51
|
Dogra V, Duan J, Lee KP, Kim C. Impaired PSII proteostasis triggers a UPR-like response in the var2 mutant of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3075-3088. [PMID: 30989223 PMCID: PMC6598079 DOI: 10.1093/jxb/erz151] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Cellular protein homeostasis (proteostasis) is maintained through the balance between de novo synthesis and proteolysis. The unfolded/misfolded protein response (UPR) that is triggered by stressed endoplasmic reticulum (ER) also plays an important role in proteostasis in both plants and animals. Although ER-triggered UPR has been extensively studied in plants, the molecular mechanisms underlying mitochondrial and chloroplastic UPRs are largely uncharacterized despite the fact that these organelles are sites of production of harmful reactive oxygen species (ROS), which damage proteins. In this study, we demonstrate that chloroplasts of the Arabidopsis yellow leaf variegation 2 (var2) mutant, which lacks the metalloprotease FtsH2, accumulate damaged chloroplast proteins and trigger a UPR-like response, namely the accumulation of a suite of chloroplast proteins involved in protein quality control (PQC). These PQC proteins include heat-shock proteins, chaperones, proteases, and ROS detoxifiers. Given that FtsH2 functions primarily in photosystem II proteostasis, the accumulation of PQC-related proteins may balance the FtsH2 deficiency. Moreover, the apparent up-regulation of the cognate transcripts indicates that the accumulation of PQC-related proteins in var2 is probably mediated by retrograde signaling, indicating the occurrence of a UPR-like response in var2.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Correspondence:
| |
Collapse
|
52
|
Mishra LS, Mielke K, Wagner R, Funk C. Reduced expression of the proteolytically inactive FtsH members has impacts on the Darwinian fitness of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2173-2184. [PMID: 30721974 PMCID: PMC6460958 DOI: 10.1093/jxb/erz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
FtsH (filamentation-temperature-sensitive protein H) proteases are a family of membrane-bound enzymes present in eubacteria, animals, and plants. Besides the 12 genes encoding proteolytically active members of the FtsH family in the genome of Arabidopsis, there are five genes coding for members that are assumed to be proteolytically inactive due to mutations in the protease domain; these are termed FtsHi (i for inactive). Despite their lack of proteolytic activity, these FtsHi members seem to be important for chloroplast and plant development as four out of five homozygous knockout-mutants of FtsHis are embryo-lethal. Here, we analysed the Darwinian fitness of weak homozygous (ftshi1,3,4) and heterozygous (ftshi/FTSHi2,4,5) mutants. We compared the growth and development of these mutants to their respective wild-type Arabidopsis plants under controlled laboratory conditions and in the field, and we also evaluated the photosynthetic efficiency by pulse-amplitude modulation fluorescence. Homologous genotypes were subjected to various stress conditions in a greenhouse and gene co-expression as well as phylogenetic analyses were performed. Analysis of the gene-expression network of the five FTSHi genes indicated common clusters with genes encoding FtsH12, OTP51, and methylase. Phylogenetic analyses pointed to a common evolution (and common disappearance in grasses and gymnosperms) of FtsH12 and multiple presumably proteolytically inactive FtsHi enzymes. Our data show that the FtsHi enzymes are highly important during the seedling stage and for Darwinian fitness analyses in semi-natural conditions.
Collapse
Affiliation(s)
| | - Kati Mielke
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Raik Wagner
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, Umeå, Sweden
- Correspondence:
| |
Collapse
|
53
|
Zhang X, Wang Y, Yan Y, Peng H, Long Y, Zhang Y, Jiang Z, Liu P, Zou C, Peng H, Pan G, Shen Y. Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation. BMC Genomics 2019; 20:159. [PMID: 30813896 PMCID: PMC6391841 DOI: 10.1186/s12864-019-5506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is one of the primary crops of genetic manipulation, which provides an excellent means of promoting stress resistance and increasing yield. However, the differences in induction and regeneration capacity of embryonic callus (EC) among various genotypes result in genotypic dependence in genetic transformation. RESULTS In this study, embryonic calli of two maize inbred lines with strong redifferentiation capacity and two lines with weak redifferentiation capability were separately subjected to transcriptome sequencing analysis during the early redifferentiation stages (stage I, 1-3 d; stage II, 4-6 d; stage III, 7-9 d) along with their corresponding controls. A total of ~ 654.72 million cDNA clean reads were yielded, and 62.64%~ 69.21% clean reads were mapped to the reference genome for each library. In comparison with the control, the numbers of differentially expressed genes (DEGs) for the four inbred lines identified in the three stages ranged from 1694 to 7193. By analyzing the common and specific DEGs of the four materials, we found that there were 321 upregulated genes and 386 downregulated genes identified in the high-regeneration lines (141 and DH40), whereas 611 upregulated genes and 500 downregulated genes were specifically expressed in the low-regeneration lines (ZYDH381-1 and DH3732). Analysis of the DEG expression patterns indicated a sharp change at stage I in both the high- and low-regeneration lines, which suggested that stage I constitutes a crucial period for EC regeneration. Notably, the specific common DEGs of 141 and DH40 were mainly associated with photosynthesis, porphyrin and chlorophyll metabolism, ribosomes, and plant hormone signal transduction. In contrast, the DEGs in ZYDH381-1 and DH3732 were mainly related to taurine and hypotaurine metabolism, nitrogen metabolism, fatty acid elongation, starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant circadian rhythm. More importantly, WOX genes, which have an ancestral role in embryo development in seed plants and promote the regeneration of transformed calli, were specifically upregulated in the two high-regeneration lines. CONCLUSIONS Our research contributes to the elucidation of molecular regulation during early redifferentiation in the maize embryonic callus.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanli Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuanyuan Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hua Peng
- Sichuan Tourism College, Chengdu, 610100 China
| | - Yun Long
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yinchao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhou Jiang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
54
|
De Mia M, Lemaire SD, Choquet Y, Wollman FA. Nitric Oxide Remodels the Photosynthetic Apparatus upon S-Starvation in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2019; 179:718-731. [PMID: 30530737 PMCID: PMC6426411 DOI: 10.1104/pp.18.01164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/20/2018] [Indexed: 05/02/2023]
Abstract
Many photosynthetic autotrophs have evolved responses that adjust their metabolism to limitations in nutrient availability. Here we report a detailed characterization of the remodeling of photosynthesis upon sulfur starvation under heterotrophy and photo-autotrophy in the green alga (Chlamydomonas reinhardtii). Photosynthetic inactivation under low light and darkness is achieved through specific degradation of Rubisco and cytochrome b 6 f and occurs only in the presence of reduced carbon in the medium. The process is likely regulated by nitric oxide (NO), which is produced 24 h after the onset of starvation, as detected with NO-sensitive fluorescence probes visualized by fluorescence microscopy. We provide pharmacological evidence that intracellular NO levels govern this degradation pathway: the addition of a NO scavenger decreases the rate of cytochrome b 6 f and Rubisco degradation, whereas NO donors accelerate the degradation. Based on our analysis of the relative contribution of the different NO synthesis pathways, we conclude that the NO2-dependent nitrate reductase-independent pathway is crucial for NO production under sulfur starvation. Our data argue for an active role for NO in the remodeling of thylakoid protein complexes upon sulfur starvation.
Collapse
Affiliation(s)
- Marcello De Mia
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stéphane D Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Yves Choquet
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
55
|
Yang X, Li Y, Qi M, Liu Y, Li T. Targeted Control of Chloroplast Quality to Improve Plant Acclimation: From Protein Import to Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:958. [PMID: 31402924 PMCID: PMC6670758 DOI: 10.3389/fpls.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 05/07/2023]
Abstract
The chloroplast is an important energy-producing organelle acting as an environmental sensor for the plant cell. The normal turnover of the entire damaged chloroplast and its specific components is required for efficient photosynthesis and other metabolic reactions under stress conditions. Nuclear-encoded proteins must be imported into the chloroplast through different membrane transport complexes, and the orderly protein import plays an important role in plant adaptive regulation. Under adverse environmental conditions, the damaged chloroplast or its specific components need to be degraded efficiently to ensure normal cell function. In this review, we discuss the molecular mechanism of protein import and degradation in the chloroplast. Specifically, quality control of chloroplast from protein import to degradation and associated regulatory pathways are discussed to better understand how plants adapt to environmental stress by fine-tuning chloroplast homeostasis, which will benefit breeding approaches to improve crop yield.
Collapse
|
56
|
Liu S, Zheng L, Jia J, Guo J, Zheng M, Zhao J, Shao J, Liu X, An L, Yu F, Qi Y. Chloroplast Translation Elongation Factor EF-Tu/SVR11 Is Involved in var2-Mediated Leaf Variegation and Leaf Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:295. [PMID: 30915096 PMCID: PMC6423176 DOI: 10.3389/fpls.2019.00295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 05/02/2023]
Abstract
Chloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in Arabidopsis, a set of suppressor mutants of yellow variegated (var2) have been identified. In this research, we reported the identification of another new var2 suppressor locus, SUPPRESSOR OF VARIEGATION11 (SVR11), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu. SVR11 is likely essential to chloroplast development and plant survival. GUS activity reveals that SVR11 is abundant in the juvenile leaf tissue, lateral roots, and root tips. Interestingly, we found that SVR11 and SVR9 together regulate leaf development, including leaf margin development and cotyledon venation patterns. These findings reinforce the notion that chloroplast translation state triggers retrograde signals regulate not only chloroplast development but also leaf development.
Collapse
|
57
|
Dogra V, Kim C. Singlet Oxygen Metabolism: From Genesis to Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:1640. [PMID: 31969891 PMCID: PMC6960194 DOI: 10.3389/fpls.2019.01640] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/21/2019] [Indexed: 05/03/2023]
Abstract
Singlet oxygen (1O2) is an excited state of molecular oxygen with an electron spin shift in the molecular orbitals, which is extremely unstable and highly reactive. In plants, 1O2 is primarily generated as a byproduct of photosynthesis in the photosystem II reaction center (PSII RC) and the light-harvesting antenna complex (LHC) in the grana core (GC). This occurs upon the absorption of light energy when the excited chlorophyll molecules in the PSII transfer the excess energy to molecular oxygen, thereby generating 1O2. As a potent oxidant, 1O2 promotes oxidative damage. However, at sub-lethal levels, it initiates chloroplast-to-nucleus retrograde signaling to contribute to plant stress responses, including acclimation and cell death. The thylakoid membranes comprise two spatially separated 1O2 sensors: β-carotene localized in the PSII RC in the GC and the nuclear-encoded chloroplast protein EXECUTER1 (EX1) residing in the non-appressed grana margin (GM). Finding EX1 in the GM suggests the existence of an additional source of 1O2 in the GM and the presence of two distinct 1O2-signaling pathways. In this review, we mainly discuss the genesis and impact of 1O2 in plant physiology.
Collapse
|
58
|
Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M, Savidor A, Chen J. The Chloroplast Envelope Protease FTSH11 - Interaction With CPN60 and Identification of Potential Substrates. FRONTIERS IN PLANT SCIENCE 2019; 10:428. [PMID: 31024594 PMCID: PMC6459962 DOI: 10.3389/fpls.2019.00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
FTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Zach Adam,
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alona Keren-Paz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mor Rozenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, United States
| |
Collapse
|
59
|
Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves. J Proteome Res 2018; 18:191-203. [PMID: 30359026 DOI: 10.1021/acs.jproteome.8b00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Hao Sun
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Xiao Li
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
60
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 PMCID: PMC6105748 DOI: 10.1016/j.envexpbot.2018.05.003] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
|
61
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 DOI: 10.1016/j.envexpbot.2018.05.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
62
|
Dogra V, Rochaix JD, Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. PLANT, CELL & ENVIRONMENT 2018; 41:1727-1738. [PMID: 29749057 DOI: 10.1111/pce.13332] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a prime cause of photo-damage of the photosynthetic apparatus. The chlorophyll molecules in the photosystem II reaction center and in the light-harvesting antenna complex are major sources of 1 O2 generation. It has been thought that the generation of 1 O2 mainly takes place in the appressed regions of the thylakoid membranes, namely, the grana core, where most of the active photosystem II complexes are localized. Apart from being a toxic molecule, new evidence suggests that 1 O2 significantly contributes to chloroplast-to-nucleus retrograde signalling that primes acclimation and cell death responses. Interestingly, recent studies reveal that chloroplasts operate two distinct 1 O2 -triggered retrograde signalling pathways in which β-carotene and a nuclear-encoded chloroplast protein EXECUTER1 play essential roles as signalling mediators. The coexistence of these mediators raises several questions: their crosstalk, source(s) of 1 O2 , downstream signalling components, and the perception and reaction mechanism of these mediators towards 1 O2 . In this review, we mainly discuss the molecular genetic basis of the mode of action of these two putative 1 O2 sensors and their corresponding retrograde signalling pathways. In addition, we also propose the possible existence of an alternative source of 1 O2 , which is spatially and functionally separated from the grana core.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
63
|
Watson SJ, Sowden RG, Jarvis P. Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2773-2781. [PMID: 29547945 DOI: 10.1093/jxb/ery053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/08/2018] [Indexed: 05/22/2023]
Abstract
The chloroplast houses photosynthesis in all green plants, and is therefore of fundamental importance to the viability and productivity of plants, ecosystems, and agriculture. Chloroplasts are, however, extremely vulnerable to environmental stress, on account of the inherent volatility of oxygenic photosynthesis. To counteract this sensitivity, sophisticated systems of chloroplast stress acclimation have evolved, and many of these involve broad proteome changes. Here, we provide an overview of the interlocking and mutually dependent mechanisms of abiotic stress-induced chloroplast proteome remodelling. Topics that are covered in this context include: nucleus to chloroplast signalling mechanisms, with a particular emphasis on the nuclear control of the chloroplast genome; chloroplast to nucleus signalling; and the roles of chloroplast pre-protein import regulation and chloroplast proteases.
Collapse
Affiliation(s)
- Samuel J Watson
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
64
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
65
|
Knopf RR, Adam Z. Lumenal exposed regions of the D1 protein of PSII are long enough to be degraded by the chloroplast Deg1 protease. Sci Rep 2018; 8:5230. [PMID: 29588501 PMCID: PMC5869739 DOI: 10.1038/s41598-018-23578-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Degradation of the D1 protein of photosystem II (PSII) reaction center is a pre-requisite for the repair cycle from photoinhibition. Two types of thylakoid proteases, FtsH and Deg, have been demonstrated to participate in this process. However, the location of the proteolytic sites of the lumenal Deg1 protease within its internal sphere raised the question whether the lumenal-exposed regions of D1 are indeed long enough to reach these sites. Implanting these regions into the stable GFP rendered it sensitive to the presence of Deg1 in vitro, demonstrating that the flexible regions of D1 that protrude into the lumen can penetrate through the three side-openings of Deg1 and reach its internal proteolytic sites. This mode of action, facilitating cooperation between proteases on both sides of the thylakoid membranes, should be applicable to the degradation of other integral thylakoid membrane proteins as well.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.,Evogene Ltd., Rehovot, 76120, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
66
|
Moreno JC, Martínez-Jaime S, Schwartzmann J, Karcher D, Tillich M, Graf A, Bock R. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates. PLANT PHYSIOLOGY 2018; 176:1485-1508. [PMID: 29229697 PMCID: PMC5813558 DOI: 10.1104/pp.17.01635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 05/20/2023]
Abstract
The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Silvia Martínez-Jaime
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
67
|
Rühle T, Reiter B, Leister D. Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:55. [PMID: 29472935 PMCID: PMC5810273 DOI: 10.3389/fpls.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 05/12/2023]
Abstract
Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
68
|
Kato Y, Sakamoto W. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:855. [PMID: 29973948 PMCID: PMC6019477 DOI: 10.3389/fpls.2018.00855] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis in the thylakoid membranes is dependent on protein quality control mechanisms, which are necessary to remove photodamaged and misfolded proteins. An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a hetero-hexameric complex consisting of four FtsH subunits, which are divided into two types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes and quality control in the photosystem II repair cycle. Furthermore, the involvement of FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling mechanism has been suggested recently. FtsH is also involved in the degradation and assembly of several protein complexes in the photosynthetic electron-transport pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid biogenesis and describe our current understanding of the D1 degradation processes in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH protease activity, which suggest the flexible oligomerization capability of FtsH in the chloroplasts of seed plants.
Collapse
|
69
|
Tan T, Sun Y, Luo S, Zhang C, Zhou H, Lin H. Efficient modulation of photosynthetic apparatus confers desiccation tolerance in the resurrection plant Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2017; 58:1976-1990. [PMID: 29036694 DOI: 10.1093/pcp/pcx140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Boea hygrometrica (B. hygrometrica) can tolerate severe desiccation and resume photosynthetic activity rapidly upon water availability. However, little is known about the mechanisms by which B. hygrometrica adapts to dehydration and resumes competence upon rehydration. Here we determine how B. hygrometrica deals with oxidative stress, excessive excitation/electron pressures as well as photosynthetic apparatus modulation during dehydration/rehydration. By measuring ROS generation and scavenging efficiency, we found that B. hygrometrica possesses efficient strategies to maintain cellular redox homeostasis. Transmission electron microscopy (TEM) analysis revealed a remarkable alteration of chloroplast architecture and plastoglobules (PGs) accumulation during dehydration/rehydration. Pulse-amplitude modulated (PAM) chlorophyll fluorescence measurements, P700 redox assay as well as chlorophyll fluorescence emission spectra analysis on leaves of B. hygrometrica during dehydration/rehydration were also performed. Results showed that the photochemical activity of PSII as well as photoprotective energy dissipation in PSII undergo gradual inactivation/activation during dehydration/rehydration in B. hygrometrica; PSI activity is relatively induced upon water deficit, and dehydration leads to physical interaction between PSI and LHCII. Furthermore, blue-native polyacrylamide gel electrophoresis (BN-PAGE) and immunoblot analysis revealed that the protein abundance of light harvesting complexes decrease markedly along with internal water deficit to restrict light absorption and attenuate electron transfer, resulting in limited light excitation and repressed photosynthesis. In contrast, many thylakoid proteins remain at a basal level even after full dehydration. Taken together, our study demonstrated that efficient modulation of cellular redox homeostasis and photosynthetic activity confers desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shishuai Luo
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
70
|
Saroussi S, Sanz-Luque E, Kim RG, Grossman AR. Nutrient scavenging and energy management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:114-122. [PMID: 28692856 DOI: 10.1016/j.pbi.2017.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/08/2017] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have evolved to modulate their metabolism to accommodate the highly dynamic light and nutrient conditions in nature. In this review we discuss ways in which the green alga Chlamydomonas reinhardtii acclimates to nitrogen and sulfur deprivation, conditions that would limit the anabolic use of excitation energy because of a markedly reduced capacity for cell growth and division. Major aspects of this acclimation process are stringently regulated and involve scavenging the limited nutrient from internal and external sources, and the redirection of fixed carbon toward energy storage (e.g. starch, oil). However, photosynthetic organisms have also evolved mechanisms to dissipate excess absorbed light energy, and to eliminate potentially dangerous energetic electrons through the reduction of O2 and H+ to H2O; this reduction can occur both through photosynthetic electron transport (e.g. Mehler reaction, chlororespiration) and mitochondrial respiration. Furthermore, algal cells likely exploit other energy management pathways that are currently not linked to nutrient limitation responses or that remain to be identified.
Collapse
Affiliation(s)
- Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Rick G Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States; Department of Biology, Stanford University, Stanford, CA 94305-5020, United States
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States.
| |
Collapse
|
71
|
Cantrell M, Peers G. A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions. PLoS One 2017. [PMID: 28644828 PMCID: PMC5482440 DOI: 10.1371/journal.pone.0179395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
72
|
Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2199-2218. [PMID: 28369470 PMCID: PMC5447895 DOI: 10.1093/jxb/erx066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mercedes Diez
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
73
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
74
|
Bujaldon S, Kodama N, Rappaport F, Subramanyam R, de Vitry C, Takahashi Y, Wollman FA. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:115-130. [PMID: 27742488 DOI: 10.1016/j.molp.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 05/29/2023]
Abstract
The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.
Collapse
Affiliation(s)
- Sandrine Bujaldon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Natsumi Kodama
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|
75
|
Tan T, Sun Y, Peng X, Wu G, Bao F, He Y, Zhou H, Lin H. ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1599. [PMID: 28955377 PMCID: PMC5601040 DOI: 10.3389/fpls.2017.01599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/31/2017] [Indexed: 05/08/2023]
Abstract
Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is conserved among land plants; however, its roles in non-seed plants under stress conditions have not been well characterized. In this study, we report that ABI3 is involved in freezing tolerance regulation during cold acclimation at least in part through ABA signaling pathway in moss Physcomitrella patens (P. patens). Deletion of PpABI3 (Δabi3-1) compromises the induction of genes related to cold response and antioxidative protection, resulting in reduced accumulation of cryoprotectants and antioxidants. In addition, photosystem II (PSII) activity is repressed in Δabi3-1 during cold acclimation partially due to alternations of photosynthetic protein complexes compositions. The gametophyte of Δabi3-1 displays severe growth inhibition and developmental deficiency under low temperature condition, while two independent complementary lines display phenotypes similar to that of wild-type P. patens (WT). Furthermore, the freezing tolerance of Δabi3-1 was significantly affected by deletion of PpABI3. These data revealed that PpABI3 plays an important role in low temperature response and freezing tolerance in P. patens.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xingji Peng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Fang Bao
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Yikun He
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- *Correspondence: Huapeng Zhou
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- Honghui Lin
| |
Collapse
|
76
|
Theis J, Schroda M. Revisiting the photosystem II repair cycle. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218587. [PMID: 27494214 PMCID: PMC5058467 DOI: 10.1080/15592324.2016.1218587] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
- CONTACT Michael Schroda Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich-Str. 70, 67663 Kaiserslautern, Germany
| |
Collapse
|
77
|
Nishimura K, Kato Y, Sakamoto W. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. PLANT PHYSIOLOGY 2016; 171:2280-93. [PMID: 27288365 PMCID: PMC4972267 DOI: 10.1104/pp.16.00330] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
78
|
Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, Leister D, Aro EM. Thylakoid-Bound FtsH Proteins Facilitate Proper Biosynthesis of Photosystem I. PLANT PHYSIOLOGY 2016; 171:1333-43. [PMID: 27208291 PMCID: PMC4902603 DOI: 10.1104/pp.16.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Luca Tadini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Sanna Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Dario Leister
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| |
Collapse
|
79
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
80
|
Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 2016; 32:55. [DOI: 10.1007/s11274-016-2008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
81
|
Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S, Wollman FA, Schroda M. TEF30 Interacts with Photosystem II Monomers and Is Involved in the Repair of Photodamaged Photosystem II in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:821-40. [PMID: 26644506 PMCID: PMC4734564 DOI: 10.1104/pp.15.01458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 05/03/2023]
Abstract
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.
Collapse
Affiliation(s)
- Ligia Segatto Muranaka
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Mark Rütgers
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Sandrine Bujaldon
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Anja Heublein
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Stefan Geimer
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Francis-André Wollman
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| |
Collapse
|
82
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
83
|
Kato Y, Ozawa SI, Takahashi Y, Sakamoto W. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. PHOTOSYNTHESIS RESEARCH 2015; 126:409-16. [PMID: 25893898 DOI: 10.1007/s11120-015-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 05/26/2023]
Abstract
Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
84
|
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E. Relevance of nutrient media composition for hydrogen production in Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2015; 125:395-406. [PMID: 25952745 DOI: 10.1007/s11120-015-0152-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 05/23/2023]
Abstract
Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.
Collapse
Affiliation(s)
- David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071, Córdoba, Spain,
| | | | | |
Collapse
|
85
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
86
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
87
|
Charuvi D, Nevo R, Shimoni E, Naveh L, Zia A, Adam Z, Farrant JM, Kirchhoff H, Reich Z. Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. PLANT PHYSIOLOGY 2015; 167:1554-65. [PMID: 25713340 PMCID: PMC4378169 DOI: 10.1104/pp.114.255794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 05/18/2023]
Abstract
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.
Collapse
Affiliation(s)
- Dana Charuvi
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Reinat Nevo
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Eyal Shimoni
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Leah Naveh
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ahmad Zia
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Zach Adam
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Jill M Farrant
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Helmut Kirchhoff
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ziv Reich
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| |
Collapse
|
88
|
Song Q, Wang S, Zhang G, Li Y, Li Z, Guo J, Niu N, Wang J, Ma S. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:669. [PMID: 26379693 PMCID: PMC4549638 DOI: 10.3389/fpls.2015.00669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.
Collapse
Affiliation(s)
| | | | - Gaisheng Zhang
- *Correspondence: Gaisheng Zhang, College of Agronomy, Northwest Agriculture and Forestry University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China,
| | | | | | | | | | | | | |
Collapse
|
89
|
Li T, Yun Z, Zhang D, Yang C, Zhu H, Jiang Y, Duan X. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. FRONTIERS IN PLANT SCIENCE 2015; 6:845. [PMID: 26528309 PMCID: PMC4606070 DOI: 10.3389/fpls.2015.00845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 05/03/2023]
Abstract
To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Dandan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Xuewu Duan
| |
Collapse
|
90
|
Hojka M, Thiele W, Tóth SZ, Lein W, Bock R, Schöttler MA. Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex. PLANT PHYSIOLOGY 2014; 165:1632-1646. [PMID: 24963068 PMCID: PMC4119044 DOI: 10.1104/pp.114.243741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program.
Collapse
Affiliation(s)
- Marta Hojka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfgang Lein
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
91
|
Degradation of organelles or specific organelle components via selective autophagy in plant cells. Int J Mol Sci 2014; 15:7624-38. [PMID: 24802874 PMCID: PMC4057695 DOI: 10.3390/ijms15057624] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a cellular mechanism dedicated to the degradation and recycling of unnecessary cytosolic components by their removal to the lytic compartment of the cell (the vacuole in plants). Autophagy is generally induced by stresses causing energy deprivation and its operation occurs by special vesicles, termed autophagosomes. Autophagy also operates in a selective manner, recycling specific components, such as organelles, protein aggregates or even specific proteins, and selective autophagy is implicated in both cellular housekeeping and response to stresses. In plants, selective autophagy has recently been shown to degrade mitochondria, plastids and peroxisomes, or organelle components such as the endoplasmic-reticulum (ER) membrane and chloroplast-derived proteins such as Rubisco. This ability places selective-autophagy as a major factor in cellular steady-state maintenance, both under stress and favorable environmental conditions. Here we review the recent advances documented in plants for this cellular process and further discuss its impact on plant physiology.
Collapse
|
92
|
Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:353-72. [PMID: 24474630 PMCID: PMC3963581 DOI: 10.1105/tpc.113.120121] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
Collapse
Affiliation(s)
- Lili Wei
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Benoit Derrien
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Arnaud Gautier
- École Normale Supérieure,
Département de Chimie, Unité Mixte de Recherche, CNRS–Ecole
Normale Supérieure–Université Pierre et Marie Curie 8640,
75231 Paris Cedex 05, France
| | - Laura Houille-Vernes
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alix Boulouis
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Denis Saint-Marcoux
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alizée Malnoë
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Fabrice Rappaport
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| |
Collapse
|