51
|
Takeda J. Molecular Mechanisms of UVR8-Mediated Photomorphogenesis Derived from Revaluation of Action Spectra. Photochem Photobiol 2021; 97:903-910. [PMID: 34097751 DOI: 10.1111/php.13459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/03/2021] [Indexed: 11/27/2022]
Abstract
Considering previously reported action spectra and molecular evidence, I propose a hypothetical model for UV RESISTANCE LOCUS8 (UVR8)-mediated photomorphogenesis. Upon UV-B irradiation, a UVR8 dimer dissociates and accumulates in the nucleus and photomorphogenesis begins following two pathways: one in which the UVR8 monomer binds to transcription factor(s) of gene(s) supporting hypocotyl growth to stop gene expression resulting in hypocotyl growth inhibition and the other in which the UVR8 monomer binds both with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA (COP1-SPA) to release HY5 (referred to as "stabilized") and WRKY DNA-BINDING PROTEIN 36 (WRKY36) on the ELONGATED HYPOCOTYL 5 (HY5) gene to release HY5 transcription, and both HY5 and another UV-B-activated UV-B sensor (denoted the Hyp sensor in this article) through a self-interacting factor (HIF) associates with the HY5 promoter to initiate HY5 transcription, leading to anthocyanin synthesis. These two pathways can be distinguished by action spectra in the UV-B region, with a single peak at 280 nm and two peaks (or a broad peak near 280-300 nm) for the former and the latter, respectively. Expanding the concept to cyanobacteria and other algae, I discuss the evolution of a UV-B sensor in green plants.
Collapse
Affiliation(s)
- Junko Takeda
- Laboratory of Applied Microbiology and Biotechnology, Nara Women's University, Nara, Japan
| |
Collapse
|
52
|
Cañibano E, Bourbousse C, García-León M, Garnelo Gómez B, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. MOLECULAR PLANT 2021; 14:963-982. [PMID: 33711490 DOI: 10.1016/j.molp.2021.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) are two essential repressors of Arabidopsis photomorphogenesis. These proteins can associate with CULLIN4 to form independent CRL4-based E3 ubiquitin ligases that mediate the degradation of several photomorphogenic transcription factors, including ELONGATED HYPOCOTYL 5 (HY5), thereby controlling multiple gene-regulatory networks. Despite extensive biochemical and genetic analyses of their multi-subunit complexes, the functional links between DET1 and COP1 have long remained elusive. Here, we report that DET1 associates with COP1 in vivo, enhances COP1-HY5 interaction, and promotes COP1 destabilization in a process that dampens HY5 protein abundance. By regulating its accumulation, DET1 avoids HY5 association with hundreds of second-site genomic loci, which are also frequently targeted by the skotomorphogenic transcription factor PHYTOCHROME-INTERACTING FACTOR 3. Accordingly, ectopic HY5 chromatin enrichment favors local gene repression and can trigger fusca-like phenotypes. This study therefore shows that DET1-mediated regulation of COP1 stability tunes down the HY5 cistrome, avoiding hyper-photomorphogenic responses that might compromise plant viability.
Collapse
Affiliation(s)
- Esther Cañibano
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Borja Garnelo Gómez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| |
Collapse
|
53
|
Zhao X, Zeng X, Lin N, Yu S, Fernie AR, Zhao J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. HORTICULTURE RESEARCH 2021; 8:110. [PMID: 33931627 PMCID: PMC8087823 DOI: 10.1038/s41438-021-00545-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Under high light conditions or UV radiation, tea plant leaves produce more flavonols, which contribute to the bitter taste of tea; however, neither the flavonol biosynthesis pathways nor the regulation of their production are well understood. Intriguingly, tea leaf flavonols are enhanced by UV-B but reduced by shading treatment. CsFLS, CsUGT78A14, CsMYB12, and CsbZIP1 were upregulated by UV-B radiation and downregulated by shading. CsMYB12 and CsbZIP1 bound to the promoters of CsFLS and CsUGT78A14, respectively, and activated their expression individually. CsbZIP1 positively regulated CsMYB12 and interacted with CsMYB12, which specifically activated flavonol biosynthesis. Meanwhile, CsPIF3 and two MYB repressor genes, CsMYB4 and CsMYB7, displayed expression patterns opposite to that of CsMYB12. CsMYB4 and CsMYB7 bound to CsFLS and CsUGT78A14 and repressed their CsMYB12-activated expression. While CsbZIP1 and CsMYB12 regulated neither CsMYB4 nor CsMYB7, CsMYB12 interacted with CsbZIP1, CsMYB4, and CsMYB7, but CsbZIP1 did not physically interact with CsMYB4 or CsMYB7. Finally, CsPIF3 bound to and activated CsMYB7 under shading to repress flavonol biosynthesis. These combined results suggest that UV activation and shading repression of flavonol biosynthesis in tea leaves are coordinated through a complex network involving CsbZIP1 and CsPIF3 as positive MYB activators and negative MYB repressors, respectively. The study thus provides insight into the regulatory mechanism underlying the production of bitter-tasting flavonols in tea plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, 230036, Hefei, China
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
54
|
Dong H, Hu C, Liu C, Wang J, Zhou Y, Yu J. ELONGATED HYPOCOTYL 5 mediates blue light-induced starch degradation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2627-2641. [PMID: 33377142 DOI: 10.1093/jxb/eraa604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/24/2020] [Indexed: 05/25/2023]
Abstract
Starch is the major storage carbohydrate in plants, and its metabolism in chloroplasts depends mainly on light. However, the mechanism through which photoreceptors regulate starch metabolism in chloroplasts is unclear. In this study, we found that the cryptochrome 1a (CRY1a)-mediated blue light signal is critical for regulating starch accumulation by inducing starch degradation through the transcription factor HY5 in chloroplasts in tomato. cry1a mutants and HY5-RNAi plants accumulated more starch and presented lower transcript levels of starch degradation-related genes in their leaves than wild-type plants. Blue light significantly induced the transcription of starch degradation-related genes in wild-type and CRY1a- or HY5-overexpressing plants but had little effect in cry1a and HY5-RNAi plants. Dual-luciferase assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation-qPCR revealed that HY5 could activate the starch degradation-related genes PWD, BAM1, BAM3, BAM8, MEX1, and DPE1 by directly binding to their promoters. Silencing of HY5 and these starch degradation-related genes in CRY1a-overexpressing plants led to increased accumulation of starch and decreased accumulation of soluble sugars. The findings presented here not only deepen our understanding of how light controls starch degradation and sugar accumulation but also allow us to explore potential targets for improving crop quality.
Collapse
Affiliation(s)
- Han Dong
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Chaochao Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jiachun Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jingquan Yu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
55
|
A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis. Proc Natl Acad Sci U S A 2021; 118:2017284118. [PMID: 33542100 PMCID: PMC8017708 DOI: 10.1073/pnas.2017284118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Coping with UV-B is crucial for plant survival in sunlight. The UV-B photoreceptor UVR8 regulates gene expression associated with photomorphogenesis, acclimation, and UV-B stress tolerance. UV-B photon reception by UVR8 homodimers results in monomerization, followed by interaction with the key signaling protein COP1. We have discovered a UV-B hypersensitive UVR8 photoreceptor that confers strongly enhanced UV-B tolerance and generated a UVR8 variant based on the underlying mutation that shows extremely enhanced constitutive signaling activity. Our findings provide key mechanistic insight into how plants respond and acclimate to UV-B radiation. The plant ultraviolet-B (UV-B) photoreceptor UVR8 plays an important role in UV-B acclimation and survival. UV-B absorption by homodimeric UVR8 induces its monomerization and interaction with the E3 ubiquitin ligase COP1, leading ultimately to gene expression changes. UVR8 is inactivated through redimerization, facilitated by RUP1 and RUP2. Here, we describe a semidominant, hyperactive allele, namely uvr8-17D, that harbors a glycine-101 to serine mutation. UVR8G101S overexpression led to weak constitutive photomorphogenesis and extreme UV-B responsiveness. UVR8G101S was observed to be predominantly monomeric in vivo and, once activated by UV-B, was not efficiently inactivated. Analysis of a UVR8 crystal structure containing the G101S mutation revealed the distortion of a loop region normally involved in stabilization of the UVR8 homodimer. Plants expressing a UVR8 variant combining G101S with the previously described W285A mutation exhibited robust constitutive photomorphogenesis. This work provides further insight into UVR8 activation and inactivation mechanisms and describes a genetic tool for the manipulation of photomorphogenic responses.
Collapse
|
56
|
Zhao Y, Min T, Chen M, Wang H, Zhu C, Jin R, Allan AC, Lin-Wang K, Xu C. The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation. FRONTIERS IN PLANT SCIENCE 2021; 11:603178. [PMID: 33537042 PMCID: PMC7847898 DOI: 10.3389/fpls.2020.603178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/28/2020] [Indexed: 05/25/2023]
Abstract
Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in "Hujingmilu" peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.
Collapse
Affiliation(s)
- Yun Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Miaojin Chen
- Fenghua Institute of Honey Peach, Fenghua, China
| | - Hongxun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
58
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
59
|
Saini P, Bhatia S, Mahajan M, Kaushik A, Sahu SK, Kumar A, Satbhai SB, Patel MK, Saxena S, Chaurasia OP, Lingwan M, Masakapalli SK, Yadav RK. ELONGATED HYPOCOTYL5 Negatively Regulates DECREASE WAX BIOSYNTHESIS to Increase Survival during UV-B Stress. PLANT PHYSIOLOGY 2020; 184:2091-2106. [PMID: 33087416 PMCID: PMC7723109 DOI: 10.1104/pp.20.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 05/29/2023]
Abstract
Understanding how the distinct cell types of the shoot apical meristem (SAM) withstand ultraviolet radiation (UVR) stress can improve cultivation of plants in high-UVR environments. Here, we show that UV-B irradiation selectively kills epidermal and niche cells in the shoot apex. Plants harboring a mutation in DECREASE WAX BIOSYNTHESIS (DEWAX) are tolerant to UV-B. Our data show that DEWAX negatively regulates genes involved in anthocyanin biosynthesis. ELONGATED HYPOCOTYL5 (HY5) binds to the DEWAX promoter elements and represses its expression to promote the anthocyanin biosynthesis. The HY5-DEWAX regulatory network regulates anthocyanin content in Arabidopsis (Arabidopsis thaliana) and influences the survivability of plants under UV-B irradiation stress. Our cell sorting-based study of the epidermal cell layer transcriptome confirms that core UV-B stress signaling pathway genes are conserved and upregulated in response to UV-B irradiation of the SAM. Furthermore, we show that UV-B induces genes involved in shoot development and organ patterning. We propose that the HY5-DEWAX regulatory relationship is conserved; however, changes in the expression levels of these genes can determine anthocyanin content in planta and, hence, fitness under UV-B irradiation stress.
Collapse
Affiliation(s)
- Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Shivani Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Anshul Kaushik
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Asis Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Manoj Kumar Patel
- Defence Institute of High Altitude Research Leh, Ladakh 901205, India
| | - Shweta Saxena
- Defence Institute of High Altitude Research Leh, Ladakh 901205, India
| | | | - Maneesh Lingwan
- BioX centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175075, India
| | - Shyam Kumar Masakapalli
- BioX centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi 175075, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
60
|
Xu D. COP1 and BBXs-HY5-mediated light signal transduction in plants. THE NEW PHYTOLOGIST 2020; 228:1748-1753. [PMID: 31664720 DOI: 10.1111/nph.16296] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Light is one of the most essential environmental factors affecting many aspects of growth and developmental processes in plants. Plants undergo skotomorphogenic or photomorphogenic development dependent on the absence or presence of light. These two developmental programs enable a germinated seed to become a healthy seedling at the early stage of the plant life cycle. CULLIN 4-DNA DAMAGE-BINDING PROTEIN 1 (DDB1)-based CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-SUPPRESSOR OF PHYA and COP10-DEETIOLATED 1-DDB1 E3 ubiquitin ligase complexes promote the skotomorphogenesis by ubiquitinating and degrading a number of photomorphogenic-promoting factors in darkness. Photoreceptors sense and transduce light information to downstream signaling, thereby initiating a set of molecular events and subsequent photomorphogenesis. These processes are precisely modulated by a group of components including various photoreceptors, E3 ubiquitin ligase, and transcription factors at the molecular level. This review provides an overview of the current understanding of the COP1, ELONGATED HYPOCOTYL 5, and B-BOX CONTAINING PROTEINs-mediated light signal transduction pathway and highlights still open questions in the field.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
61
|
Santin M, Castagna A, Miras-Moreno B, Rocchetti G, Lucini L, Hauser MT, Ranieri A. Beyond the Visible and Below the Peel: How UV-B Radiation Influences the Phenolic Profile in the Pulp of Peach Fruit. A Biochemical and Molecular Study. FRONTIERS IN PLANT SCIENCE 2020; 11:579063. [PMID: 33193522 PMCID: PMC7661749 DOI: 10.3389/fpls.2020.579063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 05/13/2023]
Abstract
In the last decades, UV-B radiation has attracted attention due to its potential to increase nutraceutical values of fruit and vegetables, especially by inducing the accumulation of phenolics in a structure-dependent way. However, most current studies have investigated the UV-B-driven changes only in the peel or focusing on individual phenolic classes. Adopting an "-omics" approach, this work aimed to deepen the knowledge about the effects of UV-B radiation on the phenolic profile in the pulp of peach fruit. Based on these considerations, melting flesh yellow peaches (Prunus persica L., cv. Fairtime) were subjected to either a 10- or 60-min UV-B treatment (1.39 and 8.33 kJ m-2, respectively), and sampled at different time points from the exposure. A UHPLC-ESI/QTOF-MS analysis coupled with a phenolics-specific database for the annotation of compounds and a multivariate discriminant analysis revealed a marked effect of UV-B radiation on the phenolic profiles of peach pulp. Particularly, a general, transient increase was observed after 24 h from the irradiation, especially for flavanols, flavonols, and flavones. Such behavior diverges from what was observed in the peel, where an overall increase of phenolics was observed after 36 h from the irradiation. Concerning the flavonols in the pulp, UV-B exposure stimulated a specific accumulation of isorhamnetin and kaempferol derivatives, with variations imposed by the different sugar moiety bound. Anthocyanins, which were the second most abundant flavonoid group after flavonols, displayed a general decrease after 36 h that was not attributable to specific molecules. The UV-B treatments also increased the glycoside/aglycone ratio of flavonols and anthocyanins after 24 h, by increasing the glycoside concentration of both, flavonols and anthocyanins, and decreasing the aglycone concentration of anthocyanins. In support of the biochemical results, targeted gene expression analysis by RT-qPCR revealed an UV-B-induced activation of many genes involved in the flavonoid pathway, e.g., CHS, F3H, F3'H, DFR, as well as some MYB transcription factors and few genes involved in the UV-B perception. Generally, all the flavonoid-related and MYB genes showed a transient UV-B dose-dependent activation after 6 h from the irradiation, similarly to what was observed in the peel.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
62
|
Song Z, Yan T, Liu J, Bian Y, Heng Y, Lin F, Jiang Y, Wang Deng X, Xu D. BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fine-tune photomorphogenic development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:377-390. [PMID: 32654323 DOI: 10.1111/tpj.14929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Light is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling. BBX29 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and undergoes COP1-mediated degradation in the dark. Mutant seedlings with loss of BBX29 function show shortened hypocotyls, while transgenic plants overexpressing BBX29 display elongated hypocotyls in the light. Both BBX28 and BBX29 interfere with the binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of BBX30 and BBX31, consequently leading to the upregulation of their transcript levels. BBX30 and BBX31 associate with the promoter regions of BBX28 and BBX29, which in turn promotes the expression of these genes. Taken together, this study reveals a transcriptional feedback loop consisting of BBX28, BBX29, BBX30, BBX31, and HY5 that serves to fine-tune photomorphogenesis in response to light in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Yan
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqin Heng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Jiang
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Wang Deng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
63
|
Li X, Liu C, Zhao Z, Ma D, Zhang J, Yang Y, Liu Y, Liu H. COR27 and COR28 Are Novel Regulators of the COP1-HY5 Regulatory Hub and Photomorphogenesis in Arabidopsis. THE PLANT CELL 2020; 32:3139-3154. [PMID: 32769132 PMCID: PMC7534460 DOI: 10.1105/tpc.20.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 05/20/2023]
Abstract
Plants have evolved sensitive signaling systems to fine-tune photomorphogenesis in response to changing light environments. Light and low temperatures are known to regulate the expression of the COLD REGULATED (COR) genes COR27 and COR28, which influence the circadian clock, freezing tolerance, and flowering time. Blue light stabilizes the COR27 and COR28 proteins, but the underlying mechanism is unknown. We therefore performed a yeast two-hybrid screen using COR27- and COR28 as bait and identified the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) as an interactor. COR27 and COR28 physically interact with COP1, which is in turn responsible for their degradation in the dark. Furthermore, COR27 and COR28 promote hypocotyl elongation and act as negative regulators of photomorphogenesis in Arabidopsis (Arabidopsis thaliana). Genome-wide gene expression analysis showed that HY5, COR27, and COR28 co-regulate many common genes. COR27 interacts directly with HY5 and associates with the promoters of the HY5 target genes HY5 and PIF4, then regulates their transcription together with HY5. Our results demonstrate that COR27 and COR28 act as key regulators in the COP1-HY5 regulatory hub, by regulating the transcription of HY5 target genes together with HY5 to ensure proper skotomorphogenic growth in the dark and photomorphogenic development in the light.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Cuicui Liu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Dingbang Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jinyu Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yu Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
64
|
Zhao X, Heng Y, Wang X, Deng XW, Xu D. A Positive Feedback Loop of BBX11-BBX21-HY5 Promotes Photomorphogenic Development in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100045. [PMID: 33367254 PMCID: PMC7747993 DOI: 10.1016/j.xplc.2020.100045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 04/10/2020] [Indexed: 05/05/2023]
Abstract
Light is the most important environmental factor affecting many aspects of plant development. In this study, we report that B-box protein 11 (BBX11) acts as a positive regulator of red light signaling. BBX11 loss-of-function mutant seedlings display significantly elongated hypocotyls under conditions of both red light and long day, whereas BBX11 overexpression causes markedly shortened hypocotyls under various light states. BBX11 binds to the HY5 promoter to activate its transcription, while both BBX21 and HY5 associate with the promoter of BBX11 to positively regulate its expression. Taken together, our results reveal positive feedback regulation of photomorphogenesis consisting of BBX11, BBX21, and HY5, thus substantiating a transcriptional regulatory mechanism in the response of plants to light during normal development.
Collapse
Affiliation(s)
- Xianhai Zhao
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yueqin Heng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
65
|
Lin L, Dong H, Yang G, Yin R. The C-terminal 17 amino acids of the photoreceptor UVR8 is involved in the fine-tuning of UV-B signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1327-1340. [PMID: 32492260 DOI: 10.1111/jipb.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/01/2020] [Indexed: 05/26/2023]
Abstract
Plant UV-B responses are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). In response to UV-B irradiation, UVR8 homodimers dissociate into monomers that bind to the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). The interaction of the C27 domain in the C-terminal tail of UVR8 with the WD40 domain of COP1 is critical for UV-B signaling. However, the function of the last 17 amino acids (C17) of the C-terminus of UVR8, which are adjacent to C27, is unknown, although they are largely conserved in land plants. In this study, we established that Arabidopsis thaliana UVR8 C17 binds to full-length UVR8, but not to COP1, and reduces COP1 binding to the remaining portion of UVR8, including C27. We hypothesized that overexpression of C17 in a wild-type background would have a dominant negative effect on UVR8 activity; however, C17 overexpression caused strong silencing of endogenous UVR8, precluding a detailed analysis. We therefore generated YFP-UVR8N423 transgenic lines, in which C17 was deleted, to examine C17 function indirectly. YFP-UVR8N423 was more active than YFP-UVR8, suggesting that C17 inhibits UV-B signaling by attenuating binding between C27 and COP1. Our study reveals an inhibitory role for UVR8 C17 in fine-tuning UVR8-COP1 interactions during UV-B signaling.
Collapse
Affiliation(s)
- Li Lin
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huaxi Dong
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqian Yang
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruohe Yin
- Joint Center for Single Cell Biology, Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
66
|
Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. Light signaling and UV-B-mediated plant growth regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1270-1292. [PMID: 32237196 DOI: 10.1111/jipb.12932] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Light plays an important role in plants' growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light-regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far-red, and blue light pathways but also in the UV-B signaling pathway. UV-B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV-B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV-B as a developmental cue as well as to withstand high doses of UV-B radiation. Plants' responses to UV-B are an integration of its cross-talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV-B-mediated plant growth regulation.
Collapse
Affiliation(s)
- Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Maneesh Lingwan
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Shyam Kumar Masakapalli
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
67
|
Liao X, Liu W, Yang HQ, Jenkins GI. A dynamic model of UVR8 photoreceptor signalling in UV-B-acclimated Arabidopsis. THE NEW PHYTOLOGIST 2020; 227:857-866. [PMID: 32255498 DOI: 10.1111/nph.16581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
The photoreceptor UVR8 mediates numerous photomorphogenic responses of plants to UV-B wavelengths by regulating transcription. Studies with purified UVR8 and seedlings not previously exposed to UV-B have generated a model for UVR8 action in which dimeric UVR8 rapidly monomerises in response to UV-B exposure to initiate signalling. However, the mechanism of UVR8 action in UV-B-acclimated plants growing under photoperiodic conditions, where UVR8 exists in a dimer/monomer photo-equilibrium, is poorly understood. We examined UVR8 dimer/monomer status, gene expression responses, amounts of key UVR8 signalling proteins and their interactions with UVR8 in UV-B-acclimated Arabidopsis. We show that in UV-B-acclimated plants UVR8 can mediate a response to a 15-fold increase in UV-B without any increase in abundance of UVR8 monomer. Following transfer to elevated UV-B, monomers show increased interaction with both COP1, to initiate signalling and RUP2, to maintain the photo-equilibrium when the dimer/monomer cycling rate increases. Native RUP1 is present in low abundance compared with RUP2. We present a model for UVR8 action in UV-B-acclimated plants growing in photoperiodic conditions that incorporates dimer and monomer photoreception, dimer/monomer cycling, abundance of native COP1 and RUP proteins, and interactions of the monomer population with COP1, RUP2 and potentially other proteins.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| | - Wei Liu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| |
Collapse
|
68
|
Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. Identification of BBX proteins as rate-limiting cofactors of HY5. NATURE PLANTS 2020; 6:921-928. [PMID: 32661279 DOI: 10.1038/s41477-020-0725-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
As a source of both energy and environmental information, monitoring of incoming light is crucial for plants to optimize growth throughout development1. Concordantly, the light signalling pathways in plants are highly integrated with numerous other regulatory pathways2,3. One of these signal integrators is the basic leucine zipper domain (bZIP) transcription factor LONG HYPOCOTYL 5 (HY5), which has a key role as a positive regulator of light signalling in plants4,5. Although HY5 is thought to act as a DNA-binding transcriptional regulator6,7, the lack of any apparent transactivation domain8 makes it unclear how HY5 is able to accomplish its many functions. Here we describe the identification of three B-box containing proteins (BBX20, BBX21 and BBX22) as essential partners for HY5-dependent modulation of hypocotyl elongation, anthocyanin accumulation and transcriptional regulation. The bbx20 bbx21 bbx22 (bbx202122) triple mutant mimics the phenotypes of hy5 in the light and its ability to suppress the cop1 mutant phenotype in darkness. Furthermore, 84% of genes that exhibit differential expression in bbx202122 are also regulated by HY5, and we provide evidence that HY5 requires the B-box proteins for transcriptional regulation. Finally, expression of a truncated dark-stable version of HY5 (HY5(ΔN77)) together with BBX21 mutated in its VP motif strongly promoted de-etiolation in dark-grown seedlings, demonstrating the functional interdependence of these factors. In sum, this work clarifies long-standing questions regarding HY5 action and provides an example of how a master regulator might gain both specificity and dynamicity through the obligate dependence of cofactors.
Collapse
Affiliation(s)
- Katharina Bursch
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | | | - Marie Pireyre
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Miriam Lohr
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Cordula Braatz
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Henrik Johansson
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
69
|
Teixeira RT. Distinct Responses to Light in Plants. PLANTS 2020; 9:plants9070894. [PMID: 32679774 PMCID: PMC7411962 DOI: 10.3390/plants9070894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The development of almost every living organism is, to some extent, regulated by light. When discussing light regulation on biological systems, one is referring to the sun that has long been positioned in the center of the solar system. Through light regulation, all life forms have evolved around the presence of the sun. As soon our planet started to develop an atmospheric shield against most of the detrimental solar UV rays, life invaded land, and in the presence of water, it thrived. Especially for plants, light (solar radiation) is the source of energy that controls a high number of developmental aspects of growth, a process called photomorphogenesis. Once hypocotyls reach soil′s surface, its elongation deaccelerates, and the photosynthetic apparatus is established for an autotrophic growth due to the presence of light. Plants can sense light intensities, light quality, light direction, and light duration through photoreceptors that accurately detect alterations in the spectral composition (UV-B to far-red) and are located throughout the plant. The most well-known mechanism promoted by light occurring on plants is photosynthesis, which converts light energy into carbohydrates. Plants also use light to signal the beginning/end of key developmental processes such as the transition to flowering and dormancy. These two processes are particularly important for plant´s yield, since transition to flowering reduces the duration of the vegetative stage, and for plants growing under temperate or boreal climates, dormancy leads to a complete growth arrest. Understanding how light affects these processes enables plant breeders to produce crops which are able to retard the transition to flowering and avoid dormancy, increasing the yield of the plant.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
70
|
Chen Z, Ai F, Zhang J, Ma X, Yang W, Wang W, Su Y, Wang M, Yang Y, Mao K, Wang Q, Lascoux M, Liu J, Ma T. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (Populus ilicifolia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:430-442. [PMID: 32168389 DOI: 10.1111/tpj.14744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 05/16/2023]
Abstract
Species are becoming extinct at unprecedented rates as a consequence of human activity. Hence it is important to understand the evolutionary dynamics of species with already small population sizes. Populus ilicifolia is a vulnerable poplar species that is isolated from other poplar species and is uniquely adapted to the Tropics. It has a very limited size, reproduces partly clonally and is therefore an excellent case study for conservation genomics. We present here the first annotated draft genome of P. ilicifolia, characterize genome-wide patterns of polymorphisms and compare those to other poplar species with larger natural ranges. P. ilicifolia experienced a more prolonged and severe decline of effective population size (Ne ) and signs of genetic erosion than any other poplar species with which it was compared. At present, the species has the lowest genome-wide genetic diversity, the highest abundance of long runs of homozygosity, high inbreeding levels as well as a high overall accumulation of deleterious variants. However, more effective purging of severely deleterious variants and adaptation to the Tropics may have contributed to its survival. Hence, in spite of its limited genetic variation, it is certainly worth pursuing the conservation efforts of this unique species.
Collapse
Affiliation(s)
- Zeyuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Fandi Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Junlin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yutao Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18D 75326, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
71
|
Tavridou E, Schmid-Siegert E, Fankhauser C, Ulm R. UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis. PLoS Genet 2020; 16:e1008797. [PMID: 32392219 PMCID: PMC7241853 DOI: 10.1371/journal.pgen.1008797] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/21/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Sun-loving plants perceive the proximity of potential light-competing neighboring plants as a reduction in the red:far-red ratio (R:FR), which elicits a suite of responses called the "shade avoidance syndrome" (SAS). Changes in R:FR are primarily perceived by phytochrome B (phyB), whereas UV-B perceived by UV RESISTANCE LOCUS 8 (UVR8) elicits opposing responses to provide a counterbalance to SAS, including reduced shade-induced hypocotyl and petiole elongation. Here we show at the genome-wide level that UVR8 broadly suppresses shade-induced gene expression. A subset of this gene regulation is dependent on the UVR8-stabilized atypical bHLH transcription regulator LONG HYPOCOTYL IN FAR-RED 1 (HFR1), which functions in part redundantly with PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1). In parallel, UVR8 signaling decreases protein levels of the key positive regulators of SAS, namely the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5, in a COP1-dependent but HFR1-independent manner. We propose that UV-B antagonizes SAS via two mechanisms: degradation of PIF4 and PIF5, and HFR1- and PIL1-mediated inhibition of PIF4 and PIF5 function. This work highlights the importance of typical and atypical bHLH transcription regulators for the integration of light signals from different photoreceptors and provides further mechanistic insight into the crosstalk of UVR8 signaling and SAS.
Collapse
Affiliation(s)
- Eleni Tavridou
- Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, CH, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emanuel Schmid-Siegert
- SIB-Swiss Institute of Bioinformatics, University of Lausanne, CH, Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH, Lausanne, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, CH, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
72
|
Qian C, Chen Z, Liu Q, Mao W, Chen Y, Tian W, Liu Y, Han J, Ouyang X, Huang X. Coordinated Transcriptional Regulation by the UV-B Photoreceptor and Multiple Transcription Factors for Plant UV-B Responses. MOLECULAR PLANT 2020; 13:777-792. [PMID: 32126287 DOI: 10.1016/j.molp.2020.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Non-damaging ultraviolet B (UV-B) light promotes photomorphogenic development and stress acclimation through UV-B-specific signal transduction in Arabidopsis. UV-B irradiation induces monomerization and nuclear translocation of the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, it is not clear how the nuclear localization of UVR8 leads to changes in global gene expression. Here, we reveal that nuclear UVR8 governs UV-B-responsive transcriptional networks in concert with several previously known transcription factors, including ELONGATED HYPOCOTYL 5 (HY5) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Based on the transcriptomic analysis, we identify MYB13 as a novel positive regulator in UV-B-induced cotyledon expansion and stress acclimation. MYB13 is UV-B inducible and is predominantly expressed in the cotyledons. Our results demonstrate that MYB13 protein functions as a transcription factor to regulate the expression of genes involved in auxin response and flavonoid biosynthesis through direct binding with their promoters. In addition, photoactivated UVR8 interacts with MYB13 in a UV-B-dependent manner and differentially modulates the affinity of MYB13 with its targets. Taken together, our results elucidate the cooperative function of the UV-B photoreceptor UVR8 with various transcription factors in the nucleus to orchestrate the expression of specific sets of downstream genes and, ultimately, mediate plant responses to UV-B light.
Collapse
Affiliation(s)
- Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yanling Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
73
|
Zhang Q, Cai W, Ji TT, Ye L, Lu YT, Yuan TT. WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production. PLANT PHYSIOLOGY 2020; 183:345-357. [PMID: 32179630 PMCID: PMC7210638 DOI: 10.1104/pp.19.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/29/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d -CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Tong-Tong Ji
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ling Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
74
|
Quantitative Proteomic Analyses Identify STO/BBX24 -Related Proteins Induced by UV-B. Int J Mol Sci 2020; 21:ijms21072496. [PMID: 32260266 PMCID: PMC7178263 DOI: 10.3390/ijms21072496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Plants use solar radiation for photosynthesis and are inevitably exposed to UV-B. To adapt to UV-B radiation, plants have evolved a sophisticated strategy, but the mechanism is not well understood. We have previously reported that STO (salt tolerance)/BBX24 is a negative regulator of UV-B-induced photomorphogenesis. However, there is limited knowledge of the regulatory network of STO in UV-B signaling. Here, we report the identification of proteins differentially expressed in the wild type (WT) and sto mutant after UV-B radiation by iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomic analysis to explore differential proteins that depend on STO and UV-B signaling. A total of 8212 proteins were successfully identified, 221 of them were STO-dependent proteins in UV-B irradiated plants. The abundances of STO-dependent PSB and LHC (light-harvesting complex) proteins in sto mutants decreased under UV-B radiation, suggesting that STO is necessary to maintain the normal accumulation of photosynthetic system complex under UV-B radiation to facilitate photosynthesis photon capture. The abundance of phenylalanine lyase-1 (PAL1), chalcone synthetase (CHS), and flavonoid synthetase (FLS) increased significantly after UV-B irradiation, suggesting that the accumulation of flavonoids do not require STO, but UV-B is needed. Under UV-B radiation, STO stabilizes the structure of antenna protein complex by maintaining the accumulation of PSBs and LHCs, thereby enhancing the non-photochemical quenching (NPQ) ability, releasing extra energy, protecting photosynthesis, and ultimately promoting the elongation of hypocotyl. The accumulation of flavonoid synthesis key proteins is independent of STO under UV-B radiation. Overall, our results provide a comprehensive regulatory network of STO in UV-B signaling.
Collapse
|
75
|
Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, Chory J. Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. THE PLANT CELL 2020; 32:967-983. [PMID: 32086365 PMCID: PMC7145465 DOI: 10.1105/tpc.19.00772] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
The first exposure to light marks a crucial transition in plant development. This transition relies on the transcription factor HY5 controlling a complex downstream growth program. Despite its importance, its function in transcription remains unclear. Previous studies have generated lists of thousands of potential target genes and competing models of HY5 transcription regulation. In this work, we carry out detailed phenotypic and molecular analysis of constitutive activator and repressor HY5 fusion proteins. Using this strategy, we were able to filter out large numbers of genes that are unlikely to be direct targets, allowing us to eliminate several proposed models of HY5's mechanism of action. We demonstrate that the primary activity of HY5 is promoting transcription and that this function relies on other, likely light-regulated, factors. In addition, this approach reveals a molecular feedback loop via the COP1/SPA E3 ubiquitin ligase complex, suggesting a mechanism that maintains low HY5 in the dark, primed for rapid accumulation to reprogram growth upon light exposure. Our strategy is broadly adaptable to the study of transcription factor activity. Lastly, we show that modulating this feedback loop can generate significant phenotypic diversity in both Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Yogev Burko
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Adam Seluzicki
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Mark Zander
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ullas V Pedmale
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R Ecker
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
76
|
Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat Commun 2020; 11:1323. [PMID: 32165634 PMCID: PMC7067804 DOI: 10.1038/s41467-020-15133-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
UV-B constitutes a critical part of the sunlight reaching the earth surface. The homodimeric plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) monomerizes in response to UV-B and induces photomorphogenic responses, including UV-B acclimation and tolerance. REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 are negative feedback regulators that operate by facilitating UVR8 ground state reversion through re-dimerization. Here we show that RUP1 and RUP2 are transcriptionally induced by cryptochrome photoreceptors in response to blue light, which is dependent on the bZIP transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). Elevated RUP1 and RUP2 levels under blue light enhance UVR8 re-dimerization, thereby negatively regulating UVR8 signalling and providing photoreceptor pathway cross-regulation in a polychromatic light environment, as is the case in nature. We further show that cryptochrome 1, as well as the red-light photoreceptor phytochrome B, contribute to UV-B tolerance redundantly with UVR8. Thus, photoreceptors for both visible light and UV-B regulate UV-B tolerance through an intricate interplay allowing the integration of diverse sunlight signals. The Arabidopsis UVR8 photoreceptor is a dimer that monomerizes in response to UV-B. Here the authors show that cryptochromes contribute to UV tolerance and facilitate UVR8 redimerization via induction of RUP proteins in response to blue light, modifying UV-B signalling in polychromatic light environments.
Collapse
|
77
|
Tavridou E, Pireyre M, Ulm R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:507-517. [PMID: 31571300 PMCID: PMC7027837 DOI: 10.1111/tpj.14556] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/03/2023]
Abstract
Inhibition of hypocotyl growth is a well-established UV-B-induced photomorphogenic response that is mediated by the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, the molecular mechanism by which UVR8 signaling triggers inhibition of hypocotyl growth is poorly understood. The bZIP protein ELONGATED HYPOCOTYL 5 (HY5) functions as the main positive regulatory transcription factor in the UVR8 signaling pathway, with HY5-HOMOLOG (HYH) playing a minor role. However, here we demonstrate that hy5 hyh double mutants maintain significant UVR8-dependent hypocotyl growth inhibition. We identify UVR8-dependent inhibition of the activities of bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 as part of the UVR8 signaling pathway, which results in inhibition of hypocotyl growth. The UVR8-mediated repression of several hypocotyl elongation-related genes is independent of HY5 and HYH but largely associated with UVR8-dependent degradation of PIF4 and PIF5, a process that consequently diminishes PIF4/5 target promoter occupancy. Taken together, our data indicate that UVR8-mediated inhibition of hypocotyl growth involves degradation of PIF4 and PIF5. These findings contribute to our mechanistic understanding of UVR8-induced photomorphogenesis and further support the function of PIFs as integrators of different photoreceptor signaling pathways.
Collapse
Affiliation(s)
- Eleni Tavridou
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Marie Pireyre
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Roman Ulm
- Department of Botany and Plant BiologySection of BiologyFaculty of ScienceUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH-1211Geneva 4Switzerland
| |
Collapse
|
78
|
Garmash EV, Velegzhaninov IO, Ermolina KV, Rybak AV, Malyshev RV. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110332. [PMID: 31928662 DOI: 10.1016/j.plantsci.2019.110332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 05/27/2023]
Abstract
UV-B is a damaging component of solar radiation that inevitably reaches the Earth's surface. Plants have developed response mechanisms to adapt to UVB exposure. The alternative oxidase (AOX) catalyzes the ATP-uncoupling cyanide-resistant alternative pathway (AP) in plant mitochondria and is thought to be an important part of the cellular defense network under stress conditions. This study aimed to unravel the poorly understood functional significance of AOX1a induction in Arabidopsis thaliana leaves exposed to ecologically relevant doses of UVB radiation, by comparing wild-type (WT) plants with plants with modified expression of the AOX1a gene, either downregulated by antisense (AS-12) or overexpressed (XX-2). UVB exposure resulted in a phenotypic difference between lines. AOX1a overexpression resulted in the highest induction of AOX1A synthesis and MnSOD activity, and the lowest ROS level without pronounced changes in the phenotype relative to other genotypes. In AS-12 plants, expression of the majority of the genes encoding AOX was detected, other non-phosphorylating pathway components and antioxidant enzymes increased along with anthocyanin accumulation in leaves, and the ROS content was lower than in the WT. In addition to the expected AOX1 protein size (34 kDa), an AOX1 30 kDa band appeared under UVB exposure in all genotypes. However, in AS-12, the alterations in the transcript level and in the abundance of AOX1 protein isoforms induced by UVB could not fully functionally compensate for the lack of AOX1A. This was confirmed by the observed low AP capacity and increased levels of the oxidized form of ascorbate. These results highlight the importance of AOX in plant response to UVB for the control of a balanced metabolism, and indicate that AOX1a plays a key role in the regulation of the stress response.
Collapse
Affiliation(s)
- Elena V Garmash
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia.
| | - Ilya O Velegzhaninov
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Ksenia V Ermolina
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Anna V Rybak
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Ruslan V Malyshev
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
79
|
Zhang S, Jia T, Zhang Z, Zou X, Fan S, Lei K, Jiang X, Niu D, Yuan Y, Shang H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:251-261. [PMID: 31884241 DOI: 10.1016/j.plaphy.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Doudou Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
80
|
Zoulias N, Brown J, Rowe J, Casson SA. HY5 is not integral to light mediated stomatal development in Arabidopsis. PLoS One 2020; 15:e0222480. [PMID: 31945058 PMCID: PMC6964886 DOI: 10.1371/journal.pone.0222480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 01/28/2023] Open
Abstract
Light is a crucial signal that regulates many aspects of plant physiology and growth including the development of stomata, the pores in the epidermal surface of the leaf. Light signals positively regulate stomatal development leading to changes in stomatal density and stomatal index (SI; the proportion of cells in the epidermis that are stomata). Both phytochrome and cryptochrome photoreceptors are required to regulate stomatal development in response to light. The transcription factor ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light signalling, acting downstream of photoreceptors. We hypothesised that HY5 could regulate stomatal development in response to light signals due to the putative presence of HY5 binding sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide regulator of stomatal development. Our analysis shows that HY5 does have the potential to regulate the STOM promoter in vitro and that HY5 is expressed in both the epidermis and mesophyll. However, analysis of hy5 and hy5 hyh double mutants (HYH; HY5-HOMOLOG), found that they had normal stomatal development under different light conditions and the expression of stomatal developmental genes was not perturbed following light shift experiments. Analysis of stable lines overexpressing HY5 also showed no change in stomatal development or the expression of stomatal developmental genes. We therefore conclude that whilst HY5 has the potential to regulate the expression of STOM, it does not have a major role in regulating stomatal development in response to light signals.
Collapse
Affiliation(s)
- Nicholas Zoulias
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Jordan Brown
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Stuart A. Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
81
|
An JP, Wang XF, Espley RV, Lin-Wang K, Bi SQ, You CX, Hao YJ. An Apple B-Box Protein MdBBX37 Modulates Anthocyanin Biosynthesis and Hypocotyl Elongation Synergistically with MdMYBs and MdHY5. PLANT & CELL PHYSIOLOGY 2020; 61:130-143. [PMID: 31550006 DOI: 10.1093/pcp/pcz185] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Si-Qi Bi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
82
|
Shamala LF, Zhou HC, Han ZX, Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:234. [PMID: 32194607 PMCID: PMC7062797 DOI: 10.3389/fpls.2020.00234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants are known to respond to Ultraviolet-B radiation (UV-B: 280-320 nm) by generating phenolic metabolites which absorbs UV-B light. Phenolics are extraordinarily abundant in Camellia sinensis leaves and are considered, together with pleasant volatile terpenoids, as primary flavor determinants in tea beverages. In this study, we focused on the effects of UV-B exposure (at 35 μW cm-2 for 0, 0.5, 2, and 8 h) on tea transcriptional and metabolic alterations, specifically related to tea flavor metabolite production. Out of 34,737 unigenes, a total of 18,081 differentially expressed genes (DEGs) due to UV-B treatments were identified. Additionally, the phenylpropanoid pathway was found as one of the most significantly UV-B affected top 20 KEGG pathways while flavonoid and monoterpenoid pathway-related genes were enhanced at 0.5 h. In the UVR8-signal transduction pathway, UVR8 was suppressed at both short and long exposure of UV-B with genes downstream differentially expressed. Divergent expression of MYB4 at different treatments could have differentially altered structural and regulatory genes upstream of flavonoid biosynthesis pathways. Suppression of MYB4-1&3 at 0.5 h could have led to the up-regulation of structural CCOAOMT-1&2, HST-1&2, DFR-4, ANR-2, and LAR-1&3 genes resulting in accumulation of specialized metabolites at a shorter duration of UV-B exposure. Specialized metabolite profiling revealed the correlated alterations in the abundances of catechins and some volatile terpenoids in all the treatments with significant accumulation of specialized metabolites at 0.5 h treatment. A significant increase in specialized metabolites at 0.5 h treatment and no significant alteration observed at longer UVB treatment suggested that shorter exposure to UV-B led to different display in gene expression and accumulation of specialized metabolites in tea shoots in response to UV-B stress. Taken together, our results indicated that the UV-B treatment applied in this study differentially altered the UVR8-signal transduction, flavonoid and terpenoid pathways at transcriptional and metabolic levels in tea plants. Our results show strong potential for UV-B application in flavor improvement in tea at the industrial level.
Collapse
Affiliation(s)
- Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han-Chen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Zhuo-Xiao Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Shu Wei, ;
| |
Collapse
|
83
|
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 2019; 10:5219. [PMID: 31745087 PMCID: PMC6864062 DOI: 10.1038/s41467-019-13045-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
Phytochromes are bilin-binding photosensory receptors which control development over a broad range of environmental conditions and throughout the whole plant life cycle. Light-induced conformational changes enable phytochromes to interact with signaling partners, in particular transcription factors or proteins that regulate them, resulting in large-scale transcriptional reprograming. Phytochromes also regulate promoter usage, mRNA splicing and translation through less defined routes. In this review we summarize our current understanding of plant phytochrome signaling, emphasizing recent work performed in Arabidopsis. We compare and contrast phytochrome responses and signaling mechanisms among land plants and highlight open questions in phytochrome research.
Collapse
|
84
|
Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y. The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. PeerJ 2019; 7:e7878. [PMID: 31637131 PMCID: PMC6800529 DOI: 10.7717/peerj.7878] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.
Collapse
Affiliation(s)
- Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Yingui Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yelan Guang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
85
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
86
|
Chakraborty M, Gangappa SN, Maurya JP, Sethi V, Srivastava AK, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1080-1097. [PMID: 31059179 DOI: 10.1111/tpj.14381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways. However, the functional interrelations of these two transcription factors in seedling development remain unknown. Additionally, whereas HY5-mediated regulation of gene expression has been investigated in detail, the transcriptional regulation of HY5 itself is yet to be understood. Here, we show that HY5 and MYC2 work in an antagonistic manner in Arabidopsis seedling development. Our results reveal that HY5 expression is negatively regulated by MYC2 predominantly in BL, and at various stages of development. On the other hand, HY5 negatively regulates the expression of MYC2 at various wavelengths of light. In vitro and in vivo DNA-protein interaction studies suggest that MYC2 binds to the E-box cis-acting element of HY5 promoter. Collectively, this study demonstrates a coordinated regulation of MYC2 and HY5 in blue-light-mediated Arabidopsis seedling development.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Jay P Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Vishmita Sethi
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Archana K Srivastava
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Aparna Singh
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Hasthi Ram
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
87
|
Vanhaelewyn L, Viczián A, Prinsen E, Bernula P, Serrano AM, Arana MV, Ballaré CL, Nagy F, Van Der Straeten D, Vandenbussche F. Differential UVR8 Signal across the Stem Controls UV-B-Induced Inflorescence Phototropism. THE PLANT CELL 2019; 31:2070-2088. [PMID: 31289115 PMCID: PMC6751110 DOI: 10.1105/tpc.18.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Alejandro Miguel Serrano
- IADIZA, Av. Ruiz Leal s/n Parque Gral. San Martín, Casilla de Correo 507, Mendoza, 5500, Argentina (CONICET)
| | - Maria Veronica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, (CONICET-INTA), Modesta Victoria 4450, San Carlos de Bariloche Rio Negro R8403DVZ, Argentina
| | - Carlos L Ballaré
- IFEVA Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIBIO-INTECH, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
88
|
Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J 2019; 38:e102140. [PMID: 31304983 PMCID: PMC6745501 DOI: 10.15252/embj.2019102140] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Plants sense different parts of the sun's light spectrum using distinct photoreceptors, which signal through the E3 ubiquitin ligase COP1. Here, we analyze why many COP1‐interacting transcription factors and photoreceptors harbor sequence‐divergent Val‐Pro (VP) motifs that bind COP1 with different binding affinities. Crystal structures of the VP motifs of the UV‐B photoreceptor UVR8 and the transcription factor HY5 in complex with COP1, quantitative binding assays, and reverse genetic experiments together suggest that UVR8 and HY5 compete for COP1. Photoactivation of UVR8 leads to high‐affinity cooperative binding of its VP motif and its photosensing core to COP1, preventing COP1 binding to its substrate HY5. UVR8–VP motif chimeras suggest that UV‐B signaling specificity resides in the UVR8 photoreceptor core. Different COP1–VP peptide motif complexes highlight sequence fingerprints required for COP1 targeting. The blue‐light photoreceptors CRY1 and CRY2 also compete with transcription factors for COP1 binding using similar VP motifs. Thus, our work reveals that different photoreceptors and their signaling components compete for COP1 via a conserved mechanism to control different light signaling cascades.
Collapse
Affiliation(s)
- Kelvin Lau
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Richard Chappuis
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Michael Hothorn
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
89
|
Vanhaelewyn L, Bernula P, Van Der Straeten D, Vandenbussche F, Viczián A. UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues. Photochem Photobiol Sci 2019; 18:1030-1045. [PMID: 30838366 DOI: 10.1039/c8pp00492g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor. We tested the transcriptional changes of several reporters and found that they are regulated differently in different parts of the plant. Our experimental system led us to conclude that the examined genes are not controlled by light piping of UV-B from the shoot to the root or signalling molecules which may travel between different parts of the plant body but by local UVR8 signalling. The initiation of these universal signalling steps can be the induction of Elongated Hypocotyl 5 (HY5) and its homologue, HYH transcription factors. We found that their transcript and protein accumulation strictly depends on UVR8 and happens in a tissue autonomous manner. Whereas HY5 accumulation correlates well with the UVR8 signal across cell layers, the induction of flavonoids depends on both UVR8 signal and a yet to be identified tissue-dependent or developmental determinant.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
90
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
91
|
Han X, Chang X, Zhang Z, Chen H, He H, Zhong B, Deng XW. Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization. MOLECULAR PLANT 2019; 12:847-862. [PMID: 31009752 DOI: 10.1016/j.molp.2019.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
Light serves as the source of energy as well as an information signal for photosynthetic plants. During evolution, plants have acquired the ability to monitor environmental light radiation and adjust their developmental patterns to optimally utilize light energy for photosynthesis. The mechanisms of light perception and signal transduction have been comprehensively studied in past decades, mostly in a few model plants, including Arabidopsis thaliana. However, systematic analyses of the origin and evolution of core components involved in light perception and signaling are still lacking. In this study, we took advantage of the recently sequenced genomes and transcriptomes covering all the main Archaeplastida clades in the public domain to identify orthologous genes of core components involved in light perception and signaling and to reconstruct their evolutionary history. Our analyses suggested that acclimation to different distribution of light quality in new environments led to the origination of specific light signaling pathways in plants. The UVR8 (UV Resistance Locus 8) signaling pathway originated during the movement of plants from the deeper sea to shallow water and enabled plants to deal with ultraviolet B light (UV-B). After acquisition of UV-B adaptation, origination of the phytochrome signaling pathway helped plants to colonize water surface where red light became the prominent light energy source. The seedling emergence pathway, which is mediated by a combination of light and phytohormone signals that orchestrate plant growth pattern transitions, originated before the emergence of seed plants. Although cryptochromes and some key components of E3 ubiquitin ligase systems already existed before the divergence of the plant and animal kingdoms, the coevolution and optimization of light perception and downstream signal transduction components, including key transcription factors and E3 ubiquitin ligase systems, are evident during plant terrestrialization.
Collapse
Affiliation(s)
- Xue Han
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Xin Chang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Haodong Chen
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| |
Collapse
|
92
|
Senapati D, Kushwaha R, Dutta S, Maurya JP, Biswas S, Gangappa SN, Chattopadhyay S. COP1 regulates the stability of CAM7 to promote photomorphogenic growth. PLANT DIRECT 2019; 3:e00144. [PMID: 31245782 PMCID: PMC6593147 DOI: 10.1002/pld3.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 05/31/2023]
Abstract
The unique member of the calmodulin gene family, Calmodulin7 (CAM7), plays a crucial role as transcriptional regulator to promote Arabidopsis seedling development. CAM7 regulates the expression of HY5, which is intimately involved in the promotion of photomorphogenic growth and light-regulated gene expression. COP1 ubiquitin ligase suppresses photomorphogenesis by degrading multiple photomorphogenesis promoting factors including HY5 in darkness. Genetic interaction studies, in this report, reveal that CAM7 and COP1 co-ordinately work to promote photomorphogenic growth and light-regulated gene expression at lower intensity of light. CAM7 physically interacts with COP1 in the nucleus. Further, in vivo study suggests that CAM7 and COP1 interaction is light intensity dependent. We have also shown that functional COP1 is required for optimum accumulation of CAM7 at lower fluences of light. Taken together, this study demonstrates the coordinated function of CAM7 and COP1 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Ritu Kushwaha
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Siddhartha Dutta
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Jay Prakash Maurya
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Srabasthi Biswas
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | | | | |
Collapse
|
93
|
Kondou Y, Miyagi Y, Morito T, Fujihira K, Miyauchi W, Moriyama A, Terasawa T, Ishida S, Iwabuchi K, Kubo H, Nishihama R, Ishizaki K, Kohchi T. Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. PLANTA 2019; 249:1349-1364. [PMID: 30840176 DOI: 10.1007/s00425-019-03090-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 05/08/2023]
Abstract
The physiological importance of MpUVR8 in UV-B resistance and translocation in a UV-B-dependent manner from the cytosol into the nucleus is characterized in Marchantia polymorpha. UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UV-B) light receptor functioning for UV-B sensing and tolerance in Arabidopsis thaliana and other species. It is unclear whether UVR8 physiologically functions in UV-B-induced defense responses in Marchantia polymorpha, which belongs to the earliest diverging group of embryophyte lineages. Here, we demonstrate that UVR8 has a physiological function in UV-B tolerance and that there is a UVR8-dependent pathway involved. In addition, a UVR8-independent pathway is revealed. We examine the tissue-specific expression pattern of M. polymorpha UVR8 (MpUVR8), showing that it is highly expressed in the apical notch in thalli and gametangiophores, as well as in antheridial and archegonial heads. Furthermore, Mpuvr8KO plant transformants, in which the MpUVR8 locus was disrupted, were produced and analyzed to understand the physiological and molecular function of MpUVR8. Analysis using these plants indicates the important roles of MpUVR8 and MpUVR8-regulated genes, and of MpUVR8-independent pathways in UV-B tolerance. Subcellular localization of Citrine-fused MpUVR8 in M. polymorpha cells was also investigated. It was found to translocate from the cytosol into the nucleus in response to UV-B irradiation. Our findings indicate strong conservation of the physiological function of UVR8 and the molecular mechanisms for UVR8-dependent signal transduction through regulation of gene expression in embryophytes.
Collapse
Affiliation(s)
- Youichi Kondou
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan.
| | - Yuta Miyagi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Morito
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Kenta Fujihira
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Wataru Miyauchi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Asami Moriyama
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takuya Terasawa
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kosei Iwabuchi
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan
| | - Hiroyoshi Kubo
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
94
|
Yadav A, Bakshi S, Yadukrishnan P, Lingwan M, Dolde U, Wenkel S, Masakapalli SK, Datta S. The B-Box-Containing MicroProtein miP1a/BBX31 Regulates Photomorphogenesis and UV-B Protection. PLANT PHYSIOLOGY 2019; 179:1876-1892. [PMID: 30723178 PMCID: PMC6446756 DOI: 10.1104/pp.18.01258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 05/04/2023]
Abstract
The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) represents a major hub in the light-signaling cascade both under visible and UV-B light. The mode of transcriptional regulation of HY5, especially under UV-B light, is not well characterized. B-BOX (BBX) transcription factors regulate HY5 transcription and also posttranscriptionally modulate HY5 to control photomorphogenesis under white light. Here, we identify BBX31 as a key signaling intermediate in visible and UV-B light signal transduction in Arabidopsis (Arabidopsis thaliana). BBX31 expression is induced by UV-B radiation in a fluence-dependent manner. HY5 directly binds to the promoter of BBX31 and regulates its transcript levels. Loss- and gain-of-function mutants of BBX31 indicate that it acts as a negative regulator of photomorphogenesis under white light but is a positive regulator of UV-B signaling. Genetic interaction studies suggest that BBX31 regulates photomorphogenesis independent of HY5 We found no evidence for a direct BBX31-HY5 interaction, and they primarily regulate different sets of genes in white light. Under high doses of UV-B radiation, BBX31 promotes the accumulation of UV-protective flavonoids and phenolic compounds. It enhances tolerance to UV-B radiation by regulating genes involved in photoprotection and DNA repair in a HY5-dependent manner. Under UV-B radiation, overexpression of BBX31 enhances HY5 transcriptional levels in a UV RESISTANCE LOCUS8-dependent manner, suggesting that BBX31 might regulate HY5 transcription.
Collapse
Affiliation(s)
- Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Souvika Bakshi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, Himachal Pradesh, India
| | - Ulla Dolde
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Shyam Kumar Masakapalli
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
95
|
Höll J, Lindner S, Walter H, Joshi D, Poschet G, Pfleger S, Ziegler T, Hell R, Bogs J, Rausch T. Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. PLANT, CELL & ENVIRONMENT 2019; 42:801-814. [PMID: 30049021 DOI: 10.1111/pce.13409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 05/20/2023]
Abstract
Upon continuous stress exposure, plants display attenuated metabolic stress responses due to regulatory feedback loops. Here, we have tested the hypothesis that pulsed stress exposure with intervening recovery periods should affect these feedback loops, thereby causing increased accumulation of stress-induced metabolites. The response of Arabidopsis plantlets to continuous UV-B exposure (Cuv ) was compared with that of pulsed UV-B exposure (Puv ). The differential responses to Puv versus Cuv were monitored at the level of gene expression and metabolite accumulation, using wild type (WT) and different mutant lines. In comparison with Cuv , Puv increased sinapyl and flavonol (S + F) content, whereas adaptive growth attenuation was reduced. Furthermore, in a myb4 mutant (AtMYB4, repressor-type R2R3-MYB transcription factor), the S + F content was increased only for Cuv , but not beyond the level for Puv observed in WT. These observations and the ability of AtMYB4 to repress AtMYB12/AtMYB111-mediated activation of target gene promoters (pCHS and pFLS) indicate that the increase of S + F content after Puv observed in WT plants results from reduced feedback inhibition by AtMYB4. The results support the notion that stress-induced metabolic changes not necessarily cause a growth penalty. Furthermore, the observed Puv -induced increase in flavonol accumulation may stimulate reevaluation of commercial plant production practices.
Collapse
Affiliation(s)
- Janine Höll
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sonja Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hannah Walter
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Drishti Joshi
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Sina Pfleger
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt, Germany
- Fachhochschule Bingen, Bingen am Rhein, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
96
|
Wang F, Zhang L, Chen X, Wu X, Xiang X, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhou Y. SlHY5 Integrates Temperature, Light, and Hormone Signaling to Balance Plant Growth and Cold Tolerance. PLANT PHYSIOLOGY 2019; 179:749-760. [PMID: 30563923 PMCID: PMC6426432 DOI: 10.1104/pp.18.01140] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 05/18/2023]
Abstract
During the transition from warm to cool seasons, plants experience decreased temperatures, shortened days, and decreased red/far-red (R/FR) ratios of light. The mechanism by which plants integrate these environmental cues to maintain plant growth and adaptation remains poorly understood. Here, we report that low temperature induced the transcription of PHYTOCHROME A and accumulation of LONG HYPOCOTYL5 (SlHY5, a basic Leu zipper transcription factor) in tomato (Solanum lycopersicum) plants, especially under short day conditions with low R/FR light ratios. Reverse genetic approaches and physiological analyses revealed that silencing of SlHY5 increased cold susceptibility in tomato plants, whereas overexpression of SlHY5 enhanced cold tolerance. SlHY5 directly bound to and activated the transcription of genes encoding a gibberellin-inactivation enzyme, namely GIBBERELLIN2-OXIDASE4, and an abscisic acid biosynthetic enzyme, namely 9-CIS-EPOXYCAROTENOID DIOXYGENASE6 (SlNCED6). Thus, phytochrome A-dependent SlHY5 accumulation resulted in an increased abscisic acid/gibberellin ratio, which was accompanied by growth cessation and induction of cold response. Furthermore, silencing of SlNCED6 compromises short day- and low R/FR-induced tomato resistance to cold stress. These findings provide insight into the molecular genetic mechanisms by which plants integrate environmental stimuli with hormones to coordinate their growth with impending cold temperatures. Moreover, this work reveals a molecular mechanism that plants have evolved for growth and survival in response to seasonal changes.
Collapse
Affiliation(s)
- Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Luyue Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoxiao Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Plant Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| |
Collapse
|
97
|
Liang T, Yang Y, Liu H. Signal transduction mediated by the plant UV-B photoreceptor UVR8. THE NEW PHYTOLOGIST 2019; 221:1247-1252. [PMID: 30315741 DOI: 10.1111/nph.15469] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1247 I. Introduction 1247 II. The UVR8-COP1 pathway 1248 III. The UVR8-WRKY36 pathway 1248 IV. The UVR8-BES1/BIM1 pathway 1249 V. Other pathways 1250 VI. Conclusion and perspectives 1250 Acknowledgements 1251 References 1251 SUMMARY: Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that has significant effects on plant development and acclimation responses. UVR8 (UV Resistance Locus 8) is the long sought-after UV-B photoreceptor that mediates UV-B light perception and signal transduction. UV-B irradiation induces the monomerization and nuclear accumulation of UVR8 in plant cells to activate the UV-B signaling pathway. The photoactivated UVR8 could transduce UV-B signal via multiple mechanisms to regulate transcription and plant growth. Here, we summarize current understanding of UVR8-mediated UV-B signal transduction pathways, including UVR8-COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1) and UVR8-WRKY36 (WRKY DNA-BINDING PROTEIN 36), UVR8-BES1 (BRI1-EMS-SUPPRESSOR1) and BIM1 (BES1-INTERACTING MYC-LIKE 1).
Collapse
Affiliation(s)
- Tong Liang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Yang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
98
|
Tossi VE, Regalado JJ, Iannicelli J, Laino LE, Burrieza HP, Escandón AS, Pitta-Álvarez SI. Beyond Arabidopsis: Differential UV-B Response Mediated by UVR8 in Diverse Species. FRONTIERS IN PLANT SCIENCE 2019; 10:780. [PMID: 31275337 PMCID: PMC6591365 DOI: 10.3389/fpls.2019.00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/28/2019] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B radiation (UV-B, 280-315 nm) is an important environmental signal that regulates growth and development in plants. Two dose-dependent UV-B response pathways were described in plants: a specific one, mediated by UVR8 (the specific UV-B receptor) and an unspecific one, activated by the oxidative damage produced by radiation. The constitutively expressed receptor appears inactive as a dimer, with the two monomers dissociating upon UV-B irradiation. The monomer then interacts with COP1, an ubiquitin ligase, hindering its ability to poly-ubiquitinate transcriptional factor HY5, thus averting its degradation and activating the photomorphogenic response. HY5 induces the synthesis of proteins RUP1 and RUP2, which interact with UVR8, releasing COP1, and inducing the re-dimerization of UVR8. This mechanism has been thoroughly characterized in Arabidopsis, where studies have demonstrated that the UVR8 receptor is key in UV-B response. Although Arabidopsis importance as a model plant many mechanisms described in this specie differ in other plants. In this paper, we review the latest information regarding UV-B response mediated by UVR8 in different species, focusing on the differences reported compared to Arabidopsis. For instance, UVR8 is not only induced by UV-B but also by other agents that are expressed differentially in diverse tissues. Also, in some of the species analyzed, proteins with low homology to RUP1 and RUP2 were detected. We also discuss how UVR8 is involved in other developmental and stress processes unrelated to UV-B. We conclude that the receptor is highly versatile, showing differences among species.
Collapse
Affiliation(s)
- Vanesa Eleonora Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Leandro Ezequiel Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernan Pablo Burrieza
- Laboratorio de biología del desarrollo de las plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto de Genética “Ewald A. Favret,” Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Micología y Botánica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez ;
| |
Collapse
|
99
|
Kovács H, Aleksza D, Baba AI, Hajdu A, Király AM, Zsigmond L, Tóth SZ, Kozma-Bognár L, Szabados L. Light Control of Salt-Induced Proline Accumulation Is Mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1584. [PMID: 31921239 PMCID: PMC6914869 DOI: 10.3389/fpls.2019.01584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.
Collapse
Affiliation(s)
- Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Dávid Aleksza
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Anna Mária Király
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- *Correspondence: László Szabados,
| |
Collapse
|
100
|
Tedeschi F, Rizzo P, Huong BTM, Czihal A, Rutten T, Altschmied L, Scharfenberg S, Grosse I, Becker C, Weigel D, Bäumlein H, Kuhlmann M. EFFECTOR OF TRANSCRIPTION factors are novel plant-specific regulators associated with genomic DNA methylation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:261-278. [PMID: 30252137 PMCID: PMC6585611 DOI: 10.1111/nph.15439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/01/2018] [Indexed: 05/02/2023]
Abstract
Plant-specific EFFECTORS OF TRANSCRIPTION (ET) are characterised by a variable number of highly conserved ET repeats, which are involved in zinc and DNA binding. In addition, ETs share a GIY-YIG domain, involved in DNA nicking activity. It was hypothesised that ETs might act as epigenetic regulators. Here, methylome, transcriptome and phenotypic analyses were performed to investigate the role of ET factors and their involvement in DNA methylation in Arabidopsis thaliana. Comparative DNA methylation and transcriptome analyses in flowers and seedlings of et mutants revealed ET-specific differentially expressed genes and mostly independently characteristic, ET-specific differentially methylated regions. Loss of ET function results in pleiotropic developmental defects. The accumulation of cyclobutane pyrimidine dimers after ultraviolet stress in et mutants suggests an ET function in DNA repair.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Paride Rizzo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Bui Thi Mai Huong
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Andreas Czihal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | | | - Ivo Grosse
- Department of BioinformaticsMartin‐Luther‐University06120HalleGermany
| | - Claude Becker
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
- Gregor Mendel Institute of Molecular Plant Biology1030ViennaAustria
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
| | - Helmut Bäumlein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| |
Collapse
|