51
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
52
|
Yang Y, Zhang G, Su M, Shi Q, Chen Q. Prefoldin Subunits and Its Associate Partners: Conservations and Specificities in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:556. [PMID: 38498526 PMCID: PMC10893143 DOI: 10.3390/plants13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Prefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation. However, the specific and critical roles of prefoldins in plants have not been well summarized. In this review, we present an overview of plant prefoldin and its related proteins, summarize the structure of prefoldin/prefoldin-like complex (PFD/PFDLc), and analyze the versatile landscape by prefoldin subunits, from cytoplasm to nucleus regulation. We also focus the specific role of prefoldin-mediated phytohormone response and global plant development. Finally, we overview the emerging prefoldin-like (PFDL) subunits in plants and the novel roles in related processes, and discuss the next direction in further studies.
Collapse
Affiliation(s)
- Yi Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Gang Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Qingbiao Shi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| |
Collapse
|
53
|
Karunarathne SI, Spokevicius AV, Bossinger G, Golz JF. Trees need closure too: Wound-induced secondary vascular tissue regeneration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111950. [PMID: 38070652 DOI: 10.1016/j.plantsci.2023.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.
Collapse
Affiliation(s)
- Sachinthani I Karunarathne
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antanas V Spokevicius
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gerd Bossinger
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
54
|
Wiśniewska J, Kęsy J, Mucha N, Tyburski J. Auxin resistant 1 gene (AUX1) mediates auxin effect on Arabidopsis thaliana callus growth by regulating its content and distribution pattern. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154168. [PMID: 38176282 DOI: 10.1016/j.jplph.2023.154168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.
Collapse
Affiliation(s)
- Justyna Wiśniewska
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Jacek Kęsy
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Natalia Mucha
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
55
|
Ibragimova NN, Mokshina NE. Expression of auxin transporter genes in flax (Linum usitatissimum) fibers during gravity response. Vavilovskii Zhurnal Genet Selektsii 2024; 28:33-43. [PMID: 38465245 PMCID: PMC10917669 DOI: 10.18699/vjgb-24-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 03/12/2024] Open
Abstract
Gravitropism is an adaptive reaction of plants associated with the ability of various plant organs to be located and to grow in a certain direction relative to the gravity vector, while usually the asymmetric distribution of the phytohormone auxin is a necessary condition for the gravitropical bending of plant organs. Earlier, we described significant morphological changes in phloem fibers with a thickened cell wall located on different sides of the stem in the area of the gravitropic curvature. The present study is the first work devoted to the identification of genes encoding auxin transporters in cells at different stages of development and during gravity response. In this study, the flax genes encoding the AUX1/LAX, PIN-FORMED, PIN-LIKES, and ABCB auxin transporters were identified. A comparative analysis of the expression of these genes in flax phloem fibers at different stages of development revealed increased expression of some of these genes at the stage of intrusive growth (LusLAX2 (A, B), LuxPIN1-D, LusPILS7 (C, D)), at the early stage of tertiary cell wall formation (LusAUX1 (A, D), LusABCB1 (A, B), LusABCB15-A, LusPIN1 (A, B), LusPIN4-A, and LusPIN5-A), and at the late stage of tertiary cell wall development (LusLAX3 (A, B)). It was shown that in the course of gravitropism, the expression of many genes, including those responsible for the influx of auxin in cells (LusAUX1-D), in the studied families increased. Differential expression of auxin transporter genes was revealed during gravity response in fibers located on different sides of the stem (upper (PUL) and lower (OPP)). The difference was observed due to the expression of genes, the products of which are responsible for auxin intracellular transport (LusPILS3, LusPILS7-A) and its efflux (LusABCB15-B, LusABCB19-B). It was noted that the increased expression of PIN genes and ABCB genes was more typical of fibers on the opposite side. The results obtained allow us to make an assumption about the presence of differential auxin content in the fibers of different sides of gravistimulated flax plants, which may be determined by an uneven outflow of auxin. This study gives an idea of auxin carriers in flax and lays the foundation for further studies of their functions in the development of phloem fiber and in gravity response.
Collapse
Affiliation(s)
- N N Ibragimova
- Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| | - N E Mokshina
- Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
56
|
Yamauchi T, Tanaka A, Nakazono M, Inukai Y. Age-dependent analysis dissects the stepwise control of auxin-mediated lateral root development in rice. PLANT PHYSIOLOGY 2024; 194:819-831. [PMID: 37831077 PMCID: PMC10828202 DOI: 10.1093/plphys/kiad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
As root elongation rates are different among each individual root, the distance from the root apices does not always reflect the age of root cells. Thus, methods for correcting variations in elongation rates are needed to accurately evaluate the root developmental process. Here, we show that modeling-based age-dependent analysis is effective for dissecting stepwise lateral root (LR) development in rice (Oryza sativa). First, we measured the increases in LR and LR primordium (LRP) numbers, diameters, and lengths in wild type and an auxin-signaling-defective mutant, which has a faster main (crown) root elongation rate caused by the mutation in the gene encoding AUXIN/INDOLE-3-ACETIC ACID protein 13 (IAA13). The longitudinal patterns of these parameters were fitted by the appropriate models and the age-dependent patterns were identified using the root elongation rates. As a result, we found that LR and LRP numbers and lengths were reduced in iaa13. We also found that the duration of the increases in LR and LRP diameters were prolonged in iaa13. Subsequent age-dependent comparisons with gene expression patterns suggest that AUXIN RESPONSE FACTOR11 (ARF11), the homolog of MONOPTEROS (MP)/ARF5 in Arabidopsis (Arabidopsis thaliana), is involved in the initiation and growth of LR(P). Indeed, the arf11 mutant showed a reduction of LR and LRP numbers and lengths. Our results also suggest that PINOID-dependent rootward-to-shootward shift of auxin flux contributes to the increase in LR and LRP diameters. Together, we propose that modeling-based age-dependent analysis is useful for root developmental studies by enabling accurate evaluation of root traits' expression.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
57
|
Li J, Zhang Y, Tang X, Liao W, Li Z, Zheng Q, Wang Y, Chen S, Zheng P, Cao S. Genome Identification and Expression Profiling of the PIN-Formed Gene Family in Phoebe bournei under Abiotic Stresses. Int J Mol Sci 2024; 25:1452. [PMID: 38338732 PMCID: PMC10855349 DOI: 10.3390/ijms25031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.
Collapse
Affiliation(s)
- Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuoqun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
58
|
Tang H, Lu KJ, Zhang Y, Cheng YL, Tu SL, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. PLANT COMMUNICATIONS 2024; 5:100669. [PMID: 37528584 PMCID: PMC10811345 DOI: 10.1016/j.xplc.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023]
Abstract
The phytohormone auxin, and its directional transport through tissues, plays a fundamental role in the development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using a radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In the Arabidopsis root epidermis, bryophytic PINs have no defined polarity. Pharmacological interference revealed a strong cytoskeletal dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal the divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and the co-evolution of PIN sequence-based and cell-based polarity mechanisms.
Collapse
Affiliation(s)
- Han Tang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Kuan-Ju Lu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 40227, Taiwan, R.O.C
| | - YuZhou Zhang
- College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, China
| | - You-Liang Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
59
|
Zhang Y, Wang L, Wu Y, Wang D, He XQ. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:86-102. [PMID: 38051026 DOI: 10.1111/jipb.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuexin Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
60
|
Naik J, Tyagi S, Rajput R, Kumar P, Pucker B, Bisht NC, Misra P, Stracke R, Pandey A. Flavonols affect the interrelated glucosinolate and camalexin biosynthetic pathways in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:219-240. [PMID: 37813680 DOI: 10.1093/jxb/erad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. However, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). RNA-seq results indicated that flavonols modulate various biological and metabolic pathways, with significant alterations in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated up-regulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly up-regulated aliphatic glucosinolate biosynthesis genes compared with kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shivi Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Boas Pucker
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
61
|
Zhao Y, Zha M, Xu C, Hou F, Wang Y. Proteomic Analysis Revealed the Antagonistic Effect of Decapitation and Strigolactones on the Tillering Control in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 13:91. [PMID: 38202400 PMCID: PMC10780617 DOI: 10.3390/plants13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Removing the panicle encourages the growth of buds on the elongated node by getting rid of apical dominance. Strigolactones (SLs) are plant hormones that suppress tillering in rice. The present study employed panicle removal (RP) and external application of synthesized strigolactones (GR) to modulate rice bud growth at node 2. We focused on the full-heading stage to investigate proteomic changes related to bud germination (RP-Co) and suppression (GR-RP). A total of 434 represented differentially abundant proteins (DAPs) were detected, with 272 DAPs explicitly specified in the bud germination process, 106 in the bud suppression process, and 28 in both. DAPs in the germination process were most associated with protein processing in the endoplasmic reticulum and ribosome biogenesis. DAPs were most associated with metabolic pathways and glycolysis/gluconeogenesis in the bud suppression process. Sucrose content and two enzymes of sucrose degradation in buds were also determined. Comparisons of DAPs between the two reversed processes revealed that sucrose metabolism might be a key to modulating rice bud growth. Moreover, sucrose or its metabolites should be a signal downstream of the SLs signal transduction that modulates rice bud outgrowth. Contemplating the result so far, it is possible to open new vistas of research to reveal the interaction between SLs and sucrose signaling in the control of tillering in rice.
Collapse
Affiliation(s)
- Yanhui Zhao
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Manrong Zha
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| | - Congshan Xu
- Anhui Science and Technology Achievement Transformation Promotion Center, Anhui Provincial Institute of Science and Technology, Hefei 230002, China;
| | - Fangxu Hou
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Yan Wang
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| |
Collapse
|
62
|
Li J, Yang J, Gao Y, Zhang Z, Gao C, Chen S, Liesche J. Parallel auxin transport via PINs and plasmodesmata during the Arabidopsis leaf hyponasty response. PLANT CELL REPORTS 2023; 43:4. [PMID: 38117314 PMCID: PMC10733227 DOI: 10.1007/s00299-023-03119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
KEY MESSAGE The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.
Collapse
Affiliation(s)
- Jiazhou Li
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Jintao Yang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Yibo Gao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Ziyu Zhang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Chen Gao
- Institute for Molecular Physiology, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China.
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China.
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China.
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria.
| |
Collapse
|
63
|
Sharma M, Marhava P. Regulation of PIN polarity in response to abiotic stress. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102445. [PMID: 37714753 DOI: 10.1016/j.pbi.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Plants have evolved robust adaptive mechanisms to withstand the ever-changing environment. Tightly regulated distribution of the hormone auxin throughout the plant body controls an impressive variety of developmental processes that tailor plant growth and morphology to environmental conditions. The proper flow and directionality of auxin between cells is mainly governed by asymmetrically localized efflux carriers - PINs - ensuring proper coordination of developmental processes in plants. Discerning the molecular players and cellular dynamics involved in the establishment and maintenance of PINs in specific membrane domains, as well as their ability to readjust in response to abiotic stressors is essential for understanding how plants balance adaptability and stability. While much is known about how PINs get polarized, there is still limited knowledge about how abiotic stresses alter PIN polarity by acting on these systems. In this review, we focus on the current understanding of mechanisms involved in (re)establishing and maintaining PIN polarity under abiotic stresses.
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Petra Marhava
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden.
| |
Collapse
|
64
|
Wang Q, De Gernier H, Duan X, Xie Y, Geelen D, Hayashi KI, Xuan W, Geisler M, Ten Tusscher K, Beeckman T, Vanneste S. GH3-mediated auxin inactivation attenuates multiple stages of lateral root development. THE NEW PHYTOLOGIST 2023; 240:1900-1912. [PMID: 37743759 DOI: 10.1111/nph.19284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/19/2023] [Indexed: 09/26/2023]
Abstract
Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Xingliang Duan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ken-Ishiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama, 700-0005, Japan
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht, 3584 CH, the Netherlands
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
65
|
Smith ES, Nimchuk ZL. What a tangled web it weaves: auxin coordination of stem cell maintenance and flower production. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6950-6963. [PMID: 37661937 PMCID: PMC10690728 DOI: 10.1093/jxb/erad340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Robust agricultural yields require consistent flower production throughout fluctuating environmental conditions. Floral primordia are produced in the inflorescence meristem, which contains a pool of continuously dividing stem cells. Daughter cells of these divisions either retain stem cell identity or are pushed to the SAM periphery, where they become competent to develop into floral primordia after receiving the appropriate signal. Thus, flower production is inherently linked to regulation of the stem cell pool. The plant hormone auxin promotes flower development throughout its early phases and has been shown to interact with the molecular pathways regulating stem cell maintenance. Here, we will summarize how auxin signaling contributes to stem cell maintenance and promotes flower development through the early phases of initiation, outgrowth, and floral fate establishment. Recent advances in this area suggest that auxin may serve as a signal that integrates stem cell maintenance and new flower production.
Collapse
Affiliation(s)
- Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
66
|
Wakeman A, Bennett T. Auxins and grass shoot architecture: how the most important hormone makes the most important plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6975-6988. [PMID: 37474124 PMCID: PMC10690731 DOI: 10.1093/jxb/erad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Cereals are a group of grasses cultivated by humans for their grain. It is from these cereal grains that the majority of all calories consumed by humans are derived. The production of these grains is the result of the development of a series of hierarchical reproductive structures that form the distinct shoot architecture of the grasses. Being spatiotemporally complex, the coordination of grass shoot development is tightly controlled by a network of genes and signals, including the key phytohormone auxin. Hormonal manipulation has therefore been identified as a promising potential approach to increasing cereal crop yields and therefore ultimately global food security. Recent work translating the substantial body of auxin research from model plants into cereal crop species is revealing the contribution of auxin biosynthesis, transport, and signalling to the development of grass shoot architecture. This review discusses this still-maturing knowledge base and examines the possibility that changes in auxin biology could have been a causative agent in the evolution of differences in shoot architecture between key grass species, or could underpin the future selective breeding of cereal crops.
Collapse
Affiliation(s)
- Alex Wakeman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
67
|
Yadav S, Kumar H, Mahajan M, Sahu SK, Singh SK, Yadav RK. Local auxin biosynthesis promotes shoot patterning and stem cell differentiation in Arabidopsis shoot apex. Development 2023; 150:dev202014. [PMID: 38054970 DOI: 10.1242/dev.202014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Harish Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sharad Kumar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
68
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
69
|
Song X, Yu Y, Zhu J, Li C. BRIP1 and BRIP2 maintain root meristem by affecting auxin-mediated regulation. PLANTA 2023; 259:8. [PMID: 38019301 DOI: 10.1007/s00425-023-04283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
MAIN CONCLUSION This study reveals that mutations in BRIP1/2 subunits of the BAS complex disrupt root meristem development by decreasing PIN genes expression, affecting auxin transport, and downregulating essential root genes PLT. Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes play vital roles in plant development. BRAHMA-interacting proteins1 (BRIP1) and BRIP2 are subunits of BRAHMA (BRM)-associated SWI/SNF complex (BAS) in plants; however, their role and underlying regulatory mechanism in root development are still unknown. Here, we show that brip1 brip2 double mutants have a significantly shortened root meristem and an irregular arrangement in a portion of the root stem cell niche. The mutations in BRIP1 and BRIP2 cause decreased expression of the PIN-FORMED (PIN) genes, which in turn reduces the transport of auxin at the root tip, leading to the disruption of the accurate establishment of normal auxin concentration gradients in the stem cells. Chromatin immunoprecipitation (ChIP) experiments indicated that BRIP1 and BRIP2 directly bind to the PINs. Furthermore, we found a significant down-regulation in the expression of key root development genes, PLETHORA (PLT), in brip1 brip2. The brip1 brip2 plt1 plt2 quadruple mutations do not show further exacerbation in the short-root phenotype compared to plt1 plt2 double mutants. Using a dexamethasone (DEX)-inducible PLT2 transgenic line, we showed that acute overexpression of PLT2 partially rescues root meristem defects of brip1 brip2, suggesting that BRIP1 and BRIP2 act in part through the PLT1/2 pathway. Taken together, our results identify the critical role and the underlying mechanism of BRIP1/2 in maintaining the development of root meristem through the regulation of auxin output and expression of PLTs.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
70
|
Gélinas-Marion A, Eléouët MP, Cook SD, Vander Schoor JK, Abel SAG, Nichols DS, Smith JA, Hofer JMI, Ross JJ. Plant Development in the Garden Pea as Revealed by Mutations in the Crd/PsYUC1 Gene. Genes (Basel) 2023; 14:2115. [PMID: 38136938 PMCID: PMC10742580 DOI: 10.3390/genes14122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In common with other plant species, the garden pea (Pisum sativum) produces the auxin indole-3-acetic acid (IAA) from tryptophan via a single intermediate, indole-3-pyruvic acid (IPyA). IPyA is converted to IAA by PsYUC1, also known as Crispoid (Crd). Here, we extend our understanding of the developmental processes affected by the Crd gene by examining the phenotypic effects of crd gene mutations on leaves, flowers, and roots. We show that in pea, Crd/PsYUC1 is important for the initiation and identity of leaflets and tendrils, stamens, and lateral roots. We also report on aspects of auxin deactivation in pea.
Collapse
Affiliation(s)
- Ariane Gélinas-Marion
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Morgane P. Eléouët
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - Sam D. Cook
- Department of Chemistry, Umea University, Linnaeus vag 10, Kemi A3, 901 87 Umea, Sweden;
| | - Jacqueline K. Vander Schoor
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Steven A. G. Abel
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Sandy Bay, Hobart 7001, Australia;
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Julie M. I. Hofer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - John J. Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| |
Collapse
|
71
|
Henry AR, Miller ND, Spalding EP. Patch Track Software for Measuring Kinematic Phenotypes of Arabidopsis Roots Demonstrated on Auxin Transport Mutants. Int J Mol Sci 2023; 24:16475. [PMID: 38003665 PMCID: PMC10671601 DOI: 10.3390/ijms242216475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Plant roots elongate when cells produced in the apical meristem enter a transient period of rapid expansion. To measure the dynamic process of root cell expansion in the elongation zone, we captured digital images of growing Arabidopsis roots with horizontal microscopes and analyzed them with a custom image analysis program (PatchTrack) designed to track the growth-driven displacement of many closely spaced image patches. Fitting a flexible logistics equation to patch velocities plotted versus position along the root axis produced the length of the elongation zone (mm), peak relative elemental growth rate (% h-1), the axial position of the peak (mm from the tip), and average root elongation rate (mm h-1). For a wild-type root, the average values of these kinematic traits were 0.52 mm, 23.7% h-1, 0.35 mm, and 0.1 mm h-1, respectively. We used the platform to determine the kinematic phenotypes of auxin transport mutants. The results support a model in which the PIN2 auxin transporter creates an area of expansion-suppressing, supraoptimal auxin concentration that ends 0.1 mm from the quiescent center (QC), and that ABCB4 and ABCB19 auxin transporters maintain expansion-limiting suboptimal auxin levels beginning approximately 0.5 mm from the QC. This study shows that PatchTrack can quantify dynamic root phenotypes in kinematic terms.
Collapse
Affiliation(s)
| | | | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA (N.D.M.)
| |
Collapse
|
72
|
Xia J, Kong M, Yang Z, Sun L, Peng Y, Mao Y, Wei H, Ying W, Gao Y, Friml J, Weng J, Liu X, Sun L, Tan S. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. PLANT COMMUNICATIONS 2023; 4:100632. [PMID: 37254481 PMCID: PMC10721474 DOI: 10.1016/j.xplc.2023.100632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
The phytohormone auxin plays central roles in many growth and developmental processes in plants. Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture. Here we reveal that naproxen, a synthetic compound with anti-inflammatory activity in humans, acts as an auxin transport inhibitor targeting PIN-FORMED (PIN) transporters in plants. Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes. Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport, specifically PIN-mediated auxin efflux. Moreover, biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate. Thus, by combining cellular, biochemical, and structural approaches, this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms. Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture.
Collapse
Affiliation(s)
- Jing Xia
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengjuan Kong
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhisen Yang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lianghanxiao Sun
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yakun Peng
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yanbo Mao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hong Wei
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Ying
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongxiang Gao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jianping Weng
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Linfeng Sun
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
73
|
Huang M, Chen J, Yang X, Zheng Y, Ma Y, Sun K, Han N, Bian H, Qiu T, Wang J. A unique mutation in PIN-FORMED1 and a genetic pathway for reduced sensitivity of Arabidopsis roots to N-1-naphthylphthalamic acid. PHYSIOLOGIA PLANTARUM 2023; 175:e14120. [PMID: 38148206 DOI: 10.1111/ppl.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The small chemical N-1-naphthylphthalamic acid (NPA) has long been used as a polar auxin transport inhibitor. Recent biochemical and structural investigations have revealed that this molecule competes with the auxin IAA (indole-3-acetic acid) inside the PIN-FORMED auxin efflux carriers. However, the existence of any mutations in PIN family proteins capable of uncoupling the docking of IAA from NPA remains unclear. We report that Arabidopsis thaliana seedlings overexpressing SMALL AUXIN UP RNA 41 were hypersensitive to NPA-induced root elongation inhibition. We mutagenized this line to improve the genetic screening efficiency for NPA hyposensitivity mutants. Using bulked segregation analysis and mapping-by-sequencing assessment of these mutants, we identified a core genetic pathway for NPA-induced root elongation inhibition, including genes required for auxin biosynthesis, transportation, and signaling. To evaluate specific changes of auxin signaling activity in mutant roots before and after NPA treatment, the DR5::GFP/DR5::YFP markers were introduced and observed. Most importantly, we discovered a unique mutation in the PIN1 protein, substituting a proline residue with leucine at position 584, leading to a loss of NPA sensitivity while keeping the auxin efflux capacity. Transforming the null mutant pin1-201 with the PIN1::PIN1P584L -GFP fusion construct rescued the PIN1 function and provided NPA hyposensitivity. The proline residue is predicted to be adjacent to a hinge in the middle region of the ninth transmembrane helix of PIN1 and is conserved from moss to higher plants. Our work may bring new insights into the engineering of NPA-resistant PINs for auxin biology studies.
Collapse
Affiliation(s)
- Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zheng
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
74
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
75
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
76
|
Melnyk CW. Quantitative regeneration: Skoog and Miller revisited. QUANTITATIVE PLANT BIOLOGY 2023; 4:e10. [PMID: 37706182 PMCID: PMC10495819 DOI: 10.1017/qpb.2023.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 07/08/2023] [Indexed: 09/15/2023]
Abstract
In 1957, Skoog and Miller published their seminal work on the effects of hormones upon plant growth. By varying the concentrations of auxin and cytokinin, they observed dramatic differences in shoot and root growth from tobacco stem cultures. Their finding that quantitative differences in hormone concentrations could dramatically alter the fate of developing organs provided a foundation for understanding organ formation and tissue regeneration. Their in vitro assays established plant propagation techniques that were critical for regenerating transgenic plants. Here, I discuss their original paper, what led to their findings and its impact on our understanding of hormone interactions, how plants regenerate and in vitro tissue culture techniques.
Collapse
Affiliation(s)
- Charles W. Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
77
|
Pasternak T, Kircher S, Palme K, Pérez-Pérez JM. Regulation of early seedling establishment and root development in Arabidopsis thaliana by light and carbohydrates. PLANTA 2023; 258:76. [PMID: 37670114 PMCID: PMC10480265 DOI: 10.1007/s00425-023-04226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
MAIN CONCLUSION Root development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots. Our study shows that carbohydrate starvation during skotomorphogenesis is accompanied by compaction of nuclei in the root apical meristem, which prevents cell cycle progression and leads to irreversible root differentiation in the absence of external carbohydrates, as evidenced by the lack of DNA replication and increased numbers of nuclei with specific chromatin characteristics. In these conditions, induction of photomorphogenesis was unable to restore seedling growth, as overall root growth was compromised. The addition of carbohydrates, either locally or systemically by transferring seedlings to sugar-containing medium, led to the induction of adventitious root formation with rapid recovery of seedling growth. Conversely, transferring in vitro carbohydrate-grown seedlings from light to dark transiently promoted cell elongation and significantly reduced root meristem size, but did not primarily affect cell cycle kinetics. We show that, in the presence of sucrose, dark incubation does not affect zonation in the root apical meristem but leads to shortening of the proliferative and transition zones. Sugar starvation led to a rapid increase in lysine demethylation of histone H3 at position K9, which preceded a rapid decline in cell cycle activity and activation of cell differentiation. In conclusion, carbohydrates are required for cell cycle activity, epigenetics reprogramming and for postmitotic cell elongation and auxin-regulated response in the root apical meristem.
Collapse
Affiliation(s)
- Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Kircher
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Palme
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- ScreenSYSGmbH, Engesserstr. 4a, Freiburg, 79108 Germany
| | | |
Collapse
|
78
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
79
|
Tao L, Zhu H, Huang Q, Xiao X, Luo Y, Wang H, Li Y, Li X, Liu J, Jásik J, Chen Y, Shabala S, Baluška F, Shi W, Shi L, Yu M. PIN2/3/4 auxin carriers mediate root growth inhibition under conditions of boron deprivation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1357-1376. [PMID: 37235684 DOI: 10.1111/tpj.16324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The mechanistic basis by which boron (B) deprivation inhibits root growth via the mediation of root apical auxin transport and distribution remains elusive. This study showed that B deprivation repressed root growth of wild-type Arabidopsis seedlings, which was related to higher auxin accumulation (observed with DII-VENUS and DR5-GFP lines) in B-deprived roots. Boron deprivation elevated the auxin content in the root apex, coinciding with upregulation of the expression levels of auxin biosynthesis-related genes (TAA1, YUC3, YUC9, and NIT1) in shoots, but not in root apices. Phenotyping experiments using auxin transport-related mutants revealed that the PIN2/3/4 carriers are involved in root growth inhibition caused by B deprivation. B deprivation not only upregulated the transcriptional levels of PIN2/3/4, but also restrained the endocytosis of PIN2/3/4 carriers (observed with PIN-Dendra2 lines), resulting in elevated protein levels of PIN2/3/4 in the plasma membrane. Overall, these results suggest that B deprivation not only enhances auxin biosynthesis in shoots by elevating the expression levels of auxin biosynthesis-related genes but also promotes the polar auxin transport from shoots to roots by upregulating the gene expression levels of PIN2/3/4, as well as restraining the endocytosis of PIN2/3/4 carriers, ultimately resulting in auxin accumulation in root apices and root growth inhibition.
Collapse
Affiliation(s)
- Lin Tao
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Zhu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Qiuyu Huang
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xiaoyi Xiao
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Ying Luo
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Hui Wang
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yinglong Chen
- School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, Perth, 6009, Australia
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Weiming Shi
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Institute of Soil Science Chinese Academy of Sciences, State Key Laboratory of Soil and Sustainable Agriculture, Nanjing, 210018, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
80
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
81
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
82
|
Rudall PJ. Stomatal development and orientation: a phylogenetic and ecophysiological perspective. ANNALS OF BOTANY 2023; 131:1039-1050. [PMID: 37288594 PMCID: PMC10457030 DOI: 10.1093/aob/mcad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oriented patterning of epidermal cells is achieved primarily by transverse protodermal cell divisions perpendicular to the organ axis, followed by axial cell elongation. In linear leaves with parallel venation, most stomata are regularly aligned with the veins. This longitudinal patterning operates under a strong developmental constraint and has demonstrable physiological benefits, especially in grasses. However, transversely oriented stomata characterize a few groups, among both living angiosperms and extinct Mesozoic seed plants. SCOPE This review examines comparative and developmental data on stomatal patterning in a broad phylogenetic context, focusing on the evolutionary and ecophysiological significance of guard-cell orientation. It draws from a diverse range of literature to explore the pivotal roles of the plant growth hormone auxin in establishing polarity and chemical gradients that enable cellular differentiation. CONCLUSIONS Transverse stomata evolved iteratively in a few seed-plant groups during the Mesozoic era, especially among parasitic or xerophytic taxa, such as the hemiparasitic mistletoe genus Viscum and the xerophytic shrub Casuarina, indicating a possible link with ecological factors such as the Cretaceous CO2 decline and changing water availability. The discovery of this feature in some extinct seed-plant taxa known only from fossils could represent a useful phylogenetic marker.
Collapse
|
83
|
Tan C, Liang M, Luo Q, Zhang T, Wang W, Li S, Men S. AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis. PLANTA 2023; 258:68. [PMID: 37598130 DOI: 10.1007/s00425-023-04219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
MAIN CONCLUSION We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengxiao Liang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenhui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
84
|
Parrey ZA, Shah SH, Mohammad F, Siddiqui MH, Alamri S, Kalaji HM. Exogenous epibrassinolide application improves essential oil biosynthesis and trichome development in peppermint via modulating growth and physicochemical processes. Sci Rep 2023; 13:12924. [PMID: 37558811 PMCID: PMC10412686 DOI: 10.1038/s41598-023-40210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Peppermint has gained a promising status due to the presence of a high proportion of bioactive compounds, especially menthol. Due to its pharmacological efficacy, the demand for its plant-based bioactive compounds necessitates its cultivation worldwide. Brassinosteroids are polyhydroxylated sterol derivatives that regulate diverse processes and control many agronomic traits during plant growth and development. A factorial randomised pot experiment was performed in the net house to investigate the effect of 24-Epibrassinolide (EBL) on the growth, physiology, essential oil content, stomatal behaviour and trichome development of the three cultivars of peppermint. Four levels of foliage-applied EBL, viz. 0, 10-5, 10-6 and 10-7 M were applied to the three cultivars of peppermint (Kukrail, Pranjal and Tushar). Among the different treatments of EBL, the application of 10-6 M increased shoot length by 38.84, 37.59 and 36.91%, root length by 36.73, 29.44 and 33.47%, chlorophyll content by 24.20, 22.48 and 23.32%, PN by 32.88, 32.61 and 33.61%, EO content by 32.72, 30.00 and 28.84%, EO yield per plant by 66.66, 77.77 and 73.33% and menthol yield per plant by 127.27, 110 and 118.18% in Kukrail, Tushar and Pranjal respectively, compared with their respective control plants. Further, the 10-6 M EBL exhibited improved trichome size and density, cellular viability and menthol content of the oil analysed from scanning electron microscopy, confocal laser scanning microscopy and GC-MS respectively as compared to the control. In conclusion, out of different levels of EBL, two sprays of 10-6 M EBL proved effective in enhancing the morphophysiological features and productivity of mint plants, particularly for cultivar Kukrail.
Collapse
Affiliation(s)
- Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Sajad Hussain Shah
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, University of Life Sciences SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
85
|
Lomin SN, Kolachevskaya OO, Arkhipov DV, Romanov GA. Canonical and Alternative Auxin Signaling Systems in Mono-, Di-, and Tetraploid Potatoes. Int J Mol Sci 2023; 24:11408. [PMID: 37511169 PMCID: PMC10380454 DOI: 10.3390/ijms241411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
86
|
Zhang J, Zhao P, Chen S, Sun L, Mao J, Tan S, Xiang C. The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. Cell Rep 2023; 42:112809. [PMID: 37450369 DOI: 10.1016/j.celrep.2023.112809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liangqi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
87
|
Pérez-Pérez Y, Solís MT, Albacete A, Testillano PS. Opposite Auxin Dynamics Determine the Gametophytic and Embryogenic Fates of the Microspore. Int J Mol Sci 2023; 24:11177. [PMID: 37446349 DOI: 10.3390/ijms241311177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Teresa Solís
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Center for Edaphology and Applied Biology of Segura, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
88
|
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 2023; 42:112729. [PMID: 37405922 DOI: 10.1016/j.celrep.2023.112729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.
Collapse
Affiliation(s)
- Wen Jie Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yewei Zhou
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
89
|
Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:155-174. [PMID: 37025008 DOI: 10.1111/tpj.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Baolin Yao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, The Industrial Crop Institute, Fenyang, 032200, China
| | - Yuxin Cao
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Ruomeng Zhu
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Xinqi Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wuying Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuanglu Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Han
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chongyu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiahong He
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
90
|
Zhao P, Zhang J, Chen S, Zhang Z, Wan G, Mao J, Wang Z, Tan S, Xiang C. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep 2023; 42:112565. [PMID: 37224012 DOI: 10.1016/j.celrep.2023.112565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.
Collapse
Affiliation(s)
- Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zisheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guangyu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
91
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
92
|
Kuya N, Nishijima R, Kitomi Y, Kawakatsu T, Uga Y. Transcriptome profiles of rice roots under simulated microgravity conditions and following gravistimulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1193042. [PMID: 37360733 PMCID: PMC10288856 DOI: 10.3389/fpls.2023.1193042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Root system architecture affects the efficient uptake of water and nutrients in plants. The root growth angle, which is a critical component in determining root system architecture, is affected by root gravitropism; however, the mechanism of root gravitropism in rice remains largely unknown. In this study, we conducted a time-course transcriptome analysis of rice roots under conditions of simulated microgravity using a three-dimensional clinostat and following gravistimulation to detect candidate genes associated with the gravitropic response. We found that HEAT SHOCK PROTEIN (HSP) genes, which are involved in the regulation of auxin transport, were preferentially up-regulated during simulated microgravity conditions and rapidly down-regulated by gravistimulation. We also found that the transcription factor HEAT STRESS TRANSCRIPTION FACTOR A2s (HSFA2s) and HSFB2s, showed the similar expression patterns with the HSPs. A co-expression network analysis and an in silico motif search within the upstream regions of the co-expressed genes revealed possible transcriptional control of HSPs by HSFs. Because HSFA2s are transcriptional activators, whereas HSFB2s are transcriptional repressors, the results suggest that the gene regulatory networks governed by HSFs modulate the gravitropic response through transcriptional control of HSPs in rice roots.
Collapse
Affiliation(s)
- Noriyuki Kuya
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryo Nishijima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
93
|
Li J, Wang Z, Song C, Nie Y, Li H, Kong M, Cong H, Wang S, Yin N, Hu L, Bermudez RS, He W. Identification of LsLAZY1 gene in Leymus secalinus and validation of its function in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:783-790. [PMID: 37520815 PMCID: PMC10382429 DOI: 10.1007/s12298-023-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023]
Abstract
Root systems anchor plants to the substrate in addition to transporting water and nutrients, playing a fundamental role in plant survival. The LAZY1 gene mediates gravity signal transduction and participates in root and shoot development and auxin flow in many plants. In this study, a regulator, LsLAZY1, was identified from Leymus secalinus based on previous transcriptome data. The conserved domain and evolutionary relationship were further analyzed comprehensively. The role of LsLAZY1 in root development was investigated by genetic transformation and associated gravity response and phototropism assay. Subcellular localization showed that LsLAZY1 was localized in the nucleus. LsLAZY1 overexpression in Arabidopsis thaliana (Col-0) increased the length of the primary roots (PRs) and the number of lateral roots (LRs) compared to Col-0. Furthermore, 35S:LsLAZY1 transgenic seedlings affected auxin transport and showed a stronger gravitational and phototropic responses. It also promoted auxin accumulation at the root tips. These results indicated that LsLAZY1 affects root development and auxin transport. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01326-4.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, 271000 Shandong China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot City, 026000 China
| | - Yanshun Nie
- Fengtang Ecological Agriculture Technology Research and Development Co. LTD, Tai’an, 271000 Shandong China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Mengmeng Kong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Hanhan Cong
- School of Information Science and Engineering, University of Jinan, Jinan, 250022 China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Ning Yin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
94
|
Yang F, Njogu MK, Hesbon O, Wang Y, Lou Q, Cheng C, Zhou J, Li J, Chen J. Epistatic interaction between CsCEN and CsSHBY in regulating indeterminate/determinate growth of lateral branch in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:112. [PMID: 37052719 DOI: 10.1007/s00122-023-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Two genetic loci, det-ma (CsCEN) and det-lb, showed epistatic interaction on indeterminate/determinate growth of LB in cucumber. CsSHBY was identified as the candidate gene for det-lb locus. Plant architecture depends on the spatial regulation of meristems from both main axis (MA) and lateral branches (LBs). Fate (indeterminate or determinate) of these meristems is a crucial source of architectural diversity determining crop productivity and management. CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) gene family have been well known as pivotal regulators for indeterminate/determinate growth of MA. Nevertheless, genes that regulate LB indeterminacy/determinacy remained unclear. Cucumber (Cucumis sativus L.) has typical monopodial growth and multiple lateral branches. Both MA and LBs had indeterminate or determinate growth, and indeterminate/determinate growth of LB was controlled by two distinct loci, det-ma (CsCEN) and det-lb. In our study, based on bulked segregant analysis (BSA) method, the det-lb locus was mapped on a 60.6 kb region on chromosome 1 harboring only one gene CsaV3_1G044330, which encoded a putative vacuolar-sorting protein (designated as CsSHBY). Multipoint mutations in CsSHBY were identified in D082 and D226, compared with CCMC, including nonsynonymous SNP mutations and a 6-bp deletion in exons. Further, qPCR showed that CsSHBY was highly expressed in lateral bud of CCMC, suggesting that CsSHBY might play an active role in regulating indeterminate/determinate growth of LB. Genetic analyses showed that det-ma (CsCEN) had an epistatic effect on det-lb (CsSHBY), and CsCEN could activate CsSHBY promoter by Dual luciferase and GUS activity assays. Meanwhile, Cscen or Csshby was found to influence auxin contents and CsYUCs and CsPINs expression levels. These findings provided new insights into precisely optimizing plant architecture for yield improvements.
Collapse
Affiliation(s)
- Fan Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Martin Kagiki Njogu
- Department of Plant Science, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Obel Hesbon
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, 453000, China.
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
95
|
Chen J, Hu Y, Hao P, Tsering T, Xia J, Zhang Y, Roth O, Njo MF, Sterck L, Hu Y, Zhao Y, Geelen D, Geisler M, Shani E, Beeckman T, Vanneste S. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep 2023; 24:e56271. [PMID: 36718777 PMCID: PMC10074126 DOI: 10.15252/embr.202256271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yangjie Hu
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Pengchao Hao
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Tashi Tsering
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jian Xia
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Yuqin Zhang
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Ohad Roth
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maria F Njo
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Lieven Sterck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yun Hu
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Yunde Zhao
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Danny Geelen
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Markus Geisler
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Eilon Shani
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
- Department of Plants and CropsGhent UniversityGhentBelgium
- Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
| |
Collapse
|
96
|
Jourquin J, Fernandez AI, Wang Q, Xu K, Chen J, Šimura J, Ljung K, Vanneste S, Beeckman T. GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad123. [PMID: 37004244 DOI: 10.1093/jxb/erad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/19/2023]
Abstract
Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it remained unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.
Collapse
Affiliation(s)
- Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| |
Collapse
|
97
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
98
|
Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. NATURE PLANTS 2023; 9:631-644. [PMID: 36997686 PMCID: PMC10119023 DOI: 10.1038/s41477-023-01360-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Vascular cambium contains bifacial stem cells, which produce secondary xylem to one side and secondary phloem to the other. However, how these fate decisions are regulated is unknown. Here we show that the positioning of an auxin signalling maximum within the cambium determines the fate of stem cell daughters. The position is modulated by gibberellin-regulated, PIN1-dependent polar auxin transport. Gibberellin treatment broadens auxin maximum from the xylem side of the cambium towards the phloem. As a result, xylem-side stem cell daughter preferentially differentiates into xylem, while phloem-side daughter retains stem cell identity. Occasionally, this broadening leads to direct specification of both daughters as xylem, and consequently, adjacent phloem-identity cell reverts to being stem cell. Conversely, reduced gibberellin levels favour specification of phloem-side stem cell daughter as phloem. Together, our data provide a mechanism by which gibberellin regulates the ratio of xylem and phloem production.
Collapse
Affiliation(s)
- Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Solé-Gil
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Geel, Belgium
| | - Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
99
|
Tao L, Xiao X, Huang Q, Zhu H, Feng Y, Li Y, Li X, Guo Z, Liu J, Wu F, Pirayesh N, Mahmud S, Shen RF, Shabala S, Baluška F, Shi L, Yu M. Boron supply restores aluminum-blocked auxin transport by the modulation of PIN2 trafficking in the root apical transition zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:176-192. [PMID: 36721978 DOI: 10.1111/tpj.16129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.
Collapse
Affiliation(s)
- Lin Tao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyi Xiao
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Qiuyu Huang
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Hu Zhu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yingming Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Zhishan Guo
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Feihua Wu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Niloufar Pirayesh
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Sakil Mahmud
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Sergey Shabala
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| |
Collapse
|
100
|
Wang H, Lu Z, Xu Y, Zhang J, Han L, Chai M, Wang ZY, Yang X, Lu S, Tong J, Xiao L, Wen J, Mysore KS, Zhou C. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. PLANT PHYSIOLOGY 2023; 191:1751-1770. [PMID: 36617225 PMCID: PMC10022625 DOI: 10.1093/plphys/kiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiyou Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| |
Collapse
|