51
|
An JP, Wang XF, Zhang XW, You CX, Hao YJ. Apple BT2 protein negatively regulates jasmonic acid-triggered leaf senescence by modulating the stability of MYC2 and JAZ2. PLANT, CELL & ENVIRONMENT 2021; 44:216-233. [PMID: 33051890 DOI: 10.1111/pce.13913] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 05/23/2023]
Abstract
Jasmonic acid (JA) is shown to induce leaf senescence. However, the underlying molecular mechanism is not well understood, especially in woody plants such as fruit trees. In this study, we are interested in exploring the biological role of MdBT2 in JA-mediated leaf senescence. We found that MdBT2 played an antagonistic role in MdMYC2-promoted leaf senescence. Our results revealed that MdBT2 interacted with MdMYC2 and accelerated its ubiquitination degradation, thus negatively regulated MdMYC2-promoted leaf senescence. In addition, MdBT2 acted as a stabilizing factor to improve the stability of MdJAZ2 through direct interaction, thereby inhibited JA-mediated leaf senescence. Furthermore, our results also showed that MdBT2 interacted with a subset of JAZ proteins in apple, including MdJAZ1, MdJAZ3, MdJAZ4 and MdJAZ8. Our investigations provide new insight into molecular mechanisms of JA-modulated leaf senescence. The dynamic JA-MdBT2-MdJAZ2-MdMYC2 regulatory module plays an important role in JA-modulated leaf senescence.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
52
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
53
|
Zhao P, Zhang X, Gong Y, Wang D, Xu D, Wang N, Sun Y, Gao L, Liu SS, Deng XW, Kliebenstein DJ, Zhou X, Fang RX, Ye J. Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly. PLoS Pathog 2021; 17:e1008770. [PMID: 33428670 PMCID: PMC7822537 DOI: 10.1371/journal.ppat.1008770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/22/2021] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral βC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing βC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded βC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.
Collapse
Affiliation(s)
- Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Gong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ning Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lianbo Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Sheng Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
54
|
Kang CH, Park JH, Lee ES, Paeng SK, Chae HB, Hong JC, Lee SY. Redox-Dependent Structural Modification of Nucleoredoxin Triggers Defense Responses against Alternaria brassicicola in Arabidopsis. Int J Mol Sci 2020; 21:ijms21239196. [PMID: 33276577 PMCID: PMC7730559 DOI: 10.3390/ijms21239196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.
Collapse
|
55
|
Lakehal A, Dob A, Rahneshan Z, Novák O, Escamez S, Alallaq S, Strnad M, Tuominen H, Bellini C. ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1611-1626. [PMID: 32634250 DOI: 10.1111/nph.16794] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 05/02/2023]
Abstract
Adventitious root initiation (ARI) is a de novo organogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate that ERF115 is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Asma Dob
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Zahra Rahneshan
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
- Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, 76169-14111, Iran
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371, Olomouc, Czech Republic
- Department of Forest Genetics and Physiology, Umeå Plant Science Center, Swedish Agriculture University, SE-90183, Umea, Sweden
| | - Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Sanaria Alallaq
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, FR-78000, Versailles, France
| |
Collapse
|
56
|
Courbier S, Grevink S, Sluijs E, Bonhomme PO, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 DOI: 10.1101/2020.05.25.114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/27/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Pierre-Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
57
|
Courbier S, Grevink S, Sluijs E, Bonhomme P, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 PMCID: PMC7693051 DOI: 10.1111/pce.13870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/12/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Pierre‐Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe Interactions, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
58
|
Peian Z, Haifeng J, Peijie G, Sadeghnezhad E, Qianqian P, Tianyu D, Teng L, Huanchun J, Jinggui F. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chem 2020; 337:127772. [PMID: 32777571 DOI: 10.1016/j.foodchem.2020.127772] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022]
Abstract
Chitosan can function a key role in plant resistant against Botrytis cinerea infection, while its mechanism is unclear in ripened fruits. In this study, we investigated the chitosan effect on two type of ripened fruits including strawberry and grapes (Kyoho and Shine-Muscat) when were infected with B. cinerea. Results showed that chitosan inhibited B. cinerea growth, increased phenolic compounds and cell wall composition, modulated oxidative stress and induced jasmonic acid (JA) production in ripened fruits. Data-independent acquisition (DIA) showed that 224 and 171 proteins were upregulated 1.5-fold by chitosan in Kyoho and Shine-Muscat grape, respectively. Topless-related protein 3 (TPR3) were identified and interacted with histone deacetylase 19 (HDAC19) and negatively regulated by JA and chitosan. Meanwhile, overexpression of VvTPR3 and VvHDAC19 reduced the stability of cell wall against B. cinerea in strawberry. Taken together, chitosan induces defense related genes and protect the fruit quality against Botrytis infection through JA signaling.
Collapse
Affiliation(s)
- Zhang Peian
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jia Haifeng
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China.
| | - Gong Peijie
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Pang Qianqian
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Dong Tianyu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Li Teng
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jin Huanchun
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Fang Jinggui
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
59
|
Fernández-Calvo P, Iñigo S, Glauser G, Vanden Bossche R, Tang M, Li B, De Clercq R, Nagels Durand A, Eeckhout D, Gevaert K, De Jaeger G, Brady SM, Kliebenstein DJ, Pauwels L, Goossens A, Ritter A. FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. THE NEW PHYTOLOGIST 2020; 227:1124-1137. [PMID: 32266972 DOI: 10.1111/nph.16586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/25/2020] [Indexed: 05/24/2023]
Abstract
The sessile lifestyle of plants requires accurate physiology adjustments to be able to thrive in a changing environment. Plants integrate environmental timing signals to control developmental and stress responses. Here, we identified Far1 Related Sequence (FRS) 7 and FRS12, two transcriptional repressors that accumulate in short-day conditions, as regulators of Arabidopsis glucosinolate (GSL) biosynthesis. Loss of function of FRS7 and FRS12 results in plants with increased amplitudes of diurnal expression of GSL pathway genes. Protein interaction analyses revealed that FRS7 and FRS12 recruit the NOVEL INTERACTOR OF JAZ (NINJA) to assemble a transcriptional repressor complex. Genetic and molecular evidence demonstrated that FRS7, FRS12 and NINJA jointly regulate the expression of GSL biosynthetic genes, and thus constitute a molecular mechanism that modulates specialized metabolite accumulation.
Collapse
Affiliation(s)
- Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Sabrina Iñigo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Graduate Group in Plant Biology, University of California, Davis, CA, 95616, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Rebecca De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
60
|
Major IT, Guo Q, Zhai J, Kapali G, Kramer DM, Howe GA. A Phytochrome B-Independent Pathway Restricts Growth at High Levels of Jasmonate Defense. PLANT PHYSIOLOGY 2020; 183:733-749. [PMID: 32245790 PMCID: PMC7271779 DOI: 10.1104/pp.19.01335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate (JA) promotes resistance to biotic stress by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which relieves repression on MYC transcription factors that execute defense programs. JA-triggered depletion of JAZ proteins in Arabidopsis (Arabidopsis thaliana) is also associated with reduced growth and seed production, but the mechanisms underlying these pleiotropic growth effects remain unclear. Here, we investigated this question using an Arabidopsis JAZ-deficient mutant (jazD; jaz1-jaz7, jaz9, jaz10, and jaz 13) that exhibits high levels of defense and strong growth inhibition. Genetic suppressor screens for mutations that uncouple growth-defense tradeoffs in the jazD mutant identified nine independent causal mutations in the red-light receptor phytochrome B (phyB). Unlike the ability of the phyB mutations to completely uncouple the mild growth-defense phenotypes in a jaz mutant (jazQ) defective in JAZ1, JAZ3, JAZ4, JAZ9, and JAZ10, phyB null alleles only weakly alleviated the growth and reproductive defects in the jazD mutant. phyB-independent growth restriction of the jazD mutant was tightly correlated with upregulation of the Trp biosynthetic pathway but not with changes in central carbon metabolism. Interestingly, jazD and jazD phyB plants were insensitive to a chemical inhibitor of Trp biosynthesis, which is a phenotype previously observed in plants expressing hyperactive MYC transcription factors that cannot bind JAZ repressors. These data provide evidence that the mechanisms underlying JA-mediated growth-defense balance depend on the level of defense, and they further establish an association between growth inhibition at high levels of defense and dysregulation of Trp biosynthesis.
Collapse
Affiliation(s)
- Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Qiang Guo
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jinling Zhai
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - George Kapali
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| | - David M Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| |
Collapse
|
61
|
Abstract
Plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light, collectively called the shade avoidance syndrome (SAS). Plants also have extensive systems to defend themselves against pathogens and herbivores. Defense and shade avoidance are two fundamental components of plant survival and productivity, and there are often tradeoffs between growth and defense. Recently, MYC2, a major positive regulator of defense, was reported to inhibit elongation during shade avoidance. Here, we further investigate the role of MYC2 and the related MYC3 and MYC4 in shade avoidance, and we examine the relationship between MYC2/3/4 and the PIF family of light-regulated transcription factors. We demonstrate that MYC2/3/4 inhibit both elongation and flowering. Furthermore, using both genetic and transcriptomic analysis we find that MYCs and PIFs generally function independently in growth regulation. However, surprisingly, the pif4/5/7 triple mutant restored the petiole shade avoidance response of myc2 (jin1-2) and myc2/3/4 We theorize that increased petiole elongation in myc2/3/4 could be more due to resource tradeoffs or post-translational modifications rather than interactions with PIF4/5/7 affecting gene regulation.
Collapse
|
62
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
63
|
Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, Lewsey MG, García-Casado G, Fernández-Barbero G, Ecker JR, Solano R. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:138-152. [PMID: 31755159 DOI: 10.1111/tpj.14618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light-associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light-regulated genes, including the master regulator HY5. ChIP-seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade-off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators.
Collapse
Affiliation(s)
- Andrés Ortigosa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Sandra Fonseca
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Patricia Fernández-Calvo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Mark Zander
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Gemma Fernández-Barbero
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| |
Collapse
|
64
|
CUL3 BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc Natl Acad Sci U S A 2020; 117:6205-6215. [PMID: 32123086 DOI: 10.1073/pnas.1912199117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jasmonate (JA)-pathway regulators MYC2, MYC3, and MYC4 are central nodes in plant signaling networks integrating environmental and developmental signals to fine-tune JA defenses and plant growth. Continuous activation of MYC activity is potentially lethal. Hence, MYCs need to be tightly regulated in order to optimize plant fitness. Among the increasing number of mechanisms regulating MYC activity, protein stability is arising as a major player. However, how the levels of MYC proteins are modulated is still poorly understood. Here, we report that MYC2, MYC3, and MYC4 are targets of BPM (BTB/POZ-MATH) proteins, which act as substrate adaptors of CUL3-based E3 ubiquitin ligases. Reduction of function of CUL3BPM in amiR-bpm lines, bpm235 triple mutants, and cul3ab double mutants enhances MYC2 and MYC3 stability and accumulation and potentiates plant responses to JA such as root-growth inhibition and MYC-regulated gene expression. Moreover, MYC3 polyubiquitination levels are reduced in amiR-bpm lines. BPM3 protein is stabilized by JA, suggesting a negative feedback regulatory mechanism to control MYC activity, avoiding harmful runaway responses. Our results uncover a layer for JA-pathway regulation by CUL3BPM-mediated degradation of MYC transcription factors.
Collapse
|
65
|
Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, Köllner TG, Zhang T, Cargnel MD, Lichy MZ, Fiorucci AS, Fankhauser C, Koo AJ, Austin AT, Gershenzon J, Ballaré CL. A light-dependent molecular link between competition cues and defence responses in plants. NATURE PLANTS 2020; 6:223-230. [PMID: 32170284 DOI: 10.1038/s41477-020-0604-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 05/19/2023]
Abstract
Growth responses to competition1 and defence responses to the attack of consumer organisms2 are two classic examples of adaptive phenotypic plasticity in plants. However, the mechanistic and functional links between these responses are not well understood. Jasmonates, a family of lipid-derived signals, are potent growth inhibitors and central regulators of plant immunity to herbivores and pathogens3,4, with both roles being evolutionarily conserved from bryophytes5 to angiosperms6. When shade-intolerant plants perceive the proximity of competitors using the photoreceptor phytochrome B, they activate the shade-avoidance syndrome and downregulate jasmonate responses7. Despite the central implications of this light-mediated change in the growth/defence balance for plant adaptation and crop yield8,9, the mechanisms by which photoreceptors relay light cues to the jasmonate signalling pathway remain poorly understood10. Here, we identify a sulfotransferase (ST2a) that is strongly upregulated by plant proximity perceived by phytochrome B via the phytochrome B-phytochrome interacting factor signalling module. By catalysing the formation of a sulfated jasmonate derivative, ST2a acts to reduce the pool of precursors of active forms of jasmonates and represents a direct molecular link between photoreceptors and hormone signalling in plants. The metabolic step defined by this enzyme provides a molecular mechanism for prioritizing shade avoidance over defence under intense plant competition.
Collapse
Affiliation(s)
| | - Carlos D Crocco
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos A Mazza
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Tong Zhang
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- College of Agriculture, South China Agricultural University, Guangdong, China
| | - Miriam D Cargnel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Z Lichy
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anne-Sophie Fiorucci
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Amy T Austin
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina.
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
66
|
Zhuo M, Sakuraba Y, Yanagisawa S. A Jasmonate-Activated MYC2-Dof2.1-MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis. THE PLANT CELL 2020; 32:242-262. [PMID: 31641025 PMCID: PMC6961620 DOI: 10.1105/tpc.19.00297] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
DNA binding-with-one-finger (Dof) proteins are plant-specific transcription factors closely associated with a variety of physiological processes. Here, we show that the Dof protein family in Arabidopsis (Arabidopsis thaliana) functions in leaf senescence. Disruption of Dof2 1, a jasmonate (JA)-inducible gene, led to a marked reduction in promotion of leaf senescence and inhibition of root development as well as dark-induced and age-dependent leaf senescence, while overexpression of Dof2 1 promoted these processes. Additionally, the dof2 1 knockout mutant showed almost no change in the transcriptome in the absence of JA; in the presence of JA, expression of many senescence-associated genes, including MYC2, which encodes a central regulator of JA responses, was induced to a lesser extent in the dof2 1 mutant than in the wild type. Furthermore, direct activation of the MYC2 promoter by Dof2.1, along with the results of epistasis analysis, indicated that Dof2.1 enhances leaf senescence mainly by promoting MYC2 expression. Interestingly, MYC2 was also identified as a transcriptional activator responsible for JA-inducible expression of Dof2 1 Based on these results, we propose that Dof2.1 acts as an enhancer of JA-induced leaf senescence through the MYC2-Dof2.1-MYC2 feedforward transcriptional loop.
Collapse
Affiliation(s)
- Mengna Zhuo
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
67
|
Bai JF, Wang YK, Guo LP, Guo XM, Guo HY, Yuan SH, Duan WJ, Liu Z, Zhao CP, Zhang FT, Zhang LP. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.). BMC Genomics 2019; 20:1032. [PMID: 31888472 PMCID: PMC6937671 DOI: 10.1186/s12864-019-6373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. Results 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. Conclusions This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Li-Ping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiao-Ming Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Hao-Yu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Li-Ping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|
68
|
Wu R, Zheng W, Tan J, Sammer R, Du L, Lu C. Protein partners of plant ubiquitin-specific proteases (UBPs). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:227-236. [PMID: 31630936 DOI: 10.1016/j.plaphy.2019.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
As one type of deubiquitinases (DUBs), ubiquitin-specific proteases (UBPs) play an extensive and significant role in plant life involving the regulation of plant development and stress responses. However, comprehensive studies are still needed to determine the functional mechanisms, which are largely unclear. Here, we summarized recent progress of plant UBPs' functional partners, particularly the molecular mechanisms by which UBPs work with their partners. We believe that functional analyses of UBPs and their partners will provide new insights into protein deubiquitination and lead to a better understanding of the physiological roles of UBPs in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqing Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinyi Tan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rana Sammer
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
69
|
Hu J, Gao M, Wang Y, Liu M, Wang J, Li J, Song Z, Chen Y, Wang Z. Imaging the Substructures of Individual IgE Antibodies with Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14896-14901. [PMID: 31661619 DOI: 10.1021/acs.langmuir.9b02631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interactions between antibodies and substrates directly affect their conformations and thus their immune functions. Therefore, it is desirable to study the structures of antibodies at the single molecule level. Herein, the substructures of Immunoglobulin E (IgE) on solid surfaces were investigated. For this purpose, tapping-mode atomic force microscopy (AFM) was applied to observe individual IgE substructures adsorbed onto Mg2+ and Na+ modified mica substrates in air. As expected, the AFM images revealed that the IgE antibodies exhibited different conformations on the surface of mica substrate consisting of the four basic orientations: three domain, two equivalent domain, two unequal domain, and single domain morphologies. Moreover, the differences in the different orientations in single IgE antibodies were also identified clearly.
Collapse
Affiliation(s)
- Jing Hu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Mingyan Gao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Ying Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Mengnan Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Jianfei Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Jiani Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Zhengxun Song
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
| | - Yujuan Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
- School of Life Sciences , Changchun University of Science and Technology , Changchun 130022 , China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing , Changchun University of Science and Technology , Changchun 130022 , China
- International Research Centre for Nano Handling and Manufacturing of China , Changchun University of Science and Technology , Changchun 130022 , China
- JR3CN & IRAC , University of Bedfordshire , Luton LU1 3JU , U.K
| |
Collapse
|
70
|
Swinnen G, Goossens A, Colinas M. Metabolic editing: small measures, great impact. Curr Opin Biotechnol 2019; 59:16-23. [DOI: 10.1016/j.copbio.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
|
71
|
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla JM, Solano R. Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in Marchantia polymorpha. THE PLANT CELL 2019; 31:2491-2509. [PMID: 31391256 PMCID: PMC6790078 DOI: 10.1105/tpc.18.00974] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 05/20/2023]
Abstract
The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.
Collapse
Affiliation(s)
- María Peñuelas
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Isabel Monte
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, Faculty of Sciences, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Jose M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
72
|
Wu R, Shi Y, Zhang Q, Zheng W, Chen S, Du L, Lu C. Genome-Wide Identification and Characterization of the UBP Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2019; 20:E4309. [PMID: 31484390 PMCID: PMC6747111 DOI: 10.3390/ijms20174309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023] Open
Abstract
The largest group of deubiquitinases-ubiquitin-specific proteases (UBPs)-perform extensive and significant roles in plants, including the regulation of development and stress responses. A comprehensive analysis of UBP genes has been performed in Arabidopsis thaliana, but no systematic study has been conducted in moso bamboo (Phyllostachys edulis). In this study, the genome-wide identification, classification, gene, protein, promoter region characterization, divergence time, and expression pattern analyses of the UBPs in moso bamboo were conducted. In total, 48 putative UBP genes were identified in moso bamboo, which were divided into 14 distinct subfamilies in accordance with a comparative phylogenetic analysis using 132 full-length protein sequences, including 48, 27, 25, and 32 sequences from moso bamboo, A. thaliana, rice (Oryza sativa), and purple false brome (Brachypodium distachyon), respectively. Analyses of the evolutionary patterns and divergence levels revealed that the PeUBP genes experienced a duplication event approximately 15 million years ago and that the divergence between PeUBP and OsUBP occurred approximately 27 million years ago. Additionally, several PeUBP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating their potential roles in abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yanrong Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqing Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
73
|
Liu Y, Wei H, Ma M, Li Q, Kong D, Sun J, Ma X, Wang B, Chen C, Xie Y, Wang H. Arabidopsis FHY3 and FAR1 Regulate the Balance between Growth and Defense Responses under Shade Conditions. THE PLANT CELL 2019; 31:2089-2106. [PMID: 31311834 PMCID: PMC6751128 DOI: 10.1105/tpc.18.00991] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 05/18/2023]
Abstract
Increasing crop yield per unit of area can be achieved by increasing planting density. However, high-density planting could trigger shade avoidance responses, which cause exaggerated growth and increased susceptibility to various diseases. Previous studies have shown that the rapid elongation of plants under shade (i.e., reduced red to far-red ratios) is regulated by phytochromes and various phytohormones. However, the detailed molecular mechanisms governing the interaction among these signaling pathways are not well understood. Here, we report that loss-of-function mutants of FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), which encode two homologous transcription factors essential for phytochrome signaling, exhibit an exaggerated shade avoidance phenotype. We show that FHY3 and FAR1 repress plant growth through directly activating the expression of two atypical basic helix-loop-helix transcriptional cofactors, PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2, and that this process is antagonized by a group of JASMONATE ZIM-DOMAIN proteins, key repressors of the jasmonic acid (JA) signaling pathway, through physical interactions. Furthermore, we show that FHY3 interacts with MYC2, a key transcriptional regulator of JA responses, coordinately regulating JA-responsive defense gene expression. Our results unveil a previously unrecognized mechanism whereby plants balance their growth and defense responses through convergence of the phytochrome signaling pathway and JA signaling pathway under shade conditions.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Wei
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Mengdi Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanquan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dexin Kong
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Juan Sun
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cuixia Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
74
|
Zhang L, Shang J, Wang W, Du J, Li K, Wu X, Yu L, Liu C, Khaskheli MI, Yang W. Comparison of Transcriptome Differences in Soybean Response to Soybean Mosaic Virus under Normal Light and in the Shade. Viruses 2019; 11:E793. [PMID: 31470502 PMCID: PMC6784153 DOI: 10.3390/v11090793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
Shading in the intercropping system is a major abiotic factor which influences soybean growth and development, while soybean mosaic virus (SMV) is a biotic factor that limits the yield and quality of soybean. However, little is known about the defense response of soybean to SMV in the shade. Thus, in the current study, both intensity and quality (red:far-red, R:FR) of the light were changed to simulate the shaded environment and comparative transcriptome analysis was performed. Morphologically, plant growth was inhibited by SMV, which decreased 35.93% of plant height and 8.97% of stem diameter in the shade. A total of 3548 and 4319 differentially expressed genes (DEGs) were identified in soybean plants infected with SMV under normal light and in the shade. Enrichment analysis showed that the plant defense-related genes were upregulated under normal light but downregulated in the shade. Pathways that were repressed include plant-pathogen interaction, secondary metabolism, sugar metabolism, and vitamin metabolism. In addition, genes associated with signaling pathways such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) were also downregulated in the shade. A qRT-PCR assay of 15 DEGs was performed to confirm transcriptome results. According to our knowledge, this is the first report on soybean response to dual stress factors. These results provide insights into the molecular mechanisms in which soybean plants were infected with SMV in the shade.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wenming Wang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaoling Wu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Yu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Ibrahim Khaskheli
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
75
|
Omega hydroxylated JA-Ile is an endogenous bioactive jasmonate that signals through the canonical jasmonate signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158520. [PMID: 31473347 DOI: 10.1016/j.bbalip.2019.158520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Jasmonates are fatty acid derivatives that control several plant processes including growth, development and defense. Despite the chemical diversity of jasmonates, only jasmonoyl-L-isoleucine (JA-Ile) has been clearly characterized as the endogenous ligand of the jasmonate co-receptors (COI1-JAZs) in higher plants. Currently, it is accepted that ω-hydroxylation of JA-Ile leads to inactivation of the molecule. This study shows that ω-hydroxylated JA-Ile (12-OH-JA-Ile) retains bioactivity and signals through the canonical JA-pathway. The results suggest that 12-OH-JA-Ile differentially activates a subset of JA-Ile co-receptors that may control and/or modulate particular jasmonate dependent responses. It is proposed that after a strong immune response mediated by JA-Ile, the ω-hydroxylated form modulates JA-Ile activated processes thereby improving plant resilience.
Collapse
|
76
|
Thines B, Parlan EV, Fulton EC. Circadian Network Interactions with Jasmonate Signaling and Defense. PLANTS 2019; 8:plants8080252. [PMID: 31357700 PMCID: PMC6724144 DOI: 10.3390/plants8080252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
Plants experience specific stresses at particular, but predictable, times of the day. The circadian clock is a molecular oscillator that increases plant survival by timing internal processes to optimally match these environmental challenges. Clock regulation of jasmonic acid (JA) action is important for effective defenses against fungal pathogens and generalist herbivores in multiple plant species. Endogenous JA levels are rhythmic and under clock control with peak JA abundance during the day, a time when plants are more likely to experience certain types of biotic stresses. The expression of many JA biosynthesis, signaling, and response genes is transcriptionally controlled by the clock and timed through direct connections with core clock proteins. For example, the promoter of Arabidopsis transcription factor MYC2, a master regulator for JA signaling, is directly bound by the clock evening complex (EC) to negatively affect JA processes, including leaf senescence, at the end of the day. Also, tobacco ZEITLUPE, a circadian photoreceptor, binds directly to JAZ proteins and stimulates their degradation with resulting effects on JA root-based defenses. Collectively, a model where JA processes are embedded within the circadian network at multiple levels is emerging, and these connections to the circadian network suggest multiple avenues for future research.
Collapse
Affiliation(s)
- Bryan Thines
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA.
| | - Emily V Parlan
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| | - Elena C Fulton
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| |
Collapse
|
77
|
Ballaré CL, Austin AT. Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3425-3434. [PMID: 31099390 DOI: 10.1093/jxb/erz237] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, HMP Buenos Aires, Argentina
| | - Amy T Austin
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
78
|
Ranade SS, Delhomme N, García-Gil MR. Transcriptome analysis of shade avoidance and shade tolerance in conifers. PLANTA 2019; 250:299-318. [PMID: 31028482 DOI: 10.1007/s00425-019-03160-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 05/26/2023]
Abstract
Gymnosperms respond differently to light intensity and R:FR; although some aspects of shade response appear conserved, yet underlying mechanisms seem to be diverse in gymnosperms as compared to angiosperms. Shade avoidance syndrome (SAS) is well-characterized in the shade intolerant model species Arabidopsis thaliana whereas much less is known about shade tolerance response (STR), yet regulation of SAS and STR with reference to conifers remains poorly understood. We conducted a comparative study of two conifer species with contrasting responses to shade, Scots pine (shade-intolerant) and Norway spruce (shade-tolerant), with the aim to understand mechanisms behind SAS and STR in conifers. Pine and spruce seedlings were grown under controlled light and shade conditions, and hypocotyl and seedling elongation following different light treatments were determined in both species as indicators of shade responses. Red to far-red light ratio (R:FR) was shown to trigger the shade response in Norway spruce. In Scots pine, we observed an interaction between R:FR and light intensity. RNA sequencing (RNA-Seq) data revealed that SAS and STR responses included changes in expression of genes involved primarily in hormone signalling and pigment biosynthesis. From the RNA-Seq analysis, we propose that although some aspects of shade response appear to be conserved in angiosperms and gymnosperms, yet the underlying mechanisms may be different in gymnosperms that warrants further research.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
79
|
Xu Q, Wang S, Hong H, Zhou Y. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 2019; 20:125. [PMID: 30744548 PMCID: PMC6371524 DOI: 10.1186/s12864-019-5501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Cymbidium faberi, one of the most famous oriental orchids, has a distinct flower scent, which increases its economic value. However, the molecular mechanism of the flower scent biosynthesis was unclear prior to this study. Methyl jasmonate (MeJA) is one of the main volatile organic compounds (VOC) produced by the flowers of C. faberi. In this study, unigene 79,363 from comparative transcriptome analysis was selected for further investigation. Results A transcriptome comparison between blooming and withered flowers of C. faberi yielded a total of 9409 differentially expressed genes (DEGs), 558 of which were assigned to 258 pathways. The top ten pathways included α-linolenic acid metabolism, pyruvate metabolism and fatty acid degradation, which contributed to the conversion of α-linolenic acid to MeJA. One of the DEGs, jasmonic acid carboxyl methyltransferase (CfJMT, Unigene 79,363) was highly expressed in the blooming flower of C. faberi, but was barely detected in leaves and roots. Although the ectopic expression of CfJMT in tomato could not increase the MeJA content, the expression levels of endogenous MeJA biosynthesis genes were influenced, especially in the wound treatment, indicating that CfJMT may participate in the response to abiotic stresses. Conclusion This study provides a basis for elucidating the molecular mechanism of flower scent biosynthesis in C. faberi, which is beneficial for the genetically informed breeding of new cultivars of the economically valuable oriental orchids. Electronic supplementary material The online version of this article (10.1186/s12864-019-5501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,Present Address: Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, People's Republic of China
| | - Songtai Wang
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Huazhu Hong
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Yin Zhou
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China. .,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.
| |
Collapse
|
80
|
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:252-263. [PMID: 29878511 PMCID: PMC6330549 DOI: 10.1111/pbi.12961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesIAUSA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Yuba Kandel
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Seth O'Conner
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
| | - Yifan Wang
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Chuanlong Du
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Dan Nettleton
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Gregory L. Tylka
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ling Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
81
|
Shen XJ, Wang YY, Zhang YX, Guo W, Jiao YQ, Zhou XA. Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:E3958. [PMID: 30544851 PMCID: PMC6321161 DOI: 10.3390/ijms19123958] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022] Open
Abstract
Plant R2R3-MYB transcription factors (TFs) have been suggested to play crucial roles in the response to diverse abiotic and biotic stress factors but there is little molecular evidence of this role in soybean plants. In this work, we identified and functionally characterized an R2R3-MYB TF, namely, GsMYB15, from the wild soybean ED059. Protein and promoter sequence analysis indicated that GsMYB15 is a typical R2R3-MYB TF and contains multiple stress-related cis-elements in the promoter region. GsMYB15 is located in the nucleus and exhibits transcriptional activation activity. QPCR assays suggested that the expression of GsMYB15 could be induced by NaCl, insect attacks and defense-related hormones (MeJA and SA). Furthermore, GsMYB15 exhibited highest expression in pods compared to other tissues. Functional analysis of GsMYB15 demonstrated that overexpression of GsMYB15 could increase salt tolerance and enhance the resistance to H. armigera larvae in transgenic Arabidopsis plants. Moreover, overexpression of GsMYB15 also affected the expression levels of salt stress- and defense-related genes in the transgenic plants. Feeding with transgenic Arabidopsis plant leaves could significantly suppress the expression levels of immunity-related genes in H. armigera larvae. Overexpression of GsMYB15 also increased mesophyll cell levels in transgenic plants. Taken together, these results provide evidence that GsMYB15 is a positive regulator of salt stress tolerance and insect resistance in transformed Arabidopsis plants.
Collapse
Affiliation(s)
- Xin-Jie Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yan-Yan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Graduate School of the Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Yong-Xing Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong-Qing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xin-An Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
82
|
Cagnola JI, Cerdán PD, Pacín M, Andrade A, Rodriguez V, Zurbriggen MD, Legris M, Buchovsky S, Carrillo N, Chory J, Blázquez MA, Alabadi D, Casal JJ. Long-Day Photoperiod Enhances Jasmonic Acid-Related Plant Defense. PLANT PHYSIOLOGY 2018; 178:163-173. [PMID: 30068539 PMCID: PMC6130044 DOI: 10.1104/pp.18.00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
Agricultural crops are exposed to a range of daylengths, which act as important environmental cues for the control of developmental processes such as flowering. To explore the additional effects of daylength on plant function, we investigated the transcriptome of Arabidopsis (Arabidopsis thaliana) plants grown under short days (SD) and transferred to long days (LD). Compared with that under SD, the LD transcriptome was enriched in genes involved in jasmonic acid-dependent systemic resistance. Many of these genes exhibited impaired expression induction under LD in the phytochrome A (phyA), cryptochrome 1 (cry1), and cry2 triple photoreceptor mutant. Compared with that under SD, LD enhanced plant resistance to the necrotrophic fungus Botrytis cinerea This response was reduced in the phyA cry1 cry2 triple mutant, in the constitutive photomorphogenic1 (cop1) mutant, in the myc2 mutant, and in mutants impaired in DELLA function. Plants grown under SD had an increased nuclear abundance of COP1 and decreased DELLA abundance, the latter of which was dependent on COP1. We conclude that growth under LD enhances plant defense by reducing COP1 activity and enhancing DELLA abundance and MYC2 expression.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina
| | - Pablo D Cerdán
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Manuel Pacín
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina
| | - Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Rio Cuarto, X5804BY Cordoba, Argentina
| | - Verónica Rodriguez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Duesseldorf D-40225, Germany
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Sabrina Buchovsky
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina
| | - Néstor Carrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2000 Rosario, Argentina
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - David Alabadi
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| |
Collapse
|
83
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
84
|
Guo Q, Major IT, Howe GA. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:72-81. [PMID: 29555489 DOI: 10.1016/j.pbi.2018.02.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Induced plant resistance depends on the production of specialized metabolites that repel attack by biotic aggressors and is often associated with reduced growth of vegetative tissues. Despite progress in understanding the signal transduction networks that control growth-defense tradeoffs, much remains to be learned about how growth rate is coordinated with changes in metabolism during growth-to-defense transitions. Here, we highlight recent advances in jasmonate research to suggest how a major branch of plant immunity is dynamically regulated to calibrate growth-defense balance with shifts in carbon availability. We review evidence that diminished growth, as an integral facet of induced resistance, may optimize the temporal and spatial expression of defense compounds without compromising other critical roles of central metabolism. New insights into the evolution of jasmonate signaling further suggest that opposing selective pressures associated with too much or too little defense may have shaped the emergence of a modular jasmonate pathway that integrates primary and specialized metabolism through the control of repressor-transcription factor complexes. A better understanding of the mechanistic basis of growth-defense balance has important implications for boosting plant productivity, including insights into how these tradeoffs may be uncoupled for agricultural improvement.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
85
|
Humphrey PT, Gloss AD, Frazier J, Nelson-Dittrich AC, Faries S, Whiteman NK. Heritable plant phenotypes track light and herbivory levels at fine spatial scales. Oecologia 2018; 187:427-445. [PMID: 29603095 PMCID: PMC5999565 DOI: 10.1007/s00442-018-4116-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/11/2018] [Indexed: 02/03/2023]
Abstract
Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant-common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant.
Collapse
Affiliation(s)
- P T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - A D Gloss
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - J Frazier
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - A C Nelson-Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - S Faries
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| | - N K Whiteman
- Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA.
- Department of Integrative Biology, University of California, Berkeley, CA, 91645, USA.
| |
Collapse
|
86
|
Howe GA, Major IT, Koo AJ. Modularity in Jasmonate Signaling for Multistress Resilience. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:387-415. [PMID: 29539269 DOI: 10.1146/annurev-arplant-042817-040047] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate coordinates immune and growth responses to increase plant survival in unpredictable environments. The core jasmonate signaling pathway comprises several functional modules, including a repertoire of COI1-JAZ (CORONATINE INSENSITIVE1-JASMONATE-ZIM DOMAIN) coreceptors that couple jasmonoyl-l-isoleucine perception to the degradation of JAZ repressors, JAZ-interacting transcription factors that execute physiological responses, and multiple negative feedback loops to ensure timely termination of these responses. Here, we review the jasmonate signaling pathway with an emphasis on understanding how transcriptional responses are specific, tunable, and evolvable. We explore emerging evidence that JAZ proteins integrate multiple informational cues and mediate crosstalk by propagating changes in protein-protein interaction networks. We also discuss recent insights into the evolution of jasmonate signaling and highlight how plant-associated organisms manipulate the pathway to subvert host immunity. Finally, we consider how this mechanistic foundation can accelerate the rational design of jasmonate signaling for improving crop resilience and harnessing the wellspring of specialized plant metabolites.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
- Department of Biochemistry and Molecular Biology, and Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
87
|
Han X, Hu Y, Zhang G, Jiang Y, Chen X, Yu D. Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons. PLANT PHYSIOLOGY 2018; 176:2871-2885. [PMID: 29496884 PMCID: PMC5884581 DOI: 10.1104/pp.17.00444] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/17/2018] [Indexed: 05/05/2023]
Abstract
Stomata are ports that facilitate gas and water vapor exchange between plants and their environment. Stomatal development is strictly regulated by endogenous signals and environmental cues. Jasmonate is an important signal that modulates multiple physiological processes in plants, yet the molecular mechanisms underlying its interactions with other developmental signaling pathways remain poorly understood. Here, we show that jasmonate negatively regulates stomatal development in Arabidopsis (Arabidopsis thaliana) cotyledons. Cotyledons of the wild type and stomata-overproliferating mutants (such as too many mouths-1 and stomatal density and distribution1-1) treated with methyl jasmonate exhibit a clear reduction in stomata number. By contrast, blocking endogenous jasmonate biosynthesis or perception enhanced stomatal development. Moreover, three MYC transcription factors involved in jasmonate signaling, MYC2, MYC3, and MYC4, were found to redundantly modulate jasmonate-inhibited stomatal development. A genetic analysis showed that these MYC proteins act upstream of the SPEECHLESS and FAMA transcription factors to mediate stomatal development. Furthermore, jasmonate repression of stomatal development is dependent on these three MYC transcription factors, as stomatal development of the myc2 myc3 myc4 triple mutant was insensitive to methyl jasmonate treatment. Collectively, our study demonstrates that jasmonate and MYC transcription factors negatively regulate stomatal development in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Gensong Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
88
|
Chen HJ, Fu TY, Yang SL, Hsieh HL. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS Genet 2018; 14:e1007248. [PMID: 29561841 PMCID: PMC5880400 DOI: 10.1371/journal.pgen.1007248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 04/02/2018] [Accepted: 02/11/2018] [Indexed: 12/19/2022] Open
Abstract
Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Huai-Ju Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsu-Yu Fu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shao-Li Yang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
89
|
Sánchez-Bel P, Sanmartín N, Pastor V, Mateu D, Cerezo M, Vidal-Albalat A, Pastor-Fernández J, Pozo MJ, Flors V. Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. PLANT, CELL & ENVIRONMENT 2018; 41:406-420. [PMID: 29194658 DOI: 10.1111/pce.13105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 05/06/2023]
Abstract
In low nutritive environments, the uptake of N by arbuscular mycorrhizal (AM) fungi may confer competitive advantages for the host. The present study aims to understand how mycorrhizal tomato plants perceive and then prepare for an N depletion in the root environment. Plants colonized by Rhizophagus irregularis displayed improved responses to a lack of N than nonmycorrhizal (NM) plants. These responses were accomplished by a complex metabolic and transcriptional rearrangement that mostly affected the gibberellic acid and jasmonic acid pathways involving DELLA and JAZ1 genes, which were responsive to changes in the C/N imbalance of the plant. N starved mycorrhizal plants showed lower C/N equilibrium in the shoots than starved NM plants and concomitantly a downregulation of the JAZ1 repressor and the increased expression of the DELLA gene, which translated into a more active oxylipin pathway in mycorrhizal plants. In addition, the results support a priorization in AM plants of stress responses over growth. Therefore, these plants were better prepared for an expected stress. Furthermore, most metabolites that were severely reduced in NM plants following the N depletion remained unaltered in starved AM plants compared with those normally fertilized, suggesting that the symbiosis buffered the stress, improving plant development in a stressed environment.
Collapse
Affiliation(s)
- P Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - N Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - V Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - D Mateu
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - A Vidal-Albalat
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Castellón, 12071, Spain
| | - J Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18160, Spain
| | - V Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| |
Collapse
|
90
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
91
|
Song S, Huang H, Wang J, Liu B, Qi T, Xie D. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1752-1763. [PMID: 29017003 DOI: 10.1093/pcp/pcx112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Jasmonates (JAs), lipid-derived phytohormones, regulate plant growth, development and defenses against biotic stresses. CORONATINE INSENSITIVE1 perceives bioactive JA and recruits JASMONATE ZIM-DOMAIN (JAZ) proteins for ubiquitination and subsequent degradation via the 26S proteasome, which de-represses JAZ-targeted transcription factors that regulate diverse JA responses. Recent studies showed that the Arabidopsis basic helix-loop-helix transcription factor MYC5 interacts with JAZs and regulates stamen development. However, whether MYC5 mediates other JA responses is unclear. Here, we show that MYC5 functions redundantly with MYC2, MYC3 and MYC4 to modulate JA-regulated root growth inhibition and plant defenses against insect attack and pathogen infection, and that it positively regulates JA-induced leaf senescence. Our findings define MYC5 as an important regulator that is essential for diverse JA responses.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
92
|
Major IT, Yoshida Y, Campos ML, Kapali G, Xin X, Sugimoto K, de Oliveira Ferreira D, He SY, Howe GA. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. THE NEW PHYTOLOGIST 2017; 215. [PMID: 28649719 PMCID: PMC5542871 DOI: 10.1111/nph.14638] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ-TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and a jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation, and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Our study highlights the utility of genetic epistasis to unravel the complexities of JAZ-TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth-defense balance.
Collapse
Affiliation(s)
- Ian T. Major
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Yuki Yoshida
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Marcelo L. Campos
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - George Kapali
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Xiu‐Fang Xin
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Koichi Sugimoto
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | | | - Sheng Yang He
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Howard Hughes Medical InstituteMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
| | - Gregg A. Howe
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
93
|
Jeong JS, Jung C, Seo JS, Kim JK, Chua NH. The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. THE PLANT CELL 2017; 29:1406-1424. [PMID: 28536144 PMCID: PMC5502463 DOI: 10.1105/tpc.17.00216] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 05/08/2023]
Abstract
The transcription factor MYC2 has emerged as a master regulator of jasmonate (JA)-mediated responses as well as crosstalk among different signaling pathways. The instability of MYC2 is in part due to the action of PUB10 E3 ligase, which can polyubiquitinate this protein. Here, we show that polyubiquitinated MYC2 can be deubiquitinated by UBP12 and UBP13 in vitro, suggesting that the two deubiquitinating enzymes can counteract the effect of PUB10 in vivo. Consistent with this view, UBP12 and UBP13 associate with MYC2 in the nucleus. Transgenic Arabidopsis thaliana plants deficient in UBP12 and UBP13 show accelerated decay of MYC2 and are hyposensitive to JA, whereas plants overexpressing UBP12 or UBP13 have prolonged MYC2 half-life and are hypersensitive to JA Our results suggest that there is a genetic link between UBP12, UBP13, and MYC2. Our results identify UBP12 and UBP13 as additional positive regulators of JA responses and suggest that these enzymes likely act by stabilizing MYC2.
Collapse
Affiliation(s)
- Jin Seo Jeong
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Choonkyun Jung
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Jun Sung Seo
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| |
Collapse
|
94
|
Cerrudo I, Caliri-Ortiz ME, Keller MM, Degano ME, Demkura PV, Ballaré CL. Exploring growth-defence trade-offs in Arabidopsis: phytochrome B inactivation requires JAZ10 to suppress plant immunity but not to trigger shade-avoidance responses. PLANT, CELL & ENVIRONMENT 2017; 40:635-644. [PMID: 27943325 DOI: 10.1111/pce.12877] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 05/26/2023]
Abstract
Under conditions that involve a high risk of competition for light among neighbouring plants, shade-intolerant species often display increased shoot elongation and greater susceptibility to pathogens and herbivores. The functional links between morphological and defence responses to crowding are not well understood. In Arabidopsis, the protein JAZ10 is thought to play a key role connecting the inactivation of the photoreceptor phytochrome B (phyB), which takes place under competition for light, with the repression of jasmonate-mediated plant defences. Here, we show that a null mutation of the JAZ10 gene in Arabidopsis did not affect plant growth nor did it suppress the shade-avoidance responses elicited by phyB inactivation. However, the jaz10 mutation restored many of the defence traits that are missing in the phyB mutant, including the ability to express robust responses to jasmonate and to accumulate indolic glucosinolates. Furthermore, the jaz10phyB double mutant showed a significantly increased resistance to the pathogenic fungus Botrytis cinerea compared with the phyB parental line. Our results demonstrate that, by inactivating JAZ10, it is possible to partially uncouple shade avoidance from defence suppression in Arabidopsis. These findings may provide clues to improve plant resistance to pathogens in crops that are planted at high density.
Collapse
Affiliation(s)
- Ignacio Cerrudo
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - M Emilia Caliri-Ortiz
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Mercedes M Keller
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - M Eugenia Degano
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - Patricia V Demkura
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - Carlos L Ballaré
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
95
|
Pacurar DI, Pacurar ML, Lakehal A, Pacurar AM, Ranjan A, Bellini C. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation. Sci Rep 2017; 7:628. [PMID: 28377589 PMCID: PMC5429640 DOI: 10.1038/s41598-017-00744-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden.
| | - Monica Lacramioara Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden.,University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania.,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Andrea Mariana Pacurar
- University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,Institut National de la Research Agronomic, UMR1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Univ. Paris-Sud, F-78000, Versailles, France.
| |
Collapse
|
96
|
Tattini M, Sebastiani F, Brunetti C, Fini A, Torre S, Gori A, Centritto M, Ferrini F, Landi M, Guidi L. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2425-2437. [PMID: 28419325 DOI: 10.1093/jxb/erx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton.
Collapse
Affiliation(s)
- Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Federico Sebastiani
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Fini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, via Celoria 2, I-20122 Milan, Italy
| | - Sara Torre
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
97
|
Chen KQ, Zhao XY, An XH, Tian Y, Liu DD, You CX, Hao YJ. MdHIR proteins repress anthocyanin accumulation by interacting with the MdJAZ2 protein to inhibit its degradation in apples. Sci Rep 2017; 7:44484. [PMID: 28317851 PMCID: PMC5357849 DOI: 10.1038/srep44484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
In higher plants, jasmonate ZIM-domain (JAZ) proteins negatively regulate the biosynthesis of anthocyanins by interacting with bHLH transcription factors. However, it is largely unknown if and how other regulators are involved in this process. In this study, the apple MdJAZ2 protein was characterized in regards to its function in the negative regulation of anthocyanin accumulation and peel coloration. MdJAZ2 was used as a bait to screen a cDNA library using the yeast two-hybrid method. The hypersensitive induced reaction (HIR) proteins, MdHIR2 and MdHIR4, were obtained from this yeast two-hybrid. The ZIM domain of MdJAZ2 and the PHB domain of the MdHIR proteins are necessary for their interactions. The interactions were further verified using an in vitro pull-down assay. Subsequently, immunoblotting assays demonstrated that MdHIR4 enhanced the stability of the MdJAZ2-GUS protein. Finally, a viral vector-based transformation method showed that MdHIR4 inhibited anthocyanin accumulation and fruit coloration in apple by modulating the expression of genes associated with anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Ke-Qin Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xian-Yan Zhao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu-Hong An
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yi Tian
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Dan-Dan Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
98
|
The Role of Specialized Photoreceptors in the Protection of Energy‐Rich Tissues. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
100
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|