51
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021; 33:714-734. [PMID: 33955482 PMCID: PMC8136890 DOI: 10.1093/plcell/koaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
52
|
Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J, Schäffner AR. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. THE PLANT CELL 2021. [PMID: 33955482 DOI: 10.1101/2020.07.12.199356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glucosylation modulates the biological activity of small molecules and frequently leads to their inactivation. The Arabidopsis thaliana glucosyltransferase UGT76B1 is involved in conjugating the stress hormone salicylic acid (SA) as well as isoleucic acid (ILA). Here, we show that UGT76B1 also glucosylates N-hydroxypipecolic acid (NHP), which is synthesized by FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) and activates systemic acquired resistance (SAR). Upon pathogen attack, Arabidopsis leaves generate two distinct NHP hexose conjugates, NHP-O-β-glucoside and NHP glucose ester, whereupon only NHP-O-β-glucoside formation requires a functional SA pathway. The ugt76b1 mutants specifically fail to generate the NHP-O-β-glucoside, and recombinant UGT76B1 synthesizes NHP-O-β-glucoside in vitro in competition with SA and ILA. The loss of UGT76B1 elevates the endogenous levels of NHP, SA, and ILA and establishes a constitutive SAR-like immune status. Introgression of the fmo1 mutant lacking NHP biosynthesis into the ugt76b1 background abolishes this SAR-like resistance. Moreover, overexpression of UGT76B1 in Arabidopsis shifts the NHP and SA pools toward O-β-glucoside formation and abrogates pathogen-induced SAR. Our results further indicate that NHP-triggered immunity is SA-dependent and relies on UGT76B1 as a common metabolic hub. Thereby, UGT76B1-mediated glucosylation controls the levels of active NHP, SA, and ILA in concert to balance the plant immune status.
Collapse
Affiliation(s)
- Sibylle Bauer
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Michael Hartmann
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ipek Yildiz
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anton R Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
53
|
Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. THE PLANT CELL 2021; 33:735-749. [PMID: 33955489 PMCID: PMC8136917 DOI: 10.1093/plcell/koaa045] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/10/2020] [Indexed: 05/02/2023]
Abstract
The tradeoff between growth and defense is a critical aspect of plant immunity. Therefore, the plant immune response needs to be tightly regulated. Salicylic acid (SA) is an important plant hormone regulating defense against biotrophic pathogens. Recently, N-hydroxy-pipecolic acid (NHP) was identified as another regulator for plant innate immunity and systemic acquired resistance (SAR). Although the biosynthetic pathway leading to NHP formation is already been identified, how NHP is further metabolized is unclear. Here, we present UGT76B1 as a uridine diphosphate-dependent glycosyltransferase (UGT) that modifies NHP by catalyzing the formation of 1-O-glucosyl-pipecolic acid in Arabidopsis thaliana. Analysis of T-DNA and clustered regularly interspaced short palindromic repeats (CRISPR) knock-out mutant lines of UGT76B1 by targeted and nontargeted ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) underlined NHP and SA as endogenous substrates of this enzyme in response to Pseudomonas infection and UV treatment. ugt76b1 mutant plants have a dwarf phenotype and constitutive defense response which can be suppressed by loss of function of the NHP biosynthetic enzyme FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1). This suggests that elevated accumulation of NHP contributes to the enhanced disease resistance in ugt76b1. Externally applied NHP can move to distal tissue in ugt76b1 mutant plants. Although glycosylation is not required for the long-distance movement of NHP during SAR, it is crucial to balance growth and defense.
Collapse
Affiliation(s)
- Lennart Mohnike
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Dmitrij Rekhter
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Author for correspondence: (I.F.) and (Y.Z)
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- Author for correspondence: (I.F.) and (Y.Z)
| |
Collapse
|
54
|
Pazarlar S, Sanver U, Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:473-484. [PMID: 33547740 DOI: 10.1111/plb.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Systemic acquired resistance (SAR) is a long-lasting and broad-based resistance that can be activated following infection with (a)virulent pathogens and treatment with exogenous elicitors. Pipecolic acid (Pip), a Lys-derived non-protein amino acid, naturally occurs in many different plant species, and its N-hydroxylated derivative, N-hydroxypipecolic acid (NHP), acts as a crucial regulator of SAR. In the present study, we conducted a systemic analysis of the defence responses of a series of D,L-Pip-pretreated Cucumis sativus L. against Podosphaera xanthii (P. xanthii) and Pseudomonas syringae pv. lachrymans (Psl). The effects of D,L-Pip on ROS metabolism, defence-related gene expression, SA accumulation and activity of defence-related enzymes were evaluated. We show that exogenously applied D,L-Pip successfully induces SAR in cucumber against P. xanthii and Psl, but not Fusarium oxysporum f. sp. cucumerinum (Foc). Exogenous application of D,L-Pip via the root system is sufficient to activate the accumulation of free and conjugated salicylic acid (SA), and earlier and stronger upregulation of SAR-associated gene transcription upon P. xanthii infection. Furthermore, D,L-Pip treatment and subsequent pathogen inoculation promote hydrogen peroxide and superoxide accumulation, as well as Rboh transcription activation in cucumber plants, suggesting that D,L-Pip-triggered ROS production might be involved in enhanced defence reactions against P. xanthii. We also demonstrate that D,L-Pip pretreatment increases the activity of defence-associated enzymes, including peroxidase, chitinase and β-1,3-glucanase. The results presented in this report provide promising features of Pip as an elicitor in cucumber and call for further studies that may uncover its potential in production areas against different phytopathogens.
Collapse
Affiliation(s)
- S Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - U Sanver
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - N Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
55
|
Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep 2021; 48:3747-3759. [PMID: 33893927 DOI: 10.1007/s11033-021-06344-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and β-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Collapse
|
56
|
Torrens-Spence MP, Glinkerman CM, Günther J, Weng JK. Imine chemistry in plant metabolism. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101999. [PMID: 33450608 DOI: 10.1016/j.pbi.2020.101999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Imine chemistry represents an important category of chemical reactions involved in the biosynthesis of plant natural products, ranging from the newly discovered mobile defense hormone N-hydroxy-pipecolic acid to the red-to-yellow tyrosine-derived betalain pigments. Spontaneous imine formation reactions have also served as the basis for the evolution of numerous plant metabolic enzymes, such as specialized Pictet-Spenglerases that produce the backbone structures of benzylisoquinoline and monoterpene indole alkaloids and pyridoxal 5'-phosphate-dependent enzymes of diverse functions. Here, we review occurrences of imine chemistry in plant metabolism and their chemical and biochemical mechanisms. A better understanding of plant imine chemistry will ultimately facilitate synthetic biology approaches to further expand the scope of imine natural product biosynthesis for broad biotechnological applications.
Collapse
Affiliation(s)
| | | | - Jan Günther
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
57
|
Jiang SC, Engle NL, Banday ZZ, Cecchini NM, Jung HW, Tschaplinski TJ, Greenberg JT. ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2710-2726. [PMID: 33463678 PMCID: PMC8006555 DOI: 10.1093/jxb/eraa609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/24/2020] [Indexed: 05/10/2023]
Abstract
The Arabidopsis plastid-localized ALD1 protein acts in the lysine catabolic pathway that produces infection-induced pipecolic acid (Pip), Pip derivatives, and basal non-Pip metabolite(s). ALD1 is indispensable for disease resistance associated with Pseudomonas syringae infections of naïve plants as well as those previously immunized by a local infection, a phenomenon called systemic acquired resistance (SAR). Pseudomonas syringae is known to associate with mesophyll as well as epidermal cells. To probe the importance of epidermal cells in conferring bacterial disease resistance, we studied plants in which ALD1 was only detectable in the epidermal cells of specific leaves. Local disease resistance and many features of SAR were restored when ALD1 preferentially accumulated in the epidermal plastids at immunization sites. Interestingly, SAR restoration occurred without appreciable accumulation of Pip or known Pip derivatives in secondary distal leaves. Our findings establish that ALD1 has a non-autonomous effect on pathogen growth and defense activation. We propose that ALD1 is sufficient in the epidermis of the immunized leaves to activate SAR, but basal ALD1 and possibly a non-Pip metabolite(s) are also needed at all infection sites to fully suppress bacterial growth. Thus, epidermal plastids that contain ALD1 play a key role in local and whole-plant immune signaling.
Collapse
Affiliation(s)
- Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Zeeshan Zahoor Banday
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Nicolás M Cecchini
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Ho Won Jung
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
58
|
Vlot AC. A quest for long-distance signals: the epidermis as central regulator of pipecolic acid-associated systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2266-2268. [PMID: 33779751 PMCID: PMC8006548 DOI: 10.1093/jxb/eraa606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article comments on: Jiang SC, Engle NL, Banday ZZ, Cecchini NM, Jung HW, Tschaplinski TJ, Greenberg JT. 2021. ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany 72, 2710–2726.
Collapse
Affiliation(s)
- A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
- Correspondence:
| |
Collapse
|
59
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
60
|
Cai J, Jozwiak A, Holoidovsky L, Meijler MM, Meir S, Rogachev I, Aharoni A. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. MOLECULAR PLANT 2021; 14:440-455. [PMID: 33387676 DOI: 10.1016/j.molp.2020.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
N-hydroxy-pipecolic acid (NHP) activates plant systemic acquired resistance (SAR). Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction. Despite of extensive studies on SAR induction, the effects of NHP metabolism on plant growth remain largely unclear. In this study, we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth. We demonstrated that a UDP-glycosyltransferase (UGT76B1) forming NHP glycoside (NHPG) controls the NHP to NHPG ratio. Consistently, the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth, while UGT76B1 overexpression attenuates SAR response, promotes growth, and delays senescence, indicating that NHP levels are dependent on UGT76B1 function in the course of SAR. Furthermore, our results suggested that, upon pathogen attack, UGT76B1-mediated NHP glycosylation forms a "hand brake" on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes, highlighting the complexity of SAR-associated networks. In addition, we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response. Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Lara Holoidovsky
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Michael M Meijler
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 761001, Israel.
| |
Collapse
|
61
|
Zhang ET, Zhang H, Tang W. Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer N-Hydroxypipecolic Acid. Front Microbiol 2021; 12:621336. [PMID: 33643249 PMCID: PMC7905219 DOI: 10.3389/fmicb.2021.621336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 11/15/2022] Open
Abstract
The fungal pathogen Fusarium graminearum can cause destructive diseases on wheat, such as Fusarium head blight and Fusarium crown rot. However, a solution is still unavailable. Recently, N-hydroxypipecolic acid (NHP) was identified as a potent signaling molecule that is capable of inducing systemic acquired resistance to bacterial, oomycete, and fungal infection in several plant species. However, it is not clear whether NHP works in wheat to resist F. graminearum infection or how NHP affects wheat gene expression. In this report, we showed that pretreatment with NHP moderately increased wheat seedling resistance to F. graminearum. Using RNA sequencing, we found that 17% of wheat-expressed genes were significantly affected by NHP treatment. The genes encoding nucleotide-binding leucine-rich repeat immune receptors were significantly overrepresented in the group of genes upregulated by NHP treatment, while the genes encoding receptor-like kinases were not. Our results suggested that NHP treatment sensitizes a subset of the immune surveillance system in wheat seedlings, thereby facilitating wheat defense against F. graminearum infection.
Collapse
Affiliation(s)
- Eric T. Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai High School International Division, Shanghai, China
| | - Hao Zhang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
62
|
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S. Systemic propagation of immunity in plants. THE NEW PHYTOLOGIST 2021; 229:1234-1250. [PMID: 32978988 DOI: 10.1111/nph.16953] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/08/2020] [Indexed: 05/03/2023]
Abstract
Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.
Collapse
Affiliation(s)
- A Corina Vlot
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Jennifer H Sales
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Miriam Lenk
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Kornelia Bauer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Alessandro Brambilla
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Anna Sommer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Yuanyuan Chen
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Marion Wenig
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Shahran Nayem
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| |
Collapse
|
63
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
64
|
Yu K, Liu H, Kachroo P. Pipecolic Acid Quantification Using Gas Chromatography-coupled Mass Spectrometry. Bio Protoc 2020; 10:e3841. [PMID: 33659490 DOI: 10.21769/bioprotoc.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 11/02/2022] Open
Abstract
Pipecolic acid (Pip), a non-proteinacious product of lysine catabolism, is an important regulator of immunity in plants and humans alike. For instance, Pip accumulation is associated with the genetic disorder Zellweger syndrome, chronic liver diseases, and pyridoxine-dependent epilepsy in humans. In plants, Pip accumulates upon pathogen infection and is required for plant defense. The aminotransferase ALD1 catalyzes biosynthesis of Pip precursor piperideine-2-carboxylic acid, which is converted to Pip via ornithine cyclodeaminase. A variety of methods are used to quantify Pip, and some of these involve use of expensive amino acid analysis kits. Here, we describe a simplified procedure for quantitative analysis of Pip from plant tissues. Pipecolic acid was extracted from leaf tissues along with an internal standard norvaline, derivatized with propyl chloroformate and analyzed by gas chromatography-coupled mass spectrometry using selective ion mode. This procedure is simple, economical, and efficient and does not involve isotopic internal standards or multiple-step derivatizations.
Collapse
Affiliation(s)
- Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
65
|
Orlovskis Z, Reymond P. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1652-1661. [PMID: 32619278 DOI: 10.1111/nph.16788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Recognition of plant pathogens or herbivores activate a broad-spectrum plant defense priming in distal leaves against potential future attacks, leading to systemic acquired resistance (SAR). Additionally, attacked plants can release aerial or below-ground signals that trigger defense responses, such as SAR, in neighboring plants lacking initial exposure to pathogen or pest elicitors. However, the molecular mechanisms involved in interplant defense signal generation in sender plants and decoding in neighboring plants are not fully understood. We previously reported that Pieris brassicae eggs induce intraplant SAR against the foliar pathogen Pseudomonas syringae in Arabidopsis thaliana. Here we extend this effect to neighboring plants by discovering an egg-induced interplant SAR via mobile root-derived signal(s). The generation of an egg-induced interplant SAR signal requires pipecolic acid (Pip) pathway genes ALD1 and FMO1 but occurs independently of salicylic acid (SA) accumulation in sender plants. Furthermore, reception of the signal leads to accumulation of SA in the recipient plants. In response to insect eggs, plants may induce interplant SAR to prepare for potential pathogen invasion following feeding-induced wounding or to keep neighboring plants healthy for hatching larvae. Our results highlight a previously uncharacterized below-ground plant-to-plant signaling mechanism and reveals genetic components required for its generation.
Collapse
Affiliation(s)
- Zigmunds Orlovskis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
66
|
Kachroo A, Kachroo P. Mobile signals in systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:41-47. [PMID: 33202317 DOI: 10.1016/j.pbi.2020.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 05/20/2023]
Abstract
Plants possess a unique form of broad-spectrum long-distance immunity termed systemic acquired resistance (SAR). SAR involves the rapid generation of mobile signal(s) in response to localized microbial infection, which transport to the distal tissue and 'prime' them against future infections by related and unrelated pathogens. Several SAR-inducing chemicals that could be classified as the potential mobile signal have been identified. Many of these function in a bifurcate pathway with both branches being equally essential for SAR induction. This review reflects on the potential candidacy of the known SAR inducers as mobile signal(s) based on historical knowledge of the SAR signal and recent advances in the SAR signaling pathway.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
67
|
Liu Y, Sun T, Sun Y, Zhang Y, Radojičić A, Ding Y, Tian H, Huang X, Lan J, Chen S, Orduna AR, Zhang K, Jetter R, Li X, Zhang Y. Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. THE PLANT CELL 2020; 32:4002-4016. [PMID: 33037144 PMCID: PMC7721329 DOI: 10.1105/tpc.20.00499] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 05/10/2023]
Abstract
The plant defense hormone salicylic acid (SA) is perceived by two classes of receptors, NPR1 and NPR3/NPR4. They function in two parallel pathways to regulate SA-induced defense gene expression. To better understand the roles of the SA receptors in plant defense, we systematically analyzed their contributions to different aspects of Arabidopsis (Arabidopsis thaliana) plant immunity using the SA-insensitive npr1-1 npr4-4D double mutant. We found that perception of SA by NPR1 and NPR4 is required for activation of N-hydroxypipecolic acid biosynthesis, which is essential for inducing systemic acquired resistance. In addition, both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are severely compromised in the npr1-1 npr4-4D double mutant. Interestingly, the PTI and ETI attenuation in npr1-1 npr4-4D is more dramatic compared with the SA-induction deficient2-1 (sid2-1) mutant, suggesting that the perception of residual levels of SA in sid2-1 also contributes to immunity. Furthermore, NPR1 and NPR4 are involved in positive feedback amplification of SA biosynthesis and regulation of SA homeostasis through modifications including 5-hydroxylation and glycosylation. Thus, the SA receptors NPR1 and NPR4 play broad roles in plant immunity.
Collapse
Affiliation(s)
- Yanan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ana Radojičić
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jiameng Lan
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130000, China
| | - Alberto Ruiz Orduna
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
68
|
Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6444-6459. [PMID: 32725118 PMCID: PMC7586749 DOI: 10.1093/jxb/eraa317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
Recent work has provided evidence for the occurrence of N-hydroxypipecolic acid (NHP) in Arabidopsis thaliana, characterized its pathogen-inducible biosynthesis by a three-step metabolic sequence from l-lysine, and established a central role for NHP in the regulation of systemic acquired resistance. Here, we show that NHP is biosynthesized in several other plant species in response to microbial attack, generally together with its direct metabolic precursor pipecolic acid and the phenolic immune signal salicylic acid. For example, NHP accumulates locally in inoculated leaves and systemically in distant leaves of cucumber in response to Pseudomonas syringae attack, in Pseudomonas-challenged tobacco and soybean leaves, in tomato inoculated with the oomycete Phytophthora infestans, in leaves of the monocot Brachypodium distachyon infected with bacterial (Xanthomonas translucens) and fungal (Magnaporthe oryzae) pathogens, and in M. oryzae-inoculated barley. Notably, resistance assays indicate that NHP acts as a potent inducer of acquired resistance to bacterial and fungal infection in distinct monocotyledonous and dicotyledonous species. Pronounced systemic accumulation of NHP in leaf phloem sap of locally inoculated cucumber supports a function for NHP as a phloem-mobile immune signal. Our study thus generalizes the existence and function of an NHP resistance pathway in plant systemic acquired resistance.
Collapse
Affiliation(s)
- Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Jana Malik
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Lisa Brahmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ipek Yildiz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Janina von Dahlen
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Laura E Rose
- Institute for Population Genetics, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
69
|
Han YH, Choi TR, Park YL, Park JY, Song HS, Kim HJ, Lee SM, Park SL, Lee HS, Bhatia SK, Gurav R, Yang YH. Enhancement of pipecolic acid production by the expression of multiple lysine cyclodeaminase in the Escherichia coli whole-cell system. Enzyme Microb Technol 2020; 140:109643. [DOI: 10.1016/j.enzmictec.2020.109643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
|
70
|
FMO1 Is Involved in Excess Light Stress-Induced Signal Transduction and Cell Death Signaling. Cells 2020; 9:cells9102163. [PMID: 32987853 PMCID: PMC7600522 DOI: 10.3390/cells9102163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Because of their sessile nature, plants evolved integrated defense and acclimation mechanisms to simultaneously cope with adverse biotic and abiotic conditions. Among these are systemic acquired resistance (SAR) and systemic acquired acclimation (SAA). Growing evidence suggests that SAR and SAA activate similar cellular mechanisms and employ common signaling pathways for the induction of acclimatory and defense responses. It is therefore possible to consider these processes together, rather than separately, as a common systemic acquired acclimation and resistance (SAAR) mechanism. Arabidopsis thaliana flavin-dependent monooxygenase 1 (FMO1) was previously described as a regulator of plant resistance in response to pathogens as an important component of SAR. In the current study, we investigated its role in SAA, induced by a partial exposure of Arabidopsis rosette to local excess light stress. We demonstrate here that FMO1 expression is induced in leaves directly exposed to excess light stress as well as in systemic leaves remaining in low light. We also show that FMO1 is required for the systemic induction of ASCORBATE PEROXIDASE 2 (APX2) and ZINC-FINGER OF ARABIDOPSIS 10 (ZAT10) expression and spread of the reactive oxygen species (ROS) systemic signal in response to a local application of excess light treatment. Additionally, our results demonstrate that FMO1 is involved in the regulation of excess light-triggered systemic cell death, which is under control of LESION SIMULATING DISEASE 1 (LSD1). Our study indicates therefore that FMO1 plays an important role in triggering SAA response, supporting the hypothesis that SAA and SAR are tightly connected and use the same signaling pathways.
Collapse
|
71
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
72
|
Li D, Liu R, Singh D, Yuan X, Kachroo P, Raina R. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. THE NEW PHYTOLOGIST 2020; 225:2108-2121. [PMID: 31622519 DOI: 10.1111/nph.16270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Epigenetic modifications have emerged as an important mechanism underlying plant defence against pathogens. We examined the role of JMJ14, a Jumonji (JMJ) domain-containing H3K4 demethylase, in local and systemic plant immune responses in Arabidopsis. The function of JMJ14 in local or systemic defence response was investigated by pathogen growth assays and by analysing expression and H3K4me3 enrichments of key defence genes using qPCR and ChIP-qPCR. Salicylic acid (SA) and pipecolic acid (Pip) levels were quantified and function of JMJ14 in SA- and Pip-mediated defences was analysed in Col-0 and jmj14 plants. jmj14 mutants were compromised in both local and systemic defences. JMJ14 positively regulates pathogen-induced H3K4me3 enrichment and expression of defence genes involved in SA- and Pip-mediated defence pathways. Consequently, loss of JMJ14 results in attenuated defence gene expression and reduced Pip accumulation during establishment of systemic acquired resistance (SAR). Exogenous Pip partially restored SAR in jmj14 plants, suggesting that JMJ14 regulated Pip biosynthesis and other downstream factors regulate SAR in jmj14 plants. JMJ14 positively modulates defence gene expressions and Pip levels in Arabidopsis.
Collapse
Affiliation(s)
- Dan Li
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Deepjyoti Singh
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Xinyu Yuan
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Ramesh Raina
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
73
|
Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 2020; 365:498-502. [PMID: 31371615 DOI: 10.1126/science.aaw1720] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 01/30/2023]
Abstract
The phytohormone salicylic acid (SA) controls biotic and abiotic plant stress responses. Plastid-produced chorismate is a branch-point metabolite for SA biosynthesis. Most pathogen-induced SA derives from isochorismate, which is generated from chorismate by the catalytic activity of ISOCHORISMATE SYNTHASE1. Here, we ask how and in which cellular compartment isochorismate is converted to SA. We show that in Arabidopsis, the pathway downstream of isochorismate requires only two additional proteins: ENHANCED DISEASE SUSCEPTIBILITY5, which exports isochorismate from the plastid to the cytosol, and the cytosolic amidotransferase avrPphB SUSCEPTIBLE3 (PBS3). PBS3 catalyzes the conjugation of glutamate to isochorismate to produce isochorismate-9-glutamate, which spontaneously decomposes into SA and 2-hydroxy-acryloyl-N-glutamate. The minimal requirement of three compartmentalized proteins controlling unidirectional forward flux may protect the pathway against evolutionary forces and pathogen perturbations.
Collapse
Affiliation(s)
- Dmitrij Rekhter
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany.,Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany.,Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, D-37077 Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany.
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany. .,Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
74
|
Hu C, Rao J, Song Y, Chan SA, Tohge T, Cui B, Lin H, Fernie AR, Zhang D, Shi J. Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS One 2020; 15:e0227577. [PMID: 31978163 PMCID: PMC6980602 DOI: 10.1371/journal.pone.0227577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Rice flag leaves are major source organs providing more than half of the nutrition needed for rice seed development. The dynamic metabolic changes in rice flag leaves and the detailed metabolic relationship between source and sink organs in rice, however, remain largely unknown. In this study, the metabolic changes of flag leaves in two japonica and two indica rice cultivars were investigated using non-targeted metabolomics approach. Principal component analysis (PCA) revealed that flag leaf metabolomes varied significantly depending on both species and developmental stage. Only a few of the metabolites in flag leaves displayed the same change pattern across the four tested cultivars along the process of seed development. Further association analysis found that levels of 45 metabolites in seeds that are associated with human nutrition and health correlated significantly with their levels in flag leaves. Comparison of metabolomics of flag leaves and seeds revealed that some flavonoids were specific or much higher in flag leaves while some lipid metabolites such as phospholipids were much higher in seeds. This reflected not only the function of the tissue specific metabolism but also the different physiological properties and metabolic adaptive features of these two tissues.
Collapse
Affiliation(s)
- Chaoyang Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Rao
- Jiangxi Cancer Hospital, Nanchang, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Bo Cui
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
75
|
Huang W, Wang Y, Li X, Zhang Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. MOLECULAR PLANT 2020; 13:31-41. [PMID: 31863850 DOI: 10.1016/j.molp.2019.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) has long been known to be essential for basal defense and systemic acquired resistance (SAR). N-Hydroxypipecolic acid (NHP), a recently discovered plant metabolite, also plays a key role in SAR and to a lesser extent in basal resistance. Following pathogen infection, levels of both compounds are dramatically increased. Analysis of SA- or SAR-deficient mutants has uncovered how SA and NHP are biosynthesized. The completion of the SA and NHP biosynthetic pathways in Arabidopsis allowed better understanding of how they are regulated. In this review, we discuss recent progress on SA and NHP biosynthesis and their regulation in plant immunity.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
76
|
Sun T, Huang J, Xu Y, Verma V, Jing B, Sun Y, Ruiz Orduna A, Tian H, Huang X, Xia S, Schafer L, Jetter R, Zhang Y, Li X. Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. MOLECULAR PLANT 2020; 13:144-156. [PMID: 31733371 DOI: 10.1016/j.molp.2019.10.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Two signal molecules, salicylic acid (SA) and N-hydroxypipecolic acid (NHP), play critical roles in plant immunity. The biosynthetic genes of both compounds are positively regulated by master immune-regulating transcription factors SARD1 and CBP60g. However, the relationship between the SA and NHP pathways is unclear. CALMODULIN-BINDING TRANSCRIPTION FACTOR 1 (CAMTA1), CAMTA2, and CAMTA3 are known redundant negative regulators of plant immunity, but the underlying mechanism also remains largely unknown. In this study, through chromatin immunoprecipitation and electrophoretic mobility shift assays, we uncovered that CBP60g is a direct target of CAMTA3, which also negatively regulates the expression of SARD1, presumably via an indirect effect. The autoimmunity of camta3-1 is suppressed by sard1 cbp60g double mutant as well as ald1 and fmo1, two single mutants defective in NHP biosynthesis. Interestingly, a suppressor screen conducted in the camta1/2/3 triple mutant background yielded various mutants blocking biosynthesis or signaling of either SA or NHP, leading to nearly complete suppression of the extreme autoimmunity of camta1/2/3, suggesting that the SA and NHP pathways can mutually amplify each other. Together, these results reveal that CAMTAs repress the biosynthesis of SA and NHP by modulating the expression of SARD1 and CBP60g, and that the SA and NHP pathways are coordinated to optimize plant immune response.
Collapse
Affiliation(s)
- Tongjun Sun
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vani Verma
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Beibei Jing
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alberto Ruiz Orduna
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Xingchuan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Laurel Schafer
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
77
|
Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. MOLECULAR PLANT 2020; 13:157-168. [PMID: 31733370 DOI: 10.1016/j.molp.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2, and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here, we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like defense response protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis. Induction of ALD1 resulted in the accumulation of high levels of Pip, which brought about increased levels of the SA receptor protein NPR1 without induction of NPR1 expression or requirement for an increase in SA levels. Pip-mediated induction of ALD1 and genes regulating the biosynthesis of SA-CBP60g, SARD1, PAD4, and EDS1-was largely dependent on NPR1. Furthermore, Pip-mediated increase in NPR1 protein levels was associated with priming of Pip and SA biosynthesis genes to induction by low levels of SA. Taken together, our findings expand the role for CAMTA123 in regulating key immunity genes and suggest a working model whereby loss of CAMTA123 repression leads to the induction of plant defense genes and initiation of SAR.
Collapse
Affiliation(s)
- Yongsig Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah J Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Lumen Chao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
78
|
Guerra T, Schilling S, Hake K, Gorzolka K, Sylvester FP, Conrads B, Westermann B, Romeis T. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance. THE NEW PHYTOLOGIST 2020; 225:310-325. [PMID: 31469917 DOI: 10.1111/nph.16147] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/14/2019] [Indexed: 05/20/2023]
Abstract
Systemic acquired resistance (SAR) prepares infected plants for faster and stronger defense activation upon subsequent attacks. SAR requires an information relay from primary infection to distal tissue and the initiation and maintenance of a self-maintaining phytohormone salicylic acid (SA)-defense loop. In spatial and temporal resolution, we show that calcium-dependent protein kinase CPK5 contributes to immunity and SAR. In local basal resistance, CPK5 functions upstream of SA synthesis, perception, and signaling. In systemic tissue, CPK5 signaling leads to accumulation of SAR-inducing metabolite N-hydroxy-L-pipecolic acid (NHP) and SAR marker genes, including Systemic Acquired Resistance Deficient 1 (SARD1) Plants of increased CPK5, but not CPK6, signaling display an 'enhanced SAR' phenotype towards a secondary bacterial infection. In the sard1-1 background, CPK5-mediated basal resistance is still mounted, but NHP concentration is reduced and enhanced SAR is lost. The biochemical analysis estimated CPK5 half maximal kinase activity for calcium, K50 [Ca2+ ], to be c. 100 nM, close to the cytoplasmic resting level. This low threshold uniquely qualifies CPK5 to decode subtle changes in calcium, a prerequisite to signal relay and onset and maintenance of priming at later time points in distal tissue. Our data explain why CPK5 functions as a hub in basal and systemic plant immunity.
Collapse
Affiliation(s)
- Tiziana Guerra
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Silke Schilling
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Fabian-Philipp Sylvester
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Benjamin Conrads
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | | | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
79
|
Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
81
|
Abstract
Plants are under relentless challenge by pathogenic bacteria, fungi, and oomycetes, for whom they provide a resource of living space and nutrients. Upon detection of pathogens, plants carry out multiple layers of defense response, orchestrated by a tightly organized network of hormones. In this review, we provide an overview of the phytohormones involved in immunity and the ways pathogens manipulate their biosynthesis and signaling pathways. We highlight recent developments, including the discovery of a defense signaling molecule, new insights into hormone biosynthesis, and the increasing importance of signaling hubs at which hormone pathways intersect.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
82
|
Till CJ, Vicente J, Zhang H, Oszvald M, Deery MJ, Pastor V, Lilley KS, Ray RV, Theodoulou FL, Holdsworth MJ. The Arabidopsis thaliana N-recognin E3 ligase PROTEOLYSIS1 influences the immune response. PLANT DIRECT 2019; 3:e00194. [PMID: 31891113 PMCID: PMC6933115 DOI: 10.1002/pld3.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 05/11/2023]
Abstract
N-degron pathways of ubiquitin-mediated proteolysis (formerly known as the N-end rule pathway) control the stability of substrate proteins dependent on the amino-terminal (Nt) residue. Unlike yeast or mammalian N-recognin E3 ligases, which each recognize several different classes of Nt residues, in Arabidopsis thaliana, N-recognin functions of different N-degron pathways are carried out independently by PROTEOLYSIS (PRT)1, PRT6, and other unknown proteins. PRT1 recognizes type 2 aromatic Nt-destabilizing residues and PRT6 recognizes type 1 basic residues. These two N-recognin functions diverged as separate proteins early in the evolution of plants, before the conquest of the land. We demonstrate that loss of PRT1 function promotes the plant immune system, as mutant prt1-1 plants showed greater apoplastic resistance than WT to infection by the bacterial hemi-biotroph Pseudomonas syringae pv tomato (Pst) DC3000. Quantitative proteomics revealed increased accumulation of proteins associated with specific components of plant defense in the prt1-1 mutant, concomitant with increased accumulation of salicylic acid. The effects of the prt1 mutation were additional to known effects of prt6 in influencing the immune system, in particular, an observed over-accumulation of pipecolic acid (Pip) in the double-mutant prt1-1 prt6-1. These results demonstrate a potential role for PRT1 in controlling aspects of the plant immune system and suggest that PRT1 limits the onset of the defense response via degradation of substrates with type 2 Nt-destabilizing residues.
Collapse
Affiliation(s)
- Christopher J. Till
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Jorge Vicente
- School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Maria Oszvald
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Victoria Pastor
- Área de Fisiología VegetalDepartamento de Ciencias Agrarias y del Medio NaturalUniversitat Jaume ICastellónSpain
| | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Rumiana V. Ray
- School of BiosciencesUniversity of NottinghamLoughboroughUK
| | | | | |
Collapse
|
83
|
Holmes EC, Chen YC, Sattely ES, Mudgett MB. An engineered pathway for N-hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Sci Signal 2019; 12:eaay3066. [PMID: 31641079 PMCID: PMC7954083 DOI: 10.1126/scisignal.aay3066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic acquired resistance (SAR) is a powerful immune response that triggers broad-spectrum disease resistance throughout a plant. In the model plant Arabidopsis thaliana, long-distance signaling and SAR activation in uninfected tissues occur without circulating immune cells and instead rely on the metabolite N-hydroxy-pipecolic acid (NHP). Engineering SAR in crop plants would enable external control of a plant's ability to mount a global defense response upon sudden changes in the environment. Such a metabolite-engineering approach would require the molecular machinery for producing and responding to NHP in the crop plant. Here, we used heterologous expression in Nicotiana benthamiana leaves to identify a minimal set of Arabidopsis genes necessary for the biosynthesis of NHP. Local expression of these genes in tomato leaves triggered SAR in distal tissues in the absence of a pathogen, suggesting that the SAR trait can be engineered to enhance a plant's endogenous ability to respond to pathogens. We also showed tomato produces endogenous NHP in response to a bacterial pathogen and that NHP is present across the plant kingdom, raising the possibility that an engineering strategy to enhance NHP-induced defenses could be possible in many crop plants.
Collapse
Affiliation(s)
- Eric C Holmes
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yun-Chu Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
84
|
Lenk M, Wenig M, Bauer K, Hug F, Knappe C, Lange B, Häußler F, Mengel F, Dey S, Schäffner A, Vlot AC. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1303-1313. [PMID: 31194615 DOI: 10.1094/mpmi-01-19-0013-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Miriam Lenk
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Kornelia Bauer
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Florian Hug
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Lange
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Finni Häußler
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Felicitas Mengel
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Anton Schäffner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
85
|
Hartmann M, Zeier J. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:44-57. [PMID: 30927665 DOI: 10.1016/j.pbi.2019.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
Recent research has established that the pipecolate pathway, a three-step biochemical sequence from l-lysine to N-hydroxypipecolic acid (NHP), is central for plant systemic acquired resistance (SAR). NHP orchestrates SAR establishment in concert with the immune signal salicylic acid (SA). Here, we outline the biochemistry of NHP formation from l-Lys and address novel progress on SA biosynthesis in Arabidopsis and other plant species. In Arabidopsis, the pathogen-inducible pipecolate and salicylate pathways are activated by common and distinct regulatory elements and mutual interactions between both metabolic branches exist. The mode of action of NHP in SAR involves direct induction of SAR gene expression, signal amplification, priming for enhanced defense activation and positive interplay with SA signaling to ensure elevated plant immunity.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
86
|
Zhang Y, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:29-36. [PMID: 30901692 DOI: 10.1016/j.pbi.2019.02.004] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
87
|
|
88
|
Wang S, Han K, Peng J, Zhao J, Jiang L, Lu Y, Zheng H, Lin L, Chen J, Yan F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:990-1004. [PMID: 31012537 PMCID: PMC6589722 DOI: 10.1111/mpp.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AGD2-LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA-independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1-mediated resistance. NbALD1 was up-regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1, enhanced resistance to TuMV. The SA content was lower in NbALD1-silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1-mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA-independent resistance pathway. The ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1-silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1, a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1-silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip-treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Kelei Han
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Jiejun Peng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liangliang Jiang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yuwen Lu
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Hongying Zheng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Lin Lin
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
89
|
Tian H, Zhang Y. The Emergence of a Mobile Signal for Systemic Acquired Resistance. THE PLANT CELL 2019; 31:1414-1415. [PMID: 31068447 PMCID: PMC6635856 DOI: 10.1105/tpc.19.00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Hainan Tian
- Department of Botany University of British ColumbiaVancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany University of British ColumbiaVancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
90
|
Hake K, Romeis T. Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. PLANT, CELL & ENVIRONMENT 2019; 42:904-917. [PMID: 30151921 DOI: 10.1111/pce.13429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
"Priming" in plant phytopathology describes a phenomenon where the "experience" of primary infection by microbial pathogens leads to enhanced and beneficial protection of the plant against secondary infection. The plant is able to establish an immune memory, a state of systemic acquired resistance (SAR), in which the information of "having been attacked" is integrated with the action of "being prepared to defend when it happens again." Accordingly, primed plants are often characterized by faster and stronger activation of immune reactions that ultimately result in a reduction of pathogen spread and growth. Prerequisites for SAR are (a) the initiation of immune signalling subsequent to pathogen recognition, (b) a rapid defence signal propagation from a primary infected local site to uninfected distal parts of the plant, and (c) a switch into an immune signal-dependent establishment and subsequent long-lasting maintenance of phytohormone salicylic acid-based systemic immunity. Here, we provide a summary on protein kinases that contribute to these three conceptual aspects of "priming" in plant phytopathology, complemented by data addressing the role of protein kinases crucial for immune signal initiation also for signal propagation and SAR.
Collapse
Affiliation(s)
- Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
91
|
Shine MB, Xiao X, Kachroo P, Kachroo A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:81-86. [PMID: 30709496 DOI: 10.1016/j.plantsci.2018.01.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 05/20/2023]
Abstract
Plants respond to biotic stress by inducing a variety of responses, which not only protect against the immediate diseases but also provide immunity from future infections. One example is systemic acquired resistance (SAR), which provides long-lasting and broad-spectrum protection at the whole plant level. The induction of SAR prepares the plant for a more robust response to subsequent infections from related and unrelated pathogens. SAR involves the rapid generation of signals at the primary site of infection, which are transported to the systemic parts of the plant presumably via the phloem. SAR signal generation and perception requires an intact cuticle, a waxy layer covering all aerial parts of the plant. A chemically diverse set of SAR inducers has already been identified, including hormones (salicylic acid, methyl salicylate), primary/secondary metabolites (nitric oxide, reactive oxygen species, glycerol-3-phosphate, azelaic acid, pipecolic acid, dihyroabetinal), fatty acid/lipid derivatives (18 carbon unsaturated fatty acids, galactolipids), and proteins (DIR1-Defective in Induced Resistance 1, AZI1-Azelaic acid Induced 1). Some of these are demonstrably mobile and the phloem loading routes for three of these SAR inducers is known. Here we discuss the recent findings related to synthesis, transport, and the relationship between these various SAR inducers.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Xueqiong Xiao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
92
|
Abstract
The non-protein amino acid pipecolic acid (Pip) is a lysine catabolite involved in plant systemic acquired resistance (SAR). In this issue of Cell, Hartmann et al. (2018) demonstrate that a flavin-dependent monooxygenase converts Pip to N-hydroxypipecolic acid (NHP), which functions as a critical metabolic regulator of SAR in Arabidopsis.
Collapse
|
93
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
94
|
Ding P, Redkar A. Pathogens Suppress Host Transcription Factors for Rampant Proliferation. TRENDS IN PLANT SCIENCE 2018; 23:950-953. [PMID: 30241734 DOI: 10.1016/j.tplants.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Root pathogen Verticillium dahliae deploys an effector called VdSCP41 into plants to disrupt the functions of SARD1 and CBP60g, two central transcriptional regulators of plant immunity. This provides new tools to dissect transcriptional regulation of tissue-specific immunity in the root and to understand dynamic interactions between plants and root-associated microorganisms.
Collapse
Affiliation(s)
- Pingtao Ding
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Both authors contributed equally to this work.
| | - Amey Redkar
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; Both authors contributed equally to this work.
| |
Collapse
|
95
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
96
|
Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J, Tsuda K. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. THE PLANT CELL 2018; 30:2480-2494. [PMID: 30228125 PMCID: PMC6241261 DOI: 10.1105/tpc.18.00547] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 05/19/2023]
Abstract
Plants induce systemic acquired resistance (SAR) upon localized exposure to pathogens. Pipecolic acid (Pip) production via AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) is key for SAR establishment. Here, we report a positive feedback loop important for SAR induction in Arabidopsis thaliana We showed that local activation of the MAP kinases MPK3 and MPK6 is sufficient to trigger Pip production and mount SAR. Consistent with this, mutations in MPK3 or MPK6 led to compromised Pip accumulation upon inoculation with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pto) AvrRpt2, which triggers strong sustained MAPK activation. By contrast, P. syringae pv maculicola and Pto, which induce transient MAPK activation, trigger Pip biosynthesis and SAR independently of MPK3/6. ALD1 expression, Pip accumulation, and SAR were compromised in mutants defective in the MPK3/6-regulated transcription factor WRKY33. Chromatin immunoprecipitation showed that WRKY33 binds to the ALD1 promoter. We found that Pip triggers activation of MPK3 and MPK6 and that MAPK activation after Pto AvrRpt2 inoculation is compromised in wrky33 and ald1 mutants. Collectively, our results reveal a positive regulatory loop consisting of MPK3/MPK6, WRKY33, ALD1, and Pip in SAR induction and suggest the existence of distinct SAR activation pathways that converge at the level of Pip biosynthesis.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Schuck
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jingni Wu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ping Yang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne-Christin Döring
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
97
|
Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:871-888. [PMID: 29781762 DOI: 10.1094/mpmi-03-18-0067-cr] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
Collapse
Affiliation(s)
| | - Hyong Woo Choi
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
| | | |
Collapse
|
98
|
Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Barley. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants are exposed to numerous pathogens and fend off many of these with different phytohormone signalling pathways. Much is known about defence signalling in the dicotyledonous model plant Arabidopsisthaliana, but it is unclear to which extent knowledge from model systems can be transferred to monocotyledonous plants, including cereal crops. Here, we investigated the defence-inducing potential of Arabidopsis resistance-inducing compounds in the cereal crop barley. Salicylic acid (SA), folic acid (Fol), and azelaic acid (AzA), each inducing defence against (hemi-)biotrophic pathogens in Arabidopsis, were applied to barley leaves and the treated and systemic leaves were subsequently inoculated with Xanthomonastranslucens pv. cerealis (Xtc), Blumeria graminis f. sp. hordei (powdery mildew, Bgh), or Pyrenophora teres. Fol and SA reduced Bgh propagation locally and/or systemically, whereas Fol enhanced Xtc growth in barley. AzA reduced Bgh propagation systemically and enhanced Xtc growth locally. Neither SA, Fol, nor AzA influenced lesion sizes caused by the necrotrophic fungus P. teres, suggesting that the tested compounds exclusively affected growth of (hemi-)biotrophic pathogens in barley. In addition to SA, Fol and AzA might thus act as resistance-inducing compounds in barley against Bgh, although adverse effects on the growth of pathogenic bacteria, such as Xtc, are possible.
Collapse
|
99
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
100
|
N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4920-E4929. [PMID: 29735713 DOI: 10.1073/pnas.1805291115] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.
Collapse
|