51
|
Macnee NC, Rebstock R, Hallett IC, Schaffer RJ, Bulley SM. A review of current knowledge about the formation of native peridermal exocarp in fruit. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1019-1031. [PMID: 32571472 DOI: 10.1071/fp19135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
The outer skin layer in any plant is essential in offering a protective barrier against water loss and pathogen attack. Within fleshy fruit, the skin supports internal cell layers and can provide the initial cues in attracting seed-dispersing animals. The skin of a fruit, termed the exocarp, is a key element of consumer preference and a target for many breeding programs. Across fruiting species there is a huge diversity of exocarp types and these range from a simple single living cell layer (epidermis) often covered with a waxy layer, to complex multicellular suberised and dead cell layers (periderm), with various intermediate russet forms in between. Each exocarp can be interspersed with other structures such as hairs or spines. The epidermis has been well characterised and remains pluripotent with the help of the cells immediately under the epidermis. The periderm, in contrast, is the result of secondary meristematic activity, which replaces the epidermal layers, and is not well characterised in fruits. In this review we explore the structure, composition and mechanisms that control the development of a periderm type fruit exocarp. We draw upon literature from non-fleshy fruit species that form periderm tissue, from which a considerable amount of research has been undertaken.
Collapse
Affiliation(s)
- Nikolai C Macnee
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand; and School of Biological Science, The University of Auckland, Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Auckland, New Zealand; and The New Zealand Institute for Plant and Food Research Limited, 55 Old Mill Road, RD3, Motueka 7198, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, 412 No. 1 Road, RD2, Te Puke 3182, New Zealand; and Corresponding author.
| |
Collapse
|
52
|
Gundu S, Tabassum N, Blilou I. Moving with purpose and direction: transcription factor movement and cell fate determination revisited. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:124-132. [PMID: 32992134 DOI: 10.1016/j.pbi.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Cell diversity in a multicellular organism relies on cell-cell communication where cells must receive positional information as input signals to adopt their proper cell fate in the right place and at the right time. This process is achieved through triggering signaling cascades that drive cellular changes during development. In plants, signaling through mobile transcription factors (TF) plays a central role in development. Rather than acting cell-autonomously and exclusive to their expression domains, many TFs move between cells and deploy regulatory networks and cell type-specific effectors to achieve their biological functions. Here, we highlight a few examples of mobile TFs central to cell fate specification in Arabidopsis.
Collapse
Affiliation(s)
- Shyam Gundu
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Naheed Tabassum
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
53
|
García-Gómez ML, Castillo-Jiménez A, Martínez-García JC, Álvarez-Buylla ER. Multi-level gene regulatory network models to understand complex mechanisms underlying plant development. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:171-179. [PMID: 33171396 DOI: 10.1016/j.pbi.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 05/07/2023]
Abstract
Patterning in plant development is the emergent outcome of the feedback-based interplay between tissue-coupled intracellular regulatory networks and physicochemical fields. This interplay gives rise to dynamics that evolve on a wide spectrum of spatiotemporal scales. This imposes important challenges for computational approaches to model the dynamics of plant development. These challenges are being tackled in recent times by computational and mathematical advances that have made progress in the modelling of regulatory networks, as well as in approaches to couple the latter to physicochemical fields. Efforts in this direction are fundamental to identify the dynamical constraints that emerge from non-cellular autonomous activity in cell-fate decisions and patterning, and requires an understanding of how multi-level and multi-scale processes are coupled. Here, we discuss the use of multi-level modeling and simulation tools for the study of multicellular systems, with emphasis on plants. As illustrative examples, we discuss recent works elucidating the mechanisms that underlie patterning in the root meristem of Arabidopsis thaliana, and in plant responses to environmental conditions.
Collapse
Affiliation(s)
- Mónica L García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Aaron Castillo-Jiménez
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico; PhD Program on Biomedical Science, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | | | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
54
|
Zhang T, Tan M, Geng L, Li J, Xiang Y, Zhang B, Zhao Y. New insight into comprehensive analysis of INDETERMINATE DOMAIN (IDD) gene family in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:547-556. [PMID: 32912488 DOI: 10.1016/j.plaphy.2020.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factor (TF), as a family of plant-specific zinc-finger proteins, regulates a variety of development processes and abiotic stresses in plants. IDD genes have been identified and characterized in other plants, however, the rice IDD family genes have not been investigated at genome-wide. In this study, 15 OsIDD genes were identified in rice genome and phylogenetically classified into two groups. Conserved motifs and potential interaction protein analysis about OsIDD proteins were carried out. Exon-intron structures, cis-acting elements and expression profiles of OsIDD genes were also examined. Exon-intron structures analysis revealed that overall structures of OsIDD genes were relatively conserved although they contained different numbers of introns. Cis-acting elements analysis suggested that most OsIDD gene transcripts could be induced by various abiotic stresses and phytohormones. The expression patterns of OsIDD genes were detected by qRT-PCR under cold and drought conditions, and by exogenous auxin (2,4-D), gibberellin (GA3), and abscisic acid (ABA) treatments, respectively. The results showed that the OsIDDs might play essential roles under abiotic stresses and hormone responses. Distinct expression profiles in tissues/organs suggested that OsIDDs might be involved in different development processes in rice. More interestingly, the prediction of protein-protein interactions (PPIs) revealed OsIDDs could cooperate with some histone modifiers. Yeast two-hybrid assays were performed and confirmed it. Collectively, these results provide a foundation for further elucidation on the molecular mechanisms of OsIDD genes and advance our understanding of their biological function in rice.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mingfang Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiajia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
55
|
Jiao Z, Wang L, Du H, Wang Y, Wang W, Liu J, Huang J, Huang W, Ge L. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC PLANT BIOLOGY 2020; 20:401. [PMID: 32867687 PMCID: PMC7460785 DOI: 10.1186/s12870-020-02619-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2 ZFPs) play vital roles in shaping many aspects of plant growth and adaptation to the environment. Plant genomes harbor hundreds of C2H2 ZFPs, which compose one of the most important and largest transcription factor families in higher plants. Although the C2H2 ZFP gene family has been reported in several plant species, it has not been described in the model leguminous species Medicago truncatula. RESULTS In this study, we identified 218 C2H2 type ZFPs with 337 individual C2H2 motifs in M. truncatula. We showed that the high rate of local gene duplication has significantly contributed to the expansion of the C2H2 gene family in M. truncatula. The identified ZFPs exhibit high variation in motif arrangement and expression pattern, suggesting that the short C2H2 zinc finger motif has been adopted as a scaffold by numerous transcription factors with different functions to recognize cis-elements. By analyzing the public expression datasets and quantitative RT-PCR (qRT-PCR), we identified several C2H2 ZFPs that are specifically expressed in certain tissues, such as the nodule, seed, and flower. CONCLUSION Our genome-wide work revealed an expanded C2H2 ZFP gene family in an important legume M. truncatula, and provides new insights into the diversification and expansion of C2H2 ZFPs in higher plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Liping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Huan Du
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ying Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Weixu Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Junjie Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Jinhang Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
56
|
Prochetto S, Reinheimer R. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms. ANNALS OF BOTANY 2020; 126:85-101. [PMID: 32206771 PMCID: PMC7304464 DOI: 10.1093/aob/mcaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.
Collapse
Affiliation(s)
- Santiago Prochetto
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentina
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentinaand
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
57
|
Protein complex stoichiometry and expression dynamics of transcription factors modulate stem cell division. Proc Natl Acad Sci U S A 2020; 117:15332-15342. [PMID: 32541020 DOI: 10.1073/pnas.2002166117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stem cells divide and differentiate to form all of the specialized cell types in a multicellular organism. In the Arabidopsis root, stem cells are maintained in an undifferentiated state by a less mitotically active population of cells called the quiescent center (QC). Determining how the QC regulates the surrounding stem cell initials, or what makes the QC fundamentally different from the actively dividing initials, is important for understanding how stem cell divisions are maintained. Here we gained insight into the differences between the QC and the cortex endodermis initials (CEI) by studying the mobile transcription factor SHORTROOT (SHR) and its binding partner SCARECROW (SCR). We constructed an ordinary differential equation model of SHR and SCR in the QC and CEI which incorporated the stoichiometry of the SHR-SCR complex as well as upstream transcriptional regulation of SHR and SCR. Our model prediction, coupled with experimental validation, showed that high levels of the SHR-SCR complex are associated with more CEI division but less QC division. Furthermore, our model prediction allowed us to propose the putative upstream SHR regulators SEUSS and WUSCHEL-RELATED HOMEOBOX 5 and to experimentally validate their roles in QC and CEI division. In addition, our model established the timing of QC and CEI division and suggests that SHR repression of QC division depends on formation of the SHR homodimer. Thus, our results support that SHR-SCR protein complex stoichiometry and regulation of SHR transcription modulate the division timing of two different specialized cell types in the root stem cell niche.
Collapse
|
58
|
Gene Regulation via the Combination of Transcription Factors in the INDETERMINATE DOMAIN and GRAS Families. Genes (Basel) 2020; 11:genes11060613. [PMID: 32498388 PMCID: PMC7349898 DOI: 10.3390/genes11060613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein–protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR,SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).
Collapse
|
59
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
60
|
A system-level mechanistic explanation for asymmetric stem cell fates: Arabidopsis thaliana root niche as a study system. Sci Rep 2020; 10:3525. [PMID: 32103059 PMCID: PMC7044435 DOI: 10.1038/s41598-020-60251-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
Asymmetric divisions maintain long-term stem cell populations while producing new cells that proliferate and then differentiate. Recent reports in animal systems show that divisions of stem cells can be uncoupled from their progeny differentiation, and the outcome of a division could be influenced by microenvironmental signals. But the underlying system-level mechanisms, and whether this dynamics also occur in plant stem cell niches (SCN), remain elusive. This article presents a cell fate regulatory network model that contributes to understanding such mechanism and identify critical cues for cell fate transitions in the root SCN. Novel computational and experimental results show that the transcriptional regulator SHR is critical for the most frequent asymmetric division previously described for quiescent centre stem cells. A multi-scale model of the root tip that simulated each cell's intracellular regulatory network, and the dynamics of SHR intercellular transport as a cell-cell coupling mechanism, was developed. It revealed that quiescent centre cell divisions produce two identical cells, that may acquire different fates depending on the feedback between SHR's availability and the state of the regulatory network. Novel experimental data presented here validates our model, which in turn, constitutes the first proposed systemic mechanism for uncoupled SCN cell division and differentiation.
Collapse
|
61
|
Abstract
Protein-protein interactions (PPI) are essential for a plethora of biological processes. These interactions can be visualized and quantified with spatial resolution using Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging microscopy (FLIM) technology. Currently, FRET-FLIM is routinely used in cell biology, and it has become a powerful tool to map protein interactions in native environments. However, implementing this technology in living multicellular organism remains challenging, especially when dealing with developing plant embryos where tissues are confined in multiple cell layers preventing direct imaging. In this chapter, we describe a step-by-step protocol for studying PPI using FRET-FLIM of the two transcription factors SCARECROW and SHORTROOT in Arabidopsis embryos. We provide a detailed description from embryo isolation to data analysis and representation.
Collapse
|
62
|
Xiao TT, Raygoza AA, Pérez JC, Kirschner G, Deng Y, Atkinson B, Sturrock C, Lube V, Wang JY, Lubineau G, Al-Babili S, Cruz Ramírez A, Bennett M, Blilou I. Emergent Protective Organogenesis in Date Palms: A Morpho-Devo-Dynamic Adaptive Strategy during Early Development. THE PLANT CELL 2019; 31:1751-1766. [PMID: 31142581 PMCID: PMC6713301 DOI: 10.1105/tpc.19.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 05/17/2023]
Abstract
Desert plants have developed mechanisms for adapting to hostile desert conditions, yet these mechanisms remain poorly understood. Here, we describe two unique modes used by desert date palms (Phoenix dactylifera) to protect their meristematic tissues during early organogenesis. We used x-ray micro-computed tomography combined with high-resolution tissue imaging to reveal that, after germination, development of the embryo pauses while it remains inside a dividing and growing cotyledonary petiole. Transcriptomic and hormone analyses show that this developmental arrest is associated with the low expression of development-related genes and accumulation of hormones that promote dormancy and confer resistance to stress. Furthermore, organ-specific cell-type mapping demonstrates that organogenesis occurs inside the cotyledonary petiole, with identifiable root and shoot meristems and their respective stem cells. The plant body emerges from the surrounding tissues with developed leaves and a complex root system that maximizes efficient nutrient and water uptake. We further show that, similar to its role in Arabidopsis (Arabidopsis thaliana), the SHORT-ROOT homolog from date palms functions in maintaining stem cell activity and promoting formative divisions in the root ground tissue. Our findings provide insight into developmental programs that confer adaptive advantages in desert plants that thrive in hostile habitats.
Collapse
Affiliation(s)
- Ting Ting Xiao
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Alejandro Aragón Raygoza
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Juan Caballero Pérez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Gwendolyn Kirschner
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Yanming Deng
- Provincial Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Brian Atkinson
- Hounsfield Facility, School of Biosciences, University of Nottingham, Nottingham LE12 3RD, United Kingdom
| | - Craig Sturrock
- Hounsfield Facility, School of Biosciences, University of Nottingham, Nottingham LE12 3RD, United Kingdom
| | - Vinicius Lube
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Gilles Lubineau
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Malcolm Bennett
- Hounsfield Facility, School of Biosciences, University of Nottingham, Nottingham LE12 3RD, United Kingdom
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
63
|
Völz R, Rayapuram N, Hirt H. Phosphorylation regulates the activity of INDETERMINATE-DOMAIN (IDD/BIRD) proteins in response to diverse environmental conditions. PLANT SIGNALING & BEHAVIOR 2019; 14:e1642037. [PMID: 31314681 PMCID: PMC6768238 DOI: 10.1080/15592324.2019.1642037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/01/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
INDETERMINATE-DOMAIN proteins (IDDs) belong to a diverse plant-specific family of transcriptional regulators that coordinate distinct functions during plant growth and development. The functions of several of these IDD members are transcriptionally regulated, but so far nothing is known about the regulation at the post-translational level in spite of the fact that post-translational modifications of these proteins have been reported in several large-scale proteomics studies. Recently, we showed that IDD4 is a repressor of basal immunity and its characteristic traits are predominantly determined by the phosphorylation at two distinct phosphorylation sites. This finding prompted us to comprehensively review phosphorylation of the various IDD members from the plethora of phosphoproteomics studies demonstrating the post-translational modification of IDDs at highly conserved sites under various experimental conditions. We reckon that the phosphorylation of IDDs is an underrated mechanistic aspect in their regulation and we postulate their importance in IDD/BIRD functioning.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
65
|
Kumar M, Le DT, Hwang S, Seo PJ, Kim HU. Role of the INDETERMINATE DOMAIN Genes in Plants. Int J Mol Sci 2019; 20:ijms20092286. [PMID: 31075826 PMCID: PMC6539433 DOI: 10.3390/ijms20092286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Dung Thi Le
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
66
|
Chen WQ, Drapek C, Li DX, Xu ZH, Benfey PN, Bai SN. Histone Deacetylase HDA19 Affects Root Cortical Cell Fate by Interacting with SCARECROW. PLANT PHYSIOLOGY 2019; 180:276-288. [PMID: 30737268 PMCID: PMC6501111 DOI: 10.1104/pp.19.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 05/27/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) root epidermis is a simple model for investigating cell fate specification and pattern formation. In addition to regulatory networks consisting of transcription factors, histone deacetylases are also involved in the formation of cellular patterns. Here, we report thatHistone Deacetylase19 (HDA19) affects the root epidermal cellular pattern through regulation of cortical cell fate by interacting with SCARECROW (SCR). HDA19 binds to the DNA sequence upstream of SCR, as well as to those of several of SCR's target genes, and regulates their expression. Mutant lines of several SCR target genes show impaired patterns of epidermal differentiation and cortical cell division, similar to that of hda19 This work presents HDA19 and SCR as two further players in the regulation of cortical and epidermal cell specification and describes an additional function for SCR.
Collapse
Affiliation(s)
- Wen-Qian Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Colleen Drapek
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708
| | - Dong-Xu Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
67
|
Motte H, Vanneste S, Beeckman T. Molecular and Environmental Regulation of Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:465-488. [PMID: 30822115 DOI: 10.1146/annurev-arplant-050718-100423] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| |
Collapse
|
68
|
Völz R, Kim SK, Mi J, Rawat AA, Veluchamy A, Mariappan KG, Rayapuram N, Daviere JM, Achard P, Blilou I, Al-Babili S, Benhamed M, Hirt H. INDETERMINATE-DOMAIN 4 (IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PLoS Pathog 2019; 15:e1007499. [PMID: 30677094 PMCID: PMC6345439 DOI: 10.1371/journal.ppat.1007499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD)/ BIRD proteins are a highly conserved plant-specific family of transcription factors which play multiple roles in plant development and physiology. Here, we show that mutation in IDD4/IMPERIAL EAGLE increases resistance to the hemi-biotrophic pathogen Pseudomonas syringae, indicating that IDD4 may act as a repressor of basal immune response and PAMP-triggered immunity. Furthermore, the idd4 mutant exhibits enhanced plant-growth indicating IDD4 as suppressor of growth and development. Transcriptome comparison of idd4 mutants and IDD4ox lines aligned to genome-wide IDD4 DNA-binding studies revealed major target genes related to defense and developmental-biological processes. IDD4 is a phospho-protein that interacts and becomes phosphorylated on two conserved sites by the MAP kinase MPK6. DNA-binding studies of IDD4 after flg22 treatment and with IDD4 phosphosite mutants show enhanced binding affinity to ID1 motif-containing promoters and its function as a transcriptional regulator. In contrast to the IDD4-phospho-dead mutant, the IDD4 phospho-mimicking mutant shows altered susceptibility to PstDC3000, salicylic acid levels and transcriptome reprogramming. In summary, we found that IDD4 regulates various hormonal pathways thereby coordinating growth and development with basal immunity.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anamika A Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Michel Daviere
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d'Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
69
|
Qi L, Zhang X, Zhai H, Liu J, Wu F, Li C, Chen Q. Elongator Is Required for Root Stem Cell Maintenance by Regulating SHORTROOT Transcription. PLANT PHYSIOLOGY 2019; 179:220-232. [PMID: 30401723 PMCID: PMC6324240 DOI: 10.1104/pp.18.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 05/26/2023]
Abstract
SHORTROOT (SHR) is essential for stem cell maintenance and radial patterning in Arabidopsis (Arabidopsis thaliana) roots, but how its expression is regulated is unknown. Here, we report that the Elongator complex, which consists of six subunits (ELP1 to ELP6), regulates the transcription of SHR Depletion of Elongator drastically reduced SHR expression and led to defective root stem cell maintenance and radial patterning. The importance of the nuclear localization of Elongator for its functioning, together with the insensitivity of the elp1 mutant to the transcription elongation inhibitor 6-azauracil, and the direct interaction of the ELP4 subunit with the carboxyl-terminal domain of RNA polymerase II, support the notion that Elongator plays important roles in transcription elongation. Indeed, we found that ELP3 associates with the premessenger RNA of SHR and that mutation of Elongator reduces the enrichment of RNA polymerase II on the SHR gene body. Moreover, Elongator interacted in vivo with SUPPRESSOR OF Ty4, a well-established transcription elongation factor that is recruited to the SHR locus. Together, these results demonstrate that Elongator acts in concert with SUPPRESSOR OF Ty4 to regulate the transcription of SHR.
Collapse
Affiliation(s)
- Linlin Qi
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huawei Zhai
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fangming Wu
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyou Li
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
70
|
Di Mambro R, Sabatini S, Dello Ioio R. Patterning the Axes: A Lesson from the Root. PLANTS 2018; 8:plants8010008. [PMID: 30602700 PMCID: PMC6358898 DOI: 10.3390/plants8010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
How the body plan is established and maintained in multicellular organisms is a central question in developmental biology. Thanks to its simple and symmetric structure, the root represents a powerful tool to study the molecular mechanisms underlying the establishment and maintenance of developmental axes. Plant roots show two main axes along which cells pass through different developmental stages and acquire different fates: the root proximodistal axis spans longitudinally from the hypocotyl junction (proximal) to the root tip (distal), whereas the radial axis spans transversely from the vasculature tissue (centre) to the epidermis (outer). Both axes are generated by stereotypical divisions occurring during embryogenesis and are maintained post-embryonically. Here, we review the latest scientific advances on how the correct formation of root proximodistal and radial axes is achieved.
Collapse
Affiliation(s)
- Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13-56126 Pisa, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| |
Collapse
|
71
|
Hofhuis HF, Heidstra R. Transcription factor dosage: more or less sufficient for growth. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:50-58. [PMID: 29852330 DOI: 10.1016/j.pbi.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Recent findings highlight three instances in which major aspects of plant development are controlled by dosage-dependent protein levels. In the shoot apical meristem the mobile transcription factor WUS displays an intricate function with respect to target regulation that involves WUS dosage, binding site affinity and protein dimerization. The size of the root meristem is controlled by dosage-dependent PLT protein activity. Recent identification of targets and feedbacks provide new insights and entry into possible mechanisms of dosage read-out. Finally, HD-ZIPIII dosage, enforced by a gradient of mobile miRNAs, presents a relatively unexplored case in the radial patterning of vasculature and ground tissue. We evaluate our current knowledge of these three examples and address molecular mechanisms of dosage translation where possible.
Collapse
Affiliation(s)
- Hugo F Hofhuis
- Department of Plant Sciences, Wageningen University Research, Netherlands
| | - Renze Heidstra
- Department of Plant Sciences, Wageningen University Research, Netherlands.
| |
Collapse
|
72
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
73
|
Li P, Yu Q, Gu X, Xu C, Qi S, Wang H, Zhong F, Baskin TI, Rahman A, Wu S. Construction of a Functional Casparian Strip in Non-endodermal Lineages Is Orchestrated by Two Parallel Signaling Systems in Arabidopsis thaliana. Curr Biol 2018; 28:2777-2786.e2. [DOI: 10.1016/j.cub.2018.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
|
74
|
Pierre-Jerome E, Drapek C, Benfey PN. Regulation of Division and Differentiation of Plant Stem Cells. Annu Rev Cell Dev Biol 2018; 34:289-310. [PMID: 30134119 DOI: 10.1146/annurev-cellbio-100617-062459] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.
Collapse
Affiliation(s)
- Edith Pierre-Jerome
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Colleen Drapek
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
75
|
Drapek C, Sparks EE, Marhavy P, Taylor I, Andersen TG, Hennacy JH, Geldner N, Benfey PN. Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. NATURE PLANTS 2018; 4:586-595. [PMID: 30061749 PMCID: PMC6135099 DOI: 10.1038/s41477-018-0213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/03/2018] [Indexed: 05/18/2023]
Abstract
Changes in gene regulation during differentiation are governed by networks of transcription factors. The Arabidopsis root endodermis is a tractable model to address how transcription factors contribute to differentiation. We used a bottom-up approach to understand the extent to which transcription factors that are required for endodermis differentiation can confer endodermis identity to a non-native cell type. Our results show that the transcription factors SHORTROOT and MYB36 alone have limited ability to induce ectopic endodermal features in the absence of additional cues. The stele-derived signalling peptide CIF2 stabilizes SHORTROOT-induced endodermis identity acquisition. The outcome is a partially impermeable barrier deposited in the subepidermal cell layer, which has a transcriptional signature similar to the endodermis. These results demonstrate that other root cell types can be forced to differentiate into the endodermis and highlight a previously unappreciated role for receptor kinase signalling in maintaining endodermis identity.
Collapse
Affiliation(s)
- Colleen Drapek
- Biology Department, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Peter Marhavy
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Isaiah Taylor
- Biology Department, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Tonni G Andersen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Jessica H Hennacy
- Biology Department, Duke University, Durham, NC, USA
- Princeton University, Princeton, NJ, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Philip N Benfey
- Biology Department, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
76
|
Shimotohno A, Heidstra R, Blilou I, Scheres B. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev 2018; 32:1085-1100. [PMID: 30018102 PMCID: PMC6075145 DOI: 10.1101/gad.314096.118] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022]
Abstract
Here, Shimotohno et al. investigated how upstream factors that regulate WUS and WOX genes converge to position organizer cells during embryogenesis, initiation of new lateral organs, and regeneration after tissue damage in Arabodopsis. Here, they show that PLT and SCR genes genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In Arabidopsis thaliana, PLETHORA (PLT) and SCARECROW (SCR) genes are outputs of apical–basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC). PLT and SCR are required for QC function, and their expression overlaps in the QC; however, how they specify the organizer has remained unknown. We show that PLT and SCR genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. PLT–TCP–SCR complexes converge on PLT-binding sites in the WOX5 promoter to induce expression.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Renze Heidstra
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Ikram Blilou
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Ben Scheres
- Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands.,Department of Plant Sciences, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| |
Collapse
|
77
|
Perez-Garcia P, Moreno-Risueno MA. Stem cells and plant regeneration. Dev Biol 2018; 442:3-12. [PMID: 29981693 DOI: 10.1016/j.ydbio.2018.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Multicellular organisms show the ability to replace damage cells, tissues and even whole organs through regeneration mechanisms. Plants show a remarkable regenerative potential. While the basic principles of plant regeneration have been known for a number of decades, the molecular and cellular mechanisms underlying such principles are currently starting to emerge. Some of these mechanisms point to the existence of highly reprogrammable cells. Developmental plasticity is a hallmark for stem cells, and stem cells are responsible for the generation of distinctive cell types forming plants. In the last years, a number of players and molecular mechanism regulating stem cell maintenance have been described, and some of them have also been involved in regenerative processes. These discoveries in plant stem cell regulation and regeneration invite us to rethink several of the classical concepts in plant biology such as cell fate specification and even the actual meaning of what we consider stem cells in plants. In this review we will cover some of these discoveries, focusing on the role of the plant stem cell function and regulation during cell and organ regeneration.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Miguel A Moreno-Risueno
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
78
|
Zhang QQ, Li Y, Fu ZY, Liu XB, Yuan K, Fang Y, Liu Y, Li G, Zhang XS, Chong K, Ge L. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:150-167. [PMID: 29752751 DOI: 10.1111/tpj.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 05/14/2023]
Abstract
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhao-Ying Fu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xun-Biao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Fang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
79
|
Abstract
Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning.
Collapse
|
80
|
Hakoshima T. Structural basis of the specific interactions of GRAS family proteins. FEBS Lett 2018; 592:489-501. [PMID: 29364510 PMCID: PMC5873383 DOI: 10.1002/1873-3468.12987] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
The plant‐specific GAI‐RGA‐and‐SCR (GRAS) family of proteins function as transcriptional regulators and play critical roles in development and signalling. Recent structural studies have shed light on the molecular functions at the structural level. The conserved GRAS domain comprises an α‐helical cap and α/β core subdomains. The α‐helical cap mediates head‐to‐head heterodimerization between SHR and SCR GRAS domains. This type of dimerization is predicted for the NSP1‐NSP2 heterodimer and DELLA proteins such as RGA and SLR1 homodimers. The α/β core subdomain possesses a hydrophobic groove formed by surface α3‐ and α7‐helices and mediates protein–protein interactions. The groove of the SHR GRAS domain accommodates the zinc fingers of JKD, a BIRD/IDD family transcription factor, while the groove of the SCL7 GRAS domain mediates the SCL7 homodimerization.
Collapse
Affiliation(s)
- Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
81
|
Di Ruocco G, Bertolotti G, Pacifici E, Polverari L, Tsiantis M, Sabatini S, Costantino P, Dello Ioio R. Differential spatial distribution of miR165/6 determines variability in plant root anatomy. Development 2018; 145:dev.153858. [PMID: 29158439 DOI: 10.1242/dev.153858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.
Collapse
Affiliation(s)
- Giovanna Di Ruocco
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| | - Gaia Bertolotti
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| | - Elena Pacifici
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| | - Laura Polverari
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Sabrina Sabatini
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy.,Dipartimento Biologia e Biotecnologie and Consiglio Nazionale delle Ricerche, Istituto Biologia e Patologia Molecolari, Sapienza Università di Roma, 00185 Roma, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, via dei Sardi, 70-00185 Rome, Italy
| |
Collapse
|
82
|
Spiegelman Z, Lee CM, Gallagher KL. KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT. PLANT PHYSIOLOGY 2018; 176:392-405. [PMID: 29122988 PMCID: PMC5761801 DOI: 10.1104/pp.17.01518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 05/09/2023]
Abstract
Both endogenous plant proteins and viral movement proteins associate with microtubules to promote their movement through plasmodesmata. The association of viral movement proteins with microtubules facilitates the formation of virus-associated replication complexes, which are required for the amplification and subsequent spread of the virus. However, the role of microtubules in the intercellular movement of plant proteins is less clear. Here we show that the SHORT-ROOT (SHR) protein, which moves between cells in the root to regulate root radial patterning, interacts with a type-14 kinesin, KINESIN G (KinG). KinG is a calponin homology domain kinesin that directly interacts with the SHR-binding protein SIEL (SHR-INTERACING EMBRYONIC LETHAL) and localizes to both microtubules and actin. Since SIEL and SHR associate with endosomes, we suggest that KinG serves as a linker between SIEL, SHR, and the plant cytoskeleton. Loss of KinG function results in a decrease in the intercellular movement of SHR and an increase in the sensitivity of SHR movement to treatment with oryzalin. Examination of SHR and KinG localization and dynamics in live cells suggests that KinG is a nonmotile kinesin that promotes the pausing of SHR-associated endosomes. We suggest a model in which interaction of KinG with SHR allows for the formation of stable movement complexes that facilitate the cell-to-cell transport of SHR.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Chin-Mei Lee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
83
|
Coelho CP, Huang P, Lee DY, Brutnell TP. Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants. TRENDS IN PLANT SCIENCE 2018; 23:66-78. [PMID: 29056440 DOI: 10.1016/j.tplants.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 05/27/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) family of transcriptional regulators controls a diversity of processes in a variety of plant tissues and organs and at different stages of plant development. Several recent reports describe the genetic characterization of IDD family members, including those that are likely to regulate C4 kranz anatomy, with implications for the engineering of C4 traits into C3 crops. In this review we summarize the reported functions of IDD members in the regulation of metabolic sensing and leaf, root, seed, and inflorescence development. We also provide an IDD phylogeny for the grasses and suggest future directions and strategies to define the function of IDDs in C4 photosynthesis and other developmental processes.
Collapse
Affiliation(s)
- Carla P Coelho
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA. http://twitter.com/coelhopcarla%20
| | - Pu Huang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Dong-Yeon Lee
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA; Laboratory website: https://www.brutnelllab.org/.
| |
Collapse
|
84
|
Long Y, Stahl Y, Weidtkamp-Peters S, Smet W, Du Y, Gadella TWJ, Goedhart J, Scheres B, Blilou I. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:639. [PMID: 29868092 PMCID: PMC5962846 DOI: 10.3389/fpls.2018.00639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/25/2018] [Indexed: 05/21/2023]
Abstract
Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.
Collapse
Affiliation(s)
- Yuchen Long
- Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Wouter Smet
- Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Yujuan Du
- Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Theodorus W. J. Gadella
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ben Scheres
- Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Ikram Blilou
- Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands
- Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
- *Correspondence: Ikram Blilou
| |
Collapse
|
85
|
Yu Q, Li P, Liang N, Wang H, Xu M, Wu S. Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming. PLANT PHYSIOLOGY 2017; 175:816-827. [PMID: 28821591 PMCID: PMC5619903 DOI: 10.1104/pp.17.00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/16/2017] [Indexed: 05/02/2023]
Abstract
Tissue organization and pattern formation within a multicellular organism rely on coordinated cell division and cell-fate determination. In animals, cell fates are mainly determined by a cell lineage-dependent mechanism, whereas in plants, positional information is thought to be the primary determinant of cell fates. However, our understanding of cell-fate regulation in plants mostly relies on the histological and anatomical studies on Arabidopsis (Arabidopsis thaliana) roots, which contain a single layer of each cell type in nonvascular tissues. Here, we investigate the dynamic cell-fate acquisition in modified Arabidopsis roots with additional cell layers that are artificially generated by the misexpression of SHORT-ROOT (SHR). We found that cell-fate determination in Arabidopsis roots is a dimorphic cascade with lineage inheritance dominant in the early stage of pattern formation. The inherited cell identity can subsequently be removed or modified by positional information. The instruction of cell-fate conversion is not a fast readout during root development. The final identity of a cell type is determined by the synergistic contribution from multiple layers of regulation, including symplastic communication across tissues. Our findings underline the collaborative inputs during cell-fate instruction.
Collapse
Affiliation(s)
- Qiaozhi Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nengsong Liang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Wang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meizhi Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
86
|
Drapek C, Sparks EE, Benfey PN. Uncovering Gene Regulatory Networks Controlling Plant Cell Differentiation. Trends Genet 2017; 33:529-539. [PMID: 28647055 PMCID: PMC5522350 DOI: 10.1016/j.tig.2017.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/05/2023]
Abstract
The development of multicellular organisms relies on the precise regulation of cellular differentiation. As such, there has been significant effort invested to understand the process through which an immature cell undergoes differentiation. In this review, we highlight key discoveries and advances that have contributed to our understanding of the transcriptional networks underlying Arabidopsis root endodermal differentiation. To conclude, we propose perspectives on how advances in molecular biology, microscopy, and nucleotide sequencing will provide the tools to test the biological significance of these gene regulatory networks (GRN).
Collapse
Affiliation(s)
| | | | - Philip N Benfey
- Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
87
|
In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 2017; 548:97-102. [PMID: 28746306 DOI: 10.1038/nature23317] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules, either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Förster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.
Collapse
|
88
|
Růžička K, Hejátko J. Auxin transport and conjugation caught together. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4409-4412. [PMID: 28981790 PMCID: PMC5853529 DOI: 10.1093/jxb/erx310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article comments on: Kong Q, Ma W, Yang H, Ma G, Mantyla JJ, Benning C. 2017. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. Journal of Experimental Botany 68, 4627–4634.
Collapse
Affiliation(s)
- Kamil Růžička
- Department of Functional Genomics and Proteomics, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Kamenice, Brno, Czech Republic
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
- Correspondence: ;
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Kamenice, Brno, Czech Republic
- Correspondence: ;
| |
Collapse
|
89
|
Kobayashi A, Miura S, Kozaki A. INDETERMINATE DOMAIN PROTEIN binding sequences in the 5'-untranslated region and promoter of the SCARECROW gene play crucial and distinct roles in regulating SCARECROW expression in roots and leaves. PLANT MOLECULAR BIOLOGY 2017; 94:1-13. [PMID: 28324206 DOI: 10.1007/s11103-016-0578-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
SCARECROW (SCR) and SHORT-ROOT (SHR), which belong to the GRAS transcription factor family, are key regulators of root and leaf growth and development. Despite the importance of SCR expression for proper plant development, the mechanism of SCR regulation has not been clarified. A previous study showed that an INDETERMINATE DOMAIN transcription factor, JACKDAW (JKD), is essential for the expression of SCR in combination with SCR and SHR. In this study, we characterized possible binding sequences of INDETERMINATE DOMAIN PROTEIN in the 1.5 kb upstream region of SCR. Mutation in a binding sequence 340 bp upstream of the ATG increased transcriptional activation by JKD in transient assays using Arabidopsis cultured cells. However, the activity was not enhanced by SCR/SHR. Histochemical analysis of promoter activity in transgenic Arabidopsis plants carrying a fusion of the promoter and the β-glucronidase reporter gene showed that mutation of the -340 bp sequence eliminated most of the promoter activity, indicating that this sequence was indispensable for SCR expression. Promoter deletion of downstream sequences from -280 bp lost the enhanced activity by SCR/SHR in transient assays and activity in root tips and the bundle sheath (BS) in plants. Conversely, mutation at -480 bp did not significantly influence transcriptional activity in transient assays. However, most of SCR expression was lost except for the root tip in plants. The sequences around -1 kb appeared to regulate SCR expression negatively in plants. Together, these INDETERMINATE DOMAIN PROTEIN binding sequences have crucial and distinct functions in regulating SCR expression.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku Shizuoka, 422-8529, Shizuoka-Shi, Japan
| | - Satoshi Miura
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku Shizuoka, 422-8529, Shizuoka-Shi, Japan
| | - Akiko Kozaki
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku Shizuoka, 422-8529, Shizuoka-Shi, Japan.
| |
Collapse
|
90
|
García-Gómez ML, Azpeitia E, Álvarez-Buylla ER. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol 2017; 13:e1005488. [PMID: 28426669 PMCID: PMC5417714 DOI: 10.1371/journal.pcbi.1005488] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/04/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results illustrate how non-linear multi-stable qualitative network models can aid at understanding how transcriptional regulators and hormonal signaling pathways are dynamically coupled and may underlie both the acquisition of cell fate and the emergence of hormonal activity profiles that arise during complex organ development.
Collapse
Affiliation(s)
- Mónica L. García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Eugenio Azpeitia
- INRIA project-team Virtual Plants, joint with CIRAD and INRA, Montpellier, France
| | - Elena R. Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
91
|
Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. Proc Natl Acad Sci U S A 2017; 114:E2533-E2539. [PMID: 28265057 DOI: 10.1073/pnas.1616493114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator.
Collapse
|
92
|
Hirano Y, Nakagawa M, Suyama T, Murase K, Shirakawa M, Takayama S, Sun TP, Hakoshima T. Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. NATURE PLANTS 2017; 3:17010. [PMID: 28211915 PMCID: PMC5639936 DOI: 10.1038/nplants.2017.10] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 05/03/2023]
Abstract
The plant-specific GAI, RGA and SCR (GRAS) family proteins play critical roles in plant development and signalling. Two GRAS proteins, SHORT-ROOT (SHR) and SCARECROW (SCR), cooperatively direct asymmetric cell division and the patterning of root cell types by transcriptional control in conjunction with BIRD/INDETERMINATE DOMAIN (IDD) transcription factors, although precise details of these specific interactions and actions remain unknown. Here, we present the crystal structures of the SHR-SCR binary and JACKDAW (JKD)/IDD10-SHR-SCR ternary complexes. Each GRAS domain comprises one α/β core subdomain with an α-helical cap that mediates heterodimerization by forming an intermolecular helix bundle. The α/β core subdomain of SHR forms the BIRD binding groove, which specifically recognizes the zinc fingers of JKD. We identified a conserved SHR-binding motif in 13 BIRD/IDD transcription factors. Our results establish a structural basis for GRAS-GRAS and GRAS-BIRD interactions and provide valuable clues towards our understanding of these regulators, which are involved in plant-specific signalling networks.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masahiro Nakagawa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tomoe Suyama
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kohji Murase
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- The Laboratory of Intercellular Communication, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Maya Shirakawa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Seiji Takayama
- The Laboratory of Intercellular Communication, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
93
|
Choe G, Lee JY. Push-pull strategy in the regulation of postembryonic root development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:158-164. [PMID: 28063383 DOI: 10.1016/j.pbi.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Unlike animals, plants continue to grow throughout their lives. The stem cell niche, protected in meristems of shoots and roots, enables this process. In the root, stem cells produce precursors for highly organized cell types via asymmetric cell divisions. These precursors, which are "transit-amplifying cells," actively divide for several rounds before entering into differentiation programs. In this review, we highlight positive feedback regulation between shoot- and root-ward signals during the postembryonic root growth, which is reminiscent of a "push-pull strategy" in business parlance. This property of molecular networks underlies the regulation of stem cells and their organizer, the "quiescent center," as well as of the signaling between stem cell niche, transit-amplifying cells, and beyond.
Collapse
Affiliation(s)
- Goh Choe
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
94
|
Abstract
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
95
|
Gontarek BC, Neelakandan AK, Wu H, Becraft PW. NKD Transcription Factors Are Central Regulators of Maize Endosperm Development. THE PLANT CELL 2016; 28:2916-2936. [PMID: 27895224 PMCID: PMC5240740 DOI: 10.1105/tpc.16.00609] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
NAKED ENDOSPERM1 (NKD1) and NKD2 are duplicate INDETERMINATE DOMAIN (IDD) transcription factors important for maize (Zea mays) endosperm development. RNA-seq analysis of the nkd1 nkd2 mutant endosperm revealed that NKD1 and NKD2 influence 6.4% of the transcriptome in developing aleurone and 6.7% in starchy endosperm. Processes regulated by NKD1 and NKD2 include gene expression, epigenetic functions, cell growth and division, hormone pathways, and resource reserve deposition. The NKD1 and NKD2 proteins bind a consensus DNA sequence of TTGTCGT with slightly different properties. This motif was enriched in the promoters of gene transcripts differentially expressed (DE) in mutant endosperm. DE genes with a NKD binding motif in the 5' promoter region were considered as likely direct targets of NKD1 and NKD2 regulation, and these putative direct target genes were notably enriched for storage proteins. Transcription assays demonstrate that NKD1 and NKD2 can directly regulate gene transcription, including activation of opaque2 and viviparous1 promoters. NKD2 functions as a negative regulator of nkd1 transcription, consistent with previously reported feedback regulation. NKD1 and NKD2 can homo- and heterodimerize through their ID domains. These analyses implicate NKD1 and NKD2 as central regulators of gene expression in developing maize endosperm.
Collapse
Affiliation(s)
- Bryan C Gontarek
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | | | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
96
|
Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx KS, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5825-5840. [PMID: 27660483 PMCID: PMC5066499 DOI: 10.1093/jxb/erw347] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bernard Cannoot
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nancy De Winne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Leen Vercruysse
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Gent, Belgium Department of Biochemistry, Ghent University, B-9000 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
97
|
Palovaara J, de Zeeuw T, Weijers D. Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything. Annu Rev Cell Dev Biol 2016; 32:47-75. [PMID: 27576120 DOI: 10.1146/annurev-cellbio-111315-124929] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Thijs de Zeeuw
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| |
Collapse
|
98
|
Yoon EK, Dhar S, Lee MH, Song JH, Lee SA, Kim G, Jang S, Choi JW, Choe JE, Kim JH, Lee MM, Lim J. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots. MOLECULAR PLANT 2016; 9:1197-1209. [PMID: 27353361 DOI: 10.1016/j.molp.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.
Collapse
Affiliation(s)
- Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Mi-Hyun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Hyo Song
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu 41566, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
99
|
Muhammad D, Schmittling S, Williams C, Long TA. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:64-74. [PMID: 27485161 DOI: 10.1016/j.bbagrm.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
Abstract
Uncovering and mathematically modeling Transcription Factor Networks (TFNs) are the first steps in engineering plants with traits that are better equipped to respond to changing environments. Although several plant TFNs are well known, the framework for systematically modeling complex characteristics such as switch-like behavior, oscillations, and homeostasis that emerge from them remain elusive. This review highlights literature that provides, in part, experimental and computational techniques for characterizing TFNs. This review also outlines methodologies that have been used to mathematically model the dynamic characteristics of TFNs. We present several examples of TFNs in plants that are involved in developmental and stress response. In several cases, advanced algorithms capture or quantify emergent properties that serve as the basis for robustness and adaptability in plant responses. Increasing the use of mathematical approaches will shed new light on these regulatory properties that control plant growth and development, leading to mathematical models that predict plant behavior. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Selene Schmittling
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cranos Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Terri A Long
- Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
100
|
Clark NM, Hinde E, Winter CM, Fisher AP, Crosti G, Blilou I, Gratton E, Benfey PN, Sozzani R. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. eLife 2016; 5. [PMID: 27288545 PMCID: PMC4946880 DOI: 10.7554/elife.14770] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023] Open
Abstract
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States.,Biomathematics Graduate Program, North Carolina State University, Raleigh, United States
| | - Elizabeth Hinde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
| | - Cara M Winter
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Adam P Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Giuseppe Crosti
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Ikram Blilou
- Plant Developmental Biology, Wageningen University, Wageningen, Netherlands
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| |
Collapse
|