreceptors and photosynthesis were significantly up-regulated during chloroplast development in a time-dependent manner. In light-induced chloroplast development, a key process was the removal of hydrogen peroxide, in which thylakoid-localized PtotAPX played a major role; light-induced chloroplast development was enhanced in PtotAPX-overexpressing transgenic P. tomentosa callus with lower levels of hydrogen peroxide, but was suppressed in PtotAPX antisense transgenic callus with higher levels of hydrogen peroxide. Moreover, the suppression of light-induced chloroplast development in PtotAPX antisense transgenic callus was relieved by the exogenous reactive oxygen species scavenging agent N,N'-dimethylthiourea (DMTU). Based on these results, we propose that PtotAPX-mediated removal of reactive oxygen species plays a key role in chloroplast development from proplastids upon exposure to light in P. tomentosa.
Collapse
Affiliation(s)
- Conghui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiatong Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Keith Ka Ki Mai
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiaxin Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaorui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Byung-Ho Kang
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
60
|
Wang R, Wang T, Qu G, Zhang Y, Guo X, Jia H, Zhu L. Insights into the underlying mechanisms for integrated inactivation of A. spiroides and depression of disinfection byproducts by plasma oxidation. WATER RESEARCH 2021; 196:117027. [PMID: 33744659 DOI: 10.1016/j.watres.2021.117027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria blooms threaten water supply and are potential sources for disinfection byproducts (DBPs) formation. In this study, the underlying mechanisms for effective removal of A. spiroides and the following depression on the formation of DBPs were disclosed. Highly efficient inactivation (more than 99.99%) of A. spiroides was realized by the plasma treatment within 12 min, and 93.4% of Anatoxin-a was also removed within 12 min, with no signals of resurrection after 7 days' re-cultivation. Transcriptomic analysis demonstrated that the expressions of the genes related to cell walls and peripherals, thylakoid membranes, photosynthetic membranes, and detoxification of toxins were distinctly altered. The generated reactive oxidative species (ROS), including ·OH, O2·-, and 1O2, attacked A. spiroides and resulted in membrane damage and algae organic matter (AOM) release. EEM-PARAFAC analysis illustrated that the AOM compositions were subsequently decomposed by the ROS. As a result, the formation potentials of the C-DBPs and N-DBPs were significantly inhibited, due to the effectively removal of AOM and Anatoxin-a. This study disclosed the underneath mechanisms for the effective inactivation of A. spiroides and inhibition of the following formation of the DBPs, and supplied a prospective technique for integrated pollutant control of cyanobacterial containing drinking water.
Collapse
Affiliation(s)
- Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
61
|
Ji Y, Lehotai N, Zan Y, Dubreuil C, Díaz MG, Strand Å. A fully assembled plastid-encoded RNA polymerase complex detected in etioplasts and proplastids in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 171:435-446. [PMID: 33155308 DOI: 10.1111/ppl.13256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The plastid-encoded genes of higher plants are transcribed by at least two types of RNA polymerases, the nuclear-encoded RNA polymerase (NEP) and the plastid-encoded RNA polymerase (PEP). In mature photosynthesizing leaves, the vast majority of the genes are transcribed by PEP. However, the regulatory mechanisms controlling plastid transcription during early light response is unclear. Chloroplast development is suggested to be associated with a shift in the usage of the primary RNA polymerase from NEP to PEP as the expression of the plastid-encoded photosynthesis genes is induced upon light exposure. Assembly of the PEP complex has been suggested as a rate-limiting step for full activation of plastid-encoded photosynthesis gene expression. However, two sigma factor mutants, sig2 and sig6, with reduced PEP activity, showed significantly lower expression of the plastid-encoded photosynthesis genes already in the dark and during the first hours of light exposure indicating that PEP activity is required for basal expression of plastid-encoded photosynthesis genes in the dark and during early light response. Furthermore, in etioplasts and proplastids a fully assembled PEP complex was revealed on Blue Native PAGE. Our results indicate that a full assembly of the PEP complex is possible in the dark and that PEP drives basal transcriptional activity of plastid-encoded photosynthesis genes in the dark. Assembly of the complex is most likely not a rate-limiting step for full activation of plastid-encoded photosynthesis gene expression which is rather achieved either by the abundance of the PEP complex or by some posttranslational regulation of the individual PEP components.
Collapse
Affiliation(s)
- Yan Ji
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Carole Dubreuil
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- CEA-Commissariat à l'Energie Atomique et aux Énergies Alternatives, CEA Tech, Centre Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Manuel Guinea Díaz
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
62
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
63
|
Favier A, Gans P, Boeri Erba E, Signor L, Muthukumar SS, Pfannschmidt T, Blanvillain R, Cobessi D. The Plastid-Encoded RNA Polymerase-Associated Protein PAP9 Is a Superoxide Dismutase With Unusual Structural Features. FRONTIERS IN PLANT SCIENCE 2021; 12:668897. [PMID: 34276730 PMCID: PMC8278866 DOI: 10.3389/fpls.2021.668897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 05/09/2023]
Abstract
In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs). Among them, there are two iron superoxide dismutases, FSD2/PAP9 and FSD3/PAP4. Superoxide dismutases usually are soluble enzymes not bound into larger protein complexes. To investigate this unusual feature, we characterized PAP9 using molecular genetics, fluorescence microscopy, mass spectrometry, X-ray diffraction, and solution-state NMR. Despite the presence of a predicted nuclear localization signal within the sequence of the predicted chloroplast transit peptide, PAP9 was mainly observed within plastids. Mass spectrometry experiments with the recombinant Arabidopsis PAP9 suggested that monomers and dimers of PAP9 could be associated to the PEP complex. In crystals, PAP9 occurred as a dimeric enzyme that displayed a similar fold to that of the FeSODs or manganese SOD (MnSODs). A zinc ion, instead of the expected iron, was found to be penta-coordinated with a trigonal-bipyramidal geometry in the catalytic center of the recombinant protein. The metal coordination involves a water molecule and highly conserved residues in FeSODs. Solution-state NMR and DOSY experiments revealed an unfolded C-terminal 34 amino-acid stretch in the stand-alone protein and few internal residues interacting with the rest of the protein. We hypothesize that this C-terminal extension had appeared during evolution as a distinct feature of the FSD2/PAP9 targeting it to the PEP complex. Close vicinity to the transcriptional apparatus may allow for the protection against the strongly oxidizing aerial environment during plant conquering of terrestrial habitats.
Collapse
Affiliation(s)
- Adrien Favier
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Pierre Gans
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | - Luca Signor
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, Grenoble, France
- *Correspondence: Robert Blanvillain,
| | - David Cobessi
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- David Cobessi,
| |
Collapse
|
64
|
Karim MF, Johnson GN. Acclimation of Photosynthesis to Changes in the Environment Results in Decreases of Oxidative Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:683986. [PMID: 34630448 PMCID: PMC8495028 DOI: 10.3389/fpls.2021.683986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
The dynamic acclimation of photosynthesis plays an important role in increasing the fitness of a plant under variable light environments. Since acclimation is partially mediated by a glucose-6-phosphate/phosphate translocator 2 (GPT2), this study examined whether plants lacking GPT2, which consequently have defective acclimation to increases in light, are more susceptible to oxidative stress. To understand this mechanism, we used the model plant Arabidopsis thaliana [accession Wassilewskija-4 (Ws-4)] and compared it with mutants lacking GPT2. The plants were then grown at low light (LL) at 100 μmol m-2 s-1 for 7 weeks. For the acclimation experiments, a set of plants from LL was transferred to 400 μmol m-2 s-1 conditions for 7 days. Biochemical and physiological analyses showed that the gpt2 mutant plants had significantly greater activity for ascorbate peroxidase (APX), guiacol peroxidase (GPOX), and superoxide dismutase (SOD). Furthermore, the mutant plants had significantly lower maximum quantum yields of photosynthesis (Fv/Fm). A microarray analysis also showed that gpt2 plants exhibited a greater induction of stress-related genes relative to wild-type (WT) plants. We then concluded that photosynthetic acclimation to a higher intensity of light protects plants against oxidative stress.
Collapse
|
65
|
Dvořák P, Krasylenko Y, Ovečka M, Basheer J, Zapletalová V, Šamaj J, Takáč T. In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. PLANT, CELL & ENVIRONMENT 2021; 44:68-87. [PMID: 32974958 DOI: 10.1111/pce.13894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue- and organ-specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light-sheet and Airyscan confocal microscopy. FSD1-GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1-GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1-GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1-GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants.
Collapse
Affiliation(s)
- Petr Dvořák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Veronika Zapletalová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
66
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
67
|
Kroh GE, Pilon M. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes. Metallomics 2020; 12:1748-1764. [PMID: 33047775 DOI: 10.1039/d0mt00175a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regulation of mRNA abundance revealed a genetic program for plant leaf acclimation to iron (Fe) limitation. The transcript for SUFB, a key component of the plastid iron-sulfur (Fe-S) assembly pathway is down-regulated early after Fe deficiency, and prior to down-regulation of mRNAs encoding abundant chloroplast Fe containing proteins, which should economize the use of Fe. What controls this system is unclear. We utilized RNA-seq. aimed to identify differentially expressed transcripts that are co-regulated with SUFB after Fe deficiency in leaves. To distinguish if lack of Fe or lack of Fe-S cofactors and associated loss of enzymatic and photosynthetic activity trigger transcriptome reprogramming, WT plants on low Fe were compared with an inducible sufb-RNAi knockdown. Fe deficiency targeted a limited set of genes and predominantly affected transcripts for chloroplast localized proteins. A set of glutaredoxin transcripts was concertedly down-regulated early after Fe deficiency, however when these same genes were down-regulated by RNAi the effect on known chloroplast Fe deficiency marker proteins was minimal. In promoters of differentially expressed genes, binding motifs for AP2/ERF transcription factors were most abundant and three AP2/ERF transcription factors were also differentially expressed early after low Fe treatment. Surprisingly, Fe deficiency in a WT on low Fe and a sufb-RNAi knockdown presented very little overlap in differentially expressed genes. sufb-RNAi produced expression patterns expected for Fe excess and up-regulation of a transcript for another Fe-S assembly component not affected by low Fe. These findings indicate that Fe scarcity, not Fe utilization, triggers reprogramming of the transcriptome in leaves.
Collapse
Affiliation(s)
- Gretchen Elizabeth Kroh
- Biology Department, Colorado State University, 2515 W. Pitkin Street, Fort Collins, CO 80523-1878, USA.
| | | |
Collapse
|
68
|
Bogoutdinova LR, Lazareva EM, Chaban IA, Kononenko NV, Dilovarova T, Khaliluev MR, Kurenina LV, Gulevich AA, Smirnova EA, Baranova EN. Salt Stress-Induced Structural Changes Are Mitigated in Transgenic Tomato Plants Over-Expressing Superoxide Dismutase. BIOLOGY 2020; 9:E297. [PMID: 32962161 PMCID: PMC7564123 DOI: 10.3390/biology9090297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Various abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and Na2SO4 solutions to tomato plants harboring an introduced superoxide dismutase gene. To study the roots of tomato plants cultivar Belyi Naliv (WT) and FeSOD-transgenic line, we examined the distribution of ROS and enzyme-linked immunosorbent detection of α-tubulin. In addition, longitudinal sections of the root apexes were compared. Transmission electronic microscopy of atypical cytoskeleton structures was also performed. The differences in the microtubules cortical network between WT and transgenic plants without salt stress were detected. The differences were found in the cortical network of microtubules between WT and transgenic plants in the absence of salt stress. While an ordered microtubule network was revealed in the root cells of WT tomato, no such degree of ordering was detected in transgenic line cells. The signs of microtubule disorganization in root cells of WT plants were manifested under the NaCl treatment. On the contrary, the cytoskeleton structural organization in the transgenic line cells was more ordered. Similar changes, including the cortical microtubules disorganization, possibly associated with the formation of atypical tubulin polymers as a response to salt stress caused by Na2SO4 treatment, were also observed. Changes in cell size, due to both vacuolization and impaired cell expansion in columella zone and cap initials, were responsible for the root tip tissue modification.
Collapse
Affiliation(s)
- Liliya R. Bogoutdinova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Elena M. Lazareva
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 40, 119991 Moscow, Russia
| | - Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Neonila V. Kononenko
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Tatyana Dilovarova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
| | - Marat R. Khaliluev
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
- Agronomy and Biotechnology Faculty, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya 49, 127550 Moscow, Russia
| | - Ludmila V. Kurenina
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
| | - Alexander A. Gulevich
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (M.R.K.); (L.V.K.)
| | - Elena A. Smirnova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 40, 119991 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (L.R.B.); (E.M.L.); (I.A.C.); (N.V.K.); (T.D.); (E.A.S.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
69
|
Basu D, Shoots JM, Haswell ES. Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4020-4032. [PMID: 32280992 DOI: 10.1093/jxb/eraa192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Although a growing number of mechanosensitive ion channels are being identified in plant systems, the molecular mechanisms by which they function are still under investigation. Overexpression of the mechanosensitive ion channel MSL (MscS-Like)10 fused to green fluorescent protein (GFP) triggers a number of developmental and cellular phenotypes including the induction of cell death, and this function is influenced by seven phosphorylation sites in its soluble N-terminus. Here, we show that these and other phenotypes required neither overexpression nor a tag, and could also be induced by a previously identified point mutation in the soluble C-terminus (S640L). The promotion of cell death and hyperaccumulation of H2O2 in 35S:MSL10S640L-GFP overexpression lines was suppressed by N-terminal phosphomimetic substitutions, and the soluble N- and C-terminal domains of MSL10 physically interacted. We propose a three-step model by which tension-induced conformational changes in the C-terminus could be transmitted to the N-terminus, leading to its dephosphorylation and the induction of adaptive responses. Taken together, this work expands our understanding of the molecular mechanisms of mechanotransduction in plants.
Collapse
Affiliation(s)
- Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennette M Shoots
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
70
|
Zhou Y, Liu W, Li X, Sun D, Xu K, Feng C, Kue Foka IC, Ketehouli T, Gao H, Wang N, Dong Y, Wang F, Li H. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC PLANT BIOLOGY 2020; 20:190. [PMID: 32370790 PMCID: PMC7201782 DOI: 10.1186/s12870-020-02370-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/29/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought conditions adversely affect soybean growth, resulting in severe yield losses worldwide. Increasing experimental evidence indicates miRNAs are important post-transcriptional regulators of gene expression. However, the drought-responsive molecular mechanism underlying miRNA-mRNA interactions remains largely uncharacterized in soybean. Meanwhile, the miRNA-regulated drought response pathways based on multi-omics approaches remain elusive. RESULTS We combined sRNA, transcriptome and degradome sequencing to elucidate the complex regulatory mechanism mediating soybean drought resistance. One-thousand transcripts from 384 target genes of 365 miRNAs, which were enriched in the peroxisome, were validated by degradome-seq. An integrated analysis showed 42 miRNA-target pairs exhibited inversely related expression profiles. Among these pairs, a strong induction of gma-miR398c as a major gene negatively regulates multiple peroxisome-related genes (GmCSD1a/b, GmCSD2a/b/c and GmCCS). Meanwhile, we detected that alternative splicing of GmCSD1a/b might affect soybean drought tolerance by bypassing gma-miR398c regulation. Overexpressing gma-miR398c in Arabidopsis thaliana L. resulted in decreased percentage germination, increased leaf water loss, and reduced survival under water deficiency, which displayed sensitivity to drought during seed germination and seedling growth. Furthermore, overexpressing gma-miR398c in soybean decreased GmCSD1a/b, GmCSD2a/b/c and GmCCS expression, which weakened the ability to scavenge O2.-, resulting in increased relative electrolyte leakage and stomatal opening compared with knockout miR398c and wild-type soybean under drought conditions. CONCLUSION The study indicates that gma-miR398c negatively regulates soybean drought tolerance, and provides novel insights useful for breeding programs to improve drought resistance by CRISPR technology.
Collapse
Affiliation(s)
- Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Weican Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Daqian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Keheng Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Chen Feng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Idrice Carther Kue Foka
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
71
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
72
|
Sigdel A, Liu L, Abdollahi-Arpanahi R, Aguilar I, Peñagaricano F. Genetic dissection of reproductive performance of dairy cows under heat stress. Anim Genet 2020; 51:511-520. [PMID: 32363588 PMCID: PMC7383808 DOI: 10.1111/age.12943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Heat stress negatively impacts the reproductive performance of dairy cows. The main objective of this study was to dissect the genetic basis underlying dairy cow fertility under heat stress conditions. Our first goal was to estimate genetic components of cow conception across lactations considering heat stress. Our second goal was to reveal individual genes and functional gene‐sets that explain a cow’s ability to conceive under thermal stress. Data consisted of 74 221 insemination records on 13 704 Holstein cows. Multitrait linear repeatability test‐day models with random regressions on a function of temperature–humidity index values were used for the analyses. Heritability estimates for cow conception under heat stress were around 2–3%, whereas genetic correlations between general and thermotolerance additive genetic effects were negative and ranged between −0.35 and −0.82, indicating an unfavorable relationship between cows’ ability to conceive under thermo‐neutral vs. thermo‐stress conditions. Whole‐genome scans identified at least six genomic regions on BTA1, BTA10, BTA11, BTA17, BTA21 and BTA23 associated with conception under thermal stress. These regions harbor candidate genes such as BRWD1, EXD2, ADAM20, EPAS1, TAOK3, and NOS1, which are directly implicated in reproductive functions and cellular response to heat stress. The gene‐set enrichment analysis revealed functional terms related to fertilization, developmental biology, heat shock proteins and oxidative stress, among others. Overall, our findings contribute to a better understanding of the genetics underlying the reproductive performance of dairy cattle under heat stress conditions and point out novel genomic strategies for improving thermotolerance and fertility via marker‐assisted breeding.
Collapse
Affiliation(s)
- A Sigdel
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - L Liu
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - R Abdollahi-Arpanahi
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - I Aguilar
- Instituto Nacional de Investigación Agropecuaria, Montevideo, 11100, Uruguay
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
73
|
Tadini L, Peracchio C, Trotta A, Colombo M, Mancini I, Jeran N, Costa A, Faoro F, Marsoni M, Vannini C, Aro EM, Pesaresi P. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1198-1220. [PMID: 31648387 DOI: 10.1111/tpj.14585] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Ilaria Mancini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
74
|
Lu W, Duanmu H, Qiao Y, Jin X, Yu Y, Yu L, Chen C. Genome-wide identification and characterization of the soybean SOD family during alkaline stress. PeerJ 2020; 8:e8457. [PMID: 32071807 PMCID: PMC7007734 DOI: 10.7717/peerj.8457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Background Superoxide dismutase (SOD) proteins, as one kind of the antioxidant enzymes, play critical roles in plant response to various environment stresses. Even though its functions in the oxidative stress were very well characterized, the roles of SOD family genes in regulating alkaline stress response are not fully reported. Methods We identified the potential family members by using Hidden Markov model and soybean genome database. The neighbor-joining phylogenetic tree and exon-intron structures were generated by using software MEGA 5.0 and GSDS online server, respectively. Furthermore, the conserved motifs were analyzed by MEME online server. The syntenic analysis was conducted using Circos-0.69. Additionally, the expression levels of soybean SOD genes under alkaline stress were identified by qRT-PCR. Results In this study, we identified 13 potential SOD genes in soybean genome. Phylogenetic analysis suggested that SOD genes could be classified into three subfamilies, including MnSODs (GmMSD1-2), FeSODs (GmFSD1-5) and Cu/ZnSODs (GmCSD1-6). We further investigated the gene structure, chromosomal locations and gene-duplication, conserved domains and promoter cis-elements of the soybean SOD genes. We also explored the expression profiles of soybean SOD genes in different tissues and alkaline, salt and cold stresses, based on the transcriptome data. In addition, we detected their expression patterns in roots and leaves by qRT-PCR under alkaline stress, and found that different SOD subfamily genes may play different roles in response to alkaline stress. These results also confirmed the hypothesis that the great evolutionary divergence may contribute to the potential functional diversity in soybean SOD genes. Taken together, we established a foundation for further functional characterization of soybean SOD genes in response to alkaline stress in the future.
Collapse
Affiliation(s)
- Wenxiu Lu
- School of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Huizi Duanmu
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, China
| | - Yanhua Qiao
- School of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xiaoxia Jin
- School of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Lijie Yu
- School of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Chen
- School of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
75
|
Asrar H, Hussain T, Qasim M, Nielsen BL, Gul B, Khan MA. Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:113-124. [PMID: 31855817 DOI: 10.1016/j.plaphy.2019.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
This study addressed the interactions between salt stress and the antioxidant responses of a halophytic grass, Desmostachya bipinnata. Plants were grown in a semi-hydroponic system and treated with different NaCl concentrations (0 mM, 100 mM, 400 mM) for a month. ROS degradation enzyme activities were stimulated by addition of NaCl. Synthesis of antioxidant compounds, such as phenols, was enhanced in the presence of NaCl leading to accumulation of these compounds under moderate salinity. However, when the ROS production rate exceeded the capacity of enzyme-controlled degradation, antioxidant compounds were consumed and oxidative damage was indicated by significant levels of hydrogen peroxide at high salinity. The cellular concentration of salicylic acid increased upon salt stress, but since no direct interaction with ROS was detected, a messenger function may be postulated. High salinity treatment caused a significant decrease of plant growth parameters, whereas treatment with moderate salinity resulted in optimal growth. The activity and abundance of superoxide dismutase (SOD) increased with salinity, but the abundance of SOD isoforms was differentially affected, depending on the NaCl concentration applied. Detoxification of hydrogen peroxide (H2O2) was executed by catalase and guaiacol peroxidase at moderate salinity, whereas the enzymes detoxifying H2O2 through the ascorbate/glutathione cycle dominated at high salinity. The redox status of glutathione was impaired at moderate salinity, whereas the levels of both ascorbate and glutathione significantly decreased only at high salinity. Apparently, the maximal activation of enzyme-controlled ROS degradation was insufficient in comparison to the ROS production at high salinity. As a result, ROS-induced damage could not be prevented, if the applied stress exceeded a critical value in D. bipinnata plants.
Collapse
Affiliation(s)
- Hina Asrar
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Tabassum Hussain
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Qasim
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - M Ajmal Khan
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
76
|
Jiang D, Tang R, Shi Y, Ke X, Wang Y, Che Y, Luan S, Hou X. Arabidopsis Seedling Lethal 1 Interacting With Plastid-Encoded RNA Polymerase Complex Proteins Is Essential for Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2020; 11:602782. [PMID: 33391315 PMCID: PMC7772139 DOI: 10.3389/fpls.2020.602782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
Mitochondrial transcription termination factors (mTERFs) are highly conserved proteins in metazoans. Plants have many more mTERF proteins than animals. The functions and the underlying mechanisms of plants' mTERFs remain largely unknown. In plants, mTERF family proteins are present in both mitochondria and plastids and are involved in gene expression in these organelles through different mechanisms. In this study, we screened Arabidopsis mutants with pigment-defective phenotypes and isolated a T-DNA insertion mutant exhibiting seedling-lethal and albino phenotypes [seedling lethal 1 (sl1)]. The SL1 gene encodes an mTERF protein localized in the chloroplast stroma. The sl1 mutant showed severe defects in chloroplast development, photosystem assembly, and the accumulation of photosynthetic proteins. Furthermore, the transcript levels of some plastid-encoded proteins were significantly reduced in the mutant, suggesting that SL1/mTERF3 may function in the chloroplast gene expression. Indeed, SL1/mTERF3 interacted with PAP12/PTAC7, PAP5/PTAC12, and PAP7/PTAC14 in the subgroup of DNA/RNA metabolism in the plastid-encoded RNA polymerase (PEP) complex. Taken together, the characterization of the plant chloroplast mTERF protein, SL1/mTERF3, that associated with PEP complex proteins provided new insights into RNA transcription in the chloroplast.
Collapse
Affiliation(s)
- Deyuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufen Che
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Sheng Luan,
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Xin Hou,
| |
Collapse
|
77
|
Tripathi D, Nam A, Oldenburg DJ, Bendich AJ. Reactive Oxygen Species, Antioxidant Agents, and DNA Damage in Developing Maize Mitochondria and Plastids. FRONTIERS IN PLANT SCIENCE 2020; 11:596. [PMID: 32508860 PMCID: PMC7248337 DOI: 10.3389/fpls.2020.00596] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
Maize shoot development progresses from non-pigmented meristematic cells at the base of the leaf to expanded and non-dividing green cells of the leaf blade. This transition is accompanied by the conversion of promitochondria and proplastids to their mature forms and massive fragmentation of both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), collectively termed organellar DNA (orgDNA). We measured developmental changes in reactive oxygen species (ROS), which at high concentrations can lead to oxidative stress and DNA damage, as well as antioxidant agents and oxidative damage in orgDNA. Our plants were grown under normal, non-stressful conditions. Nonetheless, we found more oxidative damage in orgDNA from leaf than stalk tissues and higher levels of hydrogen peroxide, superoxide, and superoxide dismutase in leaf than stalk tissues and in light-grown compared to dark-grown leaves. In both mitochondria and plastids, activities of the antioxidant enzyme peroxidase were higher in stalk than in leaves and in dark-grown than light-grown leaves. In protoplasts, the amount of the small-molecule antioxidants, glutathione and ascorbic acid, and catalase activity were also higher in the stalk than in leaf tissue. The data suggest that the degree of oxidative stress in the organelles is lower in stalk than leaf and lower in dark than light growth conditions. We speculate that the damaged/fragmented orgDNA in leaves (but not the basal meristem) results from ROS signaling to the nucleus to stop delivering DNA repair proteins to mature organelles producing large amounts of ROS.
Collapse
|
78
|
Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN. mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene psbJ. PLANT PHYSIOLOGY 2020; 182:408-423. [PMID: 31685645 PMCID: PMC6945865 DOI: 10.1104/pp.19.00906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (Arabidopsis thaliana), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts. In this work, we demonstrate that mTERF8 is associated with the PEP complex. An mTERF8 knockout line displayed a wild-type-like phenotype under standard growth conditions, but showed impaired efficiency of photosystem II electron flow. Transcription of most chloroplast genes was not substantially affected in the mterf8 mutant; however, the level of the psbJ transcript from the psbEFLJ polycistron was increased. RNA blot analysis showed that a larger transcript accumulates in mterf8 than in the wild type. Thus, abnormal transcription and/or RNA processing occur for the psbEFLJ polycistron. Circular reverse transcription PCR and sequence analysis showed that the psbJ transcript terminates 95 nucleotides downstream of the translation stop codon in the wild type, whereas its termination is aberrant in mterf8 Both electrophoresis mobility shift assays and chloroplast chromatin immunoprecipitation analysis showed that mTERF8 specifically binds to the 3' terminal region of psbJ Transcription analysis using the in vitro T7 RNA polymerase system showed that mTERF8 terminates psbJ transcription. Together, these results suggest that mTERF8 is specifically involved in the transcription termination of the chloroplast gene psbJ.
Collapse
Affiliation(s)
- Hai-Bo Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fei-Min Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Xing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin-Shan Ye
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-He Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
79
|
Cruz MV, Mori GM, Signori-Müller C, da Silva CC, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, de Souza AP. Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Sci Rep 2019; 9:19936. [PMID: 31882752 PMCID: PMC6934818 DOI: 10.1038/s41598-019-56469-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/07/2019] [Indexed: 12/21/2022] Open
Abstract
Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Gustavo Maruyama Mori
- Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP, 11330-900, Brazil
| | - Caroline Signori-Müller
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil.
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
80
|
Lee S, Joung YH, Kim JK, Do Choi Y, Jang G. An isoform of the plastid RNA polymerase-associated protein FSD3 negatively regulates chloroplast development. BMC PLANT BIOLOGY 2019; 19:524. [PMID: 31775615 PMCID: PMC6882211 DOI: 10.1186/s12870-019-2128-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex. RESULTS In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini. Characterization of FSD3 and FSD3S proteins showed that the C-terminal region of FSD3S contains a transmembrane domain, which promotes FSD3S localization to the chloroplast membrane but not to nucleoids, in contrast to FSD3, which localizes to the chloroplast nucleoid. We also found that overexpression of FSD3S negatively affects photosynthetic activity and chloroplast development by reducing expression of genes involved in photosynthesis. In addition, FSD3S failed to complement the chloroplast developmental defects in the fsd3 mutant. CONCLUSION These results suggest FSD3 and FSD3S, with their distinct localization patterns, have different functions in chloroplast development, and FSD3S negatively regulates expression of PEP-dependent chloroplast genes, and development of chloroplasts.
Collapse
Affiliation(s)
- Sangyool Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- The National Academy of Sciences, Seoul, 06579 Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
81
|
Bychkov I, Kudryakova N, Andreeva A, Pojidaeva E, Kusnetsov V. Melatonin modifies the expression of the genes for nuclear- and plastid-encoded chloroplast proteins in detached Arabidopsis leaves exposed to photooxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:404-412. [PMID: 31629225 DOI: 10.1016/j.plaphy.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Melatonin, a potent regulator during plant development and stress responses, affects diverse plastid-related processes. However, its role in the regulation of plastid gene expression is largely unknown. In this study, exogenous melatonin was shown to reduce the negative influence of excess light by increasing the efficiency of the photosystems and rearranging the expression of chloroplast- and nuclear-encoded genes in detached Arabidopsis leaves. The positive effects of melatonin predominantly occurred at lower concentrations, while high doses had an inhibitory effect. The impact of melatonin was not straightforward. It mainly influenced the expression of the genes encoding the chloroplast transcription machinery and housekeeping genes involved in maintaining transcriptional activity and the functional state of chloroplasts. Despite the fact that melatonin treatment improved photosynthetic parameters, the levels of photosynthesis gene transcripts and photosynthetic proteins remained practically unaltered suggesting that melatonin impact on photosynthetic apparatus which would allow the balancing of chloroplast functions with stress responses is highly complicated.
Collapse
Affiliation(s)
- Ivan Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Natalia Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Aleksandra Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Elena Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Victor Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
82
|
Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel AO, Carvalho SM, Vasconcelos MW. Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. PLANTS 2019; 8:plants8090348. [PMID: 31540266 PMCID: PMC6784024 DOI: 10.3390/plants8090348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants.
Collapse
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - António O.S.S. Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Susana M.P. Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- Correspondence:
| |
Collapse
|
83
|
Kastoori Ramamurthy R, Xiang Q, Hsieh EJ, Liu K, Zhang C, Waters BM. New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics 2019; 10:1824-1840. [PMID: 30460953 DOI: 10.1039/c8mt00287h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron (Fe) and copper (Cu) are essential micronutrients for energy metabolism and reactive oxygen species (ROS) scavenging. Some Cu-containing proteins can be substituted with Fe-containing proteins, and vice versa, while several Arabidopsis genes are regulated by both metals. Few details of how plants coordinate Fe-Cu crosstalk are known. Gene expression was measured in the roots and rosettes of Fe, Cu, and simultaneously Fe and Cu deficient WT plants and a mutant of the Cu-uptake transcription factor SPL7. The spl7 mutant accumulated excess Fe under normal conditions, and lower Fe supply rescued the growth phenotype and normalized the Fe : Cu ratios. Most Fe regulated genes were expressed similarly in the WT and spl7 mutant, although at higher fold-change levels in spl7 mutants. Expression patterns indicated that both SPL7 and the FIT Fe uptake transcription factor influenced the expression of many key Fe uptake genes. Most notably, the newly discovered IMA/FEP genes and the subgroup Ib bHLH genes, which are upstream of Fe uptake responses, were repressed in the WT under Cu deficiency. Several AP2/ethylene response factor (AP2/ERF) genes and other redox homeostasis network genes were derepressed in spl7 mutants. Together, we present new information about Fe-Cu crosstalk in plants that could be applied for developing abiotic stress tolerant crops.
Collapse
|
84
|
Lin Q, Yang J, Wang Q, Zhu H, Chen Z, Dao Y, Wang K. Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:381. [PMID: 31477017 PMCID: PMC6721209 DOI: 10.1186/s12870-019-1986-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/26/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Trehalose-6-phosphate phosphatases (TPPs), which are encoded by members of the TPP gene family, can improve the drought tolerance of plants. However, the molecular mechanisms underlying the dynamic regulation of TPP genes during drought stress remain unclear. In this study, we explored the function of an Arabidopsis TPP gene by conducting comparative analyses of a loss-of-function mutant and overexpression lines. RESULTS The loss-of-function mutation of Arabidopsis thaliana TPPF, a member of the TPP gene family, resulted in a drought-sensitive phenotype, while a line overexpressing TPPF showed significantly increased drought tolerance and trehalose accumulation. Compared with wild-type plants, tppf1 mutants accumulated more H2O2 under drought, while AtTPPF-overexpressing plants accumulated less H2O2 under drought. Overexpression of AtTPPF led to increased contents of trehalose, sucrose, and total soluble sugars under drought conditions; these compounds may play a role in scavenging reactive oxygen species. Yeast one-hybrid and luciferase activity assays revealed that DREB1A could bind to the DRE/CRT element within the AtTPPF promoter and activate the expression of AtTPPF. A transcriptome analysis of the TPPF-overexpressing plants revealed that the expression levels of drought-repressed genes involved in electron transport activity and cell wall modification were upregulated, while those of stress-related transcription factors related to water deprivation were downregulated. These results indicate that, as well as its involvement in regulating trehalose and soluble sugars, AtTPPF is involved in regulating the transcription of stress-responsive genes. CONCLUSION AtTPPF functions in regulating levels of trehalose, reactive oxygen species, and sucrose levels during drought stress, and the expression of AtTPPF is activated by DREB1A in Arabidopsis. These findings shed light on the molecular mechanism by which AtTPPF regulates the response to drought stress.
Collapse
Affiliation(s)
- Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiao Yang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qiongli Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hong Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Zhiyong Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
85
|
Ding S, Zhang Y, Hu Z, Huang X, Zhang B, Lu Q, Wen X, Wang Y, Lu C. mTERF5 Acts as a Transcriptional Pausing Factor to Positively Regulate Transcription of Chloroplast psbEFLJ. MOLECULAR PLANT 2019; 12:1259-1277. [PMID: 31128276 DOI: 10.1016/j.molp.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans, but it is unknown whether this phenomenon occurs in plant organelles. Here, we report that transcriptional pausing occurs in chloroplasts. We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II. We found that mTERF5 causes the plastid-encoded RNA polymerase (PEP) complex to pause at psbEFLJ by binding to the +30 to +51 region of double-stranded DNA. Moreover, we revealed that mTERF5 interacts with pTAC6, an essential subunit of the PEP complex, although pTAC6 is not involved in the transcriptional pausing at psbEFLJ. We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ, and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription. Taken together, our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Hu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bohan Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
86
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
87
|
Tiwari A, Kuldeep J, Siddiqi MI, Habib S. Plasmodium falciparumApn1 homolog is a mitochondrial base excision repair protein with restricted enzymatic functions. FEBS J 2019; 287:589-606. [DOI: 10.1111/febs.15032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Anupama Tiwari
- Division of Molecular and Structural Biology CSIR‐Central Drug Research Institute Lucknow India
| | - Jitendra Kuldeep
- Division of Molecular and Structural Biology CSIR‐Central Drug Research Institute Lucknow India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology CSIR‐Central Drug Research Institute Lucknow India
| | - Saman Habib
- Division of Molecular and Structural Biology CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
88
|
Gallie DR, Chen Z. Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 2019; 14:e0220078. [PMID: 31329637 PMCID: PMC6645559 DOI: 10.1371/journal.pone.0220078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
Superoxide dismutases (SODs) protect against reactive oxygen species (ROS) by detoxifying superoxide. Three types of SOD are present in plants: FeSOD, CuSOD, and MnSOD. The Arabidopsis thaliana genome contains three FeSOD genes, in which two (FSD2, and FSD3) are targeted to chloroplast thylakoids. Loss of FSD2 or FSD3 expression impairs growth and causes leaf bleaching. FSD2 and FSD3 form heterocomplexes present in chloroplast nucleoids, raising the question of whether FSD2 and FSD3 are functionally interchangeable. In this study, we examined how loss of FSD2 or FSD3 expression affects photosynthetic processes and whether overexpression of one compensates for loss of the other. Whereas loss of the cytosolic FSD1 had little effect, an fsd2 mutant exhibited increased superoxide production, reduced chlorophyll levels, lower PSII efficiency, a lower rate of CO2 assimilation, but elevated non-photochemical quenching (NPQ). In contrast, fsd3 mutants failed to survive beyond the seedling stage and overexpression of FSD2 could not rescue the seedlings. Overexpression of FSD3 in an fsd2 mutant, however, partially reversed the fsd2 mutant phenotype resulting in improved growth characteristics. Overexpression of FSD2 or FSD3, either individually or together, had little effect. These results indicate that, despite functioning as FeSODs, FSD2 and FSD3 are functionally distinct.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA, United States of America
- * E-mail:
| | - Zhong Chen
- Department of Biochemistry, University of California, Riverside, CA, United States of America
| |
Collapse
|
89
|
Souza Junior JCD, Nogueirol RC, Monteiro FA. Nitrate and ammonium proportion plays a key role in copper phytoextraction, improving the antioxidant defense in Tanzania guinea grass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:823-832. [PMID: 30660976 DOI: 10.1016/j.ecoenv.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 05/22/2023]
Abstract
Various nitrate and ammonium proportions (NO3-/NH4+) in the growth media can increase metal phytoextraction compared to supplying solely NO3-. However, there are no studies showing these effects in plants under copper (Cu) contamination as well as their consequences in plant stress tolerance. The objective was to evaluate the effect of NO3-/NH4+ proportions in Cu phytoextraction by Panicum maximum cv. Tanzania and its consequence in the oxidative stress, photosynthesis, and antioxidant system under Cu stress. The experiment was carried out in a randomized complete block design, by using a 3 × 4 factorial with six replications. Three NO3-/NH4+ proportions (100/0, 70/30, and 50/50) were combined with four Cu rates (0.3, 250, 500, and 1000 µmol L-1) in the nutrient solution. It was found that the largest Cu accumulation in the shoots occurred at the first harvest of the plants supplied with 70/30 NO3-/NH4+ and Cu 1000 µmol L-1. Such plants also displayed high concentrations of proline in the shoots as well as high superoxide dismutase activity in the roots. Malondialdehyde concentration was high in the plant parts at the Cu rate of 1000 µmol L-1. Hence, transpiration rates, stomatal conductance, quantum efficiency of photosystem II, electron transport rate, and net photosynthesis were all low at the Cu rate of 1000 µmol L-1. Catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase activities in the roots were high when plants were exposed to Cu 1000 µmol L-1. In conclusion, the combination of NO3- with NH4+ increases copper phytoextraction that causes oxidative stress, but also favors the antioxidant system of Tanzania guinea grass in attempt to tolerate such stress.
Collapse
Affiliation(s)
- João Cardoso de Souza Junior
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Soil Science Department, Pádua Dias 11, ZIP Code 13418-900 Piracicaba, São Paulo, Brazil.
| | - Roberta Corrêa Nogueirol
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Crop Science Department, Pádua Dias 11, ZIP Code 13418-900 Piracicaba, São Paulo, Brazil.
| | - Francisco Antonio Monteiro
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Soil Science Department, Pádua Dias 11, ZIP Code 13418-900 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
90
|
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. THE NEW PHYTOLOGIST 2019; 221:1197-1214. [PMID: 30222198 DOI: 10.1111/nph.15488] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
91
|
Han XM, Chen QX, Yang Q, Zeng QY, Lan T, Liu YJ. Genome-wide analysis of superoxide dismutase genes in Larix kaempferi. Gene 2018; 686:29-36. [PMID: 30389562 DOI: 10.1016/j.gene.2018.10.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 01/09/2023]
Abstract
Superoxide dismutase is a key enzyme that scavenges superoxide anion and plays vital roles in plant antioxidant system. This study identified six SOD genes from the deciduous conifer Larix kaempferi, which is widely distributed across the cooler regions of the northern hemisphere. These six SOD genes were classified into three types: Cu/Zn-SOD (LkSOD1, 2, 3 and 4), Fe-SOD (LkSOD5) and Mn-SODs (LkSOD6). Three Cu/Zn-SOD proteins (LkSOD1, 3 and 4) were cytosolic-localized, while the other three proteins (LkSOD2, 5 and 6) were chloroplast-localized. Larix SOD proteins displayed catalytic activities toward superoxide anion, and retained >55% of its maximum enzymatic activity between 10 °C and 40 °C. Over expressions of three Larix SOD genes (LkSOD2, 4 and 6) in Arabidopsis thaliana, respectively, showed increased germination rates and root lengths during salt stress. LkSOD5 gene could rescue pale green and dwarf phenotype of Arabidopsis atfsd2-2 mutant. Taken together, this study provided comprehensive insight into the gymnosperm SOD gene family.
Collapse
Affiliation(s)
- Xue-Min Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang-Xin Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
92
|
Romero-Rodríguez MC, Archidona-Yuste A, Abril N, Gil-Serrano AM, Meijón M, Jorrín-Novo JV. Germination and Early Seedling Development in Quercus ilex Recalcitrant and Non-dormant Seeds: Targeted Transcriptional, Hormonal, and Sugar Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1508. [PMID: 30405659 PMCID: PMC6204751 DOI: 10.3389/fpls.2018.01508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/26/2018] [Indexed: 05/15/2023]
Abstract
Seed germination and early seedling development have been studied in the recalcitrant species Quercus ilex using targeted transcriptional, hormonal, and sugar analysis. Embryos and seedlings were collected at eight morphologically defined developmental stages, S0-S7. A typical triphasic water uptake curve was observed throughout development, accompanied by a decrease in sucrose and an increase in glucose and fructose. Low levels of abscisic acid (ABA) and high levels of gibberellins (GAs) were observed in mature seeds. Post-germination, indole-3-acetic acid (IAA), increased, whereas GA remained high, a pattern commonly observed during growth and development. The abundance of transcripts from ABA-related genes was positively correlated with the changes in the content of the phytohormone. Transcripts of the drought-related genes Dhn3 and GolS were more abundant at S0, then decreased in parallel with increasing water content. Transcripts for Gapdh, and Nadh6 were abundant at S0, supporting the occurrence of an active metabolism in recalcitrant seeds at the time of shedding. The importance of ROS during germination is manifest in the high transcript levels for Sod and Gst, found in mature seeds. The results presented herein help distinguish recalcitrant (e.g., Q. ilex) seeds from their orthodox counterparts. Our results indicate that recalcitrance is established during seed development but not manifest until germination (S1-S3). Post-germination the patterns are quite similar for both orthodox and recalcitrant seeds.
Collapse
Affiliation(s)
- M. Cristina Romero-Rodríguez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
- Departamento de Química Biológica, Dirección de Investigación, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
- Centro Multidisciplinario de Investigaciones Tecnológicas, Dirección General de Investigación Científica y Tecnológica, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Antonio Archidona-Yuste
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - Antonio M. Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Mónica Meijón
- Plant Physiology Lab, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Jesús V. Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| |
Collapse
|
93
|
Sun J, Xu H, Pei H, Jin Y, Li H, Ma C. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment. WATER RESEARCH 2018; 142:405-414. [PMID: 29909220 DOI: 10.1016/j.watres.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Benthic Oscillatoria sp. may form dense surface blooms especially under eutrophic and calm conditions, which poses a threat to drinking water safety because it can produce toxic and odorous metabolites. This is the first study to investigate the effect of the conventional coagulant polyaluminium ferric chloride (PAFC) on removal of Oscillatoria sp., and the behavior of Oscillatoria sp. cells in sludges formed from different dosages of PAFC (control, optimum, and overdose system) during storage was also studied. Oscillatoria sp. cells can be removed efficiently by coagulation of PAFC. The adverse environmental stresses of sludge, such as lack of light and anoxic environment, decrease cell viability and induce the increase of superoxide dismutase activity (SOD) and malondialdehyde content (MDA) in Oscillatoria sp. cells during the first 4 days. Because Oscillatoria sp. can adapt to the low-light and hypoxic circumstances in sludge gradually, the cells regrow with prolonged storage time. Compared to planktonic Microcystis aeruginosa and Cylindrospermopsis raciborskii, regrowth of Oscillatoria sp. during storage may present a bigger threat, even though Microcystis aeruginosa and Cylindrospermopsis raciborskii cells will be damaged and release toxic compounds. Growth rates of algae in coagulated systems were lower than that in control system because of the restriction of flocs. It is worth noting that the chlorophyll a level was increased by a factor of 3.5 in the optimal-dose system, and worse, the overdose system increased by a factor of 6 in chlorophyll a after 8 d storage due to the benefit of higher Fe levels. Concentrations of extracellular geosmin and cylindrospermopsin also increased during storage, especially after 4 d, and varied in the following sequence for a given storage duration: control system > overdose system > optimum system. Overall, due to decrease of SOD and MDA in Oscillatoria sp. cells after 4 d storage, algae cells regrew rapidly, especially in overdose system. Hence, sludge should be treated within 4 d and excess PAFC dosing should be avoided.
Collapse
Affiliation(s)
- Jiongming Sun
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| | - Yan Jin
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Hongmin Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Chunxia Ma
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
94
|
Maintaining Genome Integrity during Seed Development in Phaseolus vulgaris L.: Evidence from a Transcriptomic Profiling Study. Genes (Basel) 2018; 9:genes9100463. [PMID: 30241355 PMCID: PMC6209899 DOI: 10.3390/genes9100463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of genome integrity is crucial in seeds, due to the constant challenge of several endogenous and exogenous factors. The knowledge concerning DNA damage response and chromatin remodeling during seed development is still scarce, especially in Phaseolus vulgaris L. A transcriptomic profiling of the expression of genes related to DNA damage response/chromatin remodeling mechanisms was performed in P. vulgaris seeds at four distinct developmental stages, spanning from late embryogenesis to seed desiccation. Of the 14,001 expressed genes identified using massive analysis of cDNA ends, 301 belong to the DNA MapMan category. In late embryogenesis, a high expression of genes related to DNA damage sensing and repair suggests there is a tight control of DNA integrity. At the end of filling and the onset of seed dehydration, the upregulation of genes implicated in sensing of DNA double-strand breaks suggests that genome integrity is challenged. The expression of chromatin remodelers seems to imply a concomitant action of chromatin remodeling with DNA repair machinery, maintaining genome stability. The expression of genes related to nucleotide excision repair and chromatin structure is evidenced during the desiccation stage. An overview of the genes involved in DNA damage response and chromatin remodeling during P. vulgaris seed development is presented, providing insights into the mechanisms used by developing seeds to cope with DNA damage.
Collapse
|
95
|
Liebers M, Chevalier F, Blanvillain R, Pfannschmidt T. PAP genes are tissue- and cell-specific markers of chloroplast development. PLANTA 2018; 248:629-646. [PMID: 29855700 DOI: 10.1007/s00425-018-2924-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/21/2018] [Indexed: 05/03/2023]
Abstract
Expression of PAP genes is strongly coordinated and represents a highly selective cell-specific marker associated with the development of chloroplasts in photosynthetically active organs of Arabidopsis seedlings and adult plants. Transcription in plastids of plants depends on the activity of phage-type single-subunit nuclear-encoded RNA polymerases (NEP) and a prokaryotic multi-subunit plastid-encoded RNA polymerase (PEP). PEP is comprised of the core subunits α, β, β' and β″ encoded by rpoA, rpoB/C1/C2 genes located on the plastome. This core enzyme needs to interact with nuclear-encoded sigma factors for proper promoter recognition. In chloroplasts, the core enzyme is surrounded by additional 12 nuclear-encoded subunits, all of eukaryotic origin. These PEP-associated proteins (PAPs) were found to be essential for chloroplast biogenesis as Arabidopsis inactivation mutants for each of them revealed albino or pale-green phenotypes. In silico analysis of transcriptomic data suggests that PAP genes represent a tightly controlled regulon, whereas wetlab data are sparse and correspond to the expression of individual genes mostly studied at the seedling stage. Using RT-PCR, transient, and stable expression assays of PAP promoter-GUS-constructs, we do provide, in this study, a comprehensive expression catalogue for PAP genes throughout the life cycle of Arabidopsis. We demonstrate a selective impact of light on PAP gene expression and uncover a high tissue specificity that is coupled to developmental progression especially during the transition from skotomorphogenesis to photomorphogenesis. Our data imply that PAP gene expression precedes the formation of chloroplasts rendering PAP genes a tissue- and cell-specific marker of chloroplast biogenesis.
Collapse
Affiliation(s)
- Monique Liebers
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Fabien Chevalier
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Robert Blanvillain
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France.
| | - Thomas Pfannschmidt
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France.
| |
Collapse
|
96
|
Zhang Y, Cui YL, Zhang XL, Yu QB, Wang X, Yuan XB, Qin XM, He XF, Huang C, Yang ZN. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Sci Rep 2018; 8:11929. [PMID: 30093718 PMCID: PMC6085346 DOI: 10.1038/s41598-018-30166-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of plastid genes is regulated by two types of DNA-dependent RNA polymerases, plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase (NEP). The plastid rpoA polycistron encodes a series of essential chloroplast ribosome subunits and a core subunit of PEP. Despite the functional importance, little is known about the regulation of rpoA polycistron. In this work, we show that mTERF6 directly associates with a 3′-end sequence of rpoA polycistron in vitro and in vivo, and that absence of mTERF6 promotes read-through transcription at this site, indicating that mTERF6 acts as a factor required for termination of plastid genes’ transcription in vivo. In addition, the transcriptions of some essential ribosome subunits encoded by rpoA polycistron and PEP-dependent plastid genes are reduced in the mterf6 knockout mutant. RpoA, a PEP core subunit, accumulates to about 50% that of the wild type in the mutant, where early chloroplast development is impaired. Overall, our functional analyses of mTERF6 provide evidence that it is more likely a factor required for transcription termination of rpoA polycistron, which is essential for chloroplast gene expression and chloroplast development.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yong-Lan Cui
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Lei Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xi Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Bo Yuan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Mei Qin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Fang He
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
97
|
Higashi Y, Okazaki Y, Takano K, Myouga F, Shinozaki K, Knoch E, Fukushima A, Saito K. HEAT INDUCIBLE LIPASE1 Remodels Chloroplastic Monogalactosyldiacylglycerol by Liberating α-Linolenic Acid in Arabidopsis Leaves under Heat Stress. THE PLANT CELL 2018; 30:1887-1905. [PMID: 29967047 PMCID: PMC6139690 DOI: 10.1105/tpc.18.00347] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 05/20/2023]
Abstract
Under heat stress, polyunsaturated acyl groups, such as α-linolenate (18:3) and hexadecatrienoate (16:3), are removed from chloroplastic glycerolipids in various plant species. Here, we showed that a lipase designated HEAT INDUCIBLE LIPASE1 (HIL1) induces the catabolism of monogalactosyldiacylglycerol (MGDG) under heat stress in Arabidopsis thaliana leaves. Using thermotolerance tests, a T-DNA insertion mutant with disrupted HIL1 was shown to have a heat stress-sensitive phenotype. Lipidomic analysis indicated that the decrease of 34:6-MGDG under heat stress was partially impaired in the hil1 mutant. Concomitantly, the heat-induced increment of 54:9-triacylglycerol in the hil1 mutant was 18% lower than that in the wild-type plants. Recombinant HIL1 protein digested MGDG to produce 18:3-free fatty acid (18:3-FFA), but not 18:0- and 16:0-FFAs. A transient assay using fluorescent fusion proteins confirmed chloroplastic localization of HIL1. Transcriptome coexpression network analysis using public databases demonstrated that the HIL1 homolog expression levels in various terrestrial plants are tightly associated with chloroplastic heat stress responses. Thus, HIL1 encodes a chloroplastic MGDG lipase that releases 18:3-FFA in the first committed step of 34:6 (18:3/16:3)-containing galactolipid turnover, suggesting that HIL1 has an important role in the lipid remodeling process induced by heat stress in plants.
Collapse
Affiliation(s)
- Yasuhiro Higashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioresources, Mie University, Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Kouji Takano
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiyoshi Myouga
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Eva Knoch
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
98
|
Yu QB, Zhao TT, Ye LS, Cheng L, Wu YQ, Huang C, Yang ZN. pTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II. PHOTOSYNTHESIS RESEARCH 2018; 137:69-83. [PMID: 29330702 DOI: 10.1007/s11120-018-0479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
In higher plant chloroplasts, the plastid-encoded RNA polymerase (PEP) consists of four catalytic subunits and numerous nuclear-encoded accessory proteins, including pTAC10, an S1-domain-containing protein. In this study, pTAC10 knockout lines were characterized. Two ptac10 mutants had an albino phenotype and severely impaired chloroplast development. The pTAC10 genomic sequence fused to a four-tandem MYC tag driven by its own promoter functionally complemented the ptac10-1 mutant phenotype. pTAC10 was present in both the chloroplast stroma and thylakoids. Two-dimensional blue native polyacrylamide gel electrophoresis (BN-PAGE), and immunoblotting assays showed that pTAC10:MYC co-migrates with one of the PEP core subunits, RpoB. A comprehensive investigation of the plastid gene expression profiles by quantitative RT-PCR revealed that, compared with wild-type plants, the abundance of PEP-dependent plastid transcripts is severely decreased in the ptac10-1 mutant, while the amount of plastid transcripts exclusively transcribed by NEP either barely changes or even increases. RNA blot analysis confirmed that PEP-dependent chloroplast transcripts, including psaB, psbA and rbcL, substantially decrease in the ptac10-1 mutant. Immunoblotting showed reduced accumulation of most chloroplast proteins in the ptac10 mutants. These data indicate the essential role of pTAC10 in plastid gene expression and plastid development. pTAC10 interacts with chloroplast-targeted casein kinase 2 (cpCK2) in vitro and in vivo and can be phosphorylated by Arabidopsis cpCK2 in vitro at sites Ser95, Ser396 and Ser434. RNA-EMSA assays showed that pTAC10 is able to bind to the psbA, atpE and accD transcripts, suggesting a non-specific RNA-binding activity of pTAC10. The RNA affinity of pTAC10 was enhanced by phosphorylation and decreased by the amino acid substitution Ser434-Ala of pTAC10. These data show that pTAC10 is essential for plastid gene expression in Arabidopsis and that it can be phosphorylated by cpCK2.
Collapse
Affiliation(s)
- Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tuan-Tuan Zhao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lin-Shan Ye
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ling Cheng
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying-Qian Wu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
99
|
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:535. [PMID: 29740468 PMCID: PMC5928394 DOI: 10.3389/fpls.2018.00535] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.
Collapse
|
100
|
Emamverdian A, Ding Y, Xie Y, Sangari S. Silicon Mechanisms to Ameliorate Heavy Metal Stress in Plants. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8492898. [PMID: 29850578 PMCID: PMC5937581 DOI: 10.1155/2018/8492898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
The increased contaminants caused by anthropogenic activities in the environment and the importance of finding pathways to reduce pollution caused the silicon application to be considered an important detoxification agent. Silicon, as a beneficial element, plays an important role in amelioration of abiotic stress, such as an extreme dose of heavy metal in plants. There are several mechanisms involved in silicon mediation in plants, including the reduction of heavy metal uptake by plants, changing pH value, formation of Si heavy metals, and stimulation of enzyme activity, which can work by chemical and physical pathways. The aim of this paper is to investigate the major silicon-related mechanisms that reduce the toxicity of heavy metals in plants and then to assess the role of silicon in increasing the antioxidant enzyme and nonenzyme activities to protect the plant cell.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Sirous Sangari
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|