51
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
52
|
Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem 2022; 66:527-539. [PMID: 35635051 PMCID: PMC9528084 DOI: 10.1042/ebc20210084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Zhou Zou
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
53
|
Zhang H, Kim MS, Huang J, Yan H, Yang T, Song L, Yu W, Shim WB. Transcriptome analysis of maize pathogen Fusarium verticillioides revealed FvLcp1, a secreted protein with type-D fungal LysM and chitin-binding domains, that plays important roles in pathogenesis and mycotoxin production. Microbiol Res 2022; 265:127195. [PMID: 36126492 DOI: 10.1016/j.micres.2022.127195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
Fusarium verticillioides is a key maize pathogen and produces fumonisins, a group of mycotoxins detrimental to humans and animals. Unfortunately, our understanding on how this fungus interacts with maize to trigger mycotoxin biosynthesis is limited. We performed a systematic computational network-based analysis of large-scale F. verticillioides RNA-seq datasets to identify gene subnetwork modules associated with virulence and fumonisin regulation. F. verticillioides was inoculated on two different maize lines, moderately resistant line hybrid 33K44 and highly susceptible line maize inbred line B73, to generate time-course RNA-Seq data. Among the highly discriminative subnetwork modules, we identified a putative hub gene FvLCP1, which encodes a putative a type-D fungal LysM protein with a signal peptide, three LysM domains, and two chitin binding domains. FvLcp1 is a unique protein that harbors these domains amongst five representative Fusarium species. FvLcp1 is a secreted protein important for fumonisin production with the LysM domain playing a critical role. The chitin-binding domain was essential for in vitro chitin binding. Using Magnaporthe oryzae, we learned that FvLcp1 accumulates in appressoria, suggesting that FvLcp1 is involved in host recognition and infection. Full length FvLcp1 suppressed BAX-triggered plant cell death in Nicotiana benthamiana. This unique type-D LysM secreted protein with a chitin-binding domain in F. verticillioides was shown to be potentially involved in suppressing host cell death and promoting fumonisin biosynthesis while the pathogen colonizes maize kernels.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| | - Man S Kim
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jun Huang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | - Tao Yang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linlin Song
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenying Yu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| |
Collapse
|
54
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
55
|
Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang RJ, Yang J, Peng YL, Lu X. Comparative Secretome Analysis of Magnaporthe oryzae Identified Proteins Involved in Virulence and Cell Wall Integrity. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:728-746. [PMID: 34284133 PMCID: PMC9880818 DOI: 10.1016/j.gpb.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023]
Abstract
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant-fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Linlu Qi
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manna Huang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Yiying Zhang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Rui-Jin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Corresponding author.
| |
Collapse
|
56
|
Cao Y, Chen J, Xie X, Liu S, Jiang Y, Pei M, Wu Q, Qi P, Du L, Peng B, Lan J, Wu F, Feng K, Zhang Y, Fang Y, Liu M, Jaber MY, Wang Z, Olsson S, Lu G, Li Y. Characterization of two infection-induced transcription factors of Magnaporthe oryzae reveals their roles in regulating early infection and effector expression. MOLECULAR PLANT PATHOLOGY 2022; 23:1200-1213. [PMID: 35430769 PMCID: PMC9276953 DOI: 10.1111/mpp.13224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M. oryzae Early Infection-induced Transcription Factor genes (MOEITF1 and MOEITF2) and analysed their roles in this process. Target gene deletion and mutant phenotype analysis showed that the mutants Δmoeitf1 and Δmoeitf2 were only defective for infection growth but not for vegetative growth, asexual/sexual sporulation, conidial germination, and appressoria formation. Gene expression analysis of 30 putative effectors revealed that most effector genes were down-regulated in mutants, implying a potential regulation by the transcription factors. Artificial overexpression of two severely down-regulated effectors, T1REP and T2REP, in the mutants partially restored the pathogenicity of Δmoeitf1 and Δmoeitf2, respectively, indicating that these are directly regulated. Yeast one-hybrid assay and electrophoretic mobility shift assay indicated that Moeitf1 specifically bound the T1REP promoter and Moeitf2 specifically bound the T2REP promoter. Both T1REP and T2REP were predicted to be secreted during infection, and the mutants of T2REP were severely reduced in pathogenicity. Our results indicate crucial roles for the fungal-specific Moeitf1 and Moeitf2 transcription factors in regulating an essential step in M. oryzae early establishment after penetrating rice epidermal cells, highlighting these as possible targets for disease control.
Collapse
Affiliation(s)
- Yiyang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shenghua Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yue Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qianfei Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengfei Qi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianwu Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yifei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
| | - Mohammed Y. Jaber
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Present address:
Department of Plant Production and ProtectionFaculty of Agriculture and Veterinary MedicineAn‐Najah National UniversityNablusPalestine
| | - Zonghua Wang
- Institue of OceanographyMinjiang UniversityFuzhouChina
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Plant Immunity CenterHaixia Institute of Science and Technology, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
57
|
Hu J, Liu M, Zhang A, Dai Y, Chen W, Chen F, Wang W, Shen D, Telebanco-Yanoria MJ, Ren B, Zhang H, Zhou H, Zhou B, Wang P, Zhang Z. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. MOLECULAR PLANT 2022; 15:1347-1366. [PMID: 35799449 PMCID: PMC11163382 DOI: 10.1016/j.molp.2022.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Apoplastic ascorbate oxidases (AOs) play a critical role in reactive oxygen species (ROS)-mediated innate host immunity by regulating the apoplast redox state. To date, little is known about how apoplastic effectors of the rice blast fungus Magnaporthe oryzae modulate the apoplast redox state of rice to subvert plant immunity. In this study, we demonstrated that M. oryzae MoAo1 is an AO that plays a role in virulence by modulating the apoplast redox status of rice cells. We showed that MoAo1 inhibits the activity of rice OsAO3 and OsAO4, which also regulate the apoplast redox status and plant immunity. In addition, we found that MoAo1, OsAO3, and OsAO4 all exhibit polymorphic variations whose varied interactions orchestrate pathogen virulence and rice immunity. Taken together, our results reveal a critical role for extracellular redox enzymes during rice blast infection and shed light on the importance of the apoplast redox state and its regulation in plant-pathogen interactions.
Collapse
Affiliation(s)
- Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Fang Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenya Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | | | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
58
|
Chen G, Zhang B, Ding J, Wang H, Deng C, Wang J, Yang Q, Pi Q, Zhang R, Zhai H, Dong J, Huang J, Hou J, Wu J, Que J, Zhang F, Li W, Min H, Tabor G, Li B, Liu X, Zhao J, Yan J, Lai Z. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun 2022; 13:4392. [PMID: 35906218 PMCID: PMC9338322 DOI: 10.1038/s41467-022-32026-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Broad-spectrum resistance has great values for crop breeding. However, its mechanisms are largely unknown. Here, we report the cloning of a maize NLR gene, RppK, for resistance against southern corn rust (SCR) and its cognate Avr gene, AvrRppK, from Puccinia polysora (the causal pathogen of SCR). The AvrRppK gene has no sequence variation in all examined isolates. It has high expression level during infection and can suppress pattern-triggered immunity (PTI). Further, the introgression of RppK into maize inbred lines and hybrids enhances resistance against multiple isolates of P. polysora, thereby increasing yield in the presence of SCR. Together, we show that RppK is involved in resistance against multiple P. polysora isolates and it can recognize AvrRppK, which is broadly distributed and conserved in P. polysora isolates.
Collapse
Affiliation(s)
- Gengshen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, Henan, China
- The Shennong Laboratory, 450002, Zhengzhou, Henan, China
| | - Hongze Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ce Deng
- College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, Henan, China
| | - Jiali Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Qianhui Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Qianyu Pi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ruyang Zhang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
| | - Haoyu Zhai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Junfei Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Junshi Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Jiabao Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Junhua Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Jiamin Que
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Fan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Haoxuan Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Girma Tabor
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Bailin Li
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| |
Collapse
|
59
|
A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci U S A 2022; 119:e2116896119. [PMID: 35771942 PMCID: PMC9271155 DOI: 10.1073/pnas.2116896119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
Collapse
|
60
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
61
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
62
|
Rafiqi M, Jelonek L, Diouf AM, Mbaye A, Rep M, Diarra A. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS One 2022; 17:e0260830. [PMID: 35617325 PMCID: PMC9135196 DOI: 10.1371/journal.pone.0260830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding biotic changes that occur alongside climate change constitute a research priority of global significance. Here, we address a plant pathogen that poses a serious threat to life on natural oases, where climate change is already taking a toll and severely impacting human subsistence. Fusarium oxysporum f. sp. albedinis is a pathogen that causes dieback disease on date palms, a tree that provides several critical ecosystem services in natural oases; and consequently, of major importance in this vulnerable habitat. Here, we assess the current state of global pathogen spread, we annotate the genome of a sequenced pathogen strain isolated from the native range and we analyse its in silico secretome. The palm dieback pathogen secretes a large arsenal of effector candidates including a variety of toxins, a distinguished profile of secreted in xylem proteins (SIX) as well as an expanded protein family with an N-terminal conserved motif [SG]PC[KR]P that could be involved in interactions with host membranes. Using agrobiodiversity as a strategy to decrease pathogen infectivity, while providing short term resilient solutions, seems to be widely overcome by the pathogen. Hence, the urgent need for future mechanistic research on the palm dieback disease and a better understanding of pathogen genetic diversity.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Aliou Moussa Diouf
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - AbdouLahat Mbaye
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Alhousseine Diarra
- Digital 4 Research Labs, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
63
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
64
|
Shi G, Kariyawasam G, Liu S, Leng Y, Zhong S, Ali S, Moolhuijzen P, Moffat CS, Rasmussen JB, Friesen TL, Faris JD, Liu Z. A Conserved Hypothetical Gene Is Required but Not Sufficient for Ptr ToxC Production in Pyrenophora tritici-repentis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:336-348. [PMID: 35100008 DOI: 10.1094/mpmi-12-21-0299-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University Brookings, SD 57006, U.S.A
| | - Paula Moolhuijzen
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
65
|
Yang L, Zhao M, Sha G, Sun Q, Gong Q, Yang Q, Xie K, Yuan M, Mortimer JC, Xie W, Wei T, Kang Z, Li G. The genome of the rice variety LTH provides insight into its universal susceptibility mechanism to worldwide rice blast fungal strains. Comput Struct Biotechnol J 2022; 20:1012-1026. [PMID: 35242291 PMCID: PMC8866493 DOI: 10.1016/j.csbj.2022.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022] Open
Abstract
The widely used rice variety Lijiangxintuanheigu (LTH) shows a universal susceptibility to thousands of Magnaporthe oryzae isolates, the causal agent of devastating rice blast, making LTH an ideal line in resistance (R) gene cloning. However, the underlying genetic mechanism of the universal susceptibility has not been fully revealed because of the lack of a high-quality genome. Here, we took a genomic approach together with experimental assays to investigate LTH’s universal susceptibility to rice blast. Using Nanopore long reads, we assembled a chromosome-level genome. Millions of genomic variants were detected by comparing LTH with 10 other rice varieties, of which large-effect variants could affect plant immunity. Gene family analyses show that the number of R genes and leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding genes decrease significantly in LTH. Rice blast resistance genes called Pi genes are either absent or disrupted by genomic variations. Additionally, residual R genes of LTH are likely under weak pathogen selection pressure, and other plant defense-related genes are weakly induced by rice blast. In contrast, the pattern-triggered immunity (PTI) of LTH is normal, as demonstrated by experimental assays. Therefore, we conclude that weak effector-trigger immunity (ETI)-mediated primarily by Pi genes but not PTI results in the universal susceptibility of LTH to rice blast. The attenuated ETI of LTH may be also associated with reduced numbers of R genes and LRR-RLKs, and minimally functional residual defense-related genes. Finally, we demonstrate the use of the LTH genome by rapid cloning of the Pi gene Piak from a resistant variety.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Sha
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiping Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuwen Gong
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qun Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jenny C. Mortimer
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author at: State Key Laboratory of Agricultural Microbiology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
66
|
Huang Z, Li H, Zhou Y, Bao Y, Duan Z, Wang C, Powell CA, Chen B, Zhang M, Yao W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J Fungi (Basel) 2022; 8:jof8010059. [PMID: 35049998 PMCID: PMC8780550 DOI: 10.3390/jof8010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| |
Collapse
|
67
|
Duan G, Ma X, Shi Z, Yang Y, Chen H, Huang Q, Yang J. MoSDT1 triggers defense response through modulating phosphorylated proteins in rice. PLANT MOLECULAR BIOLOGY 2022; 108:15-30. [PMID: 34622380 DOI: 10.1007/s11103-021-01201-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
MoSDT1, a rice blast fungus transcription factor, is as an inducer to activate defense response through mainly mediating phosphorylated proteins in rice. Pathogen effector proteins play a dual role in infecting the host or triggering a defense response. Our previous research found a Magnaporthe oryzae effector, MoSDT1, which could activate the rice defense response when it was overexpressed in rice. However, we still know little about the mechanisms on how MoSDT1 in vivo or in vitro influences the resistance ability of rice. Our results showed that decreased ROS and increased lignin contents appeared along with significant upregulation of defense-related genes, raffinose synthesis gene, and phenylalanine ammonialyase gene. Moreover, we revealed that the contents of lignin were increased, which was in accordance with the upregulation of its precursor phenylalanine gene despite the fact that the glutamate-/thiamine-responsive genes were inhibited in MoSDT1 transgenic rice, and these indicated that MoSDT1 triggered the defense system of rice in vivo. Interestingly, in vitro studies, we further found that MoSDT1 induced the defense system by ROS synthesis, callose deposition, PR gene expression and SA/JA synthesis/signal genes using the purified prokaryotic expression system in rice plants. In addition, this defense response was confirmed to be activated by the zinc finger domain of MoSDT1 via prokaryotic expression of MoSDT1 truncated mutants in rice plants. To elucidate the regulative effects of MoSDT1 on protein phosphorylation in rice, phosphoproteome analysis was performed in both MoSDT1-transgenic and wild type rice. We found that MoSDT1 specifically up-regulated the expression levels of a few phosphorylated proteins, which were involved in multiple functions, such as biotic/abiotic stress and growth. In addition, the motifs in these specific proteins ranked the top among the top-five conserved motifs in the MoSDT1-transgenic rice. MoSDT1 played a crucial role in enhancing rice resistance by modulating several genes and signaling pathways.
Collapse
Affiliation(s)
- Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Zhufeng Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yaqiong Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qiong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China.
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China.
| |
Collapse
|
68
|
Hu ZJ, Huang YY, Lin XY, Feng H, Zhou SX, Xie Y, Liu XX, Liu C, Zhao RM, Zhao WS, Feng CH, Pu M, Ji YP, Hu XH, Li GB, Zhao JH, Zhao ZX, Wang H, Zhang JW, Fan J, Li Y, Peng YL, He M, Li DQ, Huang F, Peng YL, Wang WM. Loss and Natural Variations of Blast Fungal Avirulence Genes Breakdown Rice Resistance Genes in the Sichuan Basin of China. FRONTIERS IN PLANT SCIENCE 2022; 13:788876. [PMID: 35498644 PMCID: PMC9040519 DOI: 10.3389/fpls.2022.788876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.
Collapse
Affiliation(s)
- Zi-Jin Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Yan-Yan Huang
| | - Xiao-Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ying Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ru-Meng Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan-Hong Feng
- Plant Protection Station, Department of Agriculture Sichuan Province, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Liang Peng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Wen-Ming Wang
| |
Collapse
|
69
|
NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 2022; 601:245-251. [PMID: 34912119 DOI: 10.1038/s41586-021-04219-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.
Collapse
|
70
|
Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae. J Microbiol 2021; 60:79-88. [DOI: 10.1007/s12275-022-1074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023]
|
71
|
Wu Q, Wang Y, Liu LN, Shi K, Li CY. Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice. J Fungi (Basel) 2021; 8:jof8010005. [PMID: 35049945 PMCID: PMC8778285 DOI: 10.3390/jof8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
| | - Li-Na Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Kai Shi
- School of Foreign Language, Yunnan Agricultural University, Kunming 650201, China;
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Correspondence:
| |
Collapse
|
72
|
Peng Z, Li L, Wu S, Chen X, Shi Y, He Q, Shu F, Zhang W, Sun P, Deng H, Xing J. Frequencies and Variations of Magnaporthe oryzae Avirulence Genes in Hunan Province, China. PLANT DISEASE 2021; 105:3829-3834. [PMID: 34152208 DOI: 10.1094/pdis-01-21-0008-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice blast caused by Magnaporthe oryzae poses significant threaten to rice production. For breeding and deploying resistant rice varieties, it is essential to understand the frequencies and genetic variations of avirulence (AVR) genes in the pathogen populations. In this study, 444 isolates were collected from Hunan Province, China in 2012, 2015, and 2016, and their pathogenicity was evaluated by testing them on monogenic rice lines carrying resistance genes Pita, Pizt, Pikm, Pib, or Pi9. The frequencies of corresponding AVR genes AVRPizt, AVRPikm, AVRPib, AVRPi9, and AVRPita were characterized by amplification and sequencing these genes in the isolates. Both Pi9 and Pikm conferred resistance to >75% of the tested isolates, while Pizt, Pita, and Pib were effective against 55.63, 15.31, and 3.15% of the isolates, respectively. AVRPikm and AVRPi9 were detected in 90% of the isolates and AVRPita, AVRPizt, and AVRPib were present in 26.12, 66.22, and 79% of the isolates, respectively. Sequencing of AVR genes showed that most mutations were single nucleotide polymorphisms, transposon insertions, and insertion mutations. The variable sites of AVRPikm and AVRPita were mainly located in the coding sequence regions (CDS), and most were synonymous mutations. A 494-bp Pot2 transposon sequence insertion was found at the 87 bp position upstream of the start codon in AVRPib. Noteworthy, although no mutations were found in CDS of AVRPi9, a GC-rich inserted sequence of ∼200 bp was found at the 1,272 bp position upstream of the start codon in three virulent isolates. As AVRPikm and AVRPi9 were widely distributed with low genetic variation in the pathogen population, Pikm and Pi9 should be promising genes for breeding rice cultivars with blast resistance in Hunan.
Collapse
Affiliation(s)
- Zhirong Peng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Ling Li
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410082, China
| | - Shenghai Wu
- Huitong County Agricultural and Rural Bureau, Huaihua, Hunan 418300, China
| | - Xiaolin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinfeng Shi
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Qiang He
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Fu Shu
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Wuhan Zhang
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Pingyong Sun
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Huafeng Deng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Junjie Xing
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| |
Collapse
|
73
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
74
|
De la Concepcion JC, Vega Benjumea J, Bialas A, Terauchi R, Kamoun S, Banfield MJ. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. eLife 2021; 10:e71662. [PMID: 34783652 PMCID: PMC8631799 DOI: 10.7554/elife.71662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| | - Javier Vega Benjumea
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
- Servicio de Bioquímica-Análisis clínicos, Hospital Universitario Puerta de HierroMadridSpain
| | - Aleksandra Bialas
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research CenterIwateJapan
- Laboratory of Crop Evolution, Graduate School of AgricultureKyotoJapan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| |
Collapse
|
75
|
Bentham AR, Petit-Houdenot Y, Win J, Chuma I, Terauchi R, Banfield MJ, Kamoun S, Langner T. A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathog 2021; 17:e1009957. [PMID: 34758051 PMCID: PMC8608293 DOI: 10.1371/journal.ppat.1009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/22/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.
Collapse
Affiliation(s)
- Adam R. Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryohei Terauchi
- Kyoto University, Kyoto, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
76
|
Seong K, Krasileva KV. Computational Structural Genomics Unravels Common Folds and Novel Families in the Secretome of Fungal Phytopathogen Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1267-1280. [PMID: 34415195 PMCID: PMC9447291 DOI: 10.1094/mpmi-03-21-0071-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Structural biology has the potential to illuminate the evolution of pathogen effectors and their commonalities that cannot be readily detected at the primary sequence level. Recent breakthroughs in protein structure modeling have demonstrated the feasibility to predict the protein folds without depending on homologous templates. These advances enabled a genome-wide computational structural biology approach to help understand proteins based on their predicted folds. In this study, we employed structure prediction methods on the secretome of the destructive fungal pathogen Magnaporthe oryzae. Out of 1,854 secreted proteins, we predicted the folds of 1,295 proteins (70%). We showed that template-free modeling by TrRosetta captured 514 folds missed by homology modeling, including many known effectors and virulence factors, and that TrRosetta generally produced higher quality models for secreted proteins. Along with sensitive homology search, we employed structure-based clustering, defining not only homologous groups with divergent members but also sequence-unrelated structurally analogous groups. We demonstrate that this approach can reveal new putative members of structurally similar MAX effectors and novel analogous effector families present in M. oryzae and possibly in other phytopathogens. We also investigated the evolution of expanded putative ADP-ribose transferases with predicted structures. We suggest that the loss of catalytic activities of the enzymes might have led them to new evolutionary trajectories to be specialized as protein binders. Collectively, we propose that computational structural genomics approaches can be an integral part of studying effector biology and provide valuable resources that were inaccessible before the advent of machine learning-based structure prediction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
77
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
78
|
Thwin PH, Funabiki M, Tomita Y, Yamazaki T, Abe A, Sone T. Characterization and proposed spontaneous deletion mechanism of AVR-Pik locus in Pyricularia oryzae. Biosci Biotechnol Biochem 2021; 85:2217-2220. [PMID: 34387309 DOI: 10.1093/bbb/zbab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022]
Abstract
In phytopathogenic fungi, a mutation in the avirulence gene can lead to the breakdown of resistance in the host plant. The nucleotide sequences of the AVR-Pik locus in the strain Ina168 and its spontaneous mutant Ina168m95-5 of Pyricularia oryzae were determined. An AVR-Pik spontaneous deletion mechanism of Ina168m95-5, including multiple homologous recombination events involving repetitive transposable elements, is proposed.
Collapse
Affiliation(s)
- Phyo Han Thwin
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mai Funabiki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yuki Tomita
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takehiko Yamazaki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Ayumi Abe
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
79
|
Bi G, Zhou JM. Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:239-263. [PMID: 33957051 DOI: 10.1146/annurev-phyto-020620-095952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
80
|
Kumar J, Ramlal A, Kumar K, Rani A, Mishra V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. Int J Mol Sci 2021; 22:ijms22169022. [PMID: 34445728 PMCID: PMC8396522 DOI: 10.3390/ijms22169022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.
Collapse
Affiliation(s)
- Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Ayyagari Ramlal
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi 110012, India;
| | - Kamal Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110066, India;
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
- Correspondence:
| |
Collapse
|
81
|
Amoghavarsha C, Pramesh D, Naik GR, Naik MK, Yadav MK, Ngangkham U, Chidanandappa E, Raghunandana A, Sharanabasav H, E Manjunatha S. Morpho-molecular diversity and avirulence genes distribution among the diverse isolates of Magnaporthe oryzae from Southern India. J Appl Microbiol 2021; 132:1275-1290. [PMID: 34327783 DOI: 10.1111/jam.15243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the diversity of eco-distinct isolates of Magnaporthe oryzae for their morphological, virulence and molecular diversity and relative distribution of five Avr genes. METHODS AND RESULTS Fifty-two M. oryzae isolates were collected from different rice ecosystems of southern India. A majority of them (n = 28) formed a circular colony on culture media. Based on the disease reaction on susceptible cultivar (cv. HR-12), all 52 isolates were classified in to highly virulent (n = 28), moderately virulent (n = 11) and less-virulent (13) types. Among the 52 isolates, 38 were selected for deducing internal transcribed spacer (ITS) sequence diversity. For deducing phylogeny, another set of 36 isolates from other parts of the world was included, which yielded two distinct phylogenetic clusters. We identified eight haplotype groups and 91 variable sites within the ITS sequences, and haplotype-group-2 (Hap_2) was predominant (n = 24). The Tajima's and Fu's Fs neutrality tests exhibited many rare alleles. Furthermore, PCR analysis for detecting the presence of five Avr genes in the different M. oryzae isolates using Avr gene-specific primers in PCR revealed that Avr-Piz-t, Avr-Pik, Avr-Pia and Avr-Pita were present in 73.68%, 73.68%, 63.16% and 47.37% of the isolates studied, respectively; whereas, Avr-Pii was identified only in 13.16% of the isolates. CONCLUSIONS Morpho-molecular and virulence studies revealed the significant diversity among eco-distinct isolates. PCR detection of Avr genes among the M. oryzae population revealed the presence of five Avr genes. Among them, Avr-Piz-t, Avr-Pik and Avr-Pia were more predominant. SIGNIFICANCE AND IMPACT OF THE STUDY The study documented the morphological and genetic variability of eco-distinct M. oryzae isolates. This is the first study demonstrating the distribution of the Avr genes among the eco-distinct population of M. oryzae from southern India. The information generated will help plant breeders to select appropriate resistant gene/s combinations to develop blast disease-resistant rice cultivars.
Collapse
Affiliation(s)
- Chittaragi Amoghavarsha
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India.,Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Devanna Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Ganesh R Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manjunath K Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manoj K Yadav
- ICAR-National Rice Research Institute, Cuttack, India
| | - Umakanta Ngangkham
- ICAR-Research Complex for North-Eastern Hill Region, Manipur center, Imphal, Manipur, India
| | - Eranna Chidanandappa
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Adke Raghunandana
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Huded Sharanabasav
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Siddepalli E Manjunatha
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| |
Collapse
|
82
|
Du Y, Qi Z, Liang D, Yu J, Yu M, Zhang R, Cao H, Yong M, Pan X, Yin X, Qiao J, Liu Y, Chen Z, Song T, Liu W, Zhang Z, Liu Y. Pyricularia sp. jiangsuensis, a new cryptic rice panicle blast pathogen from rice fields in Jiangsu Province, China. Environ Microbiol 2021; 23:5463-5480. [PMID: 34288342 DOI: 10.1111/1462-2920.15678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Pyricularia oryzae is a multi-host pathogen causing cereal disease, including the devastating rice blast. Panicle blast is a serious stage, leading to severe yield loss. Thirty-one isolates (average 4.1%) were collected from the rice panicle lesions at nine locations covering Jiangsu province from 2010 to 2017. These isolates were characterized as Pyricularia sp. jiangsuensis distinct from known Pyricularia species. The representative strain 18-2 can infect rice panicle, root and five kinds of grasses. Intriguingly, strain 18-2 can co-infect rice leaf with P. oryzae Guy11. The whole genome of P. sp. jiangsuensis 18-2 was sequenced. Nine effectors were distributed in translocation or inversion region, which may link to the rapid evolution of effectors. Twenty-one homologues of known blast-effectors were identified in strain 18-2, seven effectors including the homologues of SLP1, BAS2, BAS113, CDIP2/3, MoHEG16 and Avr-Pi54, were upregulated in the sample of inoculated panicle with strain 18-2 at 24 hpi compared with inoculation at 8 hpi. Our results provide evidences that P. sp. jiangsuensis represents an addition to the mycobiota of blast disease. This study advances our understanding of the pathogenicity of P. sp. jiangsuensis to hosts, which sheds new light on the adaptability in the co-evolution of pathogen and host.
Collapse
Affiliation(s)
- Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dong Liang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wende Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,International Rice Research Institute, Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, 210014, China
| |
Collapse
|
83
|
Hafeez AN, Arora S, Ghosh S, Gilbert D, Bowden RL, Wulff BBH. Creation and judicious application of a wheat resistance gene atlas. MOLECULAR PLANT 2021; 14:1053-1070. [PMID: 33991673 DOI: 10.1016/j.molp.2021.05.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 05/18/2023]
Abstract
Disease-resistance (R) gene cloning in wheat (Triticum aestivum) has been accelerated by the recent surge of genomic resources, facilitated by advances in sequencing technologies and bioinformatics. However, with the challenges of population growth and climate change, it is vital not only to clone and functionally characterize a few handfuls of R genes, but also to do so at a scale that would facilitate the breeding and deployment of crops that can recognize the wide range of pathogen effectors that threaten agroecosystems. Pathogen populations are continually changing, and breeders must have tools and resources available to rapidly respond to those changes if we are to safeguard our daily bread. To meet this challenge, we propose the creation of a wheat R-gene atlas by an international community of researchers and breeders. The atlas would consist of an online directory from which sources of resistance could be identified and deployed to achieve more durable resistance to the major wheat pathogens, such as wheat rusts, blotch diseases, powdery mildew, and wheat blast. We present a costed proposal detailing how the interacting molecular components governing disease resistance could be captured from both the host and the pathogen through biparental mapping, mutational genomics, and whole-genome association genetics. We explore options for the configuration and genotyping of diversity panels of hexaploid and tetraploid wheat, as well as their wild relatives and major pathogens, and discuss how the atlas could inform a dynamic, durable approach to R-gene deployment. Set against the current magnitude of wheat yield losses worldwide, recently estimated at 21%, this endeavor presents one route for bringing R genes from the lab to the field at a considerable speed and quantity.
Collapse
Affiliation(s)
| | - Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - David Gilbert
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Robert L Bowden
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | | |
Collapse
|
84
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
85
|
Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg. Mol Genet Genomics 2021; 296:939-952. [PMID: 33966102 DOI: 10.1007/s00438-021-01795-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Plant major resistance (R) genes are effective in detecting pathogen signal molecules and triggering robust defense responses. Investigating the natural variation in R genes will allow identification of the critical amino acid residues determining recognition specificity in R protein and the discovery of novel R alleles. The rice blast resistance gene Pike, comprising of two adjacent CC-NBS-LRR genes, namely, Pike-1 and Pike-2, confers broad-spectrum resistance to Magnaporthe oryzae. Here, we demonstrated that Pike-1 determined Pike-specific resistance through direct interaction with the pathogen signal molecule AvrPik. Analysis of natural variation in 79 Pike-1 variants in the Asian cultivated rice Oryza sativa and its wild relatives revealed that the CC and NBS regions, particularly the CC region of the Pike-1 protein were the most diversified. We also found that balancing selection had occurred in O. sativa and O. rufipogon to maintain the genetic diversity of the Pike-1 alleles. By analysis of amino acid sequences, we identified 40 Pike-1 variants in these rice germplasms. These variants were divided into three major groups that corresponded to their respective clades. A new Pike allele, designated Pikg, that differed from Pike by a single amino acid substitution (D229E) in the Pike-1 CC region of the Pike protein was identified from wild rice relatives. Pathogen assays of Pikg transgenic plants revealed a unique reaction pattern that was different from that of the previously identified Pike alleles, namely, Pik, Pikh, Pikm, Pikp, Piks and Pi1. These findings suggest that minor amino acid residues in Pike-1/Pikg-1 determine pathogen recognition specificity and plant resistance. As a new blast R gene derived from rice wild relatives, Pikg has potential applications in rice breeding.
Collapse
|
86
|
Zhu J, Jeong JS, Khang CH. Tandem DNA repeats contain cis-regulatory sequences that activate biotrophy-specific expression of Magnaporthe effector gene PWL2. MOLECULAR PLANT PATHOLOGY 2021; 22:508-521. [PMID: 33694285 PMCID: PMC8035637 DOI: 10.1111/mpp.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
During plant infection, fungi secrete effector proteins in coordination with distinct infection stages. Thus, the success of plant infection is determined by precise control of effector gene expression. We analysed the PWL2 effector gene of the rice blast fungus Magnaporthe oryzae to understand how effector genes are activated specifically during the early biotrophic stages of rice infection. Here, we used confocal live-cell imaging of M. oryzae transformants with various PWL2 promoter fragments fused to sensitive green fluorescent protein reporter genes to determine the expression patterns of PWL2 at the cellular level, together with quantitative reverse transcription PCR analyses at the tissue level. We found PWL2 expression was coupled with sequential biotrophic invasion of rice cells. PWL2 expression was induced in the appressorium upon penetration into a living rice cell but greatly declined in the highly branched hyphae when the first-invaded rice cell was dead. PWL2 expression then increased again as the hyphae penetrate into living adjacent cells. The expression of PWL2 required fungal penetration into living plant cells of either host rice or nonhost onion. Deletion and mutagenesis experiments further revealed that the tandem repeats in the PWL2 promoter contain 12-base pair sequences required for expression. We conclude that PWL2 expression is (a) activated by an unknown signal commonly present in living plant cells, (b) specific to biotrophic stages of fungal infection, and (c) requires 12-base pair cis-regulatory sequences in the promoter.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Present address:
Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jun Seop Jeong
- Department of BiologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Chang Hyun Khang
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
87
|
Wang W, Su J, Chen K, Yang J, Chen S, Wang C, Feng A, Wang Z, Wei X, Zhu X, Lu GD, Zhou B. Dynamics of the Rice Blast Fungal Population in the Field After Deployment of an Improved Rice Variety Containing Known Resistance Genes. PLANT DISEASE 2021; 105:919-928. [PMID: 32967563 DOI: 10.1094/pdis-06-20-1348-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. Management through the deployment of host resistance genes would be facilitated by understanding the dynamics of the pathogen's population in the field. Here, to investigate the mechanism underlying the breakdown of disease resistance, we conducted a six-year field experiment to monitor the evolution of M. oryzae populations in Qujiang from Guangdong. The new variety of Xin-Yin-Zhan (XYZ) carrying R genes Pi50 and Pib was developed using the susceptible elite variety, Ma-Ba-Yin-Zhan (MBYZ), as the recurrent line. Field trials of disease resistance assessment revealed that the disease indices of XYZ in 2012, 2013, 2016, and 2017 were 0.19, 0.39, 0.70, and 0.90, respectively, indicating that XYZ displayed a very rapid increase of disease severity in the field. To investigate the mechanism underlying the quick erosion of resistance of XYZ, we collected isolates from both XYZ and MBYZ for pathogenicity testing against six different isogenic lines. The isolates collected from XYZ showed a similar virulence spectrum across four different years whereas those from MBYZ showed increasing virulence to the Pi50 and Pib isogenic lines from 2012 to 2017. Molecular analysis of AvrPib in the isolates from MBYZ identified four different AvrPib haplotypes, i.e., AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, and avrPib-AP3, verified by sequencing. AvrPib-AP1-1 and AvrPib-AP1-2 are avirulent to Pib whereas avrPib-AP2 and avrPib-AP3 are virulent. Insertions of a Pot3 and an Mg-SINE were identified in avrPib-AP2 and avrPib-AP3, respectively. Two major lineages based on rep-PCR analysis were further deduced in the field population, implying that the field population is composed of genetically related isolates. Our data suggest that clonal propagation and quick dominance of virulent isolates against the previously resistant variety could be the major genetic events contributing to the loss of varietal resistance against rice blast in the field.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Ocean Science, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Wei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
88
|
Crous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, et alCrous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, Salgado-Salazar C, Samson R, Santos A, Shivas R, Souza-Motta C, Sun G, Swart W, Szoke S, Tan Y, Taylor J, Taylor P, Tiago P, Váczy K, van de Wiele N, van der Merwe N, Verkley G, Vieira W, Vizzini A, Weir B, Wijayawardene N, Xia J, Yáñez-Morales M, Yurkov A, Zamora J, Zare R, Zhang C, Thines M. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 2021; 98:100116. [PMID: 34466168 PMCID: PMC8379525 DOI: 10.1016/j.simyco.2021.100116] [Show More Authors] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
Collapse
Key Words
- Apiognomonia platani (Lév.) L. Lombard
- Atractium ciliatum Link
- Atractium pallidum Bonord.
- Calloria tremelloides (Grev.) L. Lombard
- Cephalosporium sacchari E.J. Butler
- Cosmosporella cavisperma (Corda) Sand.-Den., L. Lombard & Crous
- Cylindrodendrum orthosporum (Sacc. & P. Syd.) L. Lombard
- Dialonectria volutella (Ellis & Everh.) L. Lombard & Sand.-Den.
- Fusarium aeruginosum Delacr.
- Fusarium agaricorum Sarrazin
- Fusarium albidoviolaceum Dasz.
- Fusarium aleyrodis Petch
- Fusarium amentorum Lacroix
- Fusarium annuum Leonian
- Fusarium arcuatum Berk. & M.A. Curtis
- Fusarium aridum O.A. Pratt
- Fusarium armeniacum (G.A. Forbes et al.) L.W. Burgess & Summerell
- Fusarium arthrosporioides Sherb.
- Fusarium asparagi Delacr.
- Fusarium batatas Wollenw.
- Fusarium biforme Sherb.
- Fusarium buharicum Jacz. ex Babajan & Teterevn.-Babajan
- Fusarium cactacearum Pasin. & Buzz.-Trav.
- Fusarium cacti-maxonii Pasin. & Buzz.-Trav.
- Fusarium caudatum Wollenw.
- Fusarium cavispermum Corda
- Fusarium cepae Hanzawa
- Fusarium cesatii Rabenh.
- Fusarium citriforme Jamal.
- Fusarium citrinum Wollenw.
- Fusarium citrulli Taubenh.
- Fusarium clavatum Sherb.
- Fusarium coccinellum Kalchbr.
- Fusarium cromyophthoron Sideris
- Fusarium cucurbitae Taubenh.
- Fusarium cuneiforme Sherb.
- Fusarium delacroixii Sacc.
- Fusarium dimerum var. nectrioides Wollenw.
- Fusarium echinatum Sand.-Den. & G.J. Marais
- Fusarium epicoccum McAlpine
- Fusarium eucheliae Sartory, R. Sartory & J. Mey.
- Fusarium fissum Peyl
- Fusarium flocciferum Corda
- Fusarium gemmiperda Aderh.
- Fusarium genevense Dasz.
- Fusarium graminearum Schwabe
- Fusarium graminum Corda
- Fusarium heterosporioides Fautrey
- Fusarium heterosporum Nees & T. Nees
- Fusarium idahoanum O.A. Pratt
- Fusarium juruanum Henn.
- Fusarium lanceolatum O.A. Pratt
- Fusarium lateritium Nees
- Fusarium loncheceras Sideris
- Fusarium longipes Wollenw. & Reinking
- Fusarium lyarnte J.L. Walsh, Sangal., L.W. Burgess, E.C.Y. Liew & Summerell
- Fusarium malvacearum Taubenh.
- Fusarium martii f. phaseoli Burkh.
- Fusarium muentzii Delacr.
- Fusarium nigrum O.A. Pratt
- Fusarium oxysporum var. asclerotium Sherb.
- Fusarium palczewskii Jacz.
- Fusarium palustre W.H. Elmer & Marra
- Fusarium polymorphum Matr.
- Fusarium poolense Taubenh.
- Fusarium prieskaense G.J. Marais & Sand.-Den.
- Fusarium prunorum McAlpine
- Fusarium pusillum Wollenw.
- Fusarium putrefaciens Osterw.
- Fusarium redolens Wollenw.
- Fusarium reticulatum Mont.
- Fusarium rhizochromatistes Sideris
- Fusarium rhizophilum Corda
- Fusarium rhodellum McAlpine
- Fusarium roesleri Thüm.
- Fusarium rostratum Appel & Wollenw.
- Fusarium rubiginosum Appel & Wollenw.
- Fusarium rubrum Parav.
- Fusarium samoense Gehrm.
- Fusarium scirpi Lambotte & Fautrey
- Fusarium secalis Jacz.
- Fusarium spinaciae Hungerf.
- Fusarium sporotrichioides Sherb.
- Fusarium stercoris Fuckel
- Fusarium stilboides Wollenw.
- Fusarium stillatum De Not. ex Sacc.
- Fusarium sublunatum Reinking
- Fusarium succisae Schröt. ex Sacc.
- Fusarium tabacivorum Delacr.
- Fusarium trichothecioides Wollenw.
- Fusarium tritici Liebman
- Fusarium tuberivorum Wilcox & G.K. Link
- Fusarium tumidum var. humi Reinking
- Fusarium ustilaginis Kellerm. & Swingle
- Fusarium viticola Thüm.
- Fusarium werrikimbe J.L. Walsh, L.W. Burgess, E.C.Y. Liew & B.A. Summerell
- Fusarium willkommii Lindau
- Fusarium xylarioides Steyaert
- Fusarium zygopetali Delacr.
- Fusicolla meniscoidea L. Lombard & Sand.-Den.
- Fusicolla quarantenae J.D.P. Bezerra, Sand.-Den., Crous & Souza-Motta
- Fusicolla sporellula Sand.-Den. & L. Lombard
- Fusisporium andropogonis Cooke ex Thüm.
- Fusisporium anthophilum A. Braun
- Fusisporium arundinis Corda
- Fusisporium avenaceum Fr.
- Fusisporium clypeaster Corda
- Fusisporium culmorum Wm.G. Sm.
- Fusisporium didymum Harting
- Fusisporium elasticae Thüm.
- Fusisporium episphaericum Cooke & Ellis
- Fusisporium flavidum Bonord.
- Fusisporium hordei Wm.G. Sm.
- Fusisporium incarnatum Roberge ex Desm.
- Fusisporium lolii Wm.G. Sm.
- Fusisporium pandani Corda
- Gibberella phyllostachydicola W. Yamam.
- Hymenella aurea (Corda) L. Lombard
- Hymenella spermogoniopsis (Jul. Müll.) L. Lombard & Sand.-Den.
- Luteonectria Sand.-Den., L. Lombard, Schroers & Rossman
- Luteonectria albida (Rossman) Sand.-Den. & L. Lombard
- Luteonectria nematophila (Nirenberg & Hagedorn) Sand.-Den. & L. Lombard
- Macroconia bulbipes Crous & Sand.-Den.
- Macroconia phlogioides Sand.-Den. & Crous
- Menispora penicillata Harz
- Multi-gene phylogeny
- Mycotoxins
- Nectriaceae
- Neocosmospora
- Neocosmospora epipeda Quaedvl. & Sand.-Den.
- Neocosmospora floridana (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora merkxiana Quaedvl. & Sand.-Den.
- Neocosmospora neerlandica Crous & Sand.-Den.
- Neocosmospora nelsonii Crous & Sand.-Den.
- Neocosmospora obliquiseptata (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora pseudopisi Sand.-Den. & L. Lombard
- Neocosmospora rekana (Lynn & Marinc.) L. Lombard & Sand.-Den.
- Neocosmospora tuaranensis (T. Aoki et al.) L. Lombard & Sand.-Den.
- Nothofusarium Crous, Sand.-Den. & L. Lombard
- Nothofusarium devonianum L. Lombard, Crous & Sand.-Den.
- Novel taxa
- Pathogen
- Scolecofusarium L. Lombard, Sand.-Den. & Crous
- Scolecofusarium ciliatum (Link) L. Lombard, Sand.-Den. & Crous
- Selenosporium equiseti Corda
- Selenosporium hippocastani Corda
- Selenosporium sarcochroum Desm
- Selenosporium urticearum Corda.
- Setofusarium (Nirenberg & Samuels) Crous & Sand.-Den.
- Setofusarium setosum (Samuels & Nirenberg) Sand.-Den. & Crous.
- Sphaeria sanguinea var. cicatricum Berk.
- Sporotrichum poae Peck.
- Stylonectria corniculata Gräfenhan, Crous & Sand.-Den.
- Stylonectria hetmanica Akulov, Crous & Sand.-Den.
- Taxonomy
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - H.-J. Schroers
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - P. Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - G.H.J. Kema
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A.Y. Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, 97330, USA
| | - M. Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J.W. Taylor
- Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA, 94720-3102, USA
| | - S. Ploch
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine
| | - J.F. Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - J.P.M. Araújo
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - H.A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - M. Bendiksby
- Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - A. Ben Hadj Amor
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - J.D.P. Bezerra
- Setor de Micologia/Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás/Federal University of Goiás, Goiânia, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - M. Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina – Universidad de la República, Av. A. Navarro 3051, Montevideo, Uruguay
| | - G. Cardinali
- Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, 74 Perugia, Italy
| | - R.F. Castañeda-Ruiz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Académico Titular de la Academia de Ciencias de, Cuba
| | - A. Celis
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - V. Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000, Neuchatel, Switzerland
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806, Görlitz, Germany
| | - C.A. Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - N.B. Fernández
- Laboratorio de Micología Clínica, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - C.D. González
- Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, 26007, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010, Graz, Austria
| | - M. Guevara-Suarez
- Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | | | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, 9000, Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - A. Hashimoto
- Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| | - T. Iturriaga
- Cornell University, 334 Plant Science Building, Ithaca, NY, 14850, USA
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - P.R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, USA
| | - İ. Karalti
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - E.E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - I. Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - R. Labuda
- University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, 3430 Tulln a.d. Donau, Austria
| | - D.P. Lawrence
- University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - H.B. Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
| | - C. Lechat
- Ascofrance, 64 route de Chizé, 79360, Villiers-en-Bois, France
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.A. Litovka
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Y. Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - B. Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - N. Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
| | - P. Mlčoch
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - L. Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, 50144, Firenze, Italy
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - R.H. Nilsson
- Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - S.R. Noumeur
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
| | - I.N. Pavlov
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - M.P. Peralta
- Laboratorio de Micodiversidad y Micoprospección, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - J.I. Pitt
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW, 2164, Australia
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - W. Quaedvlieg
- Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, 1435 EW, Rijsenhout, the Netherlands
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra, 411 004, India
| | - S. Restrepo
- Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - A. Rhaiem
- Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
| | | | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.C.S. Santos
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | | | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland, 4102, Australia
| | - J.E. Taylor
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P.V. Tiago
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - K.Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300, Eger, Hungary
| | | | - N.A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy
| | - B.S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - N.N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - M.J. Yáñez-Morales
- Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, 56230 Edo. de Mexico, Mexico
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.L. Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
89
|
De la Concepcion JC, Maidment JHR, Longya A, Xiao G, Franceschetti M, Banfield MJ. The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface. PLoS Pathog 2021; 17:e1009368. [PMID: 33647072 PMCID: PMC7951977 DOI: 10.1371/journal.ppat.1009368] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/11/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.
Collapse
Affiliation(s)
| | - Josephine H. R. Maidment
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Apinya Longya
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Gui Xiao
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- Genetics and Biotechnology Division, International Rice Research Institute, Metro Manila, Philippines
| | - Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
90
|
Maidment JHR, Franceschetti M, Maqbool A, Saitoh H, Jantasuriyarat C, Kamoun S, Terauchi R, Banfield MJ. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. J Biol Chem 2021; 296:100371. [PMID: 33548226 PMCID: PMC7961100 DOI: 10.1016/j.jbc.2021.100371] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.
Collapse
Affiliation(s)
- Josephine H R Maidment
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chatchawan Jantasuriyarat
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK; Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, Thailand
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan; Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
91
|
Abstract
This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.
Collapse
|
92
|
Khanna A, Ellur RK, Gopala Krishnan S, Vinod KK, Bhowmick PK, Nagarajan M, Haritha B, Singh AK. Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Advances in Genetics and Genomics for Management of Blast Disease in Cereal Crops. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
94
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
95
|
Saha P, Sarkar A, Sabnam N, Shirke MD, Mahesh HB, Nikhil A, Rajamani A, Gowda M, Roy-Barman S. Comparative analysis of secondary metabolite gene clusters in different strains of Magnaporthe oryzae. FEMS Microbiol Lett 2020; 368:6045507. [PMID: 33355334 DOI: 10.1093/femsle/fnaa216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae continues to be a major constraint in rice production worldwide. Rice is one of the staple crops in India and rice blast causes huge economic losses. Interestingly, the Indian subcontinent is the centre for origin and diversity of rice as well as the Magnaporthe species complex. Secondary metabolites are known to play important role in pathogenesis and M. oryzae has high potential of genes involved in secondary metabolism but, unfortunately most of them remain uncharacterized. In the present study, we analysed the draft genome assemblies of M. oryzae strains isolated from different parts of India, for putative secondary metabolite key gene (SMKG) clusters encoding polyketide synthases, non-ribosomal peptide synthetases, diterpene cyclases and dimethylallyl tryptophan synthase. Based on the complete genome sequence of 70-15 strain and its previous reports of identified SMKGs, we have identified the key genes for the interrogated strains. Expression analysis of these genes amongst different strains indicates how they have evolved depending on the host and environmental conditions. To our knowledge, this study is first of its kind where the secondary metabolism genes and their role in functional adaptation were studied across several strains of M. oryzae.
Collapse
Affiliation(s)
- Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Atrayee Sarkar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Nazmiara Sabnam
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India.,Department of Life Sciences, Presidency University, 86/1 College street, Kolkata, West Bengal-700073, India
| | - Meghana D Shirke
- Centre for Functional Genomics and Bioinformatics, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru-560064, India
| | - H B Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru-560065, India
| | - Aman Nikhil
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| | - Anantharamanan Rajamani
- Genome Analysis Laboratory, Rubber Research Institute of India, Kottayam, Kerala-686009, India
| | - Malali Gowda
- Centre for Functional Genomics and Bioinformatics, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru-560064, India
| | - Subhankar Roy-Barman
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Rd, A-zone, Durgapur, West Bengal-713209, India
| |
Collapse
|
96
|
Li J, Fokkens L, Conneely LJ, Rep M. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environ Microbiol 2020; 22:4985-5004. [PMID: 32452643 PMCID: PMC7818268 DOI: 10.1111/1462-2920.15095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Lee James Conneely
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| |
Collapse
|
97
|
Hu L, Wang J, Yang C, Islam F, Bouwmeester HJ, Muños S, Zhou W. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2020; 21:E9013. [PMID: 33260931 PMCID: PMC7730841 DOI: 10.3390/ijms21239013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic plants have a unique heterotrophic lifestyle based on the extraction of water and nutrients from host plants. Some parasitic plant species, particularly those of the family Orobanchaceae, attack crops and cause substantial yield losses. The breeding of resistant crop varieties is an inexpensive way to control parasitic weeds, but often does not provide a long-lasting solution because the parasites rapidly evolve to overcome resistance. Understanding mechanisms underlying naturally occurring parasitic plant resistance is of great interest and could help to develop methods to control parasitic plants. In this review, we describe the virulence mechanisms of parasitic plants and resistance mechanisms in their hosts, focusing on obligate root parasites of the genera Orobanche and Striga. We noticed that the resistance (R) genes in the host genome often encode proteins with nucleotide-binding and leucine-rich repeat domains (NLR proteins), hence we proposed a mechanism by which host plants use NLR proteins to activate downstream resistance gene expression. We speculated how parasitic plants and their hosts co-evolved and discussed what drives the evolution of virulence effectors in parasitic plants by considering concepts from similar studies of plant-microbe interaction. Most previous studies have focused on the host rather than the parasite, so we also provided an updated summary of genomic resources for parasitic plants and parasitic genes for further research to test our hypotheses. Finally, we discussed new approaches such as CRISPR/Cas9-mediated genome editing and RNAi silencing that can provide deeper insight into the intriguing life cycle of parasitic plants and could potentially contribute to the development of novel strategies for controlling parasitic weeds, thereby enhancing crop productivity and food security globally.
Collapse
Affiliation(s)
- Luyang Hu
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Jiansu Wang
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Chong Yang
- Bioengineering Research Laboratory, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Harro J. Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE Amsterdam, The Netherlands;
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France;
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| |
Collapse
|
98
|
Pradhan A, Ghosh S, Sahoo D, Jha G. Fungal effectors, the double edge sword of phytopathogens. Curr Genet 2020; 67:27-40. [PMID: 33146780 DOI: 10.1007/s00294-020-01118-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Phyto-pathogenic fungi can cause huge damage to crop production. During millions of years of coexistence, fungi have evolved diverse life-style to obtain nutrients from the host and to colonize upon them. They deploy various proteinaceous as well as non-proteinaceous secreted molecules commonly referred as effectors to sabotage host machinery during the infection process. The effectors are important virulence determinants of pathogenic fungi and play important role in successful pathogenesis, predominantly by avoiding host-surveillance system. However, besides being important for pathogenesis, the fungal effectors end-up being recognized by the resistant cultivars of the host, which mount a strong immune response to ward-off pathogens. Various recent studies involving different pathosystem have revealed the virulence/avirulence functions of fungal effectors and their involvement in governing the outcome of host-pathogen interactions. However, the effectors and their cognate resistance gene in the host remain elusive for several economically important fungal pathogens. In this review, using examples from some of the biotrophic, hemi-biotrophic and necrotrophic pathogens, we elaborate the double-edged functions of fungal effectors. We emphasize that knowledge of effector functions can be helpful in effective management of fungal diseases in crop plants.
Collapse
Affiliation(s)
- Amrita Pradhan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debashis Sahoo
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
99
|
Zhang C, Fang H, Shi X, He F, Wang R, Fan J, Bai P, Wang J, Park C, Bellizzi M, Zhou X, Wang G, Ning Y. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2354-2363. [PMID: 32415911 PMCID: PMC7589341 DOI: 10.1111/pbi.13400] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 05/25/2023]
Abstract
Bowman-Birk trypsin inhibitors (BBIs) play important roles in animal and plant immunity, but how these protease inhibitors are involved in the immune system remains unclear. Here, we show that the rice (Oryza sativa) BBI protein APIP4 is a common target of a fungal effector and an NLR receptor for innate immunity. APIP4 exhibited trypsin inhibitor activity in vitro and in vivo. Knockout of APIP4 in rice enhanced susceptibility, and overexpression of APIP4 increased resistance to the fungal pathogen Magnaporthe oryzae. The M. oryzae effector AvrPiz-t interacted with APIP4 and suppressed APIP4 trypsin inhibitor activity. By contrast, the rice NLR protein Piz-t interacted with APIP4, enhancing APIP4 transcript and protein levels, and protease inhibitor activity. Our findings reveal a novel host defence mechanism in which a host protease inhibitor targeted by a fungal pathogen is protected by an NLR receptor.
Collapse
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Jiangbo Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Pengfei Bai
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Chan‐Ho Park
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Maria Bellizzi
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
100
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|