51
|
Guo X, Fu Y, Lee YJ, Chern M, Li M, Cheng M, Dong H, Yuan Z, Gui L, Yin J, Qing H, Zhang C, Pu Z, Liu Y, Li W, Li W, Qi P, Chen G, Jiang Q, Ma J, Chen X, Wei Y, Zheng Y, Wu Y, Liu B, Wang J. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1311-1326. [PMID: 35315196 PMCID: PMC9241376 DOI: 10.1111/pbi.13809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/11/2022] [Indexed: 05/02/2023]
Abstract
Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield.
Collapse
Affiliation(s)
- Xiaojiang Guo
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Yuxin Fu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | | | - Mawsheng Chern
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | - Maolian Li
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Mengping Cheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Huixue Dong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhongwei Yuan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lixuan Gui
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Chengbi Zhang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zhien Pu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yujiao Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Wei Li
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bo Liu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Jirui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
52
|
A Maize CBM Domain Containing the Protein ZmCBM48-1 Positively Regulates Starch Synthesis in the Rice Endosperm. Int J Mol Sci 2022; 23:ijms23126598. [PMID: 35743040 PMCID: PMC9223709 DOI: 10.3390/ijms23126598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Starch directly determines the grain yield and quality. The key enzymes participating in the process of starch synthesis have been cloned and characterized. Nevertheless, the regulatory mechanisms of starch synthesis remain unclear. In this study, we identified a novel starch regulatory gene, ZmCBM48-1, which contained a carbohydrate-binding module 48 (CBM48) domain. ZmCBM48-1 was highly expressed in the maize endosperm and was localized in the plastids. Compared with the wild type lines, the overexpression of ZmCBM48-1 in rice altered the grain size and 1000-grain weight, increased the starch content, and decreased the soluble sugar content. Additionally, the transgenic rice seeds exhibited an alterant endosperm cell shape and starch structure. Meanwhile, the physicochemical characteristics (gelatinization properties) of starch were influenced in the transgenic lines of the endosperm compared with the wild type seeds. Furthermore, ZmCBM48-1 played a positive regulatory role in the starch synthesis pathway by up-regulating several starch synthesis-related genes. Collectively, the results presented here suggest that ZmCBM48-1 acts as a key regulatory factor in starch synthesis, and could be helpful for devising strategies for modulating starch production for a high yield and good quality in maize endosperm.
Collapse
|
53
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
54
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
55
|
Ji C, Xu L, Li Y, Fu Y, Li S, Wang Q, Zeng X, Zhang Z, Zhang Z, Wang W, Wang J, Wu Y. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. MOLECULAR PLANT 2022; 15:468-487. [PMID: 34848346 DOI: 10.1016/j.molp.2021.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 05/12/2023]
Abstract
Maize (Zea mays) endosperm filling is coordinated with cell expansion to enlarge the grain size, but the mechanism coupling the two processes is poorly understood. Starchy endosperm cells basically contain no visible vacuoles for cell expansion. During grain filling, efficient synthesis of storage compounds leads to reduced cytoplasm and thus lowered cell turgor pressure. Although bioactive gibberellins (GAs) are essential for cell expansion, they accumulate at a low level at this stage. In this study, we identified an endosperm-specific GRAS domain-containing protein (ZmGRAS11) that lacks the DELLA domain and promotes cell expansion in the filling endosperm. The zmgras11 loss-of-function mutants showed normal grain filling but delayed cell expansion, thereby resulting in reduced kernel size and weight. Overexpression of ZmGRAS11 led to larger endosperm cells and therefore increased kernel size and weight. Consistent with this, ZmGRAS11 positively regulates the expression of ZmEXPB12, which is essential for cell expansion, at the endosperm filling stage. Moreover, we found that Opaque2 (O2), a central transcription factor that regulates endosperm filling, could directly bind to the promoter of ZmGRAS11 and activate its expression. Taken together, these results suggest that endosperm cell expansion is coupled with endosperm filling, which is orchestrated by the O2-ZmGRAS11-centered transcriptional regulatory network. Our findings also provide potential targets for maize yield improvement by increasing the storage capacity of endosperm cells.
Collapse
Affiliation(s)
- Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Yujie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Xing Zeng
- College of Agronomy, Northeast Agricultural University, Harbin 150030, China
| | - Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| |
Collapse
|
56
|
Wang Y, Zhang X, Luo B, Hu H, Zhong H, Zhang H, Zhang Z, Gao J, Liu D, Wu L, Gao S, Gao D, Gao S. Identification of a new mutant allele of ZmYSL2 that regulates kernel development and nutritional quality in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:7. [PMID: 37309320 PMCID: PMC10248714 DOI: 10.1007/s11032-022-01278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The discovery and characterization of the opaque endosperm gene provide ideas and resources for the production and application of maize. We found an o213 mutant whose phenotype was opaque and shrunken endosperm with semi-dwarf plant height. The protein, lipid, and starch contents in the o213 endosperm were significantly decreased, while the free amino acid content in the o213 endosperm significantly increased. The aspartic acid, asparagine, and lysine contents were raised in the o213 endosperm by 6.5-, 8.5-, and 1.7-fold, respectively. Genetic analysis showed that this o213 mutant is a recessive single-gene mutation. The position mapping indicated that o213 is located in a 468-kb region that contains 11 protein-encoding genes on the long arm of chromosome 5. The coding sequence analysis of candidate genes between the WT and o213 showed that ZmYSL2 had only a single-base substitution (A-G) in the fifth exon, which caused methionine substitution to valine. Sequence analysis and the allelic test showed that o213 is a new mutant allele of ZmYSL2. The qRT-PCR results indicated that o213 is highly expressed in the stalks and anthers. Subcellular localization studies showed that o213 is a membrane transporter. In the variation analysis of o213, the amplification of 65 inbred lines in GWAS showed that this 3-bp deletion of the first exon of o213 was found only in temperate inbred lines, implying that the gene was artificially affected in the selection process. Our results suggest that o213 is an important endosperm development gene and may serve as a genetic resource. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01278-9.
Collapse
Affiliation(s)
- Yikai Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Bowen Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Hongmei Hu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Haixu Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Zhicheng Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Jiajia Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| |
Collapse
|
57
|
Feng Y, Ma Y, Feng F, Chen X, Qi W, Ma Z, Song R. Accumulation of 22 kDa α-zein-mediated nonzein protein in protein body of maize endosperm. THE NEW PHYTOLOGIST 2022; 233:265-281. [PMID: 34637530 DOI: 10.1111/nph.17796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Protein bodies (PBs), the major protein storage organelle in maize (Zea mays) endosperm, comprise zeins and numerous nonzein proteins (NZPs). Unlike zeins, how NZPs accumulate in PBs remains unclear. We characterized a maize miniature kernel mutant, mn*, that produces small kernels and is embryo-lethal. After cloning the Mn* locus, we determined that it encodes the mitochondrial 50S ribosomal protein L10 (mRPL10). MN* localized to mitochondria and PBs as an NZP; therefore, we renamed MN* Non-zein Protein 1 (NZP1). Like other mutations affecting mitochondrial proteins, mn* impaired mitochondrial function and morphology. To investigate its accumulation mechanism to PBs, we performed protein interaction assays between major zein proteins and NZP1, and found that NZP1 interacts with 22 kDa α-zein. Levels of NZP1 and 22 kDa α-zein in various opaque mutants were correlated. Furthermore, NZP1 accumulation in induced PBs depended on its interaction with 22 kDa α-zein. Comparative proteomic analysis of PBs between wild-type and opaque2 revealed additional NZPs. A new NZP with plastidial localization was also found to accumulate in induced PBs via interaction with 22 kDa α-zein. This study thus reveals a mechanism for accumulation of NZPs in PBs and suggests a potential application for the accumulation of foreign proteins in maize PBs.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yafei Ma
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
58
|
Wu H, Becraft PW, Dannenhoffer JM. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:852082. [PMID: 35330868 PMCID: PMC8940253 DOI: 10.3389/fpls.2022.852082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Philip W. Becraft
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Philip W. Becraft,
| | | |
Collapse
|
59
|
Su L, Wan S, Zhou J, Shao QS, Xing B. Transcriptional regulation of plant seed development. PHYSIOLOGIA PLANTARUM 2021; 173:2013-2025. [PMID: 34480800 DOI: 10.1111/ppl.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL-related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple-TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.
Collapse
Affiliation(s)
- Liyang Su
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Junmei Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Song Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
60
|
Chen Y, Zhang JB, Wei N, Liu ZH, Li Y, Zheng Y, Li XB. A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. PLANT MOLECULAR BIOLOGY 2021; 107:499-517. [PMID: 34596817 DOI: 10.1007/s11103-021-01198-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.
Collapse
Affiliation(s)
- Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
61
|
Li R, Tan Y, Zhang H. Regulators of Starch Biosynthesis in Cereal Crops. Molecules 2021; 26:molecules26237092. [PMID: 34885674 PMCID: PMC8659000 DOI: 10.3390/molecules26237092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023] Open
Abstract
Starch is the main food source for human beings and livestock all over the world, and it is also the raw material for production of industrial alcohol and biofuel. A considerable part of the world’s annual starch production comes from crops and their seeds. With the increasing demand for starch from food and non-food industries and the growing loss of arable land due to urbanization, understanding starch biosynthesis and its regulators is essential to produce the desirable traits as well as more and better polymers via biotechnological approaches in cereal crops. Because of the complexity and flexibility of carbon allocation in the formation of endosperm starch, cereal crops require a broad range of enzymes and one matching network of regulators to control the providential functioning of these starch biosynthetic enzymes. Here, we comprehensively summarize the current knowledge about regulatory factors of starch biosynthesis in cereal crops, with an emphasis on the transcription factors that directly regulate starch biosynthesis. This review will provide new insights for the manipulation of bioengineering and starch biosynthesis to improve starch yields or qualities in our diets and in industry.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China;
| | - Huali Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- Correspondence:
| |
Collapse
|
62
|
Fan K, Ren Z, Zhang X, Liu Y, Fu J, Qi C, Tatar W, Rasmusson AG, Wang G, Liu Y. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial Nad1 intron 2 and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6933-6948. [PMID: 34279607 DOI: 10.1093/jxb/erab339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
63
|
Guo J, Qu L, Hu Y, Lu W, Lu D. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC PLANT BIOLOGY 2021; 21:434. [PMID: 34556041 PMCID: PMC8461923 DOI: 10.1186/s12870-021-03214-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1-30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). RESULTS Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation-reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. CONCLUSIONS The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, P. R. China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, P. R. China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, P. R. China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
64
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
65
|
Chatterjee D, Wittmeyer K, Lee TF, Cui J, Yennawar NH, Yennawar HP, Meyers BC, Chopra S. Maize unstable factor for orange1 is essential for endosperm development and carbohydrate accumulation. PLANT PHYSIOLOGY 2021; 186:1932-1950. [PMID: 33905500 PMCID: PMC8331166 DOI: 10.1093/plphys/kiab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) Ufo1-1 is a spontaneous dominant mutation of the unstable factor for orange1 (ufo1). We recently cloned ufo1, which is a Poaceae-specific gene highly expressed during seed development in maize. Here, we have characterized Ufo1-1 and a loss-of-function Ds insertion allele (ufo1-Dsg) to decipher the role of ufo1 in maize. We found that both ufo1 mutant alleles impact sugars and hormones, and have defects in the basal endosperm transfer layer (BETL) and adjacent cell types. The Ufo1-1 BETL had reduced cell elongation and cell wall ingrowth, resulting in cuboidal shaped transfer cells. In contrast, the ufo1-Dsg BETL cells showed a reduced overall size with abnormal wall ingrowth. Expression analysis identified the impact of ufo1 on several genes essential for BETL development. The overexpression of Ufo1-1 in various tissues leads to ectopic phenotypes, including abnormal cell organization and stomata subsidiary cell defects. Interestingly, pericarp and leaf transcriptomes also showed that as compared with wild type, Ufo1-1 had ectopic expression of endosperm development-specific genes. This study shows that Ufo1-1 impacts the expression patterns of a wide range of genes involved in various developmental processes.
Collapse
Affiliation(s)
- Debamalya Chatterjee
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kameron Wittmeyer
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tzuu-fen Lee
- The Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Jin Cui
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hemant P Yennawar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Blake C Meyers
- The Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
66
|
Abstract
The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.
Collapse
|
67
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
68
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
69
|
Ding J, Karim H, Li Y, Harwood W, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley ( Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:791584. [PMID: 34925430 PMCID: PMC8672199 DOI: 10.3389/fpls.2021.791584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 05/07/2023]
Abstract
The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription-polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.
Collapse
Affiliation(s)
- Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qiantao Jiang,
| |
Collapse
|
70
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
71
|
Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2420-2435. [PMID: 32436613 PMCID: PMC7680550 DOI: 10.1111/pbi.13416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/03/2020] [Indexed: 05/30/2023]
Abstract
Cytosolic malate dehydrogenase (MDH) is a key enzyme that regulates the interconversion between malate and oxaloacetate (OAA). However, its role in modulating storage compound accumulation in maize endosperm is largely unknown. Here, we characterized a novel naturally occurring maize mdh4-1 mutant, which produces small, opaque kernels and exhibits reduced starch but enhanced lysine content. Map-based cloning, functional complementation and allelism analyses identified ZmMdh4 as the causal gene. Enzymatic assays demonstrated that ZmMDH4 predominantly catalyses the conversion from OAA to malate. In comparison, the activity of the mutant enzyme, which lacks one glutamic acid (Glu), was completed abolished, demonstrating that the Glu residue was essential for ZmMDH4 function. Knocking down ZmMdh4 in vivo led to a substantial metabolic shift towards glycolysis and a dramatic disruption in the activity of the mitochondrial complex I, which was correlated with transcriptomic alterations. Taken together, these results demonstrate that ZmMdh4 regulates the balance between mitochondrial respiration and glycolysis, ATP production and endosperm development, through a yet unknown feedback regulatory mechanism in mitochondria.
Collapse
Affiliation(s)
- Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Runmiao Tian
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Huili Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Lulin Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
72
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. The NAC Transcription Factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein Synthesis. PLANT PHYSIOLOGY 2020; 184:1775-1791. [PMID: 32989010 PMCID: PMC7723083 DOI: 10.1104/pp.20.00984] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Zhang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
73
|
Galli M, Feng F, Gallavotti A. Mapping Regulatory Determinants in Plants. Front Genet 2020; 11:591194. [PMID: 33193733 PMCID: PMC7655918 DOI: 10.3389/fgene.2020.591194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The domestication and improvement of many plant species have frequently involved modulation of transcriptional outputs and continue to offer much promise for targeted trait engineering. The cis-regulatory elements (CREs) controlling these trait-associated transcriptional variants however reside within non-coding regions that are currently poorly annotated in most plant species. This is particularly true in large crop genomes where regulatory regions constitute only a small fraction of the total genomic space. Furthermore, relatively little is known about how CREs function to modulate transcription in plants. Therefore understanding where regulatory regions are located within a genome, what genes they control, and how they are structured are important factors that could be used to guide both traditional and synthetic plant breeding efforts. Here, we describe classic examples of regulatory instances as well as recent advances in plant regulatory genomics. We highlight valuable molecular tools that are enabling large-scale identification of CREs and offering unprecedented insight into how genes are regulated in diverse plant species. We focus on chromatin environment, transcription factor (TF) binding, the role of transposable elements, and the association between regulatory regions and target genes.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
74
|
Dai D, Jin L, Huo Z, Yan S, Ma Z, Qi W, Song R. Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6246-6261. [PMID: 32710615 DOI: 10.1093/jxb/eraa348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing in plant mitochondria and plastids. In this study, we characterized maize (Zea mays) kernel mutant defective kernel 53 (dek53), which has an embryo lethal and collapsed endosperm phenotype. Dek53 encodes an E-subgroup PPR protein, which possesses a short PLS repeat region of only seven repeats. Subcellular localization analysis indicated that DEK53 is localized in the mitochondrion. Strand- and transcript-specific RNA-seq analysis showed that the dek53 mutation affected C-to-U RNA editing at more than 60 mitochondrial C targets. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the assembly of mitochondrial complex III in dek53. Transmission electron microscopic examination showed severe morphological defects of mitochondria in dek53 endosperm cells. In addition, yeast two-hybrid and luciferase complementation imaging assays indicated that DEK53 can interact with the mitochondrion-targeted non-PPR RNA editing factor ZmMORF1, suggesting that DEK53 might be a functional component of the organellar RNA editosome.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lifang Jin
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhenzhen Huo
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Li C, Qi W, Liang Z, Yang X, Ma Z, Song R. A SnRK1- ZmRFWD3-Opaque2 Signaling Axis Regulates Diurnal Nitrogen Accumulation in Maize Seeds. THE PLANT CELL 2020; 32:2823-2841. [PMID: 32699171 PMCID: PMC7474302 DOI: 10.1105/tpc.20.00352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 05/06/2023]
Abstract
Zeins are the predominant storage proteins in maize (Zea mays) seeds, while Opaque2 (O2) is a master transcription factor for zein-encoding genes. How the activity of O2 is regulated and responds to external signals is yet largely unknown. Here, we show that the E3 ubiquitin ligase ZmRFWD3 interacts with O2 and positively regulates its activity by enhancing its nuclear localization. Ubiquitination of O2 enhances its interaction with maize importin1, the α-subunit of Importin-1 in maize, thus enhancing its nuclear localization ability. We further show that ZmRFWD3 can be phosphorylated by a Suc-responsive protein kinase, ZmSnRK1, which leads to its degradation. We demonstrated that the activity of O2 responds to Suc levels through the ZmSnRK1-ZmRFWD3-O2 signaling axis. Intriguingly, we found that Suc levels, as well as ZmRFWD3 levels and the cytonuclear distribution of O2, exhibit diurnal patterns in developing endosperm, leading to the diurnal transcription of O2-regulated zein genes. Loss of function in ZmRFWD3 disrupts the diurnal patterns of O2 cytonuclear distribution and zein biosynthesis, and consequently changes the C/N ratio in mature seeds. We therefore identify a SnRK1-ZmRFWD3-O2 signaling axis that transduces source-to-sink signals and coordinates C and N assimilation in developing maize seeds.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zheng Liang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xi Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
76
|
Zhao H, Qin Y, Xiao Z, Li Q, Yang N, Pan Z, Gong D, Sun Q, Yang F, Zhang Z, Wu Y, Xu C, Qiu F. Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. PLANT PHYSIOLOGY 2020; 184:359-373. [PMID: 32591429 PMCID: PMC7479876 DOI: 10.1104/pp.20.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
77
|
Perveen S, Qu M, Chen F, Essemine J, Khan N, Lyu MJA, Chang T, Song Q, Chen GY, Zhu XG. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4944-4957. [PMID: 32442255 DOI: 10.1093/jxb/eraa248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Identifying new options to improve photosynthetic capacity is a major approach to improve crop yield potential. Here we report that overexpression of the gene encoding the transcription factor mEmBP-1 led to simultaneously increased expression of many genes in photosynthesis, including genes encoding Chl a,b-binding proteins (Lhca and Lhcb), PSII (PsbR3 and PsbW) and PSI reaction center subunits (PsaK and PsaN), chloroplast ATP synthase subunit, electron transport reaction components (Fd1 and PC), and also major genes in the Calvin-Benson-Bassham cycle, including those encoding Rubisco, glyceraldehyde phosphate dehydrogenase, fructose bisphosphate aldolase, transketolase, and phosphoribulokinase. These increased expression of photosynthesis genes resulted in increased leaf chlorophyll pigment, photosynthetic rate, biomass growth, and grain yield both in the greenhouse and in the field. Using EMSA experiments, we showed that mEmBP-1a protein can directly bind to the promoter region of photosynthesis genes, suggesting that the direct binding of mEmBP-1a to the G-box domain of photosynthetic genes up-regulates expression of these genes. Altogether, our results show that mEmBP-1a is a major regulator of photosynthesis, which can be used to increase rice photosynthesis and yield in the field.
Collapse
Affiliation(s)
- Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Faming Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Naveed Khan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tiangen Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gen-Yun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
78
|
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1443-1453. [PMID: 31897513 DOI: 10.1007/s00122-019-03520-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels. Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
79
|
Doll NM, Just J, Brunaud V, Caïus J, Grimault A, Depège-Fargeix N, Esteban E, Pasha A, Provart NJ, Ingram GC, Rogowsky PM, Widiez T. Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. THE PLANT CELL 2020; 32:833-852. [PMID: 32086366 PMCID: PMC7145466 DOI: 10.1105/tpc.19.00756] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 05/23/2023]
Abstract
Seeds are complex biological systems comprising three genetically distinct tissues nested one inside another (embryo, endosperm, and maternal tissues). However, the complexity of the kernel makes it difficult to understand intercompartment interactions without access to spatially accurate information. Here, we took advantage of the large size of the maize (Zea mays) kernel to characterize genome-wide expression profiles of tissues at different embryo/endosperm interfaces. Our analysis identifies specific transcriptomic signatures in two interface tissues compared with whole seed compartments: the scutellar aleurone layer and the newly named endosperm adjacent to scutellum (EAS). The EAS, which appears around 9 d after pollination and persists for around 11 d, is confined to one to three endosperm cell layers adjacent to the embryonic scutellum. Its transcriptome is enriched in genes encoding transporters. The absence of the embryo in an embryo specific mutant can alter the expression pattern of EAS marker genes. The detection of cell death in some EAS cells together with an accumulation of crushed cell walls suggests that the EAS is a dynamic zone from which cell layers in contact with the embryo are regularly eliminated and to which additional endosperm cells are recruited as the embryo grows.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Jeremy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France
| | - José Caïus
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France
| | - Aurélie Grimault
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| |
Collapse
|
80
|
Kennedy A, Geuten K. The Role of FLOWERING LOCUS C Relatives in Cereals. FRONTIERS IN PLANT SCIENCE 2020; 11:617340. [PMID: 33414801 PMCID: PMC7783157 DOI: 10.3389/fpls.2020.617340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 05/12/2023]
Abstract
FLOWERING LOCUS C (FLC) is one of the best characterized genes in plant research and is integral to vernalization-dependent flowering time regulation. Yet, despite the abundance of information on this gene and its relatives in Arabidopsis thaliana, the role FLC genes play in other species, in particular cereal crops and temperate grasses, remains elusive. This has been due in part to the comparative reduced availability of bioinformatic and mutant resources in cereals but also on the dominant effect in cereals of the VERNALIZATION (VRN) genes on the developmental process most associated with FLC in Arabidopsis. The strong effect of the VRN genes has led researchers to believe that the entire process of vernalization must have evolved separately in Arabidopsis and cereals. Yet, since the confirmation of the existence of FLC-like genes in monocots, new light has been shed on the roles these genes play in both vernalization and other mechanisms to fine tune development in response to specific environmental conditions. Comparisons of FLC gene function and their genetic and epigenetic regulation can now be made between Arabidopsis and cereals and how they overlap and diversify is coming into focus. With the advancement of genome editing techniques, further study on these genes is becoming increasingly easier, enabling us to investigate just how essential FLC-like genes are to modulating flowering time behavior in cereals.
Collapse
|
81
|
Khan NU, Sheteiwy M, Lihua N, Khan MMU, Han Z. An update on the maize zein-gene family in the post-genomics era. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMaize (Zea mays) is a cereal crop of global food importance. However, the deficiency of essential amino acids, more importantly lysine, methionine and tryptophan, in the major seed storage zein proteins makes corn nutritionally of low value for human consumption. The idea of improving maize nutritional value prompted the search for maize natural mutants harboring low zein contents and higher amount of lysine. These studies resulted in the identification of more than dozens of maize opaque mutants in the previous few decades,o2mutant being the most extensively studied one. However, the high lysine contents but soft kernel texture and chalky endosperm halted the widespread application and commercial success of maize opaque mutants, which ultimately paved the way for the development of Quality Protein Maize (QPM) by modifying the soft endosperm ofo2 mutant into lysine-rich hard endosperm. The previous few decades have witnessed a marked progress in maize zein research. It includes elucidation of molecular mechanism underlying the role of different zein genes in seed endosperm development by cloning different components of zein family, exploring the general organization, function and evolution of zein family members within maize species and among other cereals, and elucidating the cis- and trans-regulatory elements modulating the regulation of different molecular players of maize seed endosperm development. The current advances in high quality reference genomes of maize lines B73 and Mo17 plus the completion of ongoing pan genome sequencing projects of more maize lines with NGS technologies are expected to revolutionize maize zein gene research in near future. This review highlights the recent advances in QPM development and its practical application in the post genomic era, genomic and physical composition and evolution of zein family, and expression, regulation and downstream role of zein genes in endosperm development. Moreover, recent genomic tools and methods developed for functional validation of maize zein genes are also discussed.Graphical abstract
Collapse
|
82
|
Zheng X, Li Q, Li C, An D, Xiao Q, Wang W, Wu Y. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. THE PLANT CELL 2019; 31:2613-2635. [PMID: 31530735 PMCID: PMC6881121 DOI: 10.1105/tpc.19.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 05/05/2023]
Abstract
During maize (Zea mays) seed development, the endosperm functions as the major organ for storage of photoassimilate, serving to nourish the embryo. α-Zeins and globulins (GLBs) predominantly accumulate in the maize endosperm and embryo, respectively. Here, we show that suppression of α-zeins by RNA interference (αRNAi) in the endosperm results in more GLB1 being synthesized in the embryo, thereby markedly increasing the size and number of protein storage vacuoles. Glb genes are strongly expressed in the middle-to-upper section of the scutellum, cells of which are significantly enlarged by αRNAi induction. Elimination of GLBs caused an apparent reduction in embryo protein level, regardless of whether α-zeins were expressed or suppressed in the endosperm, indicating that GLBs represent the dominant capacity for storage of amino acids allocated from the endosperm. It appears that protein reallocation is mostly regulated at the transcriptional level. Genes differentially expressed between wild-type and αRNAi kernels are mainly involved in sulfur assimilation and nutrient metabolism, and many are transactivated by VIVIPAROUS1 (VP1). In vp1 embryos, misshapen scutellum cells contain notably less cellular content and are unable to respond to αRNAi induction. Our results demonstrate that VP1 is essential for scutellum development and protein reallocation from the endosperm to embryo.
Collapse
Affiliation(s)
- Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
83
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
84
|
Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:407-415. [PMID: 31128711 DOI: 10.1016/j.plantsci.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Starch content and composition are major determinants of yield and quality in maize. In recent years, the major genes for starch metabolism have been cloned in this species. However, the role of transcription factors in regulating the starch metabolism pathway remains unclear. The ZmbZIP22 gene encodes a bZIP transcription factor. In our study, plants overexpressing ZmbZIP22 showed reductions in the size of starch granules, the size and weight of seeds, reduced amylose content, and alterations in the chemical structure of starch granules. Also, overexpression of ZmbZIP22 resulted in increases in the contents of soluble sugars and reducing sugars in transgenic rice and maize. ZmbZIP22 promotes the transcription of starch metabolism genes by binding to their promoters. Screening by yeast one-hybrid assays indicated a possible interaction between ZmbZIP22 and the promoters of eight key starch enzyme genes. Collectively, our results indicated that ZmbZIP22 functions as a negative regulator of starch synthesis, and suggest that this occurs through the regulation of key sugar and starch metabolism genes in maize.
Collapse
Affiliation(s)
- Qing Dong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China; Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Zhou
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
85
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
86
|
Zuo Y, Feng F, Qi W, Song R. Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:728-748. [PMID: 30839161 DOI: 10.1111/jipb.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 05/22/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.
Collapse
Affiliation(s)
- Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
87
|
Ma C, Li B, Wang L, Xu ML, Lizhu E, Jin H, Wang Z, Ye JR. Characterization of phytohormone and transcriptome reprogramming profiles during maize early kernel development. BMC PLANT BIOLOGY 2019; 19:197. [PMID: 31088353 PMCID: PMC6515667 DOI: 10.1186/s12870-019-1808-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND During maize early kernel development, the dramatic transcriptional reprogramming determines the rate of developmental progression, and phytohormone plays critical role in these important processes. To investigate the phytohormone levels and transcriptome reprogramming profiles during maize early kernel development, two maize inbreds with similar genetic background but different mature kernel sizes (ILa and ILb) were used. RESULTS The levels of indole-3-acetic acid (IAA) were increased continuously in maize kernels from 5 days after pollination (DAP) to 10 DAP. ILa had smaller mature kernels than ILb, and ILa kernels had significantly lower IAA levels and significantly higher SA levels than ILb at 10 DAP. The different phytohormone profiles correlated with different transcriptional reprogramming in the two kernels. The global transcriptomes in ILa and ILb kernels were strikingly different at 5 DAP, and their differences peaked at 8 DAP. Functional analysis showed that the biggest transcriptome difference between the two kernels is those response to biotic and abiotic stresses. Further analyses indicated that the start of dramatic transcriptional reprogramming and the onset of significantly enriched functional categories, especially the "plant hormone signal transduction" and "starch and sucrose metabolism", was earlier in ILa than in ILb, whereas more significant enrichment of those functional categories occurred at later stage of kernel development in ILb. CONCLUSIONS These results indicate that later onset of the significantly enriched functional categories, coincide with their stronger activities at a later developmental stage and higher IAA level, are necessary for young kernels to undergo longer mitotic activity and finally develop a larger kernel size. The different onset times and complex interactions of the important functional categories, especially phytohormone signal, and carbohydrate metabolism, form the most important molecular regulators mediating maize early kernel development.
Collapse
Affiliation(s)
- Chuanyu Ma
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Bo Li
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Lina Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Ming-liang Xu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - E. Lizhu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Hongyu Jin
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Zhicheng Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Jian-rong Ye
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
88
|
Yi F, Gu W, Chen J, Song N, Gao X, Zhang X, Zhou Y, Ma X, Song W, Zhao H, Esteban E, Pasha A, Provart NJ, Lai J. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. THE PLANT CELL 2019; 31:974-992. [PMID: 30914497 PMCID: PMC6533015 DOI: 10.1105/tpc.18.00961] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 05/13/2023]
Abstract
The early maize (Zea mays) seed undergoes several developmental stages after double fertilization to become fully differentiated within a short period of time, but the genetic control of this highly dynamic and complex developmental process remains largely unknown. Here, we report a high temporal-resolution investigation of transcriptomes using 31 samples collected at an interval of 4 or 6 h within the first six days of seed development. These time-course transcriptomes were clearly separated into four distinct groups corresponding to the stages of double fertilization, coenocyte formation, cellularization, and differentiation. A total of 22,790 expressed genes including 1415 transcription factors (TFs) were detected in early stages of maize seed development. In particular, 1093 genes including 110 TFs were specifically expressed in the seed and displayed high temporal specificity by expressing only in particular period of early seed development. There were 160, 22, 112, and 569 seed-specific genes predominantly expressed in the first 16 h after pollination, coenocyte formation, cellularization, and differentiation stage, respectively. In addition, network analysis predicted 31,256 interactions among 1317 TFs and 14,540 genes. The high temporal-resolution transcriptome atlas reported here provides an important resource for future functional study to unravel the genetic control of seed development.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Gu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- China Specialty Maize Research Center (CIMMYT), Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiang Gao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yingsi Zhou
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
89
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
90
|
Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:133-145. [PMID: 30824046 DOI: 10.1016/j.plantsci.2019.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 05/22/2023]
Abstract
Kernel size in cereal is an important agronomic trait controlled by the interaction of genetic and environmental factors. The endosperm occupies most of the kernel area; for this reason, the endosperm cells dimension, number and metabolic content strongly influence kernel properties. This paper presents the transcriptomic and metabolomic analysis of the maize defective endosperm 18 (de18) mutant, where auxin accumulation in the endosperm is impaired. This mutation, involving the ZmYuc1 gene, leads to a reduced kernel size compared to the wild-type line B37. Our results mainly indicate that IAA concentration controls sugar and protein metabolism during kernel differentiation and it is necessary for BETL formation. Furthermore, a fine tuning of different auxin conjugates is reported as the main mechanism to counteract the auxin deficit. Some candidates as master regulators of endosperm transcriptional regulation mediated by auxin are found between MYB and MADS-box gene families. A link between auxin and storage protein accumulation is highlighted, suggesting that IAA directly or indirectly, through CK or ABA, regulates the transcription of zein coding genes. This study represents a move forward with respect to the current knowledge about the role of auxin during maize endosperm differentiation thus revealing the genes that are modulated by auxin and that control agronomic traits as kernel size and metabolic composition.
Collapse
Affiliation(s)
- Jamila Bernardi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Raffaella Battaglia
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
91
|
Pang J, Fu J, Zong N, Wang J, Song D, Zhang X, He C, Fang T, Zhang H, Fan Y, Wang G, Zhao J. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:19-32. [PMID: 30548709 PMCID: PMC6850110 DOI: 10.1111/tpj.14193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
In maize, kernel traits strongly impact overall grain yields, and it is known that sophisticated spatiotemporal programs of gene expression coordinate kernel development, so advancing our knowledge of kernel development can help efforts to improve grain yields. Here, using phenotype, genotype and transcriptomics data of maize kernels at 5 and 15 days after pollination (DAP) for a large association mapping panel, we employed multiple quantitative genetics approaches-genome-wide association studies (GWAS) as well as expression quantitative trait loci (eQTL) and quantitative trait transcript (QTT) analyses-to gain insights about molecular genetic basis of kernel development in maize. This resulted in the identification of 137 putative kernel length-related genes at 5 DAP, of which 43 are located in previously reported QTL regions. Strikingly, we identified an eQTL that overlaps the locus encoding a maize homolog of the recently described m6 A methylation reader protein ECT2 from Arabidopsis; this putative epi eQTL is associated with 53 genes and may represent a master epi-transcriptomic regulator of kernel development. Notably, among the genes associated with this epi eQTL, 10 are for the main storage proteins in the maize endosperm (zeins) and two are known regulators of zein expression or endosperm development (Opaque2 and ZmICE1). Collectively, beyond cataloging and characterizing genomic attributes of a large number of eQTL associated with kernel development in maize, our study highlights how an eQTL approach can bolster the impact of both GWAS and QTT studies and can drive insights about the basic biology of plants.
Collapse
Affiliation(s)
- Junling Pang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Junjie Fu
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Na Zong
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Jing Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Dandan Song
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xia Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Cheng He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ting Fang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Hongwei Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Yunliu Fan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Guoying Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jun Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
92
|
He Y, Wang J, Qi W, Song R. Maize Dek15 Encodes the Cohesin-Loading Complex Subunit SCC4 and Is Essential for Chromosome Segregation and Kernel Development. THE PLANT CELL 2019; 31:465-485. [PMID: 30705131 PMCID: PMC6447020 DOI: 10.1105/tpc.18.00921] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/31/2019] [Indexed: 05/18/2023]
Abstract
Cohesin complexes maintain sister chromatid cohesion to ensure proper chromosome segregation during mitosis and meiosis. In plants, the exact components and functions of the cohesin complex remain poorly understood. Here, we positionally cloned the classic maize (Zea mays) mutant defective kernel 15 (dek15), revealing that it encodes a homolog of SISTER CHROMATID COHESION PROTEIN 4 (SCC4), a loader subunit of the cohesin ring. Developing dek15 kernels contained fewer cells than the wild type, but had a highly variable cell size. The dek15 mutation was found to disrupt the mitotic cell cycle and endoreduplication, resulting in a reduced endosperm and embryo lethality. The cells in the dek15 endosperm and embryo exhibited precocious sister chromatid separation and other chromosome segregation errors, including misaligned chromosomes, lagging chromosomes, and micronuclei, resulting in a high percentage of aneuploid cells. The loss of Dek15/Scc4 function upregulated the expression of genes involved in cell cycle progression and stress responses, and downregulated key genes involved in organic synthesis during maize endosperm development. Our yeast two-hybrid screen identified the chromatin remodeling proteins chromatin remodeling factor 4, chromatin remodeling complex subunit B (CHB)102, CHB105, and CHB106 as SCC4-interacting proteins, suggesting a possible mechanism by which the cohesin ring is loaded onto chromatin in plant cells. This study revealed biological functions for DEK15/SCC4 in mitotic chromosome segregation and kernel development in maize.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinguang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
93
|
Wu J, Chen L, Chen M, Zhou W, Dong Q, Jiang H, Cheng B. The DOF-Domain Transcription Factor ZmDOF36 Positively Regulates Starch Synthesis in Transgenic Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:465. [PMID: 31031791 PMCID: PMC6474321 DOI: 10.3389/fpls.2019.00465] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 05/06/2023]
Abstract
Starch synthesis is a complex process that influences crop yield and grain quality in maize. Many key enzymes have been identified in starch biosynthesis; however, the regulatory mechanisms have not been fully elucidated. In this study, we identified a DOF family gene, ZmDOF36, through transcriptome sequencing analysis. Real-time PCR indicated that ZmDOF36 was highly expressed in maize endosperm, with lower expression in leaves and tassels. ZmDOF36 is a typical DOF transcription factor (TF) that is localized to the nucleus and possesses transcriptional activation activity, and its transactivation domain is located in the C-terminus (amino acids 227-351). Overexpression of ZmDOF36 can increase starch content and decrease the contents of soluble sugars and reducing sugars. In addition, abnormal starch structure in transgenic maize was also observed by scanning electron microscopy (SEM). Furthermore, the expression levels of starch synthesis-related genes were up-regulated in ZmDOF36-expressing transgenic maize. ZmDOF36 was also shown to bind directly to the promoters of six starch biosynthesis genes, ZmAGPS1a, ZmAGPL1, ZmGBSSI, ZmSSIIa, ZmISA1, and ZmISA3 in yeast one-hybrid assays. Transient expression assays showed that ZmDOF36 can activate the expression of ZmGBSSI and ZmISA1 in tobacco leaves. Collectively, the results presented here suggest that ZmDOF36 acts as an important regulatory factor in starch synthesis, and could be helpful in devising strategies for modulating starch production in maize endosperm.
Collapse
|
94
|
Castelli S, Mascheretti I, Cosentino C, Lazzari B, Pirona R, Ceriotti A, Viotti A, Lauria M. Uniparental and transgressive expression of α-zeins in maize endosperm of o2 hybrid lines. PLoS One 2018; 13:e0206993. [PMID: 30439980 PMCID: PMC6237297 DOI: 10.1371/journal.pone.0206993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Iride Mascheretti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Cristian Cosentino
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Raul Pirona
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Aldo Ceriotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Angelo Viotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| | - Massimiliano Lauria
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| |
Collapse
|
95
|
Zhang T, Lv W, Zhang H, Ma L, Li P, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC PLANT BIOLOGY 2018; 18:235. [PMID: 30326829 PMCID: PMC6192367 DOI: 10.1186/s12870-018-1441-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND In plants, the basic helix-loop-helix (bHLH) transcription factors play key roles in diverse biological processes. Genome-wide comprehensive and systematic analyses of bHLH proteins have been well conducted in Arabidopsis, rice, tomato and other plant species. However, only few of bHLH family genes have been functional characterized in maize. RESULTS In this study, our genome-wide analysis identified 208 putative bHLH family proteins (ZmbHLH proteins) in maize (Zea mays). We classified these proteins into 18 subfamilies by comparing the ZmbHLHs with Arabidopsis thaliana bHLH proteins. Phylogenetic analysis, conserved protein motifs, and exon-intron patterns further supported the evolutionary relationships among these bHLH proteins. Genome distribution analysis found that the 208 ZmbHLH loci were located non-randomly on the ten maize chromosomes. Further, analysis of conserved cis-elements in the promoter regions, protein interaction networks, and expression patterns in roots, leaves, and seeds across developmental stages, suggested that bHLH family proteins in maize are probably involved in multiple physiological processes in plant growth and development. CONCLUSION We performed a genome-wide, systematic analysis of bHLH proteins in maize. This comprehensive analysis provides a useful resource that enables further investigation of the physiological roles and molecular functions of the ZmbHLH transcription factors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
96
|
Li C, Yue Y, Chen H, Qi W, Song R. The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development. THE PLANT CELL 2018; 30:2402-2424. [PMID: 30242039 PMCID: PMC6241260 DOI: 10.1105/tpc.18.00422] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 05/18/2023]
Abstract
Zeins are the most abundant storage proteins in maize (Zea mays) kernels, thereby affecting the nutritional quality and texture of this crop. 27-kD γ-zein is highly expressed and plays a crucial role in protein body formation. Several transcription factors (TFs) (O2, PBF1, OHP1, and OHP2) regulate the expression of the 27-kD γ-zein gene, but the complexity of its transcriptional regulation is not fully understood. Here, using probe affinity purification and mass spectrometry analysis, we identified ZmbZIP22, a TF that binds to the 27-kD γ-zein promoter. ZmbZIP22 is a bZIP-type TF that is specifically expressed in endosperm. ZmbZIP22 bound directly to the ACAGCTCA box in the 27-kD γ-zein promoter and activated its expression in wild tobacco (Nicotiana benthamiana) cells. 27-kD γ-zein gene expression was significantly reduced in CRISPR/Cas9-generated zmbzip22 mutants. ChIP-seq (chromatin immunoprecipitation coupled to high-throughput sequencing) confirmed that ZmbZIP22 binds to the 27-kD γ-zein promoter in vivo and identified additional direct targets of ZmbZIP22. ZmbZIP22 can interact with PBF1, OHP1, and OHP2, but not O2. Transactivation assays using various combinations of these TFs revealed multiple interaction modes for the transcriptional activity of the 27-kD γ-zein promoter. Therefore, ZmbZIP22 regulates 27-kD γ-zein gene expression together with other known TFs.
Collapse
Affiliation(s)
- Chaobin Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yihong Yue
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hanjun Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
97
|
Zhang S, Zhan J, Yadegari R. Maize opaque mutants are no longer so opaque. PLANT REPRODUCTION 2018; 31:319-326. [PMID: 29978299 PMCID: PMC6105308 DOI: 10.1007/s00497-018-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/23/2018] [Indexed: 05/02/2023]
Abstract
The endosperm of angiosperms is a zygotic seed organ that stores nutrient reserves to support embryogenesis and seed germination. Cereal endosperm is also a major source of human calories and an industrial feedstock. Maize opaque endosperm mutants commonly exhibit opaque, floury kernels, along with other abnormal seed and/or non-seed phenotypes. The opaque endosperm phenotype is sometimes accompanied by a soft kernel texture and increased nutritional quality, including a higher lysine content, which are valuable agronomic traits that have drawn attention of maize breeders. Recently, an increasing number of genes that underlie opaque mutants have been cloned, and their characterization has begun to shed light on the molecular basis of the opaque endosperm phenotype. These mutants are categorized by disruption of genes encoding zein or non-zein proteins localized to protein bodies, enzymes involved in endosperm metabolic processes, or transcriptional regulatory proteins associated with endosperm storage programs.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
98
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
99
|
Feng F, Song R. O11 is multi-functional regulator in maize endosperm. PLANT SIGNALING & BEHAVIOR 2018; 13:e1451709. [PMID: 29533128 PMCID: PMC5933909 DOI: 10.1080/15592324.2018.1451709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 05/30/2023]
Abstract
As a highly developed tissue, maize endosperm accumulates nutrients abundantly and supports embryo development. In a recent study, we constructed a regulatory network centered around Opaque11 (O11). This network unified cellular development, nutrient metabolism and stress responses during endosperm development. Here we discuss the evidences that O11 might have a regulatory role in cold stress response during seed development. Furthermore, we discuss the functional divergence between maize O11 and its Arabidopsis orthologue ZHOUPI, which might explain some of the differences in endosperm development between monocotyledonous and dicotyledonous seeds.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|