51
|
Identification of a 119-bp Promoter of the Maize Sulfite Oxidase Gene ( ZmSO) That Confers High-Level Gene Expression and ABA or Drought Inducibility in Transgenic Plants. Int J Mol Sci 2019; 20:ijms20133326. [PMID: 31284569 PMCID: PMC6651508 DOI: 10.3390/ijms20133326] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Drought adversely affects crop growth and yields. The cloning and characterization of drought- or abscisic acid (ABA)-inducible promoters is of great significance for their utilization in the genetic improvement of crop resistance. Our previous studies have shown that maize sulfite oxidase (SO) has a sulfite-oxidizing function and is involved in the drought stress response. However, the promoter of the maize SO gene has not yet been characterized. In this study, the promoter (ZmSOPro, 1194 bp upstream region of the translation initiation site) was isolated from the maize genome. The in-silico analysis of the ZmSOPro promoter identified several cis-elements responsive to the phytohormone ABA and drought stress such as ABA-responsive element (ABRE) and MYB binding site (MBS), besides a number of core cis-acting elements, such as TATA-box and CAAT-box. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmSO. The ZmSOPro activity was detected by β-glucuronidase (GUS) staining at nearly all developmental stages and in most plant organs, except for the roots in transgenic Arabidopsis. Moreover, its activity was significantly induced by ABA and drought stress. The 5′-deletion mutant analysis of the ZmSOPro in tobacco plants revealed that a 119-bp fragment in the ZmSOPro (upstream of the transcription start site) is a minimal region, which is required for its high-level expression. Moreover, the minimal ZmSOPro was significantly activated by ABA or drought stress in transgenic plants. Further mutant analysis indicated that the MBS element in the minimal ZmSOPro region (119 bp upstream of the transcription start site) is responsible for ABA and drought-stress induced expression. These results improve our understanding of the transcriptional regulation mechanism of the ZmSO gene, and the characterized 119-bp promoter fragment could be an ideal candidate for drought-tolerant gene engineering in both monocot and dicot crops.
Collapse
|
52
|
Chao Z, Yin-Hua S, De-Xin D, Guang-Yue L, Yue-Ting C, Nan H, Hui Z, Zhong-Ran D, Feng L, Jing S, Yong-Dong W. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum. CHEMOSPHERE 2019; 224:316-323. [PMID: 30826701 DOI: 10.1016/j.chemosphere.2019.01.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Aspergillus niger (A. niger) and Syngonium podophyllum (S. podophyllum) have been used for wastewater treatment, and have exhibited a promising application in recent years. To determine the effects of A. niger on uranium enrichment and uranium stress antagonism of S. podophyllum, the S. podophyllum-A. niger combined system was established, and hydroponic remediation experiments were carried out with uranium-containing wastewater. The results revealed that the bioaugmentation of A. niger could increase the biomass of S. podophyllum by 5-7%, reverse the process of U(VI) reduction induced by S. podophyllum, and increase the bioconcentration factor (BCF) and translocation factor (TF) of S. podophyllum to uranium by 35-41 and 0.01-0.06, respectively, thereby improving the reduction of uranium in wastewater. Moreover, A. niger could promote the cell wall immobilization and the subcellular compartmentalization of uranium in the root of S. podophyllum, reduce the phytotoxicity of uranium entering root cells, and inhibit the calcium efflux from root cells, thereby withdrawing the stress of uranium on S. podophyllum.
Collapse
Affiliation(s)
- Zou Chao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Sha Yin-Hua
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Ding De-Xin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Li Guang-Yue
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Cui Yue-Ting
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Hu Nan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Zhang Hui
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Dai Zhong-Ran
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Li Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Sun Jing
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China
| | - Wang Yong-Dong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
53
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
54
|
Guo W, Zhang F, Bao A, You Q, Li Z, Chen J, Cheng Y, Zhao W, Shen X, Zhou X, Jiao Y. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. MOLECULAR PLANT PATHOLOGY 2019; 20:270-286. [PMID: 30264924 PMCID: PMC6637870 DOI: 10.1111/mpp.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Feng Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Aili Bao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Qingbo You
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Zeyu Li
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Jingsheng Chen
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Yihui Cheng
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Wei Zhao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinjie Shen
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Yongqing Jiao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
- Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenan450002China
| |
Collapse
|
55
|
Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C. Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:165-174. [PMID: 32172758 DOI: 10.1071/fp18219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.
Collapse
Affiliation(s)
- Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaoran Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengmeng Tang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kai Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
56
|
Zhang Y, Wang C, Xu H, Shi X, Zhen W, Hu Z, Huang J, Zheng Y, Huang P, Zhang KX, Xiao X, Hao X, Wang X, Zhou C, Wang G, Li C, Zheng L. HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. FRONTIERS IN PLANT SCIENCE 2019; 10:1490. [PMID: 31850011 PMCID: PMC6892842 DOI: 10.3389/fpls.2019.01490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Light is essential for plant organogenesis and development. Light-regulated shoot morphogenesis has been extensively studied; however, the mechanisms by which plant roots perceive and respond to aboveground light are largely unknown, particularly because the roots of most terrestrial plants are usually located underground in darkness. To mimic natural root growth conditions, we developed a root-covered system (RCS) in which the shoots were illuminated and the plant roots could be either exposed to light or cultivated in darkness. Using the RCS, we observed that root growth of wild-type plants was significantly promoted when the roots were in darkness, whereas it was inhibited by direct light exposure. This growth change seems to be regulated by ELONGATED HYPOCOTYL 5 (HY5), a master regulator of photomorphogenesis. Light was found to regulate HY5 expression in the roots, while a HY5 deficiency partially abolished the inhibition of growth in roots directly exposed to light, suggesting that HY5 expression is induced by direct light exposure and inhibits root growth. However, no differences in HY5 expression were observed between illuminated and dark-grown cop1 roots, indicating that HY5 may be regulated by COP1-mediated proteasome degradation. We confirmed the crucial role of HY5 in regulating root development in response to light under soil-grown conditions. A transcriptomic analysis revealed that light controls the expression of numerous genes involved in phytohormone signaling, stress adaptation, and metabolic processes in a HY5-dependent manner. In combination with the results of the flavonol quantification and exogenous quercetin application, these findings suggested that HY5 regulates the root response to light through a complex network that integrates flavonol biosynthesis and reactive oxygen species signaling. Collectively, our results indicate that HY5 is a master regulator of root photomorphogenesis.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chunfei Wang
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Xu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Weibo Zhen
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhubing Hu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ping Huang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| |
Collapse
|
57
|
Dong H, Bai L, Zhang Y, Zhang G, Mao Y, Min L, Xiang F, Qian D, Zhu X, Song CP. Modulation of Guard Cell Turgor and Drought Tolerance by a Peroxisomal Acetate-Malate Shunt. MOLECULAR PLANT 2018; 11:1278-1291. [PMID: 30130577 DOI: 10.1016/j.molp.2018.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. Here, we describe an Arabidopsis mutant, bzu1, isolated in a screen for elevated leaf temperature in response to drought stress, which displays smaller stomatal pores and higher drought resistance than wild-type plants. BZU1 encodes a known acetyl-coenzyme A synthetase, ACN1, which acts in the first step of a metabolic pathway converting acetate to malate in peroxisomes. We showed that BZU1/ACN1-mediated acetate-to-malate conversion provides a shunt that plays an important role in osmoregulation of stomatal turgor. We found that the smaller stomatal pores in the bzu1 mutant are a consequence of reduced accumulation of malate, which acts as an osmoticum and/or a signaling molecule in the control of turgor pressure within guard cells, and these results provided new genetic evidence for malate-regulated stomatal movement. Collectively, our results indicate that a peroxisomal BZU1/ACN1-mediated acetate-malate shunt regulates drought resistance by controlling the turgor pressure of guard cells in Arabidopsis.
Collapse
Affiliation(s)
- Huan Dong
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yu Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yanqing Mao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Lulu Min
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Fuyou Xiang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Dongdong Qian
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaohong Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
| |
Collapse
|
58
|
Wei Z, Li J. Receptor-like protein kinases: Key regulators controlling root hair development in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:841-850. [PMID: 29727051 DOI: 10.1111/jipb.12663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/27/2018] [Indexed: 05/29/2023]
Abstract
Root hairs are tubular outgrowths specifically differentiated from epidermal cells in a differentiation zone. The formation of root hairs greatly increases the surface area of a root and maximizes its ability to absorb water and inorganic nutrients essential for plant growth and development. Root hair development is strictly regulated by intracellular and intercellular signal communications. Cell surface-localized receptor-like protein kinases (RLKs) have been shown to be important components in these cellular processes. In this review, the functions of a number of key RLKs in regulating Arabidopsis root hair development are discussed, especially those involved in root epidermal cell fate determination and root hair tip growth.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
59
|
Richter J, Watson JM, Stasnik P, Borowska M, Neuhold J, Berger M, Stolt-Bergner P, Schoft V, Hauser MT. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci Rep 2018; 8:12182. [PMID: 30111865 PMCID: PMC6093868 DOI: 10.1038/s41598-018-30711-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISPR/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously. We introduce single mutations within and deletions between MDS genes as well as knock-outs of the whole 11 kb gene cluster. The large MDS cluster deletion was inherited in up to 25% of plants lacking the CRISPR/Cas9 construct in the T2 generation. In contrast to described phenotypes of already characterized CrRLK1L mutants, quadruple mds knock-outs were fully fertile, developed normal root hairs and trichomes and responded to pharmacological inhibition of cellulose biosynthesis similar to wildtype. Recently, we demonstrated the role of four CrRLK1L in growth adaptation to metal ion stress. Here we show the involvement of MDS genes in response to Ni2+ during hypocotyl elongation and to Cd2+ and Zn2+ during root growth. Our finding supports the model of an organ specific network of positively and negatively acting CrRLK1Ls.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - James Matthew Watson
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Peter Stasnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Monika Borowska
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Jana Neuhold
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Matthias Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Vera Schoft
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
60
|
Kwon T, Sparks JA, Liao F, Blancaflor EB. ERULUS Is a Plasma Membrane-Localized Receptor-Like Kinase That Specifies Root Hair Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations. THE PLANT CELL 2018; 30:1173-1177. [PMID: 29802213 PMCID: PMC6048781 DOI: 10.1105/tpc.18.00316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 05/11/2023]
Affiliation(s)
- Taegun Kwon
- Noble Research Institute Ardmore, Oklahoma 73401
| | | | - Fuqi Liao
- Noble Research Institute Ardmore, Oklahoma 73401
| | | |
Collapse
|
61
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
62
|
Zhou A, Liu E, Ma H, Feng S, Gong S, Wang J. NaCl-induced expression of AtVHA-c5 gene in the roots plays a role in response of Arabidopsis to salt stress. PLANT CELL REPORTS 2018; 37:443-452. [PMID: 29307003 DOI: 10.1007/s00299-017-2241-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Suppression of AtVHA-c5 expression results in changes in H+ and Na+ fluxes of roots, and increase sensitivity to salt in Arabidopsis. Vacuolar-type H+-ATPase (V-ATPase), a multisubunit endomembrane proton pump, is essential in plant growth and response to environmental stresses. In the present study, the function of Arabidopsis V-ATPase subunit c5 (AtVHA-c5) gene in response to salt stress was investigated. Subcellular localization showed that AtVHA-c5 was mainly localized to endosomes and the vacuolar membrane in Arabidopsis. The analysis of quantitative real-time PCR showed that expression of AtVHA-c5 gene was induced by NaCl stress. Histochemical analysis revealed that AtVHA-c5 was expressed in the root epidermis of untreated Arabidopsis and in the whole root elongation zone after NaCl treatment. Phenotypic analysis showed that the atvha-c5 mutant is sensitive to high NaCl as compared to the wild type. The non-invasive micro-test technology measurement demonstrated that the net H+ and Na+ efflux in the root elongation zone of the atvha-c5 mutant was weaker than that of the wild type under NaCl treatment, suggesting that H+ and Na+ fluxes in atvha-c5 roots are impaired under NaCl stress. Moreover, compared to the wild type, the expression of AtSOS1 (salt overly sensitive 1) and AtAHA1 (plasma membrane H+-ATPase 1) were down-regulated in atvha-c5 roots under NaCl stress. Overall, our results indicate that AtVHA-c5 plays a role in Arabidopsis root response to NaCl stress by influencing H+ and Na+ fluxes.
Collapse
Affiliation(s)
- Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Enhui Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Hongping Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
63
|
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol 2018; 28:722-732.e6. [PMID: 29478854 DOI: 10.1016/j.cub.2018.01.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca2+-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H+-ATPases 1/2, regulators of apoplastic pH. Furthermore, H+-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gordon Breen
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Malgorzata Zdanio
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, ERL3559 CNRS, Saclay Plant Sciences, Route de St Cyr, 78026 Versailles, France
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Jaesung Oh
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems Group, Department of Molecular Biotechnology, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Technological Educational Institute of Crete, Stavromenos PC 71410, Heraklion, Crete, Greece.
| |
Collapse
|
64
|
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu HM, Dresselhaus T, Xiao J, Cheung AY, Qu LJ. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 2017; 358:1596-1600. [PMID: 29242234 DOI: 10.1126/science.aao3642] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Tabata Bergonci
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Yuling Zhao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Shuo Du
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Xingju Luo
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Ruan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Liliana E García-Valencia
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Daniel S Moura
- Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
65
|
Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser MT. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:1554. [PMID: 28936224 PMCID: PMC5594065 DOI: 10.3389/fpls.2017.01554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling platform between the extracellular environment and the intracellular physiology. Ions of heavy metals and trace elements, summarized to metal ions, bind to cell wall components, trigger their modification and provoke growth responses. To examine if metal ions trigger cell wall sensing receptor like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) family we employed a molecular genetic approach. Quantitative transcription analyses show that HERCULES1 (HERK1), THESEUS1 (THE1), and FERONIA (FER) were differently regulated by cadmium (Cd), nickel (Ni), and lead (Pb). Growth responses were quantified for roots and etiolated hypocotyls of related mutants and overexpressors on Cd, copper (Cu), Ni, Pb, and zinc (Zn) and revealed a complex pattern of gene specific, overlapping and antagonistic responses. Root growth was often inversely affected to hypocotyl elongation. For example, both HERK genes seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more tolerant while the gain of function mutants were hypersensitive indicating that THE1 is mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs function as receptor for rapid alkalinization factors (RALFs) was tested with the indicator bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing media, the etiolated hypocotyls alkalized the media which is consistent with the already shorter hypocotyl of fer-4. No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Marie Ploderer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| |
Collapse
|
66
|
Biological function analysis of the phosphorylation sites for Arabidopsis CAP1. Sci Bull (Beijing) 2017; 62:761-763. [PMID: 36659270 DOI: 10.1016/j.scib.2017.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
|
67
|
The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 2017; 13:e1006832. [PMID: 28604776 PMCID: PMC5484538 DOI: 10.1371/journal.pgen.1006832] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 06/26/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues. Plants are constantly exposed to external stresses of biotic and abiotic nature, as well as internal stresses, resulting from growth and mechanical tension. Feedback information about the integrity of the cell wall can enable the plant to perceive such stresses, and respond adequately. Plants are known to perceive signals from their environment through receptor kinases at the plant cell surface. Here, we reveal that the Arabidopsis thaliana receptor kinase MIK2 regulates responses to cell wall perturbation. Moreover, we find that MIK2 controls root growth angle, modulates cell wall structure in the root tip, contributes to salt stress tolerance, and is required for resistance against a root-infecting pathogen. Our data suggest that MIK2 is involved in sensing cell wall perturbations in plants, whereby it allows the plant to cope with a diverse range of environmental stresses. These data provide an important step forward in our understanding of the mechanisms plants deploy to sense internal and external danger.
Collapse
|
68
|
Sun L, Di D, Li G, Kronzucker HJ, Shi W. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:94-104. [PMID: 28282528 DOI: 10.1016/j.jplph.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/24/2023]
Abstract
Ammonium (NH4+) is the predominant nitrogen (N) source in many natural and agricultural ecosystems, including flooded rice fields. While rice is known as an NH4+-tolerant species, it nevertheless suffers NH4+ toxicity at elevated soil concentrations. NH4+ excess rapidly leads to the disturbance of various physiological processes that ultimately inhibit shoot and root growth. However, the global transcriptomic response to NH4+ stress in rice has not been examined. In this study, we mapped the spatio-temporal specificity of gene expression profiles in rice under excess NH4+ and the changes in gene expression in root and shoot at various time points by RNA-Seq (Quantification) using Illumina HiSeqTM 2000. By comparative analysis, 307 and 675 genes were found to be up-regulated after 4h and 12h of NH4+ exposure in the root, respectively. In the shoot, 167 genes were up-regulated at 4h, compared with 320 at 12h. According to KEGG analysis, up-regulated DEGs mainly participate in phenylpropanoid (such as flavonoid) and amino acid (such as proline, cysteine, and methionine) metabolism, which is believed to improve NH4+ stress tolerance through adjustment of energy metabolism in the shoot, while defense and signaling pathways, guiding whole-plant acclimation, play the leading role in the root. We furthermore critically assessed the roles of key phytohormones, and found abscisic acid (ABA) and ethylene (ET) to be the major regulatory molecules responding to excess NH4+ and activating the MAPK (mitogen-activated protein kinase) signal-transduction pathway. Moreover, we found up-regulated hormone-associated genes are involved in regulating flavonoid biosynthesis and are regulated by tissue flavonoid accumulation.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
69
|
Jacquot A, Li Z, Gojon A, Schulze W, Lejay L. Post-translational regulation of nitrogen transporters in plants and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2567-2580. [PMID: 28369438 DOI: 10.1093/jxb/erx073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For microorganisms and plants, nitrate and ammonium are the main nitrogen sources and they are also important signaling molecules controlling several aspects of metabolism and development. Over the past decade, numerous studies revealed that nitrogen transporters are strongly regulated at the transcriptional level. However, more and more reports are now showing that nitrate and ammonium transporters are also subjected to post-translational regulations in response to nitrogen availability. Phosphorylation is so far the most well studied post-translational modification for these transporters and it affects both the regulation of nitrogen uptake and nitrogen sensing. For example, in Arabidopsis thaliana, phosphorylation was shown to activate the sensing function of the root nitrate transporter NRT1.1 and to switch the transport affinity. Also, for ammonium transporters, a phosphorylation-dependent activation/inactivation mechanism was elucidated in recent years in both plants and microorganisms. However, despite the fact that these regulatory mechanisms are starting to be thoroughly described, the signaling pathways involved and their action on nitrogen transporters remain largely unknown. In this review, we highlight the inorganic nitrogen transporters regulated at the post-translational level and we compare the known mechanisms in plants and microorganisms. We then discuss how these mechanisms could contribute to the regulation of nitrogen uptake and/or nitrogen sensing.
Collapse
Affiliation(s)
- Aurore Jacquot
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier cedex, France
| | - Zhi Li
- Institute of Physiology and Biotechnology of plants, Plant Systems Biology, University of Hohenheim, Garbenstrasse 30, D-70593, Stuttgart, Germany
| | - Alain Gojon
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier cedex, France
| | - Waltraud Schulze
- Institute of Physiology and Biotechnology of plants, Plant Systems Biology, University of Hohenheim, Garbenstrasse 30, D-70593, Stuttgart, Germany
| | - Laurence Lejay
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier cedex, France
| |
Collapse
|
70
|
Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2581-2592. [PMID: 28369490 DOI: 10.1093/jxb/erx086] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ammonium is a major inorganic nitrogen source for plants. At low external supplies, ammonium promotes plant growth, while at high external supplies it causes toxicity. Ammonium triggers rapid changes in cytosolic pH, in gene expression, and in post-translational modifications of proteins, leading to apoplastic acidification, co-ordinated ammonium uptake, enhanced ammonium assimilation, altered oxidative and phytohormonal status, and reshaped root system architecture. Some of these responses are dependent on AMT-type ammonium transporters and are not linked to a nutritional effect, indicating that ammonium is perceived as a signaling molecule by plant cells. This review summarizes current knowledge of ammonium-triggered physiological and morphological responses and highlights existing and putative mechanisms mediating ammonium signaling and sensing events in plants. We put forward the hypothesis that sensing of ammonium takes place at multiple steps along its transport, storage, and assimilation pathways.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
71
|
Li K, Yang F, Zhang G, Song S, Li Y, Ren D, Miao Y, Song CP. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade. PLANT PHYSIOLOGY 2017; 173:1391-1408. [PMID: 27913741 PMCID: PMC5291029 DOI: 10.1104/pp.16.01386] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1 The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response.
Collapse
Affiliation(s)
- Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Fengbo Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuan Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Dongtao Ren
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| |
Collapse
|
72
|
Schoenaers S, Balcerowicz D, Costa A, Vissenberg K. The Kinase ERULUS Controls Pollen Tube Targeting and Growth in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1942. [PMID: 29184563 PMCID: PMC5694544 DOI: 10.3389/fpls.2017.01942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/27/2017] [Indexed: 05/09/2023]
Abstract
In this paper, we describe the role of the receptor-like kinase ERULUS (ERU) in PT growth of Arabidopsis thaliana. In silico analysis and transcriptional reporter lines revealed that ERU is only expressed in pollen and root hairs (RHs), making it a tip growth-specific kinase. Deviations from Mendelian inheritance were observed in the offspring of self-pollinated heterozygous eru plants. We found that in vivo eru PT targeting was disturbed, providing a possible explanation for the observed decrease in eru fertilization competitiveness. Extracellular calcium perception and intracellular calcium dynamics lie at the basis of in vivo pollen tube (PT) tip growth and guidance. In vitro, ERU loss-of-function lines displayed no obvious PT phenotype, unless grown on low extracellular calcium ([Ca2+]ext) medium. When grown at 12 the normal [Ca2+]ext, eru PTs grew 37% slower relative to WT PTs. Visualization of cytoplasmic [Ca2+]cyt oscillations using the Yellow Cameleon 3.6 (YC3.6) calcium sensor showed that, unlike in WT PTs, eru apical [Ca2+]cyt oscillations occur at a lower frequency when grown at lower [Ca2+]ext, consistent with the observed reduced growth velocity. Our results show that the tip growth-specific kinase ERULUS is involved in regulating Ca2+-dependent PT growth, and most importantly, fertilization efficiency through successful PT targeting to the ovules.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Technological Educational Institute of Crete: University of Applied Sciences, Crete, Greece
- *Correspondence: Kris Vissenberg,
| |
Collapse
|
73
|
Pu CX, Han YF, Zhu S, Song FY, Zhao Y, Wang CY, Zhang YC, Yang Q, Wang J, Bu SL, Sun LJ, Zhang SW, Zhang SQ, Sun DY, Sun Y. The Rice Receptor-Like Kinases DWARF AND RUNTISH SPIKELET1 and 2 Repress Cell Death and Affect Sugar Utilization during Reproductive Development. THE PLANT CELL 2017; 29:70-89. [PMID: 28082384 PMCID: PMC5304344 DOI: 10.1105/tpc.16.00218] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/19/2016] [Accepted: 01/07/2017] [Indexed: 05/18/2023]
Abstract
Cell-to-cell communication precisely controls the creation of new organs during reproductive growth. However, the sensor molecules that mediate developmental signals in monocot plants are poorly understood. Here, we report that DWARF AND RUNTISH SPIKELET1 (DRUS1) and DRUS2, two closely related receptor-like kinases (RLKs), redundantly control reproductive growth and development in rice (Oryza sativa). A drus1-1 drus2 double knockout mutant, but not either single mutant, showed extreme dwarfism and barren inflorescences that harbored sterile spikelets. The gibberellin pathway was not impaired in this mutant. A phenotypic comparison of mutants expressing different amounts of DRUS1 and 2 revealed that reproductive growth requires a threshold level of DRUS1/2 proteins. DRUS1 and 2 maintain cell viability by repressing protease-mediated cell degradation and likely by affecting sugar utilization or conversion. In the later stages of anther development, survival of the endothecium requires DRUS1/2, which may stimulate expression of the UDP-glucose pyrophosphorylase gene UGP2 and starch biosynthesis in pollen. Unlike their Arabidopsis thaliana ortholog FERONIA, DRUS1 and 2 mediate a fundamental signaling process that is essential for cell survival and represents a novel biological function for the CrRLK1L RLK subfamily.
Collapse
Affiliation(s)
- Cui-Xia Pu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Yong-Feng Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Shu Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Feng-Yan Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Ying Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Chun-Yan Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Yong-Cun Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Qian Yang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Jiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Shuo-Lei Bu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Li-Jing Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
| | - Sheng-Wei Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Su-Qiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Da-Ye Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| | - Ying Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, P.R. China
| |
Collapse
|
74
|
Li C, Wu HM, Cheung AY. FERONIA and Her Pals: Functions and Mechanisms. PLANT PHYSIOLOGY 2016; 171:2379-92. [PMID: 27342308 PMCID: PMC4972288 DOI: 10.1104/pp.16.00667] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Current research into the FERONIA family of receptor kinases highlights both questions and opportunities for understanding signaling strategies in plant growth and survival.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - H-M Wu
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| |
Collapse
|
75
|
Mangano S, Juárez SPD, Estevez JM. ROS Regulation of Polar Growth in Plant Cells. PLANT PHYSIOLOGY 2016; 171:1593-605. [PMID: 27208283 PMCID: PMC4936551 DOI: 10.1104/pp.16.00191] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/04/2016] [Indexed: 05/13/2023]
Abstract
Root hair cells and pollen tubes, like fungal hyphae, possess a typical tip or polar cell expansion with growth limited to the apical dome. Cell expansion needs to be carefully regulated to produce a correct shape and size. Polar cell growth is sustained by oscillatory feedback loops comprising three main components that together play an important role regulating this process. One of the main components are reactive oxygen species (ROS) that, together with calcium ions (Ca(2+)) and pH, sustain polar growth over time. Apoplastic ROS homeostasis controlled by NADPH oxidases as well as by secreted type III peroxidases has a great impact on cell wall properties during cell expansion. Polar growth needs to balance a focused secretion of new materials in an extending but still rigid cell wall in order to contain turgor pressure. In this review, we discuss the gaps in our understanding of how ROS impact on the oscillatory Ca(2+) and pH signatures that, coordinately, allow root hair cells and pollen tubes to expand in a controlled manner to several hundred times their original size toward specific signals.
Collapse
Affiliation(s)
- Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires CP C1405BWE, Argentina
| | - Silvina Paola Denita Juárez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires CP C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires CP C1405BWE, Argentina
| |
Collapse
|
76
|
Yang C, Fang S, Chen D, Wang J, Liu F, Xia C. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). MARINE POLLUTION BULLETIN 2016; 107:118-124. [PMID: 27090887 DOI: 10.1016/j.marpolbul.2016.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca(2+) efflux in Cylindrotheca sp., which implied that Ca(2+) might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling.
Collapse
Affiliation(s)
- Cuiyun Yang
- Key Laboratory of Coastal Biology and Biological Research Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shengtao Fang
- Key Laboratory of Coastal Biology and Biological Research Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dehui Chen
- Department of Biology, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | - Jianhua Wang
- Key Laboratory of Coastal Biology and Biological Research Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Research Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Chuanhai Xia
- Key Laboratory of Coastal Biology and Biological Research Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
77
|
Nissen KS, Willats WG, Malinovsky FG. Understanding CrRLK1L Function: Cell Walls and Growth Control. TRENDS IN PLANT SCIENCE 2016; 21:516-527. [PMID: 26778775 DOI: 10.1016/j.tplants.2015.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 05/09/2023]
|
78
|
|
79
|
Bittsánszky A, Pilinszky K, Gyulai G, Komives T. Overcoming ammonium toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:184-90. [PMID: 25576003 DOI: 10.1016/j.plantsci.2014.12.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 05/20/2023]
Abstract
Ammonia (ammonium ion under physiological conditions) is one of the key nitrogen sources in cellular amino acid biosynthesis. It is continuously produced in living organisms by a number of biochemical processes, but its accumulation in cells leads to tissue damage. Current knowledge suggests that a few enzymes and transporters are responsible for maintaining the delicate balance of ammonium fluxes in plant tissues. In this study we analyze the data in the scientific literature and the publicly available information on the dozens of biochemical reactions in which endogenous ammonium is produced or consumed, the enzymes that catalyze them, and the enzyme and transporter mutants listed in plant metabolic and genetic databases (Plant Metabolic Network, TAIR, and Genevestigator). Our compiled data show a surprisingly high number of little-studied reactions that might influence cellular ammonium concentrations. The role of ammonium in apoptosis, its relation to oxidative stress, and alterations in ammonium metabolism induced by environmental stress need to be explored in order to develop methods to manage ammonium toxicity.
Collapse
Affiliation(s)
- András Bittsánszky
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary
| | - Katalin Pilinszky
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary
| | - Gábor Gyulai
- Department of Genetics and Plant Breeding, Szent István University, Páter K. 1, 2103 Gödöllő, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto 15, 1022 Budapest, Hungary.
| |
Collapse
|
80
|
Huang X, Chen J, Bao Y, Liu L, Jiang H, An X, Dai L, Wang B, Peng D. Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud). PLoS One 2014; 9:e113768. [PMID: 25415356 PMCID: PMC4240604 DOI: 10.1371/journal.pone.0113768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022] Open
Abstract
In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE) libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs) were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5) or extremely low (Dazhuhuangbaima) shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.
Collapse
Affiliation(s)
- Xing Huang
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Jie Chen
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Yaning Bao
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Lijun Liu
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Hui Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Xia An
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Lunjin Dai
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Bo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Dingxiang Peng
- College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| |
Collapse
|
81
|
Bai L, Zhou Y, Ma X, Gao L, Song CP. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth. PLANT SIGNALING & BEHAVIOR 2014; 9:e29582. [PMID: 25763633 PMCID: PMC4205142 DOI: 10.4161/psb.29582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 05/24/2023]
Abstract
[Ca(2+)]cyt-associated protein kinase (CAP) gene 1 is a receptor-like kinase that belongs to CrRLK1L (Catharanthus roseus Receptor like kinase) subfamily. CAP1 has been identified as a novel modulator of NH4(+) in the tonoplast, which regulates root hair growth by maintaining the cytoplasmic Ca(2+) gradients. Different expression pattern of tonoplast intrinsic protein (TIP2;3) in the CAP1 knock out mutant and wild type on Murashige and Skoog (MS) medium suggested that CAP1 influences transport activity to regulate the compartmentalization of NH4(+) into vacuole. Lower expression level of Oxidative Signal-Inducible1(OXI1) in the cap1-1 root and the abnormal reactive oxygen species (ROS) gradient in root hair of cap1-1 on MS medium indicated that ROS signaling involve in CAP1-regulated root hair growth. Wild-type-like ROS distribution pattern in the cap1-1 root hair can be reestablished in seedlings grown on NH4(+) deficient medium, which indicated that CAP1 functions as a sensor for NH4(+) signaling in maintaining tip-focused ROS gradient in root hairs polar growth.
Collapse
|