51
|
Fang L, Ishikawa T, Rennie EA, Murawska GM, Lao J, Yan J, Tsai AYL, Baidoo EEK, Xu J, Keasling JD, Demura T, Kawai-Yamada M, Scheller HV, Mortimer JC. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis. THE PLANT CELL 2016; 28:2991-3004. [PMID: 27895225 PMCID: PMC5240734 DOI: 10.1105/tpc.16.00186] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 05/03/2023]
Abstract
Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ∼25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.
Collapse
Affiliation(s)
- Lin Fang
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gosia M Murawska
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jeemeng Lao
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jingwei Yan
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jun Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720
| | - Taku Demura
- Cellulose Production Research Team, Biomass Engineering Program, Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Nara, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, California 94608
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720
| |
Collapse
|
52
|
Ishikawa T, Ito Y, Kawai-Yamada M. Molecular characterization and targeted quantitative profiling of the sphingolipidome in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:681-693. [PMID: 27454201 DOI: 10.1111/tpj.13281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/10/2016] [Accepted: 07/21/2016] [Indexed: 05/05/2023]
Abstract
Recent advances in comprehensive metabolite profiling techniques, the foundation of metabolomics, is facilitating our understanding of the functions, regulation and complex networks of various metabolites in organisms. Here, we report a quantitative metabolomics technique for complex plant sphingolipids, composed of various polar head groups as well as structural isomers of hydrophobic ceramide moieties. Rice (Oryza sativa L.) was used as an experimental model of monocotyledonous plants and has been demonstrated to possess a highly complex sphingolipidome including hundreds of molecular species with a wide range of abundance. We established a high-throughput scheme for lipid preparation and mass spectrometry-based characterization of complex sphingolipid structures, which provided basic information to create a comprehensive theoretical library for targeted quantitative profiling of complex sphingolipids in rice. The established sphingolipidomic approach combined with multivariate analyses of the large dataset obtained clearly showed that different classes of rice sphingolipids, particularly including subclasses of glycosylinositol phosphoceramide with various sugar-chain head groups, are distributed with distinct quantitative profiles in various rice tissues, indicating tissue-dependent metabolism and biological functions of the lipid classes and subclasses. The sphingolipidomic analysis also highlighted that disruption of a lipid-associated gene causes a typical sphingolipidomic change in a gene-dependent manner. These results clearly support the utility of the sphingolipidomic approach in application to wide screening of sphingolipid-metabolic phenotypes as well as deeper investigation of metabolism and biological functions of complex sphingolipid species in plants.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yukihiro Ito
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
53
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
54
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
55
|
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development. Nat Commun 2016; 7:12119. [PMID: 27381418 PMCID: PMC4935801 DOI: 10.1038/ncomms12119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development. Nucleotide sugars are transported from the cytoplasm to the Golgi lumen where they are incorporated into cell wall polysaccharides and used for glycosylation of proteins and lipids. Here the authors identify GFT1, an Arabidopsis Golgi-localized GDP-fucose transporter that is required for plant growth and development
Collapse
|
56
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
57
|
Cacas JL, Buré C, Grosjean K, Gerbeau-Pissot P, Lherminier J, Rombouts Y, Maes E, Bossard C, Gronnier J, Furt F, Fouillen L, Germain V, Bayer E, Cluzet S, Robert F, Schmitter JM, Deleu M, Lins L, Simon-Plas F, Mongrand S. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. PLANT PHYSIOLOGY 2016; 170:367-84. [PMID: 26518342 PMCID: PMC4704565 DOI: 10.1104/pp.15.00564] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/28/2015] [Indexed: 05/20/2023]
Abstract
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Corinne Buré
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Kevin Grosjean
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Patricia Gerbeau-Pissot
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Jeannine Lherminier
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Yoann Rombouts
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Emmanuel Maes
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Claire Bossard
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Fabienne Furt
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Emmanuelle Bayer
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Stéphanie Cluzet
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Franck Robert
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Jean-Marie Schmitter
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Magali Deleu
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Laurence Lins
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Françoise Simon-Plas
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200, F-33883 Villenave d'Ornon cedex, France (J.-L.C., Cl.B., J.G., F.F., L.F., V.G., E.B., S.M.);Chimie Biologie des Membranes et Nanoobjets, Unité Mixte de Recherche 5248, Centre de Génomique Fonctionnelle, Université de Bordeaux, F-33076 Bordeaux cedex, France (Co.B., J.-M.S.);Université de Bourgogne, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.-L.C., K.G., P.G.-P.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1347 Agroécologie, Equipes de Recherche Labellisée 6300 Centre National de la Recherche Scientifique, F-21065 Dijon cedex, France (J.L., F.R., F.S.-P.);Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8576, F-59655 Villeneuve d'Ascq, France (Y.R., E.M.);Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, B-5030 Gembloux, Belgium (Cl.B., M.D., L.L.); andInstitut des Sciences de la Vigne et du Vin, Groupe d'Etude des Substances Végétales à Activité Biologique, University of Bordeaux, Equipe Associée 3675, F-33400 Talence, France (S.C.)
| |
Collapse
|
58
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
59
|
Lung SC, Chye ML. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1409-1421. [PMID: 26747650 DOI: 10.1016/j.bbalip.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
60
|
Sawake S, Tajima N, Mortimer JC, Lao J, Ishikawa T, Yu X, Yamanashi Y, Yoshimi Y, Kawai-Yamada M, Dupree P, Tsumuraya Y, Kotake T. KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis. THE PLANT CELL 2015; 27:3397-409. [PMID: 26672069 PMCID: PMC4707449 DOI: 10.1105/tpc.15.00379] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/24/2015] [Indexed: 05/03/2023]
Abstract
Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.
Collapse
Affiliation(s)
- Shota Sawake
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Noriaki Tajima
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Jenny C Mortimer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Joint Bioenergy Institute, Emeryville, California 94608
| | - Jeemeng Lao
- Joint Bioenergy Institute, Emeryville, California 94608
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Yukiko Yamanashi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yoshihisa Yoshimi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Yoichi Tsumuraya
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
61
|
Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clément C, Baillieul F, Dhondt-Cordelier S. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2255-74. [PMID: 26378098 PMCID: PMC4634087 DOI: 10.1104/pp.15.01126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/11/2015] [Indexed: 05/22/2023]
Abstract
Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids.
Collapse
Affiliation(s)
- Maryline Magnin-Robert
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Doriane Le Bourse
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Jonathan Markham
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Stéphan Dorey
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Christophe Clément
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Fabienne Baillieul
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| |
Collapse
|
62
|
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress. PLANT PHYSIOLOGY 2015; 169:1333-43. [PMID: 26297139 PMCID: PMC4587443 DOI: 10.1104/pp.15.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 05/22/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiko Aki
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Uchimiya
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
63
|
Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance. PLANT PHYSIOLOGY 2015; 169:1108-17. [PMID: 26276842 PMCID: PMC4587468 DOI: 10.1104/pp.15.00987] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance for improved plant performance.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Amit Mehra
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| |
Collapse
|
64
|
Mortimer JC, Faria-Blanc N, Yu X, Tryfona T, Sorieul M, Ng YZ, Zhang Z, Stott K, Anders N, Dupree P. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:413-26. [PMID: 26043357 PMCID: PMC4528235 DOI: 10.1111/tpj.12898] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 05/04/2023]
Abstract
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1-2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays, and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. The differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.
Collapse
Affiliation(s)
- Jenny C Mortimer
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy InstituteBerkeley, CA, 94720, USA
| | - Nuno Faria-Blanc
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Theodora Tryfona
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Mathias Sorieul
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Yao Z Ng
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Zhinong Zhang
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Nadine Anders
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of CambridgeCambridge, CB2 1QW, UK
- *For Correspondence (e-mail )
| |
Collapse
|
65
|
Schneider J, Castilho A, Pabst M, Altmann F, Gruber C, Strasser R, Gattinger P, Seifert GJ, Steinkellner H. Characterization of plants expressing the human β1,4-galactosyltrasferase gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:39-47. [PMID: 25900423 PMCID: PMC4451504 DOI: 10.1016/j.plaphy.2015.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 05/20/2023]
Abstract
Modification of the plant N-glycosylation pathway towards human type structures is an important strategy to implement plants as expression systems for therapeutic proteins. Nevertheless, relatively little is known about the overall impact of non-plant glycosylation enzymes in stable transformed plants. Here, we analyzed transgenic lines (Nicotiana benthamiana and Arabidopsis thaliana) that stably express a modified version of human β1,4-galactosyltransferase ((ST)GalT). While some transgenic plants grew normally, other lines exhibited a severe phenotype associated with stunted growth and developmental retardation. The severity of the phenotype correlated with both increased (ST)GalT mRNA and protein levels but no differences were observed between N-glycosylation profiles of plants with and without the phenotype. In contrast to non-transgenic plants, all (ST)GalT expressing plants synthesized significant amounts of incompletely processed (largely depleted of core fucose) N-glycans with up to 40% terminally galactosylated structures. While transgenic plants showed no differences in nucleotide sugar composition and cell wall monosaccharide content, alterations in the reactivity of cell wall carbohydrate epitopes associated with arabinogalactan-proteins and pectic homogalacturonan were detected in (ST)GalT expressing plants. Notably, plants with phenotypic alterations showed increased levels of hydrogen peroxide, most probably a consequence of hypersensitive reactions. Our data demonstrate that unfavorable phenotypical modifications may occur upon stable in planta expression of non-native glycosyltransferases. Such important issues need to be taken into consideration in respect to stable glycan engineering in plants.
Collapse
Affiliation(s)
- Jeannine Schneider
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Pia Gattinger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Georg J Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
66
|
Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, Cahoon EB. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. PHYTOCHEMISTRY 2015; 115:121-9. [PMID: 25794895 DOI: 10.1016/j.phytochem.2015.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/05/2015] [Accepted: 02/22/2015] [Indexed: 05/28/2023]
Abstract
Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Ronald L Cerny
- Department of Chemistry, 710 Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom.
| | - Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
67
|
Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, Smith-Moritz AM, Herter T, Chan LJG, Adams PD, Petzold CJ, Pauly M, Willats WGT, Heazlewood JL, Scheller HV. Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. THE PLANT CELL 2015; 27:1218-27. [PMID: 25804536 PMCID: PMC4558686 DOI: 10.1105/tpc.114.133827] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/05/2015] [Indexed: 05/02/2023]
Abstract
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.
Collapse
Affiliation(s)
- Berit Ebert
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Carsten Rautengarten
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Guangyan Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andreia M Smith-Moritz
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Thomas Herter
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Leanne Jade G Chan
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
68
|
Utz D, Handford M. VvGONST-A and VvGONST-B are Golgi-localised GDP-sugar transporters in grapevine (Vitis vinifera L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:191-7. [PMID: 25576004 DOI: 10.1016/j.plantsci.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 05/09/2023]
Abstract
Plant nucleotide-sugar transporters (NSTs) are responsible for the import of nucleotide-sugar substrates into the Golgi lumen, for subsequent use in glycosylation reactions. NSTs are specific for either GDP- or UDP-sugars, and almost all transporters studied to date have been isolated from Arabidopsis thaliana L. In order to determine the conservation of the import mechanism in other higher plant species, here we report the identification and characterisation of VvGONST-A and VvGONST-B from grapevine (Vitis vinifera L. cv. Thompson Seedless), which are the orthologues of the GDP-sugar transporters GONST3 and GONST4 in Arabidopsis. Both grapevine NSTs possess the molecular features characteristic of GDP-sugar transporters, including a GDP-binding domain (GXL/VNK) towards the C-terminal. VvGONST-A and VvGONST-B expression is highest at berry setting and decreases throughout berry development and ripening. Moreover, we show using green fluorescent protein (GFP) tagged versions and brefeldin A treatments, that both are localised in the Golgi apparatus. Additionally, in vitro transport assays after expression of both NSTs in tobacco leaves indicate that VvGONST-A and VvGONST-B are capable of transporting GDP-mannose and GDP-glucose, respectively, but not a range of other UDP- and GDP-sugars. The possible functions of these NSTs in glucomannan synthesis and/or glycosylation of sphingolipids are discussed.
Collapse
Affiliation(s)
- Daniella Utz
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
69
|
Sánchez-Rangel D, Rivas-San Vicente M, de la Torre-Hernández ME, Nájera-Martínez M, Plasencia J. Deciphering the link between salicylic acid signaling and sphingolipid metabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:125. [PMID: 25806037 PMCID: PMC4353297 DOI: 10.3389/fpls.2015.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host-pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules - MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide - could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Javier Plasencia
- *Correspondence: Javier Plasencia, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, México
| |
Collapse
|
70
|
Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Yao N, Shu W, Xiao S. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:53-67. [PMID: 25284079 PMCID: PMC4309432 DOI: 10.1111/tpj.12692] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 05/02/2023]
Abstract
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by a family of six genes (ACBP1 to ACBP6), and are essential for diverse cellular activities. Recent investigations suggest that the membrane-anchored ACBPs are involved in oxygen sensing by sequestration of group VII ethylene-responsive factors under normoxia. Here, we demonstrate the involvement of Arabidopsis ACBP3 in hypoxic tolerance. ACBP3 transcription was remarkably induced following submergence under both dark (DS) and light (LS) conditions. ACBP3-overexpressors (ACBP3-OEs) showed hypersensitivity to DS, LS and ethanolic stresses, with reduced transcription of hypoxia-responsive genes as well as accumulation of hydrogen peroxide in the rosettes. In contrast, suppression of ACBP3 in ACBP3-KOs enhanced plant tolerance to DS, LS and ethanol treatments. By analyses of double combinations of OE-1 with npr1-5, coi1-2, ein3-1 as well as ctr1-1 mutants, we observed that the attenuated hypoxic tolerance in ACBP3-OEs was dependent on NPR1- and CTR1-mediated signaling pathways. Lipid profiling revealed that both the total amounts and very-long-chain species of phosphatidylserine (C42:2- and C42:3-PS) and glucosylinositolphosphorylceramides (C22:0-, C22:1-, C24:0-, C24:1-, and C26:1-GIPC) were significantly lower in ACBP3-OEs but increased in ACBP3-KOs upon LS exposure. By microscale thermophoresis analysis, the recombinant ACBP3 protein bound VLC acyl-CoA esters with high affinities in vitro. Further, a knockout mutant of MYB30, a master regulator of very-long-chain fatty acid (VLCFA) biosynthesis, exhibited enhanced sensitivities to LS and ethanolic stresses, phenotypes that were ameliorated by ACBP3-RNAi. Taken together, these findings suggest that Arabidopsis ACBP3 participates in plant response to hypoxia by modulating VLCFA metabolism.
Collapse
Affiliation(s)
| | | | | | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| |
Collapse
|
71
|
Niemann MCE, Werner T. Endoplasmic reticulum: Where nucleotide sugar transport meets cytokinin control mechanisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e1072668. [PMID: 26418963 PMCID: PMC4883893 DOI: 10.1080/15592324.2015.1072668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional eukaryotic organelle where the vast majority of secretory proteins are folded and assembled to achieve their correct tertiary structures. The lumen of the ER and Golgi apparatus also provides an environment for numerous glycosylation reactions essential for modifications of proteins and lipids, and for cell wall biosynthesis. These glycosylation reactions require a constant supply of cytosolically synthesized substrate precursors, nucleotide sugars, which are transported by a group of dedicated nucleotide sugar transporters (NST). Recently, we have reported on the identification of a novel ER-localized NST protein, ROCK1, which mediates the transport of UDP-linked acetylated hexosamines across the ER membrane in Arabidopsis. Interestingly, it has been demonstrated that the activity of ROCK1 is important for the regulation of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKX), in the ER and, thus, for cytokinin responses. In this addendum we will address the biochemical and cellular activity of the ROCK1 transporter and its phylogenetic relation to other NST proteins.
Collapse
Affiliation(s)
- Michael CE Niemann
- Institute of Biology/Applied Genetics; Dahlem Center of Plant Sciences (DCPS); Freie Universität Berlin; Berlin, Germany
| | - Tomáš Werner
- Institute of Biology/Applied Genetics; Dahlem Center of Plant Sciences (DCPS); Freie Universität Berlin; Berlin, Germany
- Correspondence to: Tomáš Werner;
| |
Collapse
|
72
|
Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci U S A 2014; 112:291-6. [PMID: 25535363 DOI: 10.1073/pnas.1419050112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.
Collapse
|
73
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
74
|
Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. THE PLANT CELL 2014; 26:3314-25. [PMID: 25122154 PMCID: PMC4371831 DOI: 10.1105/tpc.114.129171] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/20/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.
Collapse
Affiliation(s)
- Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Berit Ebert
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Godfrey P Miles
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Katy M Christiansen
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Hoda Khatab
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
75
|
The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:11563-8. [PMID: 25053812 DOI: 10.1073/pnas.1406073111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.
Collapse
|
76
|
Voxeur A, Fry SC. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:139-49. [PMID: 24804932 PMCID: PMC4230332 DOI: 10.1111/tpj.12547] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 05/18/2023]
Abstract
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process.
Collapse
Affiliation(s)
- Aline Voxeur
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| |
Collapse
|
77
|
Tellier F, Maia-Grondard A, Schmitz-Afonso I, Faure JD. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil. PHYTOCHEMISTRY 2014; 103:50-58. [PMID: 24731258 DOI: 10.1016/j.phytochem.2014.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 05/28/2023]
Abstract
Plant sphingolipids are a highly diverse family of structural and signal lipids. Owing to their chemical diversity and complexity, a powerful analytical method was required to identify and quantify a large number of individual molecules with a high degree of structural accuracy. By using ultra-performance liquid chromatography with a single elution system coupled to electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in the positive multiple reaction monitoring (MRM) mode, detailed sphingolipid composition was analyzed in various tissues of two Brassicaceae species Arabidopsis thaliana and Camelina sativa. A total of 300 molecular species were identified defining nine classes of sphingolipids, including Cers, hCers, Glcs and GIPCs. High-resolution mass spectrometry identified sphingolipids including amino- and N-acylated-GIPCs. The comparative analysis of seedling, seed and oil sphingolipids showed tissue specific distribution suggesting metabolic channeling and compartmentalization.
Collapse
Affiliation(s)
- Frédérique Tellier
- Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, route de Saint-Cyr, 78026 Versailles Cedex, France.
| | - Alessandra Maia-Grondard
- Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Isabelle Schmitz-Afonso
- Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
78
|
Ishikawa T, Imai H, Maki KY. Development of an LC-MS/MS method for the analysis of free sphingoid bases using 4-fluoro-7-nitrobenzofurazan (NBD-F). Lipids 2013; 49:295-304. [PMID: 24310230 DOI: 10.1007/s11745-013-3871-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/19/2013] [Indexed: 02/01/2023]
Abstract
The molecular species of sphingoid bases were tagged with the fluorescent amino group reagent, 4-fluoro-7-nitrobenzofurazan (NBD-F). The NBD-sphingoid bases were analyzed by a highly selective and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) technique capable of reliable detection of several fmol of the derivatives. Lipid extracts from plant samples were derivatized with NBD-F, and all nine species of free sphingoid bases present in plant sphingolipids were separated and quantified for the first time; a complete baseline resolution was achieved for cis-8 and trans-8 isomers of sphingoid bases by reversed phase HPLC on a C18 column. The extraction and derivatization procedures and LC-MS/MS method can facilitate the progress of the studies for seeking the active components of sphingoid bases species in response to biological challenges.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | | | | |
Collapse
|