51
|
Ma D, Lai Z, Ding Q, Zhang K, Chang K, Li S, Zhao Z, Zhong F. Identification, Characterization and Function of Orphan Genes Among the Current Cucurbitaceae Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:872137. [PMID: 35599909 PMCID: PMC9114813 DOI: 10.3389/fpls.2022.872137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) that are missing identifiable homologs in other lineages may potentially make contributions to a variety of biological functions. The Cucurbitaceae family consists of a wide range of fruit crops of worldwide or local economic significance. To date, very few functional mechanisms of OGs in Cucurbitaceae are known. In this study, we systematically identified the OGs of eight Cucurbitaceae species using a comparative genomics approach. The content of OGs varied widely among the eight Cucurbitaceae species, ranging from 1.63% in chayote to 16.55% in wax gourd. Genetic structure analysis showed that OGs have significantly shorter protein lengths and fewer exons in Cucurbitaceae. The subcellular localizations of OGs were basically the same, with only subtle differences. Except for aggregation in some chromosomal regions, the distribution density of OGs was higher near the telomeres and relatively evenly distributed on the chromosomes. Gene expression analysis revealed that OGs had less abundantly and highly tissue-specific expression. Interestingly, the largest proportion of these OGs was significantly more tissue-specific expressed in the flower than in other tissues, and more detectable expression was found in the male flower. Functional prediction of OGs showed that (1) 18 OGs associated with male sterility in watermelon; (2) 182 OGs associated with flower development in cucumber; (3) 51 OGs associated with environmental adaptation in watermelon; (4) 520 OGs may help with the large fruit size in wax gourd. Our results provide the molecular basis and research direction for some important mechanisms in Cucurbitaceae species and domesticated crops.
Collapse
Affiliation(s)
- Dongna Ma
- College of Horticulture, Fujian Agriculture and Forestry University, Fujian, China
- College of the Environment and Ecology, Xiamen University, Fujian, China
| | - Zhengfeng Lai
- Subtropical Agricultural Research Institute, Fujian Academy of Agriculture Sciences, Fujian, China
| | - Qiansu Ding
- College of the Environment and Ecology, Xiamen University, Fujian, China
| | - Kun Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fujian, China
| | - Kaizhen Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fujian, China
| | - Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fujian, China
| | - Zhizhu Zhao
- College of the Environment and Ecology, Xiamen University, Fujian, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
52
|
Pokotylo I, Hodges M, Kravets V, Ruelland E. A ménage à trois: salicylic acid, growth inhibition, and immunity. TRENDS IN PLANT SCIENCE 2022; 27:460-471. [PMID: 34872837 DOI: 10.1016/j.tplants.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) is a plant hormone almost exclusively associated with the promotion of immunity. It is also known that SA has a negative impact on plant growth, yet only limited efforts have been dedicated to explain this facet of SA action. In this review, we focus on SA-related reduced growth and discuss whether it is a regulated process and if the role of SA in immunity imperatively comes with growth suppression. We highlight molecular targets of SA that interfere with growth and describe scenarios where SA can improve plant immunity without a growth penalty.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine.
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR CNRS 9213, Université Paris-Saclay, INRAE, Université d'Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203 Compiègne, France.
| |
Collapse
|
53
|
Li A, Sun X, Liu L. Action of Salicylic Acid on Plant Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:878076. [PMID: 35574112 PMCID: PMC9093677 DOI: 10.3389/fpls.2022.878076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 06/02/2023]
Abstract
The phytohormone salicylic acid (SA) not only is a well-known signal molecule mediating plant immunity, but also is involved in plant growth regulation. However, while its role in plant immunity has been well elucidated, its action on plant growth has not been clearly described to date. Recently, increasing evidence has shown that SA plays crucial roles in regulating cell division and cell expansion, the key processes that determines the final stature of plant. This review summarizes the current knowledge on the action and molecular mechanisms through which SA regulates plant growth via multiple pathways. It is here highlighted that SA mediates growth regulation by affecting cell division and expansion. In addition, the interactions of SA with other hormones and their role in plant growth determination were also discussed. Further understanding of the mechanism underlying SA-mediated growth will be instrumental for future crop improvement.
Collapse
|
54
|
Qi X, Chen L, Zhang Y, Gao W, Chen L, Wang D, Tang L, Wang Z, Wang NN, Fan Z. Methoxyacrylate Fungicide Candidate CL-15C Also Functions as a Plant Elicitor in Arabidopsis thaliana and Oryza sativa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3142-3150. [PMID: 35254068 DOI: 10.1021/acs.jafc.1c07757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Unlike traditional fungicides targeting fungi, plant elicitors usually lack direct fungicidal activity but improve the plant immune system to resist fungi infection, which has gained increasing attention for better fungi resistance management and environment protection. (E)-methyl-2-(2-((((Z)-(amino-(3,4-dichloroisothiazol-5-yl)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (CL-15C) was found to be a fungicide candidate with a broad spectrum. Here, we studied its immune-inducing ability and mechanism to strengthen the resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Oryza sativa L. against Magnaporthe oryzae. CL-15C promoted a 2.20- and 1.47-fold increase in phenylalanine ammonia-lyase (PAL) activity in A. thaliana and O. sativa, respectively. It also facilitated a 1.89- and 1.32-fold increase in accumulation of salicylic acid (SA) in A. thaliana and O. sativa, respectively. Differential genes were clustered in the SA signaling pathway at 24 h after a CL-15C treatment in A. thaliana. Because PAL is a rate-limiting enzyme in the phenylalanine metabolic pathway, after a CL-15C treatment, a pal1(PAL 1) mutant was more susceptible to Pst DC3000 when compared with the wild type. Bacterial counts in leaves after a CL-15C treatment showed a 1.11-fold reduction in the pal1 mutant and a 1.54-fold reduction in the wild type. The effect of CL-15C on the PAL enzyme activity and SA content was attenuated in the pal1 mutant. Present experimental data implied that the immune-inducing activity of CL-15C was dependent on PAL gene-mediated synthesis of SA.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lei Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
55
|
Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. Salicylic Acid in Root Growth and Development. Int J Mol Sci 2022; 23:ijms23042228. [PMID: 35216343 PMCID: PMC8875895 DOI: 10.3390/ijms23042228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
Collapse
Affiliation(s)
- Zulfira Z. Bagautdinova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Aleksandr V. Tyapkin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vasilina V. Kovrizhnykh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Viktoriya V. Lavrekha
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
56
|
Wu T, Zhang H, Yuan B, Liu H, Kong L, Chu Z, Ding X. Tal2b targets and activates the expression of OsF3H 03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. THE NEW PHYTOLOGIST 2022; 233:1864-1880. [PMID: 34812496 DOI: 10.1111/nph.17877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator-like (TAL) effectors are major virulence factors secreted by the type III secretion systems of Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), causing bacterial leaf streak and bacterial blight, respectively, in rice. However, the knowledge of Xoc TAL effector function in promoting bacterial virulence remains limited. Here, we isolated the highly virulent Xoc strain HGA4 from the outbreak region of Huanggang (Hubei, China), which contains four TAL effectors not found in the Chinese model strain RS105. Among these, Tal2b was selected for introduction into RS105, which resulted in a longer lesion length than that in the control. Tal2b directly binds to the promoter region of the gene and activates the expression of OsF3H03g , which encodes 2-oxoglutarate-dependent dioxygenase in rice. OsF3H03g negatively regulates salicylic acid (SA)-related defense by directly reducing SA, and it plays a positive role in susceptibility to both Xoc and Xoo in rice. OsF3H03g interacts with a uridine diphosphate-glycosyltransferase protein (OsUGT74H4), which positively regulates bacterial leaf streak susceptibility and may inactivate SA via glycosylation modification.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan University, Wuhan, Hubei, 430070, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
57
|
Liang B, Wang H, Yang C, Wang L, Qi L, Guo Z, Chen X. Salicylic Acid Is Required for Broad-Spectrum Disease Resistance in Rice. Int J Mol Sci 2022; 23:ijms23031354. [PMID: 35163275 PMCID: PMC8836234 DOI: 10.3390/ijms23031354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Rice plants contain high basal levels of salicylic acid (SA), but some of their functions remain elusive. To elucidate the importance of SA homeostasis in rice immunity, we characterized four rice SA hydroxylase genes (OsSAHs) and verified their roles in SA metabolism and disease resistance. Recombinant OsSAH proteins catalyzed SA in vitro, while OsSAH3 protein showed only SA 5-hydroxylase (SA5H) activity, which was remarkably higher than that of other OsSAHs that presented both SA3H and SA5H activities. Amino acid substitutions revealed that three amino acids in the binding pocket affected SAH enzyme activity and/or specificity. Knockout OsSAH2 and OsSAH3 (sahKO) genes conferred enhanced resistance to both hemibiotrophic and necrotrophic pathogens, whereas overexpression of each OsSAH gene increased susceptibility to the pathogens. sahKO mutants showed increased SA and jasmonate levels compared to those of the wild type and OsSAH-overexpressing plants. Analysis of the OsSAH3 promoter indicated that its induction was mainly restricted around Magnaporthe oryzae infection sites. Taken together, our findings indicate that SA plays a vital role in immune signaling. Moreover, fine-tuning SA homeostasis through suppression of SA metabolism is an effective approach in studying broad-spectrum disease resistance in rice.
Collapse
|
58
|
Physiological and Qualitative Response of Cucurbita pepo L. to Salicylic Acid under Controlled Water Stress Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Limited water stress is one of the most important environmental stresses that affect the growth, quantity and quality of agronomic crops. This study was undertaken to investigate the effect of foliar applied salicylic acid (SA) on physiological responses, antioxidant enzymes and qualitative traits of Cucurbita pepo L. Plants exposed to water-stressed conditions in two years of field studies. Irrigation regimes at three soil matric potential levels (−0.3, −1.2 and −1.8 MPa) and SA at four levels (0.0, 0.5, 1.0 and 1.5 mg/L) were considered as main plot and sub-plots, respectively. The soil matric potential values (MPa) was measured just before irrigation. Results showed that under water stressed conditions alone, the amounts of malondialdehyde (MDA), hydrogen peroxide (H2O2) and ion leakage were higher compared with control treatment. However, spraying of SA under both water stress and non-stress conditions reduced the values of the above parameters. Water stress increased CAT, APX and GR enzymes activity. However foliar application of SA led to the decrease of CAT, APX and GR under all soil matric potential levels. The amount of carbohydrates and fatty acids increased with the intensity of water stress and SA modulated this response. By increasing SA concentration both in optimum and stress conditions, saturated fatty acids content decreased. According to our data, the SA application is an effective approach to improve pumpkin growth under water stress conditions.
Collapse
|
59
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
60
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
61
|
Yu Q, Liu S, Yu L, Xiao Y, Zhang S, Wang X, Xu Y, Yu H, Li Y, Yang J, Tang J, Duan HC, Wei LH, Zhang H, Wei J, Tang Q, Wang C, Zhang W, Wang Y, Song P, Lu Q, Zhang W, Dong S, Song B, He C, Jia G. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat Biotechnol 2021; 39:1581-1588. [PMID: 34294912 DOI: 10.1038/s41587-021-00982-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
RNA N6-methyladenosine (m6A) modifications are essential in plants. Here, we show that transgenic expression of the human RNA demethylase FTO in rice caused a more than threefold increase in grain yield under greenhouse conditions. In field trials, transgenic expression of FTO in rice and potato caused ~50% increases in yield and biomass. We demonstrate that the presence of FTO stimulates root meristem cell proliferation and tiller bud formation and promotes photosynthetic efficiency and drought tolerance but has no effect on mature cell size, shoot meristem cell proliferation, root diameter, plant height or ploidy. FTO mediates substantial m6A demethylation (around 7% of demethylation in poly(A) RNA and around 35% decrease of m6A in non-ribosomal nuclear RNA) in plant RNA, inducing chromatin openness and transcriptional activation. Therefore, modulation of plant RNA m6A methylation is a promising strategy to dramatically improve plant growth and crop yield.
Collapse
Affiliation(s)
- Qiong Yu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shasha Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xueping Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yingying Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yulong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lian-Huan Wei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haiyan Zhang
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiangbo Wei
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wutong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shunqing Dong
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- National Engineering Research Center of Pesticide, Nankai University, Tianjin, China.
| |
Collapse
|
62
|
Marriboina S, Sharma K, Sengupta D, Yadavalli AD, Sharma RP, Reddy Attipalli R. Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone-metabolic network. PHYSIOLOGIA PLANTARUM 2021; 173:1514-1534. [PMID: 34165187 DOI: 10.1111/ppl.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress results in significant losses in plant productivity and loss of cultivable lands. Although Pongamia pinnata is reported to be a salt-tolerant semiarid biofuel tree, the adaptive mechanisms to saline environments are elusive. Despite a reduction in carbon exchange rate (CER), the unchanged relative water content provides no visible salinity induced symptoms in leaves of hydroponic cultivated Pongamia seedlings for 8 days. Our Na+ -specific fluorescence results demonstrated that there was an effective apoplastic sodium sequestration in the roots. Salinity stress significantly increased zeatin (~5.5-fold), and jasmonic acid (~3.8-fold) levels in leaves while zeatin (~2.5-fold) content increased in leaves as well as in roots of salt-treated plants. Metabolite analysis suggested that osmolytes such as myo-inositol and mannitol were enhanced by ~12-fold in leaves and roots of salt-treated plants. Additionally, leaves of Pongamia showed a significant enhancement in carbohydrate content, while fatty acids were accumulated in roots under salt stress condition. At the molecular level, salt stress enhanced the expression of genes related to transporters, including the Salt Overly Sensitive 2 gene (SOS2), SOS3, vacuolar-cation/proton exchanger, and vacuolar-proton/ATPase exclusively in leaves, whereas the Sodium Proton Exchanger1 (NHX1), Cation Calcium Exchanger (CCX), and Cyclic Nucleotide Gated Channel 5 (CNGC5) were up-regulated in roots. Antioxidant gene expression analysis clearly demonstrated that peroxidase levels were significantly enhanced by ~10-fold in leaves, while Catalase and Fe-superoxide Dismutase (Fe-SOD) genes were increased in roots under salt stress. The correlation interaction studies between phytohormones and metabolites revealed new insights into the molecular and metabolic adaptations that confer salinity tolerance to Pongamia.
Collapse
Affiliation(s)
- Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anurupa Devi Yadavalli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Prasad Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
63
|
Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. Int J Mol Sci 2021; 22:ijms222111672. [PMID: 34769103 PMCID: PMC8584137 DOI: 10.3390/ijms222111672] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops.
Collapse
|
64
|
Yokotani N, Hasegawa Y, Sato M, Hirakawa H, Kouzai Y, Nishizawa Y, Yamamoto E, Naito Y, Isobe S. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: a role of salicylic acid in the host response. BMC PLANT BIOLOGY 2021; 21:476. [PMID: 34666675 PMCID: PMC8524973 DOI: 10.1186/s12870-021-03251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/05/2021] [Indexed: 05/05/2023]
Abstract
Bacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq. Overall, 1788 and 540 genes were upregulated and downregulated upon infection, respectively. Gene Ontology enrichment analysis revealed that genes involved in the defense response, phosphorylation, and hormone signaling were over-represented by the infection. Induced expression of defense-associated genes suggested that the tomato response to Cmm showed similarities to common plant disease responses. After infection, many resistance gene analogs (RGAs) were transcriptionally upregulated, including the expressions of some receptor-like kinases (RLKs) involved in pattern-triggered immunity. The expressions of WRKYs, NACs, HSFs, and CBP60s encoding transcription factors (TFs) reported to regulate defense-associated genes were induced after infection with Cmm. Tomato genes orthologous to Arabidopsis EDS1, EDS5/SID1, and PAD4/EDS9, which are causal genes of salicylic acid (SA)-deficient mutants, were upregulated after infection with Cmm. Furthermore, Cmm infection drastically stimulated SA accumulation in tomato cotyledons. Genes involved in the phenylalanine ammonia lyase pathway were upregulated, whereas metabolic enzyme gene expression in the isochorismate synthase pathway remained unchanged. Exogenously applied SA suppressed bacterial growth and induced the expression of WRKYs, suggesting that some Cmm-responsive genes are regulated by SA signaling, and SA signaling activation should improve tomato immunity against Cmm.
Collapse
Affiliation(s)
- Naoki Yokotani
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan.
| | - Yoshinori Hasegawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Masaru Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yusuke Kouzai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Eiji Yamamoto
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshiki Naito
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
65
|
Shariatipour N, Heidari B, Tahmasebi A, Richards C. Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:709817. [PMID: 34712248 PMCID: PMC8546302 DOI: 10.3389/fpls.2021.709817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important tools for the identification of reliable and stable QTLs and functional genes controlling quantitative traits. We conducted a meta-analysis to identify the most stable QTLs for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total of 735 QTLs retrieved from 27 independent mapping populations reported in the last 13 years were used for the meta-analysis. The results showed that 449 QTLs were successfully projected onto the genetic consensus map which condensed to 100 MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in a three-fold reduction in the confidence interval (CI) compared with the CI for the initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs were located on the A and D genomes. The QTLs of thousand kernel weight (TKW) were frequently associated with QTLs for GY and grain protein content (GPC) with co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes (CGs) located in the genomic intervals of the stable MQTLs indicated that several CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700, TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients contents, yield, and yield-related traits. The mapping refinements leading to the identification of these CGs provide an opportunity to understand the genetic mechanisms driving quantitative variation for these traits and apply this information for crop improvement programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
66
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021; 232:98-112. [PMID: 33683730 PMCID: PMC8518983 DOI: 10.1111/nph.17329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Habtamu Ayalew
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | | | - Kundan Dhakal
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Marcus Griffiths
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xue‐Feng Ma
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Larry M. York
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| |
Collapse
|
67
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma XF, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021. [PMID: 33683730 DOI: 10.1101/2020.11.12.380238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Habtamu Ayalew
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Anand Seethepalli
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kundan Dhakal
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Marcus Griffiths
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Xue-Feng Ma
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Larry M York
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
68
|
Identification and Characterization of Short Crown Root 8, a Temperature-Sensitive Mutant Associated with Crown Root Development in Rice. Int J Mol Sci 2021; 22:ijms22189868. [PMID: 34576034 PMCID: PMC8465104 DOI: 10.3390/ijms22189868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Crown roots are essential for plants to obtain water and nutrients, perceive environmental changes, and synthesize plant hormones. In this study, we identified and characterized short crown root 8 (scr8), which exhibited a defective phenotype of crown root and vegetative development. Temperature treatment showed that scr8 was sensitive to temperature and that the mutant phenotypes were rescued when grown under low temperature condition (20 °C). Histological and EdU staining analysis showed that the crown root formation was hampered and that the root meristem activity was decreased in scr8. With map-based cloning strategy, the SCR8 gene was fine-mapped to an interval of 126.4 kb on chromosome 8. Sequencing analysis revealed that the sequence variations were only found in LOC_Os08g14850, which encodes a CC-NBS-LRR protein. Expression and inoculation test analysis showed that the expression level of LOC_Os08g14850 was significantly decreased under low temperature (20 °C) and that the resistance to Xanthomonas oryzae pv. Oryzae (Xoo) was enhanced in scr8. These results indicated that LOC_Os08g14850 may be the candidate of SCR8 and that its mutation activated the plant defense response, resulting in a crown root growth defect.
Collapse
|
69
|
Zou X, Liu L, Hu Z, Wang X, Zhu Y, Zhang J, Li X, Kang Z, Lin Y, Yin C. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5656-5672. [PMID: 33999128 DOI: 10.1093/jxb/erab206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The phytohormones ethylene and jasmonate play important roles in the adaptation of rice plants to salt stress. However, the molecular interactions between ethylene and jasmonate on rice seminal root growth under salt stress are unknown. In this study, the effects of NaCl on the homeostasis of ethylene and jasmonate, and on rice seminal root growth were investigated. Our results indicate that NaCl treatment promotes ethylene biosynthesis by up-regulating the expression of ethylene biosynthesis genes, whereas NaCl-induced ethylene does not inhibit rice seminal root growth directly, but rather indirectly, by promoting jasmonate biosynthesis. NaCl treatment also promotes jasmonate biosynthesis through an ethylene-independent pathway. Moreover, NaCl-induced jasmonate reduces meristem cell number and cell division activity via down-regulated expression of Oryza sativa PLETHORA (OsPLT) and cell division-related genes, respectively. Additionally, NaCl-induced jasmonate inhibits seminal root cell elongation by down-regulating the expression of cell elongation-related genes. Overall, salt stress promotes jasmonate biosynthesis through ethylene-dependent and -independent pathways in rice seminal roots, and jasmonate inhibits rice seminal root growth by inhibiting root meristem cell proliferation and root cell elongation.
Collapse
Affiliation(s)
- Xiao Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science, Shandong University of Technology, Zibo 255000, China
| | - Zhubing Hu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuekui Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialiang Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuefei Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyi Kang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
70
|
Cheng Q, Wang P, Wu G, Wang Y, Tan J, Li C, Zhang X, Liu S, Huang S, Huang T, Yang M, He H, Bian J. Coordination of m 6A mRNA methylation and gene transcriptome in rice response to cadmium stress. RICE (NEW YORK, N.Y.) 2021; 14:62. [PMID: 34224034 PMCID: PMC8257850 DOI: 10.1186/s12284-021-00502-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 05/19/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes. However, the role of the m6A methylomes in rice is still poorly understood. With the development of the MeRIP-seq technique, the in-depth identification of mRNAs with m6A modification has become feasible. A study suggested that m6A modification is crucial for posttranscriptional regulation related to Cd2+-induced malignant transformation, but the association between m6A modification in plants and Cd tolerance has not been reported. We investigated the m6A methylomes in the roots of a cadmium (Cd)-treated group and compared them with the roots in the control (CK) group by m6A sequencing of cv. 9311 and cv. Nipponbare (NIP) plants. The results indicated that Cd leads to an altered modification profile in 3,406 differential m6A peaks in cv. 9311 and 2,065 differential m6A peaks in cv. NIP. KEGG pathway analysis of the genes with differentially modified m6A peaks indicated that the "phenylalanine", "tyrosine and tryptophan biosynthesis", "glycine", "adherens junctions", "glycerophospholipid metabolism" and "threonine metabolism" signalling pathways may be associated with the abnormal root development of cv. 9311 rice due to exposure to Cd. The "arginine", "proline metabolism", "glycerolipid", and "protein processing in endoplasmic reticulum" metabolism pathways were significantly enriched in genes with differentially modified m6A peaks in cv. NIP. Unlike that in Arabidopsis, the m6A-modified nucleotide position on mRNAs (m6A peak) distribution in rice exhibited a preference towards both the stop codon and 3' untranslated regions (3' UTRs). These findings provide a resource for plant RNA epitranscriptomic studies and further increase our knowledge on the function of m6A modification in RNA in plants.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
71
|
Wang T, Zang Z, Wang S, Liu Y, Wang H, Wang W, Hu X, Sun J, Tai F, He R. Quaternary ammonium iminofullerenes promote root growth and osmotic-stress tolerance in maize via ROS neutralization and improved energy status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:122-131. [PMID: 33984624 DOI: 10.1016/j.plaphy.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the role of quaternary ammonium iminofullerenes (IFQA) on the root growth of plant seedlings was investigated. The root elongation of Arabidopsis and maize exposed to 20 and 50 mg/L of IFQA was promoted under normal and osmotic stress conditions, respectively. In the meantime, the root active absorption area and adenosine triphosphate content in roots of maize seedlings were enhanced by IFQA treatment, however, the contents of hydrogen peroxide (H2O2) and malondialdehyde in roots were down-regulated. IFQA application improved glutathione transferase and glutathione reductase activities and the ratios of glutathione/oxidized glutathione and ascorbic acid/dehydroascorbic acid, and restored the inhibition of root elongation caused by the excess accumulation of H2O2 in roots of maize seedlings under osmotic stress. Furthermore, the expression of 14 proteins involved in cell growth, energy metabolism, and stress response in maize roots was upregulated by two-dimensional electrophoresis combined with mass spectrometry. This analysis revealed that IFQA stimulated the redox pathway to maintain balance levels of reactive oxygen species to ensure normal cell metabolism, promote energy production for root growth, and enhance osmotic-stress tolerance. It provided crucial information to elucidate the mechanism of the root growth of crop seedlings enhanced by water-soluble fullerene-based nanomaterials.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenfeng Zang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuai Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuke Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hezhong Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinhua Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
72
|
Abstract
Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate, benzoic acid, and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| |
Collapse
|
73
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
74
|
Cheng X, He Q, Tang S, Wang H, Zhang X, Lv M, Liu H, Gao Q, Zhou Y, Wang Q, Man X, Liu J, Huang R, Wang H, Chen T, Liu J. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. THE NEW PHYTOLOGIST 2021; 230:1017-1033. [PMID: 33462818 DOI: 10.1111/nph.17211] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/10/2021] [Indexed: 05/14/2023]
Abstract
Salt stress triggers the overdose accumulation of reactive oxygen species (ROS) in crop plants, leading to severe oxidative damage to living tissues. MicroRNAs (miRNAs) act as master regulators orchestrating the stress responsive regulatory networks as well as salt tolerance. However, the fundamental roles of miRNAs in modulating salt tolerance in cereal crops, especially in salt-triggered ROS scavenging remain largely unknown. Through small RNA sequencing, a salt-responsive miRNA, miR172 was identified in rice. Further, by generating the miR172-overexpression or MIR172 gene loss-of-function mutant lines, the biological significance of miR172 and its downstream signaling pathways related to salt tolerance were defined. We demonstrated that miR172 is a positive regulator of salt tolerance in both rice and wheat. More interestingly, miR172a and miR172b, but not miR172c or miR172d are involved in salt stress response, emphasizing the functional differentiation within miR172 family members. Further evidence uncovers a novel miR172/IDS1 regulatory module that functions as a crucial molecular rheostat in maintaining ROS homeostasis during salt stress, mainly through balancing the expression of a group of ROS-scavenging genes. Our findings establish a direct molecular link between miRNAs and detoxification response in cereal crops for improving salt tolerance.
Collapse
Affiliation(s)
- Xiliu Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoran Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Center, Beijing, 100193, China
| | - Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingjie Lv
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huafeng Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Man
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Agricultural Science and Technology Center, Chengdu, 610213, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Center, Beijing, 100193, China
| |
Collapse
|
75
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
76
|
Dong T, Yin X, Wang H, Lu P, Liu X, Gong C, Wu Y. ABA-INDUCED expression 1 is involved in ABA-inhibited primary root elongation via modulating ROS homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110821. [PMID: 33568311 DOI: 10.1016/j.plantsci.2021.110821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/24/2020] [Accepted: 01/01/2021] [Indexed: 05/12/2023]
Abstract
To endure environmental stresses, plants have evolved complex regulatory mechanisms involving phytohormones, including abscisic acid (ABA). The function of the plant-specific AT-rich sequence zinc-binding protein (PLATZ) family has not yet been extensively characterized in Arabidopsis (Arabidopsis thaliana). In this report, we evaluated the function of a putative member of the PLATZ family in Arabidopsis, ABA-INDUCED expression 1 (AIN1). We determined that AIN1 expression was induced by ABA and abiotic stresses. AIN1 overexpression (OE) enhanced ABA sensitivity and inhibited primary root elongation, but reduced expression of AIN1 in RNA interference (RNAi) plants produced roots less sensitive to ABA. When treated with ABA, we observed a reduction of meristem size and over-accumulation of reactive oxygen species (ROS) at the root tips of OE lines, demonstrating the importance of AIN1 in plant responses to ABA. A set of ROS scavenger genes showed reduced expression in the OE lines but improved in the RNAi plants relative to Col-0. In addition, we report that exogenous application of reduced glutathione (GSH) rescued the root growth defects seen in AIN1 overexpression lines treated with ABA. In summary, our results suggest that Arabidopsis AIN1 is involved in ABA-mediated inhibition of root elongation by modulating ROS homeostasis.
Collapse
Affiliation(s)
- Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengtao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Piaoyin Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
77
|
Rice RBH1 Encoding A Pectate Lyase is Critical for Apical Panicle Development. PLANTS 2021; 10:plants10020271. [PMID: 33573206 PMCID: PMC7912155 DOI: 10.3390/plants10020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Panicle morphology is one of the main determinants of the rice yield. Panicle abortion, a typical panicle morphological defect results in yield reduction due to defective spikelet development. To further elucidate the molecular mechanism of panicle abortion in rice, a rice panicle bald head 1 (rbh1) mutant with transfer DNA (T-DNA) insertion showing severely aborted apical spikelets during panicle development was identified and characterized. The rbh1-1 mutant showed obviously altered cell morphology and structure in the degenerated spikelet. Molecular genetic studies revealed that RBH1 encodes a pectate lyase protein. Pectate lyase-specific activity of Rice panicle Bald Head 1 (RBH1) protein assay using polygalacturonic acid (PGA) as substrates illustrated that the enzyme retained a significant capacity to degrade PGA. In addition, immunohistochemical analysis showed that the degradation of pectin is inhibited in the rbh1-1 mutant. Further analysis revealed that a significant increase in reactive oxygen species (ROS) level was found in degenerated rbh1-1 spikelets. Taken together, our findings suggest that RBH1 is required for the formation of panicle and for preventing panicle abortion.
Collapse
|
78
|
Zhou D, Shen W, Cui Y, Liu Y, Zheng X, Li Y, Wu M, Fang S, Liu C, Tang M, Yi Y, Zhao M, Chen L. APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:636877. [PMID: 33719311 PMCID: PMC7947001 DOI: 10.3389/fpls.2021.636877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
Panicle degradation causes severe yield reduction in rice. There are two main types of panicle degradation: apical spikelet abortion and basal degeneration. In this study, we isolated and characterized the apical panicle abortion mutant apical spikelet abortion (asa), which exhibits degeneration and defects in the apical spikelets. This mutant had a pleiotropic phenotype, characterized by reduced plant height, increased tiller number, and decreased pollen fertility. Map-based cloning revealed that OsASA encodes a boric acid channel protein that showed the highest expression in the inflorescence, peduncle, and anther. RNA-seq analysis of the asa mutant vs wild-type (WT) plants revealed that biological processes related to reactive oxygen species (ROS) homeostasis and salicylic acid (SA) metabolism were significantly affected. Furthermore, the asa mutants had an increased SA level and H2O2 accumulation in the young panicles compared to the WT plants. Moreover, the SA level and the expression of OsPAL3, OsPAL4, and OsPAL6 genes (related to SA biosynthesis) were significantly increased under boron-deficient conditions in the asa mutant and in OsASA-knockout plants. Collectively, these results suggest that the boron distribution maintained by OsASA is required for normal panicle development in a process that involves modulating ROS homeostasis and SA biosynthesis.
Collapse
Affiliation(s)
- Dan Zhou
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weifeng Shen
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Minliang Wu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanru Fang
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chunhong Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- *Correspondence: Mingfu Zhao,
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Liang Chen,
| |
Collapse
|
79
|
Wang F, Tan H, Zhang Y, Huang L, Bao H, Ding Y, Chen Z, Zhu C. Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. CHEMOSPHERE 2021; 263:128034. [PMID: 33297052 DOI: 10.1016/j.chemosphere.2020.128034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination, which poses a serious threat to human health, has been recognized as a major threat to the agricultural system and crop production. Salicylic acid (SA) is a signaling molecule that plays an important role in against Cd toxicity. Previously, we found that spraying rice with SA could reduce the Cd accumulation in rice grains grown in Cd-contaminated soil. In this study, we studied the specific mechanism of SA spray on reducing Cd accumulation in rice grain. The results showed that treatment with SA could alleviate Cd toxicity in rice by increasing the activities of antioxidant enzymes that reduce hydrogen peroxide (H2O2) accumulation, but not by changing the pH, or total or available Cd of the soil. The key factor by which SA treatment reduced Cd accumulation in rice grains was by decreasing the Cd content in rice leaves at the flowering stage. This indicated that SA could modulate the Cd accumulation in shoots, reducing the Cd translocation to rice grains. Furthermore, SA could increase the H2O2 content, activating the SA-signaling pathway and modulating the expression levels of Cd transporters (OsLCT1 and OsLCD) in rice leaves to increase Cd tolerance and reduce Cd accumulation in the rice grain. Thus, spraying rice with SA may be effective measure to cope with Cd contamination in paddy soils.
Collapse
Affiliation(s)
- Feijuan Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Haifeng Tan
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yiting Zhang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Lihong Huang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hexigeduleng Bao
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - ZhiXiang Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907-2054, United States
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
80
|
Luo X, Dai Y, Zheng C, Yang Y, Chen W, Wang Q, Chandrasekaran U, Du J, Liu W, Shu K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. THE NEW PHYTOLOGIST 2021; 229:950-962. [PMID: 32916762 DOI: 10.1111/nph.16921] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
Salinity stress enhances reactive oxygen species (ROS) accumulation by activating the transcription of NADPH oxidase genes such as RbohD, thus mediating plant developmental processes, including seed germination. However, how salinity triggers the expression of ROS-metabolism-related genes and represses seed germination has not yet been fully addressed. In this study, we show that Abscisic Acid-Insensitive 4 (ABI4), a key component in abscisic acid (ABA) signaling, directly combines with RbohD and Vitamin C Defective 2 (VTC2), the key genes involved in ROS production and scavenging, to modulate ROS metabolism during seed germination under salinity stress. Salinity-induced ABI4 enhances RbohD expression by physically interacting with its promoter, and subsequently promotes ROS accumulation, thus resulting in cell membrane damage and a decrease in seed vigor. Additional genetic evidence indicated that the rbohd mutant largely rescues the salt-hypersensitive phenotype of ABI4 overexpression seeds. Consistently, the abi4/vtc2 double mutant showed the salt-sensitive phenotype, similar to the vtc2 mutant, suggesting that both RbohD and VTC2 are epistatic to ABI4 genetically. Altogether, these results suggest that the salt-induced RbohD transcription and ROS accumulation is dependent on ABI4, and that the ABI4-RbohD/VTC2 regulatory module integrates both ROS metabolism and cell membrane integrity, ultimately repressing seed germination under salinity stress.
Collapse
Affiliation(s)
- Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujia Dai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuan Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yingzeng Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Qichao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | | | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| |
Collapse
|
81
|
Hongna C, Junmei S, Leyuan T, Xiaori H, Guolin L, Xianguo C. Exogenous Spermidine Priming Mitigates the Osmotic Damage in Germinating Seeds of Leymus chinensis Under Salt-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:701538. [PMID: 34721448 PMCID: PMC8548376 DOI: 10.3389/fpls.2021.701538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
Spermidine (Spd) is known to protect macromolecules involved in physiological and biochemical processes in plants. However, it is possible that Spd also plays an osmotic regulatory role in promoting the seed germination of Leymus chinensis (L. chinensis) under salt-alkali stress. To investigate this further, seeds of L. chinensis were soaked in Spd solution or distilled water, and a culture experiment was performed by sowing the soaked seeds in saline-alkaline soils. The data showed that the Spd priming resulted in an increase of more than 50% in soluble sugar content and an increase of more than 30% in proline content in the germinating seeds. In addition, the Spd priming resulted in an increase of more than 30% in catalase activity and an increase of more than 25% in peroxidase activity in the germinating seeds and effectively mitigated the oxidative damage to the plasma membrane in the germinating seeds under salt-alkali stress. Moreover, the Spd priming of seeds affected the accumulation of polyamine (PA) and maintained the activities of macromolecules involved in physiological metabolism in germinating seeds exposed to salt-alkali stress. Furthermore, the Spd priming treatment increased the hydrogen peroxide (H2O2) level to more than 30% and the Ca2+ concentration to more than 20% in the germinating seeds, thus breaking the dormancy induction pathways in L. chinensis seeds through beneficial hormone enrichment. This study provides an insight into the Spd-mediated regulation pathway during exogenous Spd priming of L. chinensis seeds, which mitigates osmotic and oxidative damage and maintains the integrality of the cell lipid membrane. Thus, exogenous Spd priming increases PA oxidase activity and maintains the accumulation of H2O2. We found that the H2O2 beneficially affected the balance of Ca2+ and hormones, promoting the vigor and germination of L. chinensis in response to salt-alkali stress.
Collapse
Affiliation(s)
- Chen Hongna
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Shi Junmei
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Tao Leyuan
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Xiaori
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Lin Guolin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Cheng Xianguo
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Cheng Xianguo,
| |
Collapse
|
82
|
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:963-978. [PMID: 32901934 PMCID: PMC7821329 DOI: 10.1111/nph.16915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 05/20/2023]
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zhiming Ma
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Deyan Wang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Chenjin Wen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Dingquan Huang
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zichen Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Liang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Ruixi Li
- Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xu Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
83
|
Meng W, Xu L, Du ZY, Wang F, Zhang R, Song X, Lam SM, Shui G, Li Y, Chye ML. RICE ACYL-COA-BINDING PROTEIN6 Affects Acyl-CoA Homeostasis and Growth in Rice. RICE (NEW YORK, N.Y.) 2020; 13:75. [PMID: 33159253 PMCID: PMC7647982 DOI: 10.1186/s12284-020-00435-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUNDS Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza sativa) was investigated. RESULTS Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbp6. Taken together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in the transcriptome and an increase in jasmonic acid level occurred in osacbp6. CONCLUSIONS In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-CoAs content with defense responses.
Collapse
Affiliation(s)
- Wei Meng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Zhi-Yan Du
- Department of Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Fang Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Rui Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
84
|
Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. PLANTA 2020; 252:75. [PMID: 33026530 DOI: 10.1007/s00425-020-03467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xin-Yan Liu
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu-Lu Xie
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
85
|
Yoon J, Cho LH, Yang W, Pasriga R, Wu Y, Hong WJ, Bureau C, Wi SJ, Zhang T, Wang R, Zhang D, Jung KH, Park KY, Périn C, Zhao Y, An G. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5348-5364. [PMID: 32449922 PMCID: PMC7501826 DOI: 10.1093/jxb/eraa209] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 05/11/2023]
Abstract
Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Lae-Hyeon Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Wenzhu Yang
- Department of Crop Genomics and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Richa Pasriga
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Yunfei Wu
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Woo-Jong Hong
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Charlotte Bureau
- Agricultural Research Centre For International Development, Paris, France
| | - Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide Urrbrae, SA, Australia
| | - Ki-Hong Jung
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Christophe Périn
- Agricultural Research Centre For International Development, Paris, France
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Correspondence:
| |
Collapse
|
86
|
Chemical Genetics Approach Identifies Abnormal Inflorescence Meristem 1 as a Putative Target of a Novel Sulfonamide That Protects Catalase2-Deficient Arabidopsis against Photorespiratory Stress. Cells 2020; 9:cells9092026. [PMID: 32887516 PMCID: PMC7563276 DOI: 10.3390/cells9092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Alterations of hydrogen peroxide (H2O2) levels have a profound impact on numerous signaling cascades orchestrating plant growth, development, and stress signaling, including programmed cell death. To expand the repertoire of known molecular mechanisms implicated in H2O2 signaling, we performed a forward chemical screen to identify small molecules that could alleviate the photorespiratory-induced cell death phenotype of Arabidopsisthaliana mutants lacking H2O2-scavenging capacity by peroxisomal catalase2. Here, we report the characterization of pakerine, an m-sulfamoyl benzamide from the sulfonamide family. Pakerine alleviates the cell death phenotype of cat2 mutants exposed to photorespiration-promoting conditions and delays dark-induced senescence in wild-type Arabidopsis leaves. By using a combination of transcriptomics, metabolomics, and affinity purification, we identified abnormal inflorescence meristem 1 (AIM1) as a putative protein target of pakerine. AIM1 is a 3-hydroxyacyl-CoA dehydrogenase involved in fatty acid β-oxidation that contributes to jasmonic acid (JA) and salicylic acid (SA) biosynthesis. Whereas intact JA biosynthesis was not required for pakerine bioactivity, our results point toward a role for β-oxidation-dependent SA production in the execution of H2O2-mediated cell death.
Collapse
|
87
|
Lefevere H, Bauters L, Gheysen G. Salicylic Acid Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:338. [PMID: 32362901 PMCID: PMC7182001 DOI: 10.3389/fpls.2020.00338] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/06/2020] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important plant hormone that is best known for mediating host responses upon pathogen infection. Its role in plant defense activation is well established, but its biosynthesis in plants is not fully understood. SA is considered to be derived from two possible pathways; the ICS and PAL pathway, both starting from chorismate. The importance of both pathways for biosynthesis differs between plant species, rendering it hard to make generalizations about SA production that cover the entire plant kingdom. Yet, understanding SA biosynthesis is important to gain insight into how plant pathogen responses function and how pathogens can interfere with them. In this review, we have taken a closer look at how SA is synthesized and the importance of both biosynthesis pathways in different plant species.
Collapse
Affiliation(s)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
Ye J, Ding W, Chen Y, Zhu X, Sun J, Zheng W, Zhang B, Zhu S. A nucleoside diphosphate kinase gene OsNDPK4 is involved in root development and defense responses in rice (Oryza sativa L.). PLANTA 2020; 251:77. [PMID: 32152790 DOI: 10.1007/s00425-020-03355-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Dysfunctional mutation of OsNDPK4 resulted in severe defects in root development of rice. However, the resistance of Osndpk4 against bacterial blight was significantly enhanced. Nucleoside diphosphate kinases (NDPKs) are an evolutionarily conserved family of important enzymes balancing the energy currency nucleoside triphosphates by catalyzing the transfer of their phosphate groups. The aim of this study was to elucidate the function of OsNDPK4 in rice. A dysfunctional rice mutant was employed to characterize the function of OsNDPK4. Its expression and subcellular localization were examined. The transcriptomic change in roots of Osndpk4 was analyzed by RNA-seq. The rice mutant Osndpk4 showed severe defects in root development from the early seedling stage. Further analysis revealed that meristematic activity and cell elongation were significantly inhibited in primary roots of Osndpk4, together with reduced accumulation of reactive oxygen species (ROS). Map-based cloning identified that the mutation occurred in the OsNDPK4 gene. OsNDPK4 was found to be expressed in a variety of tissues throughout the plant and OsNDPK4 was located in the cytosol. Osndpk4 showed enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and up-regulation of pathogenesis-related marker genes. In addition, transcriptomic analysis showed that OsNDPK4 was significantly associated with a number of biological processes, including translation, protein modification, metabolism, biotic stress response, etc. Detailed analysis revealed that the dysfunction of OsNDPK4 might reorchestrate energy homeostasis and hormone metabolism and signalling, resulting in repression of translation, DNA replication and cell cycle progression, and priming of biotic stress defense. Our results demonstrate that OsNDPK4 plays important roles in energy homeostasis, development process, and defense responses in rice.
Collapse
Affiliation(s)
- Jin Ye
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yujie Chen
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xinni Zhu
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jiutong Sun
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Wenjuan Zheng
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Shihua Zhu
- College of Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
89
|
Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C. Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110072. [PMID: 31864120 DOI: 10.1016/j.ecoenv.2019.110072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry, increasing their potential level in the environment. Plant root, the key organ absorbing water and nutrients, are directly exposed to the soil. Little is known about AgNP-mediated effects on plant root growth. Here, we show that AgNPs are absorbed by root and mostly localized in cell wall and intercellular spaces, which affect root growth in a dose-dependent manner. Increased root elongation was observed when Arabidopsis was exposed to an AgNP concentration of 50 mg L-1, while decreased elongation was observed at concentrations of equal to or more than 100 mg L-1. Similarly, there was an increase in the number of cells in the root apical meristem and also in cell-cycle related gene expression (CYCB1;1) at 50 mg L-1 AgNP, while both cell number and gene expression declined at concentrations equal to or more than 100 mg L-1. This indicates that AgNPs regulate root growth by affecting cell division. Reactive oxygen species (ROS) related genes were deferentially expressed after 50 mg L-1 AgNP treatment. Further studies showed that AgNPs induce ROS accumulation in root tips in a dose-dependent manner. KI treatment, which scavenges H2O2, partially rescued AgNP-inhibited root growth. The application 50 mg L-1 AgNPs also rescued the root length phenotype of upb1-1, a mutant with slightly higher ROS levels and longer root length. Our results revealed that ROS mediate the dose-dependent effects of AgNPs on root growth. These findings provide new insights into mechanisms underlying how AgNPs regulate root growth in Arabidopsis.
Collapse
Affiliation(s)
- Likai Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juzhi Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Enshi Autonomous Prefecture Academy of Agricultural Sciences, Shizhou Road No.517, Enshi, 445000, Hubei, China
| | - Luming Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajuan Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harri Alenius
- Unit of Systems Toxicology, Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FIN-00250, Helsinki, Finland
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
90
|
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. PLANT DIVERSITY 2020; 42:33-43. [PMID: 32140635 PMCID: PMC7046507 DOI: 10.1016/j.pld.2019.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Collapse
|
91
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
92
|
Huang W, Wang Y, Li X, Zhang Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. MOLECULAR PLANT 2020; 13:31-41. [PMID: 31863850 DOI: 10.1016/j.molp.2019.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) has long been known to be essential for basal defense and systemic acquired resistance (SAR). N-Hydroxypipecolic acid (NHP), a recently discovered plant metabolite, also plays a key role in SAR and to a lesser extent in basal resistance. Following pathogen infection, levels of both compounds are dramatically increased. Analysis of SA- or SAR-deficient mutants has uncovered how SA and NHP are biosynthesized. The completion of the SA and NHP biosynthetic pathways in Arabidopsis allowed better understanding of how they are regulated. In this review, we discuss recent progress on SA and NHP biosynthesis and their regulation in plant immunity.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
93
|
Gluconacetobacter diazotrophicus Changes The Molecular Mechanisms of Root Development in Oryza sativa L. Growing Under Water Stress. Int J Mol Sci 2020; 21:ijms21010333. [PMID: 31947822 PMCID: PMC6981854 DOI: 10.3390/ijms21010333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Inoculation with Gluconacetobacter diazotrophicus has shown to influence root development in red rice plants, and more recently, the induced systemic tolerance (IST) response to drought was also demonstrated. The goal of this study was to evaluate the inoculation effect of G. diazotrophicus strain Pal5 on the amelioration of drought stress and root development in red rice (Oryza sativa L.). Methods: The experimental treatments consist of red rice plants inoculated with and without strain Pal5 in presence and absence of water restriction. Physiological, biochemical, and molecular analyses of plant roots were carried out, along with measurements of growth and biochemical components. Results: The plants showed a positive response to the bacterial inoculation, with root growth promotion and induction of tolerance to drought. An increase in the root area and higher levels of osmoprotectant solutes were observed in roots. Bacterial inoculation increased the drought tolerance and positively regulated certain root development genes against the water deficit in plants. Conclusion: G. diazotrophicus Pal5 strain inoculation favored red rice plants by promoting various root growth and developmental mechanisms against drought stress, enabling root development and improving biochemical composition.
Collapse
|
94
|
Zhao XY, Qi CH, Jiang H, Zhong MS, Zhao Q, You CX, Li YY, Hao YJ. MdWRKY46-Enhanced Apple Resistance to Botryosphaeria dothidea by Activating the Expression of MdPBS3.1 in the Salicylic Acid Signaling Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1391-1401. [PMID: 31408392 DOI: 10.1094/mpmi-03-19-0089-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Salicylic acid (SA) is closely related to disease resistance of plants. WRKY transcription factors have been linked to the growth and development of plants, especially under stress conditions. However, the regulatory mechanism of WRKY proteins involved in SA production and disease resistance in apple is not clear. In this study, MdPBS3.1 responded to Botryosphaeria dothidea and enhanced resistance to B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation and quantitative PCR demonstrated that MdWRKY46 can directly bind to a W-box motif in the promoter of MdPBS3.1. Glucuronidase transactivation and luciferase analysis further showed that MdWRKY46 can activate the expression of MdPBS3.1. Finally, B. dothidea inoculation in transgenic apple calli and fruits revealed that MdWRKY46 improved resistance to B. dothidea by the transcriptional activation of MdPBS3.1. Viral vector-based transformation assays indicated that MdWRKY46 elevates SA content and transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdPBS3.1-dependent way. These findings provide new insights into how MdWRKY46 regulates plant resistance to B. dothidea through the SA signaling pathway.
Collapse
Affiliation(s)
- Xian-Yan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chen-Hui Qi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming-Shuang Zhong
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Qiang Zhao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
95
|
You X, Zhu S, Zhang W, Zhang J, Wang C, Jing R, Chen W, Wu H, Cai Y, Feng Z, Hu J, Yan H, Kong F, Zhang H, Zheng M, Ren Y, Lin Q, Cheng Z, Zhang X, Lei C, Jiang L, Wang H, Wan J. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. THE NEW PHYTOLOGIST 2019; 224:712-724. [PMID: 31264225 DOI: 10.1111/nph.16037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.
Collapse
Affiliation(s)
- Xiaoman You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Wenwei Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Hongming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| |
Collapse
|
96
|
Hartmann M, Zeier J. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:44-57. [PMID: 30927665 DOI: 10.1016/j.pbi.2019.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
Recent research has established that the pipecolate pathway, a three-step biochemical sequence from l-lysine to N-hydroxypipecolic acid (NHP), is central for plant systemic acquired resistance (SAR). NHP orchestrates SAR establishment in concert with the immune signal salicylic acid (SA). Here, we outline the biochemistry of NHP formation from l-Lys and address novel progress on SA biosynthesis in Arabidopsis and other plant species. In Arabidopsis, the pathogen-inducible pipecolate and salicylate pathways are activated by common and distinct regulatory elements and mutual interactions between both metabolic branches exist. The mode of action of NHP in SAR involves direct induction of SAR gene expression, signal amplification, priming for enhanced defense activation and positive interplay with SA signaling to ensure elevated plant immunity.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
97
|
Zhang J, Jiang F, Shen Y, Zhan Q, Bai B, Chen W, Chi Y. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC PLANT BIOLOGY 2019; 19:306. [PMID: 31296169 PMCID: PMC6624980 DOI: 10.1186/s12870-019-1914-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency in soil is a worldwide issue and a major constraint on the production of sorghum, which is an important staple food, forage and energy crop. The depletion of P reserves and the increasing price of P fertilizer make fertilizer application impractical, especially in developing countries. Therefore, identifying sorghum accessions with low-P tolerance and understanding the underlying molecular basis for this tolerance will facilitate the breeding of P-efficient plants, thereby resolving the P crisis in sorghum farming. However, knowledge in these areas is very limited. RESULTS The 29 sorghum accessions used in this study demonstrated great variability in their tolerance to low-P stress. The internal P content in the shoot was correlated with P tolerance. A low-P-tolerant accession and a low-P-sensitive accession were chosen for RNA-seq analysis to identify potential underlying molecular mechanisms. A total of 2089 candidate genes related to P starvation tolerance were revealed and found to be enriched in 11 pathways. Gene Ontology (GO) enrichment analyses showed that the candidate genes were associated with oxidoreductase activity. In addition, further study showed that malate affected the length of the primary root and the number of tips in sorghum suffering from low-P stress. CONCLUSIONS Our results show that acquisition of P from soil contributes to low-P tolerance in different sorghum accessions; however, the underlying molecular mechanism is complicated. Plant hormone (including auxin, ethylene, jasmonic acid, salicylic acid and abscisic acid) signal transduction related genes and many transcriptional factors were found to be involved in low-P tolerance in sorghum. The identified accessions will be useful for breeding new sorghum varieties with enhanced P starvation tolerance.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Fangfang Jiang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Qiuwen Zhan
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Binqiang Bai
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Wei Chen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yingjun Chi
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| |
Collapse
|
98
|
Pasternak T, Groot EP, Kazantsev FV, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova VV. Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. PLANT PHYSIOLOGY 2019; 180:1725-1739. [PMID: 31036755 PMCID: PMC6752920 DOI: 10.1104/pp.19.00130] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) is well known for its induction of pathogenesis-related proteins and systemic acquired resistance; SA also has specific effects on plant growth and development. Here we analyzed the effect of SA on Arabidopsis (Arabidopsis thaliana) root development. We show that exogenous SA treatment at low (below 50 µM) and high (greater than 50 µM) concentrations affect root meristem development in two different PR1-independent ways. Low-concentration SA promoted adventitious roots and altered architecture of the root apical meristem, whereas high-concentration SA inhibited all growth processes in the root. All exposures to exogenous SA led to changes in auxin synthesis and transport. A wide range of SA treatment concentrations activated auxin synthesis, but the effect of SA on auxin transport was dose dependent. Mathematical modeling of auxin synthesis and transport predicted auxin accumulation or depletion in the root tip following low- or high-concentration SA treatments, respectively. SA-induced auxin accumulation led to the formation of more layers of columella initials, an additional cortical cell layer (middle cortex), and extra files of epidermis, cortex, and endodermis cells. Suppression of SHORT ROOT and activation of CYCLIN D6;1 mediated the changes in radial architecture of the root. We propose that low-concentration SA plays an important role in shaping root meristem structure and root system architecture.
Collapse
Affiliation(s)
- Taras Pasternak
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Edwin P Groot
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'An 271018, China
| | - Fedor V Kazantsev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - William Teale
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vasilina Kovrizhnykh
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Klaus Palme
- Institute for Biology II, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
- Center for Biosystems Analysis, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
99
|
Jing Y, Liu J, Liu P, Ming D, Sun J. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat. Sci Rep 2019; 9:5691. [PMID: 30952946 PMCID: PMC6451029 DOI: 10.1038/s41598-019-42177-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/26/2019] [Indexed: 11/29/2022] Open
Abstract
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for wheat yield. However, the molecular mechanisms underlying wheat resistance against powdery mildew remain largely unclear. In this study, we report the role of JASMONATE-ZIM domain protein TaJAZ1 in regulating bread wheat resistance against powdery mildew. We generated transgenic bread wheat lines over-expressing the truncated TaJAZ1 without the Jas motif, which showed increased TaPR1/2 gene expression and reactive oxygen species accumulation, leading to enhanced resistance against powdery mildew. Simultaneously, we identified a Jasmonic acid (JA)-induced bHLH transcription factor TaMYC4 in bread wheat. We demonstrated that TaJAZ1 directly interacts with TaMYC4 to repress its transcriptional activity. Meanwhile, we show that the ZIM domain of TaJAZ1 interacts with the C terminus of TaNINJA, whereas the N-terminal EAR motif of TaNINJA interacts with the transcriptional co-repressor TaTPL. Collectively, our work pinpoints TaJAZ1 as a favorable gene to enhance bread wheat resistance toward powdery mildew, and provides a molecular framework for JA signaling in bread wheat.
Collapse
Affiliation(s)
- Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongfeng Ming
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
100
|
Yu Y, Wang J, Li S, Kakan X, Zhou Y, Miao Y, Wang F, Qin H, Huang R. Ascorbic Acid Integrates the Antagonistic Modulation of Ethylene and Abscisic Acid in the Accumulation of Reactive Oxygen Species. PLANT PHYSIOLOGY 2019; 179:1861-1875. [PMID: 30723177 PMCID: PMC6446745 DOI: 10.1104/pp.18.01250] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
During plant growth and development, ethylene and abscisic acid (ABA) play important roles and exert synergistic or antagonistic effects on various biological processes, but the detailed mechanism underlying the interaction of the two phytohormones, especially in the regulation of the accumulation of reactive oxygen species (ROS), is largely unclear. Here, we report that ethylene inhibits but ABA promotes the accumulation of ROS in Arabidopsis (Arabidopsis thaliana) seedlings. Furthermore, changes in the biosynthesis of ascorbic acid (AsA) act as a key factor in integrating the interaction of ethylene and ABA in the regulation of ROS levels. We found that ethylene and ABA antagonistically regulate AsA biosynthesis via ETHYLENE-INSENSITIVE3 (EIN3) and ABA INSENSITIVE4 (ABI4), which are key factors in the ethylene and ABA signaling pathways, respectively. In addition, ABI4 is transcriptionally repressed by EIN3 in ethylene-regulated AsA biosynthesis. Via transcriptome analysis and molecular and genetic experiments, we identified VITAMIN C DEFECTIVE2as the direct target of ABI4 in the regulation of AsA biosynthesis and ROS accumulation. Thus, the EIN3-ABI4- VITAMIN C DEFECTIVE2 transcriptional cascade involves a mechanism by which ethylene and ABA antagonistically regulate AsA biosynthesis and ROS accumulation in response to complex environmental stimuli.
Collapse
Affiliation(s)
- Yanwen Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Shenghui Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiamusiya Kakan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhou
- Institute of Plant Stress Biology, Henan University, Collaborative Innovation Center of Crop Stress Biology, Kaifeng 475001, Henan, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, Henan University, Collaborative Innovation Center of Crop Stress Biology, Kaifeng 475001, Henan, China
| | - Fangfang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|