51
|
Eriksen RL, Padgitt-Cobb LK, Randazzo AM, Hendrix DA, Henning JA. Gene Expression of Agronomically Important Secondary Metabolites in cv. ‘USDA Cascade’ Hop (Humulus lupulus L.) Cones during Critical Developmental Stages. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1973328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renée L. Eriksen
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | | | - Angela M. Randazzo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, U.S.A
| | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, U.S.A
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, U.S.A
| | - John A. Henning
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
52
|
Abstract
Phenylalanine ammonia-lyase (PAL) links the plant primary and secondary metabolisms, and its product, trans-cinnamic acid, is derived into thousands of diverse phenylpropanoids. Bambusa oldhamii BoPAL4 has broad substrate specificity using L-phenylalanine, L-tyrosine, and L-3,4-dihydroxy phenylalanine (L-DOPA) as substrates to yield trans-cinnamic acid, p-coumaric acid, and caffeic acid, respectively. The optimum reaction pH of BoPAL4 for three substrates was measured at 9.0, 8.5, and 9.0, respectively. The optimum reaction temperatures of BoPAL4 for three substrates were obtained at 50, 60, and 40 °C, respectively. The Km values of BoPAL4 for three substrates were 2084, 98, and 956 μM, respectively. The kcat values of BoPAL4 for three substrates were 1.44, 0.18, and 0.06 σ−1, respectively. The major substrate specificity site mutant, BoPAL4-H123F, showed better affinity toward L-phenylalanine by decreasing its Km value to 640 μM and increasing its kcat value to 1.87 s−1. In comparison to wild-type BoPAL4, the specific activities of BoPAL4-H123F using L-tyrosine and L-DOPA as substrates retained 5.4% and 17.8% residual activities. Therefore, L-phenylalanine, L-tyrosine, and L-DOPA are bona fide substrates for BoPAL4.
Collapse
|
53
|
Huang WX, Chen XW, Wu L, Yu ZS, Gao MY, Zhao HM, Mo CH, Li YW, Cai QY, Wong MH, Li H. Root cell wall chemistry remodelling enhanced arsenic fixation of a cabbage cultivar. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126165. [PMID: 34273883 DOI: 10.1016/j.jhazmat.2021.126165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
The low- and high-arsenic (As) transferring cultivars (LTC and HTC) of cabbage showed significant differences in As uptake and distribution. We hypothesise that chemistry of root cell wall matrix plays a critical role. LTC and HTC were treated with As and grown for 60 days. As concentration and distribution at subcellular and cell wall component (pectin, hemicellulose and lignin) levels were determined. Remodelling enzymes (PME and PAL) and functional groups of cell wall were analysed. Results showed that shoot biomass of LTC was not affected by As. Less As was accumulated in shoot of LTC than HTC. LTC allocated more As in root and majority of As was deposited in cell wall. LTC had more hemicellulose 1 (HC1) and lignin, PME and PAL activities. The uronic acid contents of pectin, HC1 or HC2 were all positively (P < 0.05) correlated with As concentrations in each component, respectively. Chemistry of LTC root cell wall was remodelled in terms of changes in porosity, HC and lignin contents, and functional groups, which potentially exerted coupling effects on As entering and deposition. The LTC can restrain As in roots through changing characteristics of root cell wall matrix.
Collapse
Affiliation(s)
- Wei Xiong Huang
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Wu
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zheng Sheng Yu
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan Wen Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan Ying Cai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
54
|
Wang Y, Cheng X, Yang T, Su Y, Lin S, Zhang S, Zhang Z. Nitrogen-Regulated Theanine and Flavonoid Biosynthesis in Tea Plant Roots: Protein-Level Regulation Revealed by Multiomics Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10002-10016. [PMID: 34406741 DOI: 10.1021/acs.jafc.1c02589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theanine and flavonoids (especially proanthocyanidins) are the most important and abundant secondary metabolites synthesized in the roots of tea plants. Nitrogen promotes theanine and represses flavonoid biosynthesis in tea plant roots, but the underlying mechanism is still elusive. Here, we analyzed theanine and flavonoid metabolism in tea plant roots under nitrogen deficiency and explored the regulatory mechanism using proteome and ubiquitylome profiling together with transcriptome data. Differentially expressed proteins responsive to nitrogen deficiency were identified and found to be enriched in flavonoid, nitrogen, and amino acid metabolism pathways. The proteins responding to nitrogen deficiency at the transcriptional level, translational level, and both transcriptional and translational levels were classified. Nitrogen-deficiency-responsive and ubiquitinated proteins were further identified. Our results showed that most genes encoding enzymes in the theanine synthesis pathway, such as CsAlaDC, CsGDH, and CsGOGATs, were repressed by nitrogen deficiency at transcriptional and/or protein level(s). While a large number of enzymes in flavonoid metabolism were upregulated at the transcriptional and/or translational level(s). Importantly, the ubiquitylomic analysis identified important proteins, especially the hub enzymes in theanine and flavonoid biosynthesis, such as CsAlaDC, CsTSI, CsGS, CsPAL, and CsCHS, modified by ubiquitination. This study provided novel insights into the regulation of theanine and flavonoid biosynthesis and will contribute to future studies on the post-translational regulation of secondary metabolism in tea plants.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xunmin Cheng
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Tianyuan Yang
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yanlei Su
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Shijia Lin
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Shupei Zhang
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
55
|
Perez VC, Dai R, Bai B, Tomiczek B, Askey BC, Zhang Y, Rubin GM, Ding Y, Grenning A, Block AK, Kim J. Aldoximes are precursors of auxins in Arabidopsis and maize. THE NEW PHYTOLOGIST 2021; 231:1449-1461. [PMID: 33959967 PMCID: PMC8282758 DOI: 10.1111/nph.17447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 05/03/2023]
Abstract
Two natural auxins, phenylacetic acid (PAA) and indole-3-acetic acid (IAA), play crucial roles in plant growth and development. One route of IAA biosynthesis uses the glucosinolate intermediate indole-3-acetaldoxime (IAOx) as a precursor, which is thought to occur only in glucosinolate-producing plants in Brassicales. A recent study showed that overproducing phenylacetaldoxime (PAOx) in Arabidopsis increases PAA production. However, it remains unknown whether this increased PAA resulted from hydrolysis of PAOx-derived benzyl glucosinolate or, like IAOx-derived IAA, is directly converted from PAOx. If glucosinolate hydrolysis is not required, aldoxime-derived auxin biosynthesis may occur beyond Brassicales. To better understand aldoxime-derived auxin biosynthesis, we conducted an isotope-labelled aldoxime feeding assay using an Arabidopsis glucosinolate-deficient mutant sur1 and maize, and transcriptomics analysis. Our study demonstrated that the conversion of PAOx to PAA does not require glucosinolates in Arabidopsis. Furthermore, maize produces PAA and IAA from PAOx and IAOx, respectively, indicating that aldoxime-derived auxin biosynthesis also occurs in maize. Considering that aldoxime production occurs widely in the plant kingdom, aldoxime-derived auxin biosynthesis is likely to be more widespread than originally believed. A genome-wide transcriptomics study using PAOx-overproduction plants identified complex metabolic networks among IAA, PAA, phenylpropanoid and tryptophan metabolism.
Collapse
Affiliation(s)
- Veronica C. Perez
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Bing Bai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL, 32611
| | - Bryce C. Askey
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
| | - Yi Zhang
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | - Garret M. Rubin
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610
| | | | - Anna K. Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
56
|
Wei C, Zhao W, Fan R, Meng Y, Yang Y, Wang X, Foroud NA, Liu D, Yu X. Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS One 2021; 16:e0250479. [PMID: 34293801 PMCID: PMC8298115 DOI: 10.1371/journal.pone.0250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins play critical roles in plant responses to biotic/abiotic stresses. In the present study, a total of 68 wheat F-box/Kelch (TaFBK) genes, unevenly distributed across 21 chromosomes and encoding 74 proteins, were identified in EnsemblPlants. Protein sequences were compared with those of Arabidopsis and three cereal species by phylogenetic and domain analyses, where the wheat sequences were resolved into 6 clades. In silico analysis of a digital PCR dataset revealed that TaFBKs were expressed at multiple developmental stages and tissues, and in response to drought and/or heat stresses. The TaFBK19 gene, a homolog of the Attenuated Far-Red Response (AFR) genes in other plant species, and hence named TaAFR, was selected for further analysis. Reverse-transcription quantitative real-time PCR (RT-qPCR) was carried out to determine tissue-specific, hormone and stress (abiotic/biotic) responsive expression patterns. Of interest, TaAFR was expressed most abundantly in the leaves, and its expression in response to leaf rust variants suggests a potential role in compatible vs incompatible rust responses. The protein was predicted to localize in cytosol, but it was shown experimentally to localize in both the cytosol and the nucleus of tobacco. A series of protein interaction studies, starting with a yeast-2-hybrid (Y2H) library screen (wheat leaf infected with incompatible leaf rust pathogens), led to the identification of three TaAFR interacting proteins. Skp1/ASK1-like protein (Skp1) was found to interact with the F-box domain of TaAFR, while ADP-ribosylation factor 2-like isoform X1 (ARL2) and phenylalanine ammonia-lyase (PAL) were shown to interact with its Kelch domain. The data presented herein provides a solid foundation from which the function and metabolic network of TaAFR and other wheat FBKs can be further explored.
Collapse
Affiliation(s)
- Chunru Wei
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Weiquan Zhao
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Runqiao Fan
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuyu Meng
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiming Yang
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Daqun Liu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
57
|
Yu H, Li D, Yang D, Xue Z, Li J, Xing B, Yan K, Han R, Liang Z. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia-lyase in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4915-4929. [PMID: 33961691 DOI: 10.1093/jxb/erab172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Phenolic acids are the major secondary metabolites and significant bioactive constituents of the medicinal plant Salvia miltiorrhiza. Many enzyme-encoding genes and transcription factors involved in the biosynthesis of phenolic acids have been identified, but the underlying post-translational regulatory mechanisms are poorly understood. Here, we demonstrate that the S. miltiorrhiza Kelch repeat F-box protein SmKFB5 physically interacts with three phenylalanine ammonia-lyase (PAL) isozymes and mediates their proteolytic turnover via the ubiquitin-26S proteasome pathway. Disturbing the expression of SmKFB5 reciprocally affected the abundance of SmPAL protein and the accumulation of phenolic acids, suggesting that SmKFB5 is a post-translational regulator responsible for the turnover of PAL and negatively controlling phenolic acids. Furthermore, we discovered that treatment of the hairy root of S. miltiorrhiza with methyl jasmonate suppressed the expression of SmKFB5 while inducing the transcription of SmPAL1 and SmPAL3. These data suggested that methyl jasmonate consolidated both transcriptional and post-translational regulation mechanisms to enhance phenolic acid biosynthesis. Taken together, our results provide insights into the molecular mechanisms by which SmKFB5 mediates the regulation of phenolic acid biosynthesis by jasmonic acid, and suggest valuable targets for plant breeders in tailoring new cultivars.
Collapse
Affiliation(s)
- Haizheng Yu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongfeng Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich, UK
| | - Bingcong Xing
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, China
| | - Ruilian Han
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
He Q, Zeng Z, Li F, Huang R, Wang Y, Liu T. Ubiquitylome analysis reveals the involvement of ubiquitination in the bast fiber growth of ramie. PLANTA 2021; 254:1. [PMID: 34081200 DOI: 10.1007/s00425-021-03652-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
A total of 249 sites from 197 proteins showed a differential ubiquitination level in the fiber development of ramie barks. The function of two differentially ubiquitinated proteins for fiber growth was demonstrated. Ubiquitination is one of the most common post-translational modifications of proteins, and it plays essential roles in plant growth and development. However, the involvement of ubiquitination in the growth of plant fibers remains largely unknown. We compared the ubiquitylome of the top and middle stems of ramie bark, with different fiber growth stages. We identified 249 differentially ubiquitinated sites in 197 proteins in fiber-developing barks in the stems and found that seven were homologs of Arabidopsis proteins associated with fiber growth. Overexpression of the differentially ubiquitinated proteins, RWA3 homolog whole_GLEAN_10024150 and MYB protein whole_GLEAN_10015497, significantly promoted fiber growth in transgenic Arabidopsis, indicating their involvement in this process. We also found that the abundance of these proteins decreased when their ubiquitination levels increased and vice versa in the fiber-developing bark. These results indicated that the abundance of these two proteins was adjusted through ubiquitin-dependent degradation. Collectively, our findings provide important insights into the involvement of ubiquitination in the growth of ramie fibers.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant Protection, Changsha, 410125, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
59
|
Parida AP, Srivastava A, Mathur S, Sharma AK, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:349-362. [PMID: 33730620 DOI: 10.1016/j.plaphy.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
F-box genes are an integral component of the Skp1-cullin-F-box (SCF) complex in eukaryotes. These genes are primarily involved in determining substrate specificities during cellular proteolysis. Here we report that 410 members constitute the F-box superfamily in tomato. Based on the incidence of C-terminal domains, these genes fell into ten subfamilies, leucine-rich repeat domain-containing F-box members constituting the largest subfamily. The F-box genes are present on all 12 chromosomes with varying gene densities. Both segmental and tandem duplication events contribute significantly to their expansion in the tomato genome. The syntenic analysis revealed close relationships among F-box homologs within Solanaceae species genomes. Transcript profiling of F-box members identified several ripening-associated genes with altered expression in the ripening mutants. RNA-sequencing data analysis showed that phosphate (Pi) deficiency affected 55 F-box transcripts in the Pi-deficient seedlings compared to their control seedlings. The persistent up-regulation of eight members, including two phloem protein 2B (PP2-B) genes, PP2-B15, and MATERNAL EFFECT EMBRYO ARREST 66 (MEE66) homologs, at multiple time-points in the roots, shoot, and seedling, point towards their pivotal roles in Pi starvation response in tomato. The attenuation of such upregulation in sucrose absence revealed the necessity of this metabolite for robust activation of these genes in the Pi-deficient seedlings. Altogether, this study identifies novel F-box genes with potential roles in fruit ripening and Pi starvation response and unlocks new avenues for functional characterization of candidate genes in tomato and other related species.
Collapse
Affiliation(s)
- Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Alok Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon, India; Institute of Bioinformatics and Computational Biology, Visakhapatnam, Andhra Pradesh, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
60
|
Zhao B, Zhang S, Yang W, Li B, Lan C, Zhang J, Yuan L, Wang Y, Xie Q, Han J, Mur LAJ, Hao X, Roberts JA, Miao Y, Yu K, Zhang X. Multi-omic dissection of the drought resistance traits of soybean landrace LX. PLANT, CELL & ENVIRONMENT 2021; 44:1379-1398. [PMID: 33554357 DOI: 10.1111/pce.14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiwan Han
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Xingyu Hao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
61
|
Hodgson-Kratky K, Perlo V, Furtado A, Choudhary H, Gladden JM, Simmons BA, Botha F, Henry RJ. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. PLANT MOLECULAR BIOLOGY 2021; 106:173-192. [PMID: 33738678 DOI: 10.1007/s11103-021-01136-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
A transcriptome analysis reveals the transcripts and alleles differentially expressed in sugarcane genotypes with contrasting lignin composition. Sugarcane bagasse is a highly abundant resource that may be used as a feedstock for the production of biofuels and bioproducts in order to meet increasing demands for renewable replacements for fossil carbon. However, lignin imparts rigidity to the cell wall that impedes the efficient breakdown of the biomass into fermentable sugars. Altering the ratio of the lignin units, syringyl (S) and guaiacyl (G), which comprise the native lignin polymer in sugarcane, may facilitate the processing of bagasse. This study aimed to identify genes and markers associated with S/G ratio in order to accelerate the development of sugarcane bioenergy varieties with modified lignin composition. The transcriptome sequences of 12 sugarcane genotypes that contrasted for S/G ratio were compared and there were 2019 transcripts identified as differentially expressed (DE) between the high and low S/G ratio groups. These included transcripts encoding possible monolignol biosynthetic pathway enzymes, transporters, dirigent proteins and transcriptional and post-translational regulators. Furthermore, the frequencies of single nucleotide polymorphisms (SNPs) were compared between the low and high S/G ratio groups to identify specific alleles expressed with the phenotype. There were 2063 SNP loci across 787 unique transcripts that showed group-specific expression. Overall, the DE transcripts and SNP alleles identified in this study may be valuable for breeding sugarcane varieties with altered S/G ratio that may provide desirable bioenergy traits.
Collapse
Affiliation(s)
- K Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - V Perlo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - J M Gladden
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
62
|
Steiner E, Triana MR, Kubasi S, Blum S, Paz-Ares J, Rubio V, Weiss D. KISS ME DEADLY F-box proteins modulate cytokinin responses by targeting the transcription factor TCP14 for degradation. PLANT PHYSIOLOGY 2021; 185:1495-1499. [PMID: 33580703 PMCID: PMC8133550 DOI: 10.1093/plphys/kiab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/09/2021] [Indexed: 06/01/2023]
Abstract
The F-box proteins KISS ME DEADLY interact with the transcription factor TCP14 and target it for degradation to fine-tune cytokinin responses in leaves and flowers.
Collapse
Affiliation(s)
- Evyatar Steiner
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Sivan Kubasi
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shula Blum
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Javier Paz-Ares
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin, 28049 Madrid, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin, 28049 Madrid, Spain
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
63
|
Kodera C, Just J, Da Rocha M, Larrieu A, Riglet L, Legrand J, Rozier F, Gaude T, Fobis-Loisy I. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics 2021; 22:268. [PMID: 33853522 PMCID: PMC8048354 DOI: 10.1186/s12864-021-07503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. Results Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. Conclusions Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07503-7.
Collapse
Affiliation(s)
- Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France. .,Present Address: Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Martine Da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA 400 route des Chappes BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.
| |
Collapse
|
64
|
Kim JI, Hidalgo-Shrestha C, Bonawitz ND, Franke RB, Chapple C. Spatio-temporal control of phenylpropanoid biosynthesis by inducible complementation of a cinnamate 4-hydroxylase mutant. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3061-3073. [PMID: 33585900 DOI: 10.1093/jxb/erab055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Discovery Park, Purdue University, West Lafayette, IN, USA
| | | | | | - Rochus B Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Discovery Park, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
65
|
Sadat MA, Ullah MW, Bashar KK, Hossen QMM, Tareq MZ, Islam MS. Genome-wide identification of F-box proteins in Macrophomina phaseolina and comparison with other fungus. J Genet Eng Biotechnol 2021; 19:46. [PMID: 33761027 PMCID: PMC7991009 DOI: 10.1186/s43141-021-00143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Background In fungi, like other eukaryotes, protein turnover is an important cellular process for the controlling of various cellular functions. The ubiquitin-proteasome pathway degrades some selected intracellular proteins and F-box proteins are one of the important components controlling protein degradation. F-box proteins are well studied in different model plants however, their functions in the fungi are not clear yet. This study aimed to identify the genes involved in protein degradation for disease development in the Macrophomina phaseolina fungus. Results In this research, in silico studies were done to understand the distribution of F-box proteins in pathogenic fungi including Macrophomina phaseolina fungus. Genome-wide analysis indicates that M. phaseolina fungus contained thirty-one F-box proteins throughout its chromosomes. In addition, there are 17, 37, 16, and 21 F-box proteins have been identified from Puccinia graminis, Colletotrichum graminicola, Ustilago maydis, and Phytophthora infestans, respectively. Analyses revealed that selective fungal genomes contain several additional functional domains along with F-box domain. Sequence alignment showed the substitution of amino acid in several F-box proteins; however, gene duplication was not found among these proteins. Phylogenetic analysis revealed that F-box proteins having similar functional domain was highly diverse form each other showing the possibility of various function. Analysis also found that MPH_00568 and MPH_05531 were closely related to rice blast fungus F-box protein MGG_00768 and MGG_13065, respectively, may play an important role for blast disease development. Conclusion This genome-wide analysis of F-box proteins will be useful for characterization of candidate F-box proteins to understand the molecular mechanisms leading to disease development of M. phaseolina in the host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00143-0.
Collapse
Affiliation(s)
- Md Abu Sadat
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| | - Md Wali Ullah
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Quazi Md Mosaddeque Hossen
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Zablul Tareq
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| |
Collapse
|
66
|
Wang B, Zhao X, Zhao Y, Shanklin J, Zhao Q, Liu CJ. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. THE NEW PHYTOLOGIST 2021; 229:3345-3359. [PMID: 33253431 DOI: 10.1111/nph.17121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Phenylpropanoid metabolism represents a substantial metabolic sink for photosynthetically fixed carbon. The evolutionarily conserved Sucrose Non-Fermenting Related Kinase 1 (SnRK1) is a major metabolic sensor that reprograms metabolism upon carbon deprivation. However, it is not clear if and how the SnRK1-mediated sugar signaling pathway controls phenylpropanoid metabolism. Here, we show that Arabidopsis SnRK1 negatively regulates phenylpropanoid biosynthesis via a group of Kelch domain-containing F-box (KFB) proteins that are responsible for the ubiquitination and degradation of phenylalanine ammonia lyase (PAL). Downregulation of AtSnRK1 significantly promoted the accumulation of soluble phenolics and lignin polymers and drastically increased PAL cellular accumulation but only slightly altered its transcription level. Co-expression of SnRK1α with PAL in Nicotiana benthamiana leaves resulted in the severe attenuation of the latter's protein level, but protein interaction assays suggested PAL is not a direct substrate of SnRK1. Furthermore, up or downregulation of AtSnRK1 positively affected KFBPALs gene expression, and energy starvation upregulated KFBPAL expression, which partially depends on AtSnRK1. Collectively, our study reveals that SnRK1 negatively regulates phenylpropanoid biosynthesis, and KFBPALs act as regulatory components of the SnRK1 signaling network, transcriptionally regulated by SnRK1 and subsequently mediate proteasomal degradation of PAL in response to the cellular carbon availability.
Collapse
Affiliation(s)
- Bin Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianhai Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yunjun Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qiao Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
67
|
Chen Q, Bai L, Wang W, Shi H, Ramón Botella J, Zhan Q, Liu K, Yang H, Song C. COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. THE NEW PHYTOLOGIST 2021; 229:2035-2049. [PMID: 33048351 PMCID: PMC7898331 DOI: 10.1111/nph.17001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
Plant stomata play a crucial role in leaf function, controlling water transpiration in response to environmental stresses and modulating the gas exchange necessary for photosynthesis. The phytohormone abscisic acid (ABA) promotes stomatal closure and inhibits light-induced stomatal opening. The Arabidopsis thaliana E3 ubiquitin ligase COP1 functions in ABA-mediated stomatal closure. However, the underlying molecular mechanisms are still not fully understood. Yeast two-hybrid assays were used to identify ABA signaling components that interact with COP1, and biochemical, molecular and genetic studies were carried out to elucidate the regulatory role of COP1 in ABA signaling. The cop1 mutants are hyposensitive to ABA-triggered stomatal closure under light and dark conditions. COP1 interacts with and ubiquitinates the Arabidopsis clade A type 2C phosphatases (PP2Cs) ABI/HAB group and AHG3, thus triggering their degradation. Abscisic acid enhances the COP1-mediated degradation of these PP2Cs. Mutations in ABI1 and AHG3 partly rescue the cop1 stomatal phenotype and the phosphorylation level of OST1, a crucial SnRK2-type kinase in ABA signaling. Our data indicate that COP1 is part of a novel signaling pathway promoting ABA-mediated stomatal closure by regulating the stability of a subset of the Clade A PP2Cs. These findings provide novel insights into the interplay between ABA and the light signaling component in the modulation of stomatal movement.
Collapse
Affiliation(s)
- Qingbin Chen
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Wenjing Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Huazhong Shi
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTX79409USA
| | - José Ramón Botella
- Plant Genetic Engineering LaboratorySchool of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| | - Qidi Zhan
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| | - Hong‐Quan Yang
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghai200234China
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan University85 Minglun StreetKaifeng475001China
| |
Collapse
|
68
|
Niu M, Fu J, Ni R, Xiong RL, Zhu TT, Lou HX, Zhang P, Li J, Cheng AX. Functional and Structural Investigation of Chalcone Synthases Based on Integrated Metabolomics and Transcriptome Analysis on Flavonoids and Anthocyanins Biosynthesis of the Fern Cyclosorus parasiticus. FRONTIERS IN PLANT SCIENCE 2021; 12:757516. [PMID: 34777436 PMCID: PMC8580882 DOI: 10.3389/fpls.2021.757516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 05/03/2023]
Abstract
The biosynthesis of flavonoids and anthocyanidins has been exclusively investigated in angiosperms but largely unknown in ferns. This study integrated metabolomics and transcriptome to analyze the fronds from different development stages (S1 without spores and S2 with brown spores) of Cyclosorus parasiticus. About 221 flavonoid and anthocyanin metabolites were identified between S1 and S2. Transcriptome analysis revealed several genes encoding the key enzymes involved in the biosynthesis of flavonoids, and anthocyanins were upregulated in S2, which were validated by qRT-PCR. Functional characterization of two chalcone synthases (CpCHS1 and CpCHS2) indicated that CpCHS1 can catalyze the formation of pinocembrin, naringenin, and eriodictyol, respectively; however, CpCHS2 was inactive. The crystallization investigation of CpCHS1 indicated that it has a highly similar conformation and shares a similar general catalytic mechanism to other plants CHSs. And by site-directed mutagenesis, we found seven residues, especially Leu199 and Thr203 that are critical to the catalytic activity for CpCHS1.
Collapse
Affiliation(s)
- Meng Niu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jianxu Li
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Ai-Xia Cheng
| |
Collapse
|
69
|
Tousi S, Zoufan P, Ghahfarrokhie AR. Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111403. [PMID: 33011513 DOI: 10.1016/j.ecoenv.2020.111403] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 05/26/2023]
Abstract
The present work was aimed to study the effect of melatonin pretreatments on growth, oxidative stress modulation, cadmium (Cd) accumulation, and tolerance in mallow (Malva parviflora, Malvaceae) plants under the hydroponic system. Application of substances that can modulate the harmful effects of Cd on plant yield and reduce its accumulation in the edible parts is of particular importance. Therefore, the mallow plants pretreated with 15, 50, and 100 µM of melatonin were exposed to 50 µM Cd. Our results showed that melatonin, especially at 15 and 50 µM, led to positive effects on Cd tolerance, including a significant increase in growth, photosynthetic pigments, and soluble protein content. Exogenous melatonin could improve relative water content (RWC) and stomatal conductance in the plants treated with Cd, probably through an increase in proline. Further, lower concentrations of melatonin led to a decrease in Cd translocation to the shoots. Based on the results, melatonin considerably increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (GPX) activities as well as the production of phenols. The increased activity of antioxidant enzymes led to a decrease in electrolyte leakage (EL), lipid peroxidation, and H2O2 content in the plants exposed to Cd stress. Under Cd stress, the increased phenols content in melatonin-pretreated plants could be due to the induction of phenylalanine ammonia-lyase (PAL) activity and an increase in shoot soluble carbohydrates. The results showed that the use of melatonin could reduce oxidative stress and improve biomass in the plants exposed to Cd. At least in our experimental conditions, this information appears to be useful for healthy food production.
Collapse
Affiliation(s)
- Saham Tousi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parzhak Zoufan
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afrasyab Rahnama Ghahfarrokhie
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
70
|
Malik A, Gul A, Amir R, Munir F, Babar MM, Bakhtiar SM, Hayat MQ, Paracha RZ, Khalid Z, Alipour H. Classification and Computational Analysis of Arabidopsis thaliana Sperm Cell-Specific F-Box Protein Gene 3p.AtFBP113. Front Genet 2020; 11:609668. [PMID: 33381153 PMCID: PMC7767997 DOI: 10.3389/fgene.2020.609668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
In plants, F-box proteins (FBPs) constitute one of the largest superfamilies of regulatory proteins. Most F-box proteins are shown to be an integral part of SCF complexes, which carry out the degradation of proteins and regulate diverse important biological processes. Anthers and pollen development have a huge importance in crop breeding. Despite the vast diversity of FBPs in Arabidopsis male reproductive organs, their role in anther and pollen development is not much explored. Moreover, a standard nomenclature for naming FBPs is also lacking. Here, we propose a standard nomenclature for naming the FBPs of Arabidopsis thaliana uniformly and carry out a systematic analysis of sperm cell-specific FBP gene, i.e., 3p.AtFBP113 due to its reported high and preferential expression, for detailed functional annotation. The results revealed that 3p.AtFBP113 is located on the small arm of chromosome and encodes 397 amino acid long soluble, stable, and hydrophilic protein with the possibility of localization in various cellular compartments. The presence of the C-terminal F-box associated domain (FBA) with immunoglobulin-like fold anticipated its role in protein binding. Gene ontology based functional annotation and tissue-specific gene co-expression analysis further strengthened its role in protein binding and ubiquitination. Moreover, various potential post/co-translational modifications were anticipated and the predicted tertiary structure also showed the presence of characteristic domains and fold. Thus, the outcomes of the study will be useful in developing a better understating of the function of 3p.AtFBP113 during the process of pollen development, which will be helpful for targeting the gene for manipulation of male fertility that has immense importance in hybrid breeding.
Collapse
Affiliation(s)
- Afsheen Malik
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Biosciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Qasim Hayat
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zoya Khalid
- Computational Biology Research Lab, Department of Computer Science, National University of Computer and Emerging Sciences-FAST, Islamabad, Pakistan
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| |
Collapse
|
71
|
He Y, Zhong X, Jiang X, Cong H, Sun H, Qiao F. Characterisation, expression and functional analysis of PAL gene family in Cephalotaxus hainanensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:461-470. [PMID: 33027750 DOI: 10.1016/j.plaphy.2020.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is the first committed step in the formation of phenylpropanoids, and catalyses the deamination of L-phenylalanine (L-Phe) to yield cinnamic acid. While PALs are common in plants, PAL genes involved in alkaloid biosynthesis in Cephalotaxus hainanensis have never been described. To obtain better knowledge of PAL genes and their number and function involved in Cephalotaxus alkaloid biosynthesis four PAL genes were screened and cloned. In vitro enzymatic analysis showed that all four PAL recombinant proteins could convert L-Phe to product trans-cinnamic acid, and showed strict substrate specificity. Moreover, the expression profiles of four ChPALs were analysed using qRT-PCR, which showed that they had higher transcript levels in roots and stems, and that different ChPALs displayed different response sensitivities and change patterns in response to stimuli. Several metabolic compounds were measured in stimulated leaves using UPLC-MS, and indicating the concentration of Cephalotaxus alkaloids and cinnamic acid in leaves subjected to different conditions. These concentrations increased significantly after treatment with 100 mM NaCl, 100 mM mannitol, 100 μM SA and 10 μM ABA. The expression levels of four PAL genes showed indications of upregulation after treatment. These results supply an important foundation for further research on candidate genes involved in the biosynthesis of Cephalotaxus alkaloids.
Collapse
Affiliation(s)
- Yuedong He
- College of Horticulture, Hunan Agricultural University, Changsha, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuefei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources / College of Horticulture, Hainan University (HNU), Haikou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huapeng Sun
- College of Horticulture, Hunan Agricultural University, Changsha, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
72
|
The Regulation of Floral Colour Change in Pleroma raddianum (DC.) Gardner. Molecules 2020; 25:molecules25204664. [PMID: 33066182 PMCID: PMC7587386 DOI: 10.3390/molecules25204664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.
Collapse
|
73
|
Venkatesh J, Kang MY, Liu L, Kwon JK, Kang BC. F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-Temperature Stress Tolerance in Pepper ( Capsicum chinense). PLANTS 2020; 9:plants9091186. [PMID: 32933000 PMCID: PMC7570372 DOI: 10.3390/plants9091186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar ‘sy-2’. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive ‘sy-2’ line. Protein–protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Min-Young Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
- Correspondence: ; Tel.: +82-2-880-4563; Fax: +82-2-873-2056
| |
Collapse
|
74
|
Li Q, Zhang L, Pan F, Guo W, Chen B, Yang H, Wang G, Li X. Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin. PeerJ 2020; 8:e9677. [PMID: 32879792 PMCID: PMC7442037 DOI: 10.7717/peerj.9677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
Development of female flowers is an important process that directly affects the yield of Cucubits. Little information is available on the sex determination and development of female flowers in pumpkin, a typical monoecious plant. In the present study, we used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the differentially expressed genes (DEGs) to gain insights into the molecular mechanism underlying pistil development in pumpkin. A total of 3,817 DEGs were identified, among which 1,341 were upregulated and 2,476 were downregulated. The results of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG enrichment analysis showed that the DEGs were significantly enriched in plant hormone signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs were enriched in the plant hormone signal transduction pathway, which accounted for 12.54% of the significant DEGs, and most of them were annotated as predicted ethylene responsive or insensitive transcription factor genes. Furthermore, the expression levels of four ethylene signal transduction genes in different flower structures (female calyx, pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10, showed the highest expression in pistils and the lowest expression in stamens, and their expression levels were 78- and 162-times more than that in stamens, respectively. These results suggest that plant hormone signal transduction genes, especially ethylene signal transduction genes, play an important role in the development of pistils in pumpkin. Our study provides a theoretical basis for further understanding of the mechanism of regulation of ethylene signal transduction genes in pistil development and sex determination in pumpkin.
Collapse
Affiliation(s)
- Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Li Zhang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Feifei Pan
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Weili Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Bihua Chen
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Helian Yang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Guangyin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| |
Collapse
|
75
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
76
|
Jo YD, Ryu J, Kim YS, Kang KY, Hong MJ, Choi HI, Lim GH, Kim JB, Kim SH. Dramatic Increase in Content of Diverse Flavonoids Accompanied with Down-Regulation of F-Box Genes in a Chrysanthemum ( Chrysanthemum × morifolium (Ramat.) Hemsl.) Mutant Cultivar Producing Dark-Purple Ray Florets. Genes (Basel) 2020; 11:E865. [PMID: 32751443 PMCID: PMC7464468 DOI: 10.3390/genes11080865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins (a subclass of flavonoids) and flavonoids are crucial determinants of flower color and substances of pharmacological efficacy, respectively, in chrysanthemum. However, metabolic and transcriptomic profiling regarding flavonoid accumulation has not been performed simultaneously, thus the understanding of mechanisms gained has been limited. We performed HPLC-DAD-ESI-MS (high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry) and transcriptome analyses using "ARTI-Dark Chocolate" (AD), which is a chrysanthemum mutant cultivar producing dark-purple ray florets, and the parental cultivar "Noble Wine" for metabolic characterization and elucidation of the genetic mechanism determining flavonoid content. Among 26 phenolic compounds identified, three cyanidins and eight other flavonoids were detected only in AD. The total amounts of diverse flavonoids were 8.0 to 10.3 times higher in AD. Transcriptome analysis showed that genes in the flavonoid biosynthetic pathway were not up-regulated in AD at the early flower stage, implying that the transcriptional regulation of the pathway did not cause flavonoid accumulation. However, genes encoding post-translational regulation-related proteins, especially F-box genes in the mutated gene, were enriched among down-regulated genes in AD. From the combination of metabolic and transcriptomic data, we suggest that the suppression of post-translational regulation is a possible mechanism for flavonoid accumulation in AD. These results will contribute to research on the regulation and manipulation of flavonoid biosynthesis in chrysanthemum.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jaihyunk Ryu
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Ye-Sol Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea;
| | - Min Jeong Hong
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Hong-Il Choi
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Gah-Hyun Lim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Sang Hoon Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| |
Collapse
|
77
|
A New Intra-Specific and High-Resolution Genetic Map of Eggplant Based on a RIL Population, and Location of QTLs Related to Plant Anthocyanin Pigmentation and Seed Vigour. Genes (Basel) 2020; 11:genes11070745. [PMID: 32635424 PMCID: PMC7397344 DOI: 10.3390/genes11070745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross ‘305E40’, (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x ‘67/3’ (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.
Collapse
|
78
|
Mishra B, Ploch S, Runge F, Schmuker A, Xia X, Gupta DK, Sharma R, Thines M. The Genome of Microthlaspi erraticum (Brassicaceae) Provides Insights Into the Adaptation to Highly Calcareous Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:943. [PMID: 32719698 PMCID: PMC7350527 DOI: 10.3389/fpls.2020.00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Microthlaspi erraticum is widely distributed in temperate Eurasia, but restricted to Ca2+-rich habitats, predominantly on white Jurassic limestone, which is made up by calcium carbonate, with little other minerals. Thus, naturally occurring Microthlaspi erraticum individuals are confronted with a high concentration of Ca2+ ions while Mg2+ ion concentration is relatively low. As there is a competitive uptake between these two ions, adaptation to the soil condition can be expected. In this study, it was the aim to explore the genomic consequences of this adaptation by sequencing and analysing the genome of Microthlaspi erraticum. Its genome size is comparable with other diploid Brassicaceae, while more genes were predicted. Two Mg2+ transporters known to be expressed in roots were duplicated and one showed a significant degree of positive selection. It is speculated that this evolved due to the pressure to take up Mg2+ ions efficiently in the presence of an overwhelming amount of Ca2+ ions. Future studies on plants specialized on similar soils and affinity tests of the transporters are needed to provide unequivocal evidence for this hypothesis. If verified, the transporters found in this study might be useful for breeding Brassicaceae crops for higher yield on Ca2+-rich and Mg2+ -poor soils.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fabian Runge
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - Xiaojuan Xia
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Deepak K. Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| |
Collapse
|
79
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
80
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
81
|
Yu H, Jiang M, Xing B, Liang L, Zhang B, Liang Z. Systematic Analysis of Kelch Repeat F-box (KFB) Protein Gene Family and Identification of Phenolic Acid Regulation Members in Salvia miltiorrhiza Bunge. Genes (Basel) 2020; 11:E557. [PMID: 32429385 PMCID: PMC7288277 DOI: 10.3390/genes11050557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
S. miltiorrhiza is a well-known Chinese herb for the clinical treatment of cardiovascular and cerebrovascular diseases. Tanshinones and phenolic acids are the major secondary metabolites and significant pharmacological constituents of this plant. Kelch repeat F-box (KFB) proteins play important roles in plant secondary metabolism, but their regulation mechanism in S. miltiorrhiza has not been characterized. In this study, we systematically characterized the S. miltiorrhiza KFB gene family. In total, 31 SmKFB genes were isolated from S. miltiorrhiza. Phylogenetic analysis of those SmKFBs indicated that 31 SmKFBs can be divided into four groups. Thereinto, five SmKFBs (SmKFB1, 2, 3, 5, and 28) shared high homology with other plant KFBs which have been described to be regulators of secondary metabolism. The expression profile of SmKFBs under methyl jasmonate (MeJA) treatment deciphered that six SmKFBs (SmKFB1, 2, 5, 6, 11, and 15) were significantly downregulated, and two SmKFBs (SmKFB22 and 31) were significantly upregulated. Tissue-specific expression analysis found that four SmKFBs (SmKFB4, 11, 16, and 17) were expressed preferentially in aerial tissues, while two SmKFBs (SmKFB5, 25) were predominantly expressed in roots. Through a systematic analysis, we speculated that SmKFB1, 2, and 5 are potentially involved in phenolic acids biosynthesis.
Collapse
Affiliation(s)
- Haizheng Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdan Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Bingcong Xing
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
82
|
Richter AS, Tohge T, Fernie AR, Grimm B. The genomes uncoupled-dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190403. [PMID: 32362259 DOI: 10.1098/rstb.2019.0403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, it has become evident that plants perceive, integrate and communicate abiotic stress signals through chloroplasts. During the process of acclimation plastid-derived, retrograde signals control nuclear gene expression in response to developmental and environmental cues leading to complex genetic and metabolic reprogramming to preserve cellular homeostasis under challenging environmental conditions. Upon stress-induced dysfunction of chloroplasts, GENOMES UNCOUPLED (GUN) proteins participate in the repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES (PHANGs). Here, we show that the retrograde signal emitted by, or communicated through, GUN-proteins is also essential to induce the accumulation of photoprotective anthocyanin pigments when chloroplast development is attenuated. Comparative whole transcriptome sequencing and genetic analysis reveal GUN1 and GUN5-dependent signals as a source for the regulation of genes involved in anthocyanin biosynthesis. The signal transduction cascade includes well-known transcription factors for the control of anthocyanin biosynthesis, which are deregulated in gun mutants. We propose that regulation of PHANGs and genes contributing to anthocyanin biosynthesis are two, albeit oppositely, co-regulated processes during plastid biogenesis. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Andreas S Richter
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.,Physiology of Plant Cell Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| |
Collapse
|
83
|
Weng ST, Kuo YW, King YC, Lin HH, Tu PY, Tung KS, Jeng ST. Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110391. [PMID: 32005396 DOI: 10.1016/j.plantsci.2019.110391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 05/14/2023]
Abstract
Plant microRNAs (miRNAs) are non-coding RNAs, which are composed of 20-24 nucleotides. MiRNAs play important roles in plant growth and responses to biotic and abiotic stresses. Wounding is one of the most serious stresses for plants; however, the regulation of miRNAs in plants upon wounding is not well studied. In this study, miR2111, a wound-repressed miRNA, identified previously in sweet potato (Ipomoea batatas cv Tainung 57) by small RNA deep sequencing was chosen for further analysis. Based on sweet potato transcriptome database, F-box/kelch repeat protein (IbFBK), a target gene of miR2111, was identified. IbFBK is a wound-inducible gene, and the miR2111-induced cleavage site in IbFBK mRNA is between the 10th and 11th nucleotides of miR2111. IbFBK is a component of the E3 ligase SCF (SKP1-Cullin-F-box) complex participating in protein ubiquitination and degradation. The results of yeast two-hybrid and bimolecular fluorescence complementation assays demonstrate that IbFBK was conjugated with IbSKP1 through the F-box domain in IbFBK N-terminus to form SCF complex, and interacted with IbCNR8 through the kelch-repeat domain in IbFBK C-terminus. The interaction of IbFBK and IbCNR8 may lead to the ubiquitination and degradation of IbCNR8. In conclusion, the suppression of miR2111 resulted in the increase of IbFBK, and may regulate protein degradation of IbCNR8 in sweet potato responding to wounding.
Collapse
Affiliation(s)
- Shiau-Ting Weng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Academy of Agricultural Sciences, Sanming 365000, Fujian, China.
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan.
| | - Pin-Yang Tu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuei-Shu Tung
- Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
84
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
85
|
Zoufan P, Azad Z, Rahnama Ghahfarokhie A, Kolahi M. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109811. [PMID: 31654866 DOI: 10.1016/j.ecoenv.2019.109811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 05/03/2023]
Abstract
This study was conducted to investigate the role of phenolic compounds in the antioxidant defense system in Malva parviflora L. plants treated with cadmium (Cd). After surface sterilization, the seeds were sown on seedling trays. Forty-day-old plants were then transferred to hydroponic cultures with Cd (40 μM) or without Cd (control). Some biochemical and physiological parameters were assayed on the sixth day after Cd treatment. Based on the results, the plants showed an increase in leaf soluble carbohydrates, total phenolic compounds, total flavonoids, and phenylalanine ammonia-lyase (PAL) activity at the end of the exposure period. However, length, fresh weight, chlorophyll (Chl) b, total Chl, stomatal conductance and starch content decreased under Cd treatment. There was no significant difference between the plants exposed to Cd and the control group for Chl a, SPAD index, carotenoids, and anthocyanins as well as the H2O2 content six days after treatment. The Cd content in the roots was considerably higher than that in the shoots. In assessing the antioxidant capacity of plant extracts, different results were observed using 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) test and beta-carotene/linoleic acid bleaching assay. According to the results of this study, it seems that increased activity of PAL enzyme leads to an increase in biosynthesis of phenolic compounds in M. parviflora. This mechanism probably increases the antioxidant capacity of the plant to suppress Cd-induced toxicity and oxidative stress.
Collapse
Affiliation(s)
- Parzhak Zoufan
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Zeynab Azad
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afrasyab Rahnama Ghahfarokhie
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
86
|
Isolation and characterization of kelch repeat-containing F-box proteins from colored wheat. Mol Biol Rep 2020; 47:1129-1141. [PMID: 31907740 DOI: 10.1007/s11033-019-05210-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Abstract
F-box proteins play important roles in the regulation of various developmental processes in plants. Approximately 1796 F-box genes have been identified in the wheat genome, but details of their functions remain unknown. Moreover, not much was known about the roles of kelch repeat domain-containing F-box genes (TaKFBs) in wheat. In the present study, we isolated five TaKFBs to investigate the roles of KFBs at different stages of colored wheat grain development. The cDNAs encoding TaKFB1, TaKFB2, TaKFB3, TaKFB4, and TaKFB5 contained 363, 449, 353, 382, and 456 bp open reading frames, respectively. All deduced TaKFBs contained an F-box domain (IPR001810) and a kelch repeat type 1 domain (IPR006652), except TaKFB2. Expression of TaKFBs was elevated during the pigmentation stages of grain development. To clarify how TaKFB and SKP interact in wheat, we investigated whether five TaKFB proteins showed specificity for six SKP proteins using a yeast two-hybrid (Y2H) assay. An Y2H screen was performed to search for proteins capable of binding the TaKFBs and interaction was identified between TaKFB1 and aquaporin PIP1. To examine the subcellular localization of TaKFBs, we transiently expressed TaKFB-green fluorescent protein (GFP) fusions in tobacco leaves; the TaKFB-GFP fusions were detected in the nucleus and the cytoplasm. Y2H and bimolecular fluorescence complementation (BiFC) assays revealed that TaKFB1 specifically interacts with aquaporin PIP1. These results will provide useful information for further functional studies on wheat F-box proteins and their possible roles.
Collapse
|
87
|
Kim JI, Zhang X, Pascuzzi PE, Liu CJ, Chapple C. Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. THE NEW PHYTOLOGIST 2020; 225:154-168. [PMID: 31408530 DOI: 10.1111/nph.16108] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/04/2019] [Indexed: 05/18/2023]
Abstract
Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways. Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits phenylpropanoid production in a Mediator Subunit 5 (MED5)-dependent manner. To elucidate the molecular mechanism underlying this process, we analyzed the transcriptomes of a suite of Arabidopsis thaliana glucosinolate-deficient mutants using RNAseq and identified misregulated genes that are rescued by the disruption of MED5. The expression of a group of Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency in the mutants. Our study suggests that glucosinolate/phenylpropanoid metabolic crosstalk involves the transcriptional regulation of KFB genes that initiate the degradation of the enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to glucosinolate pathway mutations, suggesting that other mechanisms that link the two pathways also exist.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Xuebin Zhang
- BECS, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, USA
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Pete E Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, 47907, USA
| | - Chang-Jun Liu
- BECS, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
88
|
Ni R, Zhu TT, Zhang XS, Wang PY, Sun CJ, Qiao YN, Lou HX, Cheng AX. Identification and evolutionary analysis of chalcone isomerase-fold proteins in ferns. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:290-304. [PMID: 31557291 PMCID: PMC6913697 DOI: 10.1093/jxb/erz425] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/12/2019] [Indexed: 05/07/2023]
Abstract
The distribution of type I and II chalcone isomerases (CHIs) in plants is highly family specific. We have previously reported that ancient land plants, such as the liverworts and Selaginella moellendorffii, harbor type II CHIs. To better understand the function and evolution of CHI-fold proteins, transcriptomic data obtained from 52 pteridophyte species were subjected to sequence alignment and phylogenetic analysis. The residues determining type I/II CHI identity in the pteridophyte CHIs were identical to those of type I CHIs. The enzymatic characterization of a sample of 24 CHIs, representing all the key pteridophyte lineages, demonstrated that 19 of them were type I enzymes and that five exhibited some type II activity due to an amino acid mutation. Two pteridophyte chalcone synthases (CHSs) were also characterized, and a type IV CHI (CHIL) was demonstrated to interact physically with CHSs and CHI, and to increase CHS activity by decreasing derailment products, thus enhancing flavonoid production. These findings suggest that the emergence of type I CHIs may have coincided with the divergence of the pteridophytes. This study deepens our understanding of the molecular mechanism of CHIL as an enhancer in the flavonoid biosynthesis pathway.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Shuang Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Piao-Yi Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Nan Qiao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Correspondence:
| |
Collapse
|
89
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi SF, Yousefi B, Jeandet P, Xu S, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv 2020; 38:107316. [PMID: 30458225 DOI: 10.1016/j.biotechadv.2018.11.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
Plants, fungi, and microorganisms are equipped with biosynthesis machinery for producing thousands of secondary metabolites. These compounds have important functions in nature as a defence against predators or competitors as well as other ecological significances. The full utilization of these compounds for food, medicine, and other purposes requires a thorough understanding of their structures and the distinct biochemical pathways of their production in cellular systems. In this review, flavonoids as classical examples of secondary metabolites are employed to highlight recent advances in understanding how valuable compounds can be regulated at various levels. With extensive diversity in their chemistry and pharmacology, understanding the metabolic engineering of flavonoids now allows us to fine-tune the eliciting of their production, accumulation, and extraction from living systems. More specifically, recent advances in the shikimic acid and acetate biosynthetic pathways of flavonoids production from metabolic engineering point of view, from genes expression to multiple principles of regulation, are addressed. Specific examples of plants and microorganisms as the sources of flavonoids-based compounds with particular emphasis on therapeutic applications are also discussed.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Dunja Šamec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Luigi Milella
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ipek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- Unité de Recherche RIBP EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP, 1039, 51687 Reims CEDEX, France
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
90
|
Zhang D, Song YH, Dai R, Lee TG, Kim J. Aldoxime Metabolism Is Linked to Phenylpropanoid Production in Camelina sativa. FRONTIERS IN PLANT SCIENCE 2020; 11:17. [PMID: 32117366 PMCID: PMC7025560 DOI: 10.3389/fpls.2020.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/09/2020] [Indexed: 05/03/2023]
Abstract
Plants produce diverse secondary metabolites. Although each metabolite is made through its respective biosynthetic pathway, plants coordinate multiple biosynthetic pathways simultaneously. One example is an interaction between glucosinolate and phenylpropanoid pathways in Arabidopsis thaliana. Glucosinolates are defense compounds made primarily from methionine and tryptophan, while phenylpropanoids are made from phenylalanine. Recent studies have shown that the accumulation of glucosinolate intermediate such as indole-3-acetaldoxime (IAOx) or its derivatives represses phenylpropanoid production via the degradation of phenylalanine ammonia lyase (PAL) functioning at the entry point of the phenylpropanoid pathway. Given that IAOx is a precursor of other bioactive compounds other than glucosinolates and that the phenylpropanoid pathway is present in most plants, we hypothesized that this interaction is relevant to other species. Camelina sativa is an oil crop and produces camalexin from IAOx. We enhanced IAOx production in Camelina by overexpressing Arabidopsis CYP79B2 which encodes an IAOx-producing enzyme. The overexpression of AtCYP79B2 results in increased auxin content and its associated morphological phenotypes in Camelina but indole glucosinolates were not detected in Camelina wild type as well as the overexpression lines. However, phenylpropanoid contents were reduced in AtCYP79B2 overexpression lines suggesting a link between aldoxime metabolism and phenylpropanoid production. Interestingly, the expression of PALs was not affected in the overexpression lines although PAL activity was reduced. To test if PAL degradation is involved in the crosstalk, we identified F-box genes functioning in PAL degradation through a phylogenetic study. A total of 459 transcript models encoding kelch-motifs were identified from the Camelina sativa database. Among them, the expression of CsKFBs involved in PAL degradation is up-regulated in the transgenic lines. Our results suggest a link between aldoxime metabolism and phenylpropanoid production in Camelina and that the molecular mechanism behind the crosstalk is conserved in Arabidopsis and Camelina.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Yeong Hun Song
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Tong Geon Lee
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- *Correspondence: Jeongim Kim,
| |
Collapse
|
91
|
Barros J, Dixon RA. Plant Phenylalanine/Tyrosine Ammonia-lyases. TRENDS IN PLANT SCIENCE 2020; 25:66-79. [PMID: 31679994 DOI: 10.1016/j.tplants.2019.09.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 05/13/2023]
Abstract
Aromatic amino acid deaminases are key enzymes mediating carbon flux from primary to secondary metabolism in plants. Recent studies have uncovered a tyrosine ammonia-lyase that contributes to the typical characteristics of grass cell walls and contributes to about 50% of the total lignin synthesized by the plant. Grasses are currently preferred bioenergy feedstocks and lignin is the most important limiting factor in the conversion of plant biomass to liquid biofuels, as well as being an abundant renewable carbon source that can be industrially exploited. Further research on the structure, evolution, regulation, and biological function of functionally distinct ammonia-lyases has multiple implications for improving the economics of the agri-food and biofuel industries.
Collapse
Affiliation(s)
- Jaime Barros
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Richard A Dixon
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
92
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
93
|
Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2341-2355. [PMID: 31077628 PMCID: PMC6835124 DOI: 10.1111/pbi.13151] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 05/02/2023]
Abstract
To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple. In transgenic Arabidopsis and apple, MdMYB46 promoted the biosynthesis of secondary cell wall and deposition of lignin by directly binding to the promoter of lignin biosynthesis-related genes. To explore whether MdMYB46 could coordinate stress signal transduction pathways to cooperate with the formation of secondary walls to enhance the stress tolerance of plants, MdABRE1A, MdDREB2A and dehydration-responsive genes MdRD22 and MdRD29A were screened out for their positive correlation with osmotic stress, salt stress and the transcriptional level of MdMYB46. The further verification test demonstrated that MdMYB46 could activate their transcription by directly binding to the promoters of these genes. The above results indicate that MdMYB46 could enhance the salt and osmotic stress tolerance in apple not only by activating secondary cell wall biosynthesis pathways, but also by directly activating stress-responsive signals.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hao Xue
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
94
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
95
|
Mao X, Weake VM, Chapple C. Mediator function in plant metabolism revealed by large-scale biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5995-6003. [PMID: 31504746 DOI: 10.1093/jxb/erz372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 05/16/2023]
Abstract
Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
96
|
Zhao Y, Zhang YY, Liu H, Zhang XS, Ni R, Wang PY, Gao S, Lou HX, Cheng AX. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC PLANT BIOLOGY 2019; 19:497. [PMID: 31726984 PMCID: PMC6854758 DOI: 10.1186/s12870-019-2109-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/31/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, play important roles in the regulation of many secondary metabolites including flavonoids. Their involvement in flavonoids synthesis is well established in vascular plants, but not as yet in the bryophytes. In liverworts, both bisbibenzyls and flavonoids are derived through the phenylpropanoids pathway and share several upstream enzymes. RESULTS In this study, we cloned and characterized the function of PabHLH1, a bHLH family protein encoded by the liverworts species Plagiochasma appendiculatum. PabHLH1 is phylogenetically related to the IIIf subfamily bHLHs involved in flavonoids biosynthesis. A transient expression experiment showed that PabHLH1 is deposited in the nucleus and cytoplasm, while the yeast one hybrid assay showed that it has transactivational activity. When PabHLH1 was overexpressed in P. appendiculatum thallus, a positive correlation was established between the content of bibenzyls and flavonoids and the transcriptional abundance of corresponding genes involved in the biosynthesis pathway of these compounds. The heterologous expression of PabHLH1 in Arabidopsis thaliana resulted in the activation of flavonoids and anthocyanins synthesis, involving the up-regulation of structural genes acting both early and late in the flavonoids synthesis pathway. The transcription level of PabHLH1 in P. appendiculatum thallus responded positively to stress induced by either exposure to UV radiation or treatment with salicylic acid. CONCLUSION PabHLH1 was involved in the regulation of the biosynthesis of flavonoids as well as bibenzyls in liverworts and stimulated the accumulation of the flavonols and anthocyanins in Arabidopsis.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Yu-Ying Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Hui Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Xiao-Shuang Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Piao-Yi Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 China
| |
Collapse
|
97
|
Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR. Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep 2019; 9:16434. [PMID: 31712582 PMCID: PMC6848093 DOI: 10.1038/s41598-019-52858-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Plant micro RNAs (miRNAs) control growth, development and stress tolerance but are comparatively unexplored in banana, whose cultivation is threatened by abiotic stress and nutrient deficiencies. In this study, a native Musa-miR397 precursor harboring 11 copper-responsive GTAC motifs in its promoter element was identified from banana genome. Musa-miR397 was significantly upregulated (8-10) fold in banana roots and leaves under copper deficiency, correlating with expression of root copper deficiency marker genes such as Musa-COPT and Musa-FRO2. Correspondingly, target laccases were significantly downregulated (>-2 fold), indicating miRNA-mediated silencing for Cu salvaging. No significant expression changes in the miR397-laccase module were observed under iron stress. Musa-miR397 was also significantly upregulated (>2 fold) under ABA, MV and heat treatments but downregulated under NaCl stress, indicating universal stress-responsiveness. Further, Musa-miR397 overexpression in banana significantly increased plant growth by 2-3 fold compared with wild-type but did not compromise tolerance towards Cu deficiency and NaCl stress. RNA-seq of transgenic and wild type plants revealed modulation in expression of 71 genes related to diverse aspects of growth and development, collectively promoting enhanced biomass. Summing up, our results not only portray Musa-miR397 as a candidate for enhancing plant biomass but also highlight it at the crossroads of growth-defense trade-offs.
Collapse
Affiliation(s)
- Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
98
|
Behr M, Guerriero G, Grima-Pettenati J, Baucher M. A Molecular Blueprint of Lignin Repression. TRENDS IN PLANT SCIENCE 2019; 24:1052-1064. [PMID: 31371222 DOI: 10.1016/j.tplants.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique (CNRS) Université Paul Sabatier Toulouse III (UPS), 31326 Castanet-Tolosan, France
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
99
|
Liu HF, Chen FB. Candidate genes in red pigment biosynthesis of a red-fleshed radish cultivar (Raphanus sativus L.) as revealed by transcriptome analysis. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Gu Z, Men S, Zhu J, Hao Q, Tong N, Liu ZA, Zhang H, Shu Q, Wang L. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia 'He Xie'. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4749-4762. [PMID: 31106836 PMCID: PMC6760318 DOI: 10.1093/jxb/erz245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/12/2019] [Indexed: 05/07/2023]
Abstract
Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Siqi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ningning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hechen Zhang
- Horticulture Institute of He’nan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|