51
|
Stahl E, Hartmann M, Scholten N, Zeier J. A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection. PLANT PHYSIOLOGY 2019; 181:1008-1028. [PMID: 31515446 PMCID: PMC6836838 DOI: 10.1104/pp.19.00618] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 05/19/2023]
Abstract
Tocopherols are lipid-soluble antioxidants synthesized in plastids of plants and other photosynthetic organisms. The four known tocopherols, α-, β-, γ-, and δ-tocopherol, differ in number and position of methyl groups on their chromanol head group. In unstressed Arabidopsis (Arabidopsis thaliana) leaves, α-tocopherol constitutes the main tocopherol form, whereas seeds predominantly contain γ-tocopherol. Here, we show that inoculation of Arabidopsis leaves with the bacterial pathogen Pseudomonas syringae induces the expression of genes involved in early steps of tocopherol biosynthesis and triggers strong accumulation of γ-tocopherol, moderate production of δ-tocopherol, and generation of the benzoquinol precursors of tocopherols. The pathogen-inducible biosynthesis of tocopherols is promoted by the immune regulators ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN-DEFICIENT4. In addition, tocopherols accumulate in response to bacterial flagellin and reactive oxygen species. By quantifying tocopherol forms in inoculated wild-type plants and biosynthetic pathway mutants, we provide biochemical insights into the pathogen-inducible tocopherol pathway. Notably, vitamin E deficient2 (vte2) mutant plants, which are compromised in both tocopherol and benzoquinol precursor accumulation, exhibit increased susceptibility toward compatible P. syringae and possess heightened levels of markers of lipid peroxidation after bacterial infection. The deficiency of triunsaturated fatty acids in vte2-1 fatty acid desaturase3-2 (fad3-2) fad7-2 fad8 quadruple mutants prevents increased lipid peroxidation in the vte2 background and restores pathogen resistance to wild-type levels. Therefore, the tocopherol biosynthetic pathway positively influences salicylic acid accumulation and guarantees effective basal resistance of Arabidopsis against compatible P. syringae, possibly by protecting leaves from the pathogen-induced oxidation of trienoic fatty acid-containing lipids.
Collapse
Affiliation(s)
- Elia Stahl
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, D-40225 Duesseldorf, Germany
| |
Collapse
|
52
|
Campbell BW, Hoyle JW, Bucciarelli B, Stec AO, Samac DA, Parrott WA, Stupar RM. Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes. Sci Rep 2019; 9:14757. [PMID: 31611562 PMCID: PMC6791840 DOI: 10.1038/s41598-019-51240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Developments in genomic and genome editing technologies have facilitated the mapping, cloning, and validation of genetic variants underlying trait variation. This study combined bulked-segregant analysis, array comparative genomic hybridization, and CRISPR/Cas9 methodologies to identify a CPR5 ortholog essential for proper trichome growth in soybean (Glycine max). A fast neutron mutant line exhibited short trichomes with smaller trichome nuclei compared to its parent line. A fast neutron-induced deletion was identified within an interval on chromosome 6 that co-segregated with the trichome phenotype. The deletion encompassed six gene models including an ortholog of Arabidopsis thaliana CPR5. CRISPR/Cas9 was used to mutate the CPR5 ortholog, resulting in five plants harboring a total of four different putative knockout alleles and two in-frame alleles. Phenotypic analysis of the mutants validated the candidate gene, and included intermediate phenotypes that co-segregated with the in-frame alleles. These findings demonstrate that the CPR5 ortholog is essential for proper growth and development of soybean trichomes, similar to observations in A. thaliana. Furthermore, this work demonstrates the value of using CRISPR/Cas9 to generate an allelic series and intermediate phenotypes for functional analysis of candidate genes and/or the development of novel traits.
Collapse
Affiliation(s)
- Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Jacob W Hoyle
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Bruna Bucciarelli
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, USA
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Deborah A Samac
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Wayne A Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
53
|
Man Ha C, Fine D, Bhatia A, Rao X, Martin MZ, Engle NL, Wherritt DJ, Tschaplinski TJ, Sumner LW, Dixon RA. Ectopic Defense Gene Expression Is Associated with Growth Defects in Medicago truncatula Lignin Pathway Mutants. PLANT PHYSIOLOGY 2019; 181:63-84. [PMID: 31289215 PMCID: PMC6716239 DOI: 10.1104/pp.19.00533] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dennis Fine
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Anil Bhatia
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Madhavi Z Martin
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Nancy L Engle
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Daniel J Wherritt
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Timothy J Tschaplinski
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
54
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
55
|
A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis. PLoS Pathog 2019; 15:e1007747. [PMID: 31299058 PMCID: PMC6625732 DOI: 10.1371/journal.ppat.1007747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved. Our work reveals genetic commonalities between biotrophic intracellular interactions with symbiotic and pathogenic hyphal microbes. The majority of land plants engages in arbuscular mycorrhiza (AM) symbiosis with phosphate-acquiring arbuscular mycorrhizal fungi to avoid phosphate starvation. Nutrient exchange in this interaction occurs via arbuscules, tree-shaped fungal structures, hosted within plant root cells. A series of plant genes including the Symbiosis Receptor-like kinase (SYMRK), members of the NUP107-160 subcomplex and nuclear envelope localised cation channels are required for a signalling process leading to the development of AM. The model plant Arabidopsis thaliana lost the ability to form AM. Although the ortholog of SYMRK was deleted during evolution, members of the malectin-like domain leucine-rich repeat receptor kinase (MLD-LRR-RK) gene family, components of the NUP107-160 subcomplex, and an ortholog of the nuclear envelope-localized cation channel POLLUX, are still present in the Arabidopsis genome, and Arabidopsis leaf cells retained the ability to accommodate haustoria, presumed feeding structures of the obligate biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis. We discovered that both of these plant-microbe interactions utilize a corresponding set of genes including the ortholog of POLLUX, members of the NUP107-160 subcomplex and members of the MLD-LRR-RK gene family, thus revealing similarities in the plant program for the intracellular accommodation of biotrophic organisms in symbiosis and disease.
Collapse
|
56
|
Salicylic Acid Signals Plant Defence against Cadmium Toxicity. Int J Mol Sci 2019; 20:ijms20122960. [PMID: 31216620 PMCID: PMC6627907 DOI: 10.3390/ijms20122960] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Salicylic acid (SA), as an enigmatic signalling molecule in plants, has been intensively studied to elucidate its role in defence against biotic and abiotic stresses. This review focuses on recent research on the role of the SA signalling pathway in regulating cadmium (Cd) tolerance in plants under various SA exposure methods, including pre-soaking, hydroponic exposure, and spraying. Pretreatment with appropriate levels of SA showed a mitigating effect on Cd damage, whereas an excessive dose of exogenous SA aggravated the toxic effects of Cd. SA signalling mechanisms are mainly associated with modification of reactive oxygen species (ROS) levels in plant tissues. Then, ROS, as second messengers, regulate a series of physiological and genetic adaptive responses, including remodelling cell wall construction, balancing the uptake of Cd and other ions, refining the antioxidant defence system, and regulating photosynthesis, glutathione synthesis and senescence. These findings together elucidate the expanding role of SA in phytotoxicology.
Collapse
|
57
|
Choi J, Strickler SR, Richards EJ. Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling. PLANT PHYSIOLOGY 2019; 179:1315-1329. [PMID: 30696746 PMCID: PMC6446779 DOI: 10.1104/pp.18.01020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/18/2019] [Indexed: 05/09/2023]
Abstract
Defects in the nuclear lamina of animal cell nuclei have dramatic effects on nuclear structure and gene expression as well as diverse physiological manifestations. We report that deficiencies in CROWDED NUCLEI (CRWN), which are candidate nuclear lamina proteins in Arabidopsis (Arabidopsis thaliana), trigger widespread changes in transcript levels and whole-plant phenotypes, including dwarfing and spontaneous cell death lesions. These phenotypes are caused in part by ectopic induction of plant defense responses via the salicylic acid pathway. Loss of CRWN proteins induces the expression of the salicylic acid biosynthetic gene ISOCHORISMATE SYNTHASE1, which leads to spontaneous defense responses in crwn1 crwn2 and crwn1 crwn4 mutants, which are deficient in two of the four CRWN paralogs. The symptoms of ectopic defense response, including pathogenesis marker gene expression and cell death, increase in older crwn double mutants. These age-dependent effects are postulated to reflect an increase in nuclear dysfunction or damage over time, a phenomenon reminiscent of aging effects seen in animal nuclei and in some human laminopathy patients.
Collapse
Affiliation(s)
- Junsik Choi
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Boyce Thompson Institute, Ithaca, New York 14853
| | | | | |
Collapse
|
58
|
Schneider T, Bolger A, Zeier J, Preiskowski S, Benes V, Trenkamp S, Usadel B, Farré EM, Matsubara S. Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. PLANT PHYSIOLOGY 2019; 179:1632-1657. [PMID: 30718349 PMCID: PMC6446761 DOI: 10.1104/pp.18.01443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/23/2019] [Indexed: 05/20/2023]
Abstract
Natural light environments are highly variable. Flexible adjustment between light energy utilization and photoprotection is therefore of vital importance for plant performance and fitness in the field. Short-term reactions to changing light intensity are triggered inside chloroplasts and leaves within seconds to minutes, whereas long-term adjustments proceed over hours and days, integrating multiple signals. While the mechanisms of long-term acclimation to light intensity have been studied by changing constant growth light intensity during the day, responses to fluctuating growth light intensity have rarely been inspected in detail. We performed transcriptome profiling in Arabidopsis (Arabidopsis thaliana) leaves to investigate long-term gene expression responses to fluctuating light (FL). In particular, we examined whether responses differ between young and mature leaves or between morning and the end of the day. Our results highlight global reprogramming of gene expression under FL, including that of genes related to photoprotection, photosynthesis, and photorespiration and to pigment, prenylquinone, and vitamin metabolism. The FL-induced changes in gene expression varied between young and mature leaves at the same time point and between the same leaves in the morning and at the end of the day, indicating interactions of FL acclimation with leaf development stage and time of day. Only 46 genes were up- or down-regulated in both young and mature leaves at both time points. Combined analyses of gene coexpression and cis-elements pointed to a role of the circadian clock and light in coordinating the acclimatory responses of functionally related genes. Our results also suggest a possible cross talk between FL acclimation and systemic acquired resistance-like gene expression in young leaves.
Collapse
Affiliation(s)
- Trang Schneider
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Anthony Bolger
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jürgen Zeier
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Sabine Preiskowski
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, D-69117 Heidelberg, Germany
| | | | - Björn Usadel
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| |
Collapse
|
59
|
Escudero V, Torres MÁ, Delgado M, Sopeña-Torres S, Swami S, Morales J, Muñoz-Barrios A, Mélida H, Jones AM, Jordá L, Molina A. Mitogen-Activated Protein Kinase Phosphatase 1 (MKP1) Negatively Regulates the Production of Reactive Oxygen Species During Arabidopsis Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:464-478. [PMID: 30387369 DOI: 10.1094/mpmi-08-18-0217-fi] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetic ablation of the β subunit of the heterotrimeric G protein complex in agb1-2 confers defective activation of microbe-associated molecular pattern (MAMP)-triggered immunity, resulting in agb1-2 enhanced susceptibility to pathogens like the fungus Plectosphaerella cucumerina BMM. A mutant screen for suppressors of agb1-2 susceptibility (sgb) to P. cucumerina BMM identified sgb10, a new null allele (mkp1-2) of the mitogen-activated protein kinase phosphatase 1 (MKP1). The enhanced susceptibility of agb1-2 to the bacterium Pseudomonas syringae pv. tomato DC3000 and the oomycete Hyaloperonospora arabidopsidis is also abrogated by mkp1-2. MKP1 negatively balances production of reactive oxygen species (ROS) triggered by MAMPs, since ROS levels are enhanced in mkp1. The expression of RBOHD, encoding a NADPH oxidase-producing ROS, is upregulated in mkp1 upon MAMP treatment or pathogen infection. Moreover, MKP1 negatively regulates RBOHD activity, because ROS levels upon MAMP treatment are increased in mkp1 plants constitutively overexpressing RBOHD (35S::RBOHD mkp1). A significant reprograming of mkp1 metabolic profile occurs with more than 170 metabolites, including antimicrobial compounds, showing differential accumulation in comparison with wild-type plants. These results suggest that MKP1 functions downstream of the heterotrimeric G protein during MAMP-triggered immunity, directly regulating the activity of RBOHD and ROS production as well as other immune responses.
Collapse
Affiliation(s)
- Viviana Escudero
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Miguel Ángel Torres
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Magdalena Delgado
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Sara Sopeña-Torres
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Sanjay Swami
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Jorge Morales
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Antonio Muñoz-Barrios
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Hugo Mélida
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Alan M Jones
- 3 Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Lucía Jordá
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Antonio Molina
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| |
Collapse
|
60
|
Ehonen S, Yarmolinsky D, Kollist H, Kangasjärvi J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid Redox Signal 2019; 30:1220-1237. [PMID: 29237281 DOI: 10.1089/ars.2017.7455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Stomata sense the intercellular carbon dioxide (CO2) concentration (Ci) and water availability under changing environmental conditions and adjust their apertures to maintain optimal cellular conditions for photosynthesis. Stomatal movements are regulated by a complex network of signaling cascades where reactive oxygen species (ROS) play a key role as signaling molecules. Recent Advances: Recent research has uncovered several new signaling components involved in CO2- and abscisic acid-triggered guard cell signaling pathways. In addition, we are beginning to understand the complex interactions between different signaling pathways. CRITICAL ISSUES Plants close their stomata in reaction to stress conditions, such as drought, and the subsequent decrease in Ci leads to ROS production through photorespiration and over-reduction of the chloroplast electron transport chain. This reduces plant growth and thus drought may cause severe yield losses for agriculture especially in arid areas. FUTURE DIRECTIONS The focus of future research should be drawn toward understanding the interplay between various signaling pathways and how ROS, redox, and hormonal balance changes in space and time. Translating this knowledge from model species to crop plants will help in the development of new drought-resistant crop species with high yields.
Collapse
Affiliation(s)
- Sanna Ehonen
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,2 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Hannes Kollist
- 3 Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaakko Kangasjärvi
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
61
|
Balmer A, Glauser G, Mauch-Mani B, Baccelli I. Accumulation patterns of endogenous β-aminobutyric acid during plant development and defence in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:318-325. [PMID: 30449064 DOI: 10.1111/plb.12940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
We recently discovered that β-aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation. BABA was quantified by LC-MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non-infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), γ-aminobutyric acid levels (pop2) and senescence/defence (cpr5-2) were analysed. BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non-infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5-2 produced constitutively high levels of BABA. Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue-specific way. We discuss a possible role for BABA in age-related resistance and propose a comprehensive model for endogenous and synthetic BABA.
Collapse
Affiliation(s)
- A Balmer
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - G Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - B Mauch-Mani
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - I Baccelli
- Institute of Biology, Laboratory of Molecular and Cell Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
62
|
Liu H, Wei Y, Deng Z, Yang H, Dai L, Li D. Involvement of HbMC1-mediated cell death in tapping panel dryness of rubber tree (Hevea brasiliensis). TREE PHYSIOLOGY 2019; 39:391-403. [PMID: 30496555 DOI: 10.1093/treephys/tpy125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tapping panel dryness (TPD) causes a significant reduction in the latex yield of rubber tree (Hevea brasiliensis Muell. Arg.). It is reported that TPD is a typical programmed cell death (PCD) process. Although PCD plays a vital role in TPD occurrence, there is a lack of detailed and systematic study. Metacaspases are key regulators of diverse PCD in plants. Based on our previous result that HbMC1 was associated with TPD, we further elucidate the roles of HbMC1 on rubber tree TPD in this study. HbMC1 was up-regulated by TPD-inducing factors including wounding, ethephon and H2O2. Moreover, the expression level of HbMC1 was increased along with TPD severity in rubber tree, suggesting a positive correlation between HbMC1 expression and TPD severity. To investigate its biological function, HbMC1 was overexpressed in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana benthamiana). Transgenic yeast and tobacco overexpressing HbMC1 showed growth retardation compared with controls under H2O2-induced oxidative stress. In addition, overexpression of HbMC1 in yeast and tobacco reduced cell survival after high-concentration H2O2 treatment and resulted in enhanced H2O2-induced leaf cell death, respectively. A total of 11 proteins, rbcL, TM9SF2-like, COX3, ATP9, DRP, HbREF/Hevb1, MSSP2-like, SRC2, GATL8, CIPK14-like and STK, were identified and confirmed to interact with HbMC1 by yeast two-hybrid screening and co-transformation in yeast. The 11 proteins mentioned above are associated with many biological processes, including rubber biosynthesis, stress response, autophagy, carbohydrate metabolism, signal transduction, etc. Taken together, our results suggest that HbMC1-mediated PCD plays an important role in rubber tree TPD, and the identified HbMC1-interacting proteins provide valuable information for further understanding the molecular mechanism of HbMC1-mediated TPD in rubber tree.
Collapse
Affiliation(s)
- Hui Liu
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Yongxuan Wei
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhi Deng
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Hong Yang
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Longjun Dai
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Dejun Li
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
63
|
Park CJ, Park JM. Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:399. [PMID: 31019523 PMCID: PMC6458287 DOI: 10.3389/fpls.2019.00399] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
Most studies of environmental adaptations in plants have focused on either biotic or abiotic stress factors in an attempt to understand the defense mechanisms of plants against individual stresses. However, in the natural ecosystem, plants are simultaneously exposed to multiple stresses. Stress-tolerant crops developed in translational studies based on a single stress often fail to exhibit the expected traits in the field. To adapt to abiotic stress, recent studies have identified the need for interactions of plants with various microorganisms. These findings highlight the need to understand the multifaceted interactions of plants with biotic and abiotic stress factors. The endoplasmic reticulum (ER) is an organelle that links various stress responses. To gain insight into the molecular integration of biotic and abiotic stress responses in the ER, we focused on the interactions of plants with RNA viruses. This interaction points toward the relevance of ER in viral pathogenicity as well as plant responses. In this mini review, we explore the molecular crosstalk between biotic and abiotic stress signaling through the ER by elaborating ER-mediated signaling in response to RNA viruses and abiotic stresses. Additionally, we summarize the results of a recent study on phytohormones that induce ER-mediated stress response. These studies will facilitate the development of multi-stress-tolerant transgenic crops in the future.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Chang-Jin Park,
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, South Korea
- Jeong Mee Park,
| |
Collapse
|
64
|
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:252-263. [PMID: 29878511 PMCID: PMC6330549 DOI: 10.1111/pbi.12961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesIAUSA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Yuba Kandel
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Seth O'Conner
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
| | - Yifan Wang
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Chuanlong Du
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Dan Nettleton
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Gregory L. Tylka
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ling Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
65
|
Olate E, Jiménez-Gómez JM, Holuigue L, Salinas J. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. NATURE PLANTS 2018; 4:811-823. [PMID: 30250280 DOI: 10.1038/s41477-018-0254-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors. Our results demonstrate that, in response to low temperature, cytoplasmic NPR1 oligomers release monomers that translocate to the nucleus where they interact with heat shock transcription factor 1 (HSFA1) to promote the induction of HSFA1-regulated genes and cold acclimation. These findings unveil an unexpected function for NPR1 in plant response to low temperature, reveal a new regulatory pathway for cold acclimation mediated by NPR1 and HSFA1 factors, and place NPR1 as a central hub integrating cold and pathogen signalling for a better adaptation of plants to an ever-changing environment.
Collapse
Affiliation(s)
- Ema Olate
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay , Versailles Cedex, France
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
66
|
The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Sci Rep 2018; 8:13454. [PMID: 30194343 PMCID: PMC6128934 DOI: 10.1038/s41598-018-31837-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Crop breeding for improved disease resistance may be achieved through the manipulation of host susceptibility genes. Previously we identified multiple Arabidopsis mutants known as enhanced stress response1 (esr1) that have defects in a KH-domain RNA-binding protein and conferred increased resistance to the root fungal pathogen Fusarium oxysporum. Here, screening the same mutagenized population we discovered two further enhanced stress response mutants that also conferred enhanced resistance to F. oxysporum. These mutants also have enhanced resistance to a leaf fungal pathogen (Alternaria brassicicola) and an aphid pest (Myzus persicae), but not to the bacterial leaf pathogen Pseudomonas syringae. The causal alleles in these mutants were found to have defects in the ESR1 interacting protein partner RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) and subsequently given the allele symbols cpl1-7 and cpl1-8. These results define a new role for CPL1 as a pathogen and pest susceptibility gene. Global transcriptome analysis and oxidative stress assays showed these cpl1 mutants have increased tolerance to oxidative stress. In particular, components of biotic stress responsive pathways were enriched in cpl1 over wild-type up-regulated gene expression datasets including genes related to defence, heat shock proteins and oxidative stress/redox state processes.
Collapse
|
67
|
Roy S, Gupta P, Rajabhoj MP, Maruthachalam R, Nandi AK. The Polycomb-Group Repressor MEDEA Attenuates Pathogen Defense. PLANT PHYSIOLOGY 2018; 177:1728-1742. [PMID: 29954867 PMCID: PMC6084662 DOI: 10.1104/pp.17.01579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 05/25/2023]
Abstract
Plants recruit positive and negative regulators for fine tuning the balance between growth and development. Negative regulators of pathogen defense generally modulate defense hormone biosynthesis and signaling. Here, we report a mechanism for attenuation of the defense response in Arabidopsis (Arabidopsis thaliana), which is mediated by the polycomb-group repressor MEDEA (MEA). Our results showed that pathogen inoculation or exogenous application of salicylic acid, methyl jasmonate, or the bacterial 22-amino acid domain of flagellin peptide induces the expression of MEAMEA expression was higher when plants were inoculated with the avirulent strain of Pseudomonas syringae pv. tomato (Pst) carrying the AvrRpt2 effector (Pst-AvrRpt2) compared to the virulent Pst strain. MEA remains suppressed during the vegetative phase via DNA and histone (H3K27) methylation, and only the maternal copy is expressed in the female gametophyte and endosperm via histone and DNA demethylation. In contrast, Pst-AvrRpt2 induces high levels of MEA expression via hyper-accumulation of H3K4me3 at the MEA locus. MEA-overexpressing transgenic plants are susceptible to the fungal pathogen Botrytis cinerea and bacterial pathogens Pst and Pst-AvrRpt2, whereas mea mutant plants are more resistant to bacterial pathogens. AvrRpt2-mediated immunity requires the function of RESISTANCE TO P. SYRINGAE2 (RPS2) in Arabidopsis. Using transcriptional analysis and chromatin immunoprecipitation, we established that MEA directly targets RPS2 and suppresses its transcription. We screened an Arabidopsis cDNA library using MEA as the bait in a yeast two-hybrid assay and identified DROUGHT-INDUCED19, a transcription factor that interacts with MEA and recruits it at the RPS2 promoter. The results identified a previously unknown mechanism of defense response attenuation in plants.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Priya Gupta
- 415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Ravi Maruthachalam
- Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Ashis Kumar Nandi
- 415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
68
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
69
|
Karapetyan S, Dong X. Redox and the circadian clock in plant immunity: A balancing act. Free Radic Biol Med 2018; 119:56-61. [PMID: 29274381 PMCID: PMC5986284 DOI: 10.1016/j.freeradbiomed.2017.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense.
Collapse
Affiliation(s)
- Sargis Karapetyan
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA
| |
Collapse
|
70
|
Wahibah NN, Tsutsui T, Tamaoki D, Sato K, Nishiuchi T. Expression of barley Glutathione S-Transferase13 gene reduces accumulation of reactive oxygen species by trichothecenes and paraquat in Arabidopsis plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:71-79. [PMID: 31275039 PMCID: PMC6543728 DOI: 10.5511/plantbiotechnology.18.0205a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in the detoxification of reactive oxygen species (ROS) and toxic compounds. We found that the barley phi class GST (HvGST13) gene is upregulated by trichothecene phytotoxin produced by the fungal pathogen Fusarium graminearum in barley. Trichothecene phytotoxins such as DON and T-2 toxin induce accumulation of ROS and cell death in plants. It is known that the death of host cells contributes to the virulence of F. graminearum during the later stages of infection. To characterize the role of the HvGST13 gene, we generated Arabidopsis plants in which HvGST13 was overexpressed. Growth inhibition by DON and T-2 toxin was significantly alleviated in the HvGST13ox Arabidopsis plants compared with the wild type. Accumulation of ROS and cell death apparently decreased in HvGST13ox Arabidopsis plants treated with trichothecene. Paraquat herbicide is well known to induce the generation of ROS in plants. Paraquat-induced growth retardation was also suppressed in the HvGST13ox Arabidopsis plants compared with wild type. The inoculation of F. graminearum causes disease symptoms that are markedly decreased in HvGST13ox Arabidopsis plants compared to those in the wild type. Therefore, the HvGST13 gene suppressed the phytotoxic activity of trichothecenes in plants, possibly by the scavenging of ROS.
Collapse
Affiliation(s)
- Ninik Nihayatul Wahibah
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Kampus Bina Widya Km 12.5 Simpang Baru Panam, Pekanbaru 28293, Indonesia
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomokazu Tsutsui
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Daisuke Tamaoki
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| |
Collapse
|
71
|
Abstract
Various fluorescent stains and vital dyes have been used to identify dead cells in animal tissues and celi lines. In plants, fluorescein diacetate and propidium iodide have been used to label nuclei and to identify necrotic cells in plant protoplasts and 4,6-diamidino-2-phenylindole (DAPI) has been used to mark senescing cells in sections of roots. However, these dyes may be problematic when used with intact plant tissue with well-developed cells walls which may impede dye penetration. Endogenous fluorescence has been used to identify dead cells in intact and sectioned plant tissues. Published procedures typically employ ultraviolet (UV) excitation wavelengths of 340-380 nm and emission wavelengths of 400- 425 nm, thus requiring a UV filter set.
Collapse
|
72
|
Dou L, He K, Higaki T, Wang X, Mao T. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. PLANT PHYSIOLOGY 2018; 176:2071-2081. [PMID: 29431630 PMCID: PMC5841701 DOI: 10.1104/pp.17.01124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/26/2018] [Indexed: 05/23/2023]
Abstract
Regulation of cortical microtubule reorganization is essential for plant cell survival under high salinity conditions. In response to salt stress, microtubules undergo rapid depolymerization followed by reassembly to form a new microtubule network that promotes cell survival; however, the upstream regulatory mechanisms for this recovery response are largely unknown. In this study, we demonstrate that ethylene signaling facilitates salt stress-induced reassembly of cortical microtubules in Arabidopsis (Arabidopsis thaliana). Microtubule depolymerization was not affected under salt stress following the suppression of ethylene signaling with Ag+ or in ethylene-insensitive mutants, whereas microtubule reassembly was significantly inhibited. ETHYLENE-INSENSITIVE3, a key transcription factor in the ethylene signaling pathway, was shown to play a central role in microtubule reassembly under salt stress. In addition, we performed functional characterization of the microtubule-stabilizing protein WAVE-DAMPENED2-LIKE5 (WDL5), which was found to promote ethylene-associated microtubule reassembly and plant salt stress tolerance. These findings indicate that ethylene signaling regulates microtubule reassembly by up-regulating WDL5 expression in response to salt stress, thereby implicating ethylene signaling in salt-stress tolerance in plants.
Collapse
Affiliation(s)
- Liru Dou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - KaiKai He
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuou-ku, Kumamoto 860-8555, Japan
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
73
|
Ten Prominent Host Proteases in Plant-Pathogen Interactions. Int J Mol Sci 2018; 19:ijms19020639. [PMID: 29495279 PMCID: PMC5855861 DOI: 10.3390/ijms19020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 12/16/2022] Open
Abstract
Proteases are enzymes integral to the plant immune system. Multiple aspects of defence are regulated by proteases, including the hypersensitive response, pathogen recognition, priming and peptide hormone release. These processes are regulated by unrelated proteases residing at different subcellular locations. In this review, we discuss 10 prominent plant proteases contributing to the plant immune system, highlighting the diversity of roles they perform in plant defence.
Collapse
|
74
|
Li R, Wang S, Sun R, He X, Liu Y, Song C. Xanthomonas oryzae pv. oryzae type III effector PthXo3JXOV suppresses innate immunity, induces susceptibility and binds to multiple targets in rice. FEMS Microbiol Lett 2018. [DOI: 10.1093/femsle/fny037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rongmei Li
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ronghua Sun
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang He
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongting Liu
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Congfeng Song
- College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
75
|
Nietzsche M, Guerra T, Alseekh S, Wiermer M, Sonnewald S, Fernie AR, Börnke F. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1. PLANT PHYSIOLOGY 2018; 176:1773-1792. [PMID: 29192025 PMCID: PMC5813543 DOI: 10.1104/pp.17.01461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity.
Collapse
Affiliation(s)
- Madlen Nietzsche
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| | - Tiziana Guerra
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marcel Wiermer
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, RG Molecular Biology of Plant-Microbe Interactions, 37077 Goettingen, Germany
| | - Sophia Sonnewald
- Friedrich-Alexander-Universität, Department of Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Frederik Börnke
- Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
76
|
Hassan JA, de la Torre‐Roche R, White JC, Lewis JD. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection. PLANT DIRECT 2018; 2:e00044. [PMID: 31245710 PMCID: PMC6508533 DOI: 10.1002/pld3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 05/25/2023]
Abstract
Pseudomonas syringae is a gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful infection or immunity, including the genetics of the host, the genetics of the pathogen, and the environment. Environmental factors that contribute to a successful interaction can include temperature, light, and the circadian clock, as well as the soil environment. As silicon-amended Resilience soil is advertised to enhance plant health, we sought to examine the extent to which this soil might affect the behavior of the A. thaliana-P. syringae model pathosystem and to characterize the mechanisms through which these effects may occur. We found that plants grown in Si-amended Resilience soil displayed enhanced resistance to bacteria compared to plants grown in non-Si-amended Sunshine soil, and salicylic acid biosynthesis and signaling were not required for resistance. Although silicon has been shown to contribute to broad-spectrum resistance, our data indicate that silicon is not the direct cause of enhanced resistance and that the Si-amended Resilience soil has additional properties that modulate plant resistance. Our work demonstrates the importance of environmental factors, such as soil in modulating interactions between the plant and foliar pathogens, and highlights the significance of careful annotation of the environmental conditions under which plant-pathogen interactions are studied.
Collapse
Affiliation(s)
- Jana A. Hassan
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
| | | | - Jason C. White
- Department of Analytical ChemistryThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Jennifer D. Lewis
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
- Plant Gene Expression CenterUnited States Department of AgricultureAlbanyCAUSA
| |
Collapse
|
77
|
Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2018; 217:739-755. [PMID: 29076546 DOI: 10.1111/nph.14842] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Cerato-platanin proteins (CPs), which are secreted by filamentous fungi, are phytotoxic to host plants, but their functions have not been well defined to date. Here we characterized a CP (SsCP1) from the necrotrophic phytopathogen Sclerotinia sclerotiorum. Sscp1 transcripts accumulated during plant infection, and deletion of Sscp1 significantly reduced virulence. SsCP1 could induce significant cell death when expressed in Nicotiana benthamiana. Using yeast two-hybrid, GST pull-down, co-immunoprecipitation and bimolecular florescence complementation, we found that SsCP1 interacts with PR1 in the apoplast to facilitate infection by S. sclerotiorum. Overexpressing PR1 enhanced resistance to the wild-type strain, but not to the Sscp1 knockout strain of S. sclerotiorum. Sscp1-expressing transgenic plants showed increased concentrations of salicylic acid (SA) and higher levels of resistance to several plant pathogens (namely Botrytis cinerea, Alternaria brassicicola and Golovinomyces orontii). Our results suggest that SsCP1 is important for virulence of S. sclerotiorum and that it can be recognized by plants to trigger plant defense responses. Our results also suggest that the SA signaling pathway is involved in CP-mediated plant defense .
Collapse
Affiliation(s)
- Guogen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Liguang Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yingdi Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - David B Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| |
Collapse
|
78
|
Aggarwal P, Challa KR, Rath M, Sunkara P, Nath U. Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs. Methods Mol Biol 2018; 1830:61-79. [PMID: 30043364 DOI: 10.1007/978-1-4939-8657-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transcription factors play key regulatory roles in all the life processes across kingdoms. In plants, the genome of a typical model species such as Arabidopsis thaliana encodes over 1500 transcription factors that regulate the expression dynamics of all the genes in time and space. Therefore, studying their function by analyzing the loss and gain-of-function lines is of prime importance in basic plant biology and its agricultural application. However, the current approach of knocking out genes often causes embryonic lethal phenotype, while inactivating one or two members of a redundant gene family yields little phenotypic changes, thereby making the functional analysis a technically challenging task. In such cases, inducible knock-down or overexpression of transcription factors appears to be a more effective approach. Restricting the transcription factors in the cytoplasm by fusing them with animal glucocorticoid/estrogen receptors (GR/ER) and then re-localizing them to the nucleus by external application of animal hormone analogues has been a useful method of gene function analysis in the model plants. In this chapter, we describe the recent advancements in the GR and ER expression systems and their use in analyzing the function of transcription factors in Arabidopsis.
Collapse
Affiliation(s)
- Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
79
|
Kim NY, Jang YJ, Park OK. AP2/ERF Family Transcription Factors ORA59 and RAP2.3 Interact in the Nucleus and Function Together in Ethylene Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1675. [PMID: 30510560 PMCID: PMC6254012 DOI: 10.3389/fpls.2018.01675] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 05/19/2023]
Abstract
The gaseous plant hormone ethylene is a key signaling molecule regulating plant growth, development, and defense against pathogens. Octadecanoid-responsive arabidopsis 59 (ORA59) is an ethylene response factor (ERF) transcription factor and has been suggested to integrate ethylene and jasmonic acid signaling and regulate resistance to necrotrophic pathogens. Here we screened for ORA59 interactors using the yeast two-hybrid system to elucidate the molecular function of ORA59. This led to the identification of RELATED TO AP2.3 (RAP2.3), another ERF transcription factor belonging to the group VII ERF family. In binding assays, ORA59 and RAP2.3 interacted in the nucleus and showed ethylene-dependent nuclear localization. ORA59 played a positive role in ethylene-regulated responses, including the triple response, featured by short, thick hypocotyl and root, and exaggerated apical hook in dark-grown seedlings, and resistance to the necrotrophic pathogen Pectobacterium carotovorum, as shown by the increased and decreased ethylene sensitivity and disease resistance in ORA59-overexpressing (ORA59OE) and null mutant (ora59) plants, respectively. In genetic crosses, ORA59OE rap2.3 crossed lines lost ORA59-mediated positive effects and behaved like rap2.3 mutant. These results suggest that ORA59 physically interacts with RAP2.3 and that this interaction is important for the regulatory roles of ORA59 in ethylene responses.
Collapse
|
80
|
Zhou Q, Zhang Z, Liu T, Gao B, Xiong X. Identification and Map-Based Cloning of the Light-Induced Lesion Mimic Mutant 1 ( LIL1) Gene in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2122. [PMID: 29312386 PMCID: PMC5742160 DOI: 10.3389/fpls.2017.02122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
The hypersensitive response (HR) is a mechanism by which plants prevent the spread of pathogen. Despite extensive study, the molecular mechanisms underlying HR remain poorly understood. Lesion mimic mutants (LMMs), such as LIL1 that was identified in an ethylmethane sulfonate mutagenized population of Indica rice (Oryza sativa L. ssp. Indica) 93-11, can be used to study the HR. Under natural field conditions, the leaves of LIL1 mutant plants exhibited light-induced, small, rust-red lesions that first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. Histochemical staining indicated that LIL1 lesions displayed an abnormal accumulation of reactive oxygen species (ROS) and resulted from programmed cell death (PCD). The LIL1 mutants also displayed increased expression of defense-related genes and enhanced resistance to rice blast fungus (Magnaporthe grisea). Genetic analysis showed that mutation of LIL1 created a semi-dominant allele. Using 1,758 individuals in the F2 population, LIL1 was mapped in a 222.3 kb region on the long arm of chromosome 7. That contains 12 predicted open reading frames (ORFs). Sequence analysis of these 12 candidate genes revealed a G to A base substitution in the fourth exon of LOC_Os07g30510, a putative cysteine-rich receptor-like kinase (CRK), which led to an amino acid change (Val 429 to Ile) in the LIL1 protein. Comparison of the transcript accumulation of the 12 candidate genes between LIL1 and 93-11 revealed that LOC_Os07g30510 was up-regulated significantly in LIL1. Overexpression of the LOC_Os07g30510 gene from LIL1 induced a LIL1-like lesion phenotype in Nipponbare. Thus, LIL1 is a novel LMM in rice that will facilitate the further study of the molecular mechanisms of HR and the rice blast resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| | - Zhifei Zhang
- Agricultural College, Hunan Agricultural University, Changsha, China
| | - Tiantian Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bida Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| |
Collapse
|
81
|
Escudero V, Jordá L, Sopeña-Torres S, Mélida H, Miedes E, Muñoz-Barrios A, Swami S, Alexander D, McKee LS, Sánchez-Vallet A, Bulone V, Jones AM, Molina A. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:386-399. [PMID: 28792629 PMCID: PMC5641240 DOI: 10.1111/tpj.13660] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/10/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Sanjay Swami
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Danny Alexander
- Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713, USA
| | - Lauren S. McKee
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Glycoscience, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
| | - Vincent Bulone
- Royal Institute of Technology (KTH), School of Biotechnology, Division of Glycoscience, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040-Madrid, Spain
- Corresponding author:
| |
Collapse
|
82
|
Wang F, Wang L, Qiao L, Chen J, Pappa MB, Pei H, Zhang T, Chang C, Dong CH. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:810-824. [PMID: 28708312 PMCID: PMC5680097 DOI: 10.1111/jipb.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/11/2017] [Indexed: 05/06/2023]
Abstract
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Belen Pappa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: Chun-Hai Dong ()
| |
Collapse
|
83
|
Zhou S, Chen Q, Li X, Li Y. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:112-121. [PMID: 28969791 DOI: 10.1016/j.plantsci.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 05/07/2023]
Abstract
Microtubules (MTs) are highly dynamical structures that play crucial roles in plant development and in response to environmental signals and stress conditions. MT-associated proteins (MAPs) play important roles in regulating the organization of MT arrays. MAP65 is a family of plant MT-bundling proteins. Here, we determined the role of MAP65-1 in the response to salt stress. MAP65-1 is involved not only in regulating the depolymerization, but also in the following reorganization of cortical MTs in salt stress responses. In addition, the depolymerization of the cortical MTs affected the survival of seedlings during salt stress, and map65-1 mutants had enhanced salt hypersensitivity levels. MAP65-1 interacted with mitogen-activated protein kinase (MPK) 3 and 6; however, only the mpk6 mutant exhibited hypersensitivity to salt stress, and MPK6 was involved in regulating the salt stress-induced depolymerization of cortical MTs. Thus, MAP65-1 plays a critical role in the response to salt stress and is required for regulating the rapid depolymerization and reorganization of cortical MTs. MAP65-1 interacts with MPK6, not MPK3, affecting the MT's dynamic instability which is critical for plant salt-stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
84
|
Involvement of Arabidopsis thaliana endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew-induced and AtCPR5-controlled cell death. PLoS One 2017; 12:e0183870. [PMID: 28846731 PMCID: PMC5573131 DOI: 10.1371/journal.pone.0183870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
Programmed cell death (PCD) is a prerequisite for successful development and it limits the spread of biotrophic pathogens in a rapid hypersensitive response at the site of infection. KDEL-tailed cysteine endopeptidases (KDEL CysEP) are a subgroup of papain-type cysteine endopeptidases expressed in tissues undergoing PCD. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. We have previously shown that AtCEP1 is a factor of basal resistance to powdery mildew caused by the biotrophic ascomycete Erysiphe cruciferarum, and is expressed in spatiotemporal association with the late fungal development on Arabidopsis leaves. The endoplasmic reticulum-localized proenzyme of AtCEP1 was further visualized at the haustorial complex encased with callose. The AtCPR5 gene (CONSTITUTIVE EXPRESSION OF PR GENES 5) is a regulator of expression of pathogenesis related genes. Loss of AtCPR5 leads to spontaneous expression of chlorotic lesions which was associated with enhanced expression of AtCEP1. We used the atcpr5-2 mutant plants and the atcep1 atcpr5-2 double mutants harboring a non-functional reporter (PCEP1::pre-pro-3xHA-EGFP-KDEL) for visualization of AtCEP1 promoter activity. We found the specific up-regulation of AtCEP1 in direct neighborhood of spreading leaf lesions thus likely representing cells undergoing PCD. Furthermore, we found a strong resistance of atcpr5 mutant plants against infection with E. cruciferarum. Loss of AtCEP1 had no obvious influence on the strong resistance of atcpr5-2 mutant plants against infection with E. cruciferarum. However, the area of necrotic leaf lesions associated with E. cruciferarum colonies was significantly larger in atcpr5-2 as compared to atcep1 atcpr5-2 double mutant plants. The presence of AtCEP1 thus contributes to AtCPR5-controlled PCD at the sites of powdery mildew infection.
Collapse
|
85
|
Aguilar-Rangel MR, Chávez Montes RA, González-Segovia E, Ross-Ibarra J, Simpson JK, Sawers RJ. Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño. PeerJ 2017; 5:e3737. [PMID: 28852597 PMCID: PMC5572453 DOI: 10.7717/peerj.3737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. METHODS Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. RESULTS A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. DISCUSSION Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data, allele specific expression analysis of plants grown under benign conditions provides an attractive strategy to identify functional variation potentially linked to local adaptation.
Collapse
Affiliation(s)
- M. Rocío Aguilar-Rangel
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Ricardo A. Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- ABACUS: Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento del Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ocoyoacac, Estado de México, Mexico
| | - Eric González-Segovia
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology and Genome Center, University of California, Davis, CA, United States of America
| | - June K. Simpson
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Ruairidh J.H. Sawers
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| |
Collapse
|
86
|
Sutipatanasomboon A, Herberth S, Alwood EG, Häweker H, Müller B, Shahriari M, Zienert AY, Marin B, Robatzek S, Praefcke GJK, Ayscough KR, Hülskamp M, Schellmann S. Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. Sci Rep 2017; 7:8677. [PMID: 28819237 PMCID: PMC5561093 DOI: 10.1038/s41598-017-08577-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022] Open
Abstract
Cell death, autophagy and endosomal sorting contribute to many physiological, developmental and immunological processes in plants. They are mechanistically interconnected and interdependent, but the molecular basis of their mutual regulation has only begun to emerge in plants. Here, we describe the identification and molecular characterization of CELL DEATH RELATED ENDOSOMAL FYVE/SYLF PROTEIN 1 (CFS1). The CFS1 protein interacts with the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT I (ESCRT-I) component ELCH (ELC) and is localized at ESCRT-I-positive late endosomes likely through its PI3P and actin binding SH3YL1 Ysc84/Lsb4p Lsb3p plant FYVE (SYLF) domain. Mutant alleles of cfs1 exhibit auto-immune phenotypes including spontaneous lesions that show characteristics of hypersensitive response (HR). Autoimmunity in cfs1 is dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-mediated effector-triggered immunity (ETI) but independent from salicylic acid. Additionally, cfs1 mutants accumulate the autophagy markers ATG8 and NBR1 independently from EDS1. We hypothesize that CFS1 acts at the intersection of autophagosomes and endosomes and contributes to cellular homeostasis by mediating autophagosome turnover.
Collapse
Affiliation(s)
| | - Stefanie Herberth
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Ellen G Alwood
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Heidrun Häweker
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Britta Müller
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Mojgan Shahriari
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
- Institut für Biologie II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg i. Br., Germany
| | - Anke Y Zienert
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Birger Marin
- Botanik I, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Gerrit J K Praefcke
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Division of Haematology/Transfusion Medicine, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Kathryn R Ayscough
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Martin Hülskamp
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| | - Swen Schellmann
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| |
Collapse
|
87
|
Zhou S, Chen Q, Sun Y, Li Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1512-1530. [PMID: 28337773 DOI: 10.1111/pce.12950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/23/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes - DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen-activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress-induced MT depolymerization, and the PTP-MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
88
|
Yue E, Liu Z, Li C, Li Y, Liu Q, Xu JH. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). PLANT CELL REPORTS 2017; 36:1171-1182. [PMID: 28451819 DOI: 10.1007/s00299-017-2146-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 05/23/2023]
Abstract
Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H2O2, and overexpressing miR529a can increase plant tolerance to high level of H2O2, resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H2O2 related response genes could improve oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Erkui Yue
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Zhen Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yu Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Qiuxiang Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
89
|
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 2017; 18:496. [PMID: 28662642 PMCID: PMC5492280 DOI: 10.1186/s12864-017-3871-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CB-1 and K326 are closely related tobacco cultivars; however, their cold tolerance capacities are different. K326 is much more cold tolerant than CB-1. RESULTS We studied the transcriptomes and metabolomes of CB-1 and K326 leaf samples treated with cold stress. Totally, we have identified 14,590 differentially expressed genes (DEGs) in CB-1 and 14,605 DEGs in K326; there was also 200 differentially expressed metabolites in CB-1 and 194 in K326. Moreover, there were many overlapping genes (around 50%) that were cold-responsive in both plant cultivars, although there were also many differences in the cold responsive genes between the two cultivars. Importantly, for most of the overlapping cold responsive genes, the extent of the changes in expression were typically much more pronounced in K326 than in CB-1, which may help explain the superior cold tolerance of K326. Similar results were found in the metabolome analysis, particularly with the analysis of primary metabolites, including amino acids, organic acids, and sugars. The large number of specific responsive genes and metabolites highlight the complex regulatory mechanisms associated with cold stress in tobacco. In addition, our work implies that the energy metabolism and hormones may function distinctly between CB-1 and K326. CONCLUSIONS Differences in gene expression and metabolite levels following cold stress treatment seem likely to have contributed to the observed difference in the cold tolerance phenotype of these two tobacco cultivars.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|
90
|
Duke KA, Becker MG, Girard IJ, Millar JL, Dilantha Fernando WG, Belmonte MF, de Kievit TR. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genomics 2017. [PMID: 28629321 PMCID: PMC5477169 DOI: 10.1186/s12864-017-3848-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Results Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. Conclusion In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3848-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly A Duke
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jenna L Millar
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
91
|
Huang X, Zhang Y, Zhang X, Shi Y. Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:94-103. [PMID: 28483057 DOI: 10.1016/j.plantsci.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 05/26/2023]
Abstract
Long-chain base kinases (LCBKs) phosphorylate sphingolipid-derived long-chain base lipids and participate in the regulation of stress responses in plants. Here, we isolated a novel Arabidopsis thaliana mutant, lcbk1-2, which was extremely sensitive to freezing temperatures with or without cold acclimation. Physiological assays revealed that concentrations of osmolytes (proline and soluble sugars) and the activity of superoxide dismutase were significantly decreased in the lcbk1-2 mutant, compared with wild type. Also, the balance of reactive oxygen species (ROS) was disrupted in the lcbk1-2 mutant with or without cold treatment and, consistent with this, gene expression profiling analysis showed that the expression of cold-responsive ROS-scavenging genes was substantially decreased in the lcbk1-2 mutant. The expression of membrane lipid-related genes, which are linked to freezing tolerance in plants, was also impaired in the lcbk1-2 mutant. Furthermore, transgenic lines overexpressing LCBK1 showed enhanced freezing tolerance with over-accumulation of osmolytes. Collectively, our results suggested that LCBK1 functions as a novel positive regulator of freezing tolerance in Arabidopsis and may participate in the accumulation of osmolytes, the regulation of ROS homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Xiaozhen Huang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Yao Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
92
|
Velásquez AC, Oney M, Huot B, Xu S, He SY. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 214:1673-1687. [PMID: 28295393 PMCID: PMC5423860 DOI: 10.1111/nph.14517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/07/2017] [Indexed: 05/03/2023]
Abstract
Plants are continuously threatened by pathogen attack and, as such, they have evolved mechanisms to evade, escape and defend themselves against pathogens. However, it is not known what types of defense mechanisms a plant would already possess to defend against a potential pathogen that has not co-evolved with the plant. We addressed this important question in a comprehensive manner by studying the responses of 1041 accessions of Arabidopsis thaliana to the foliar pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We characterized the interaction using a variety of established methods, including different inoculation techniques, bacterial mutant strains, and assays for the hypersensitive response, salicylic acid (SA) accumulation and reactive oxygen species production . Fourteen accessions showed resistance to infection by Pst DC3000. Of these, two accessions had a surface-based mechanism of resistance, six showed a hypersensitive-like response while three had elevated SA levels. Interestingly, A. thaliana was discovered to have a recognition system for the effector AvrPto, and HopAM1 was found to modulate Pst DC3000 resistance in two accessions. Our comprehensive study has significant implications for the understanding of natural disease resistance mechanisms at the species level and for the ecology and evolution of plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Matthew Oney
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
| | - Bethany Huot
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shu Xu
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, P. R. China
| | - Sheng Yang He
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
93
|
Wang Z, Han Q, Zi Q, Lv S, Qiu D, Zeng H. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae. PLoS One 2017; 12:e0175734. [PMID: 28419172 PMCID: PMC5395183 DOI: 10.1371/journal.pone.0175734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023] Open
Abstract
Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.
Collapse
Affiliation(s)
- Zhenzhen Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Zi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shun Lv
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
94
|
Pidon H, Ghesquière A, Chéron S, Issaka S, Hébrard E, Sabot F, Kolade O, Silué D, Albar L. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:807-818. [PMID: 28144699 DOI: 10.1007/s00122-017-2853-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/04/2017] [Indexed: 05/24/2023]
Abstract
A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.
Collapse
Affiliation(s)
- Hélène Pidon
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Sophie Chéron
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Souley Issaka
- Africa Rice Center, Cotonou, Benin
- FSAE, Université de Tillabéri, Tillabéri, Niger
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Université de Montpellier, Montpellier, France
| | - François Sabot
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Olufisayo Kolade
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
- Africa Rice Center, Cotonou, Benin
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France.
| |
Collapse
|
95
|
Zhang S, Li C, Wang R, Chen Y, Shu S, Huang R, Zhang D, Li J, Xiao S, Yao N, Yang C. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling. PLANT PHYSIOLOGY 2017; 173:2294-2307. [PMID: 28250067 PMCID: PMC5373041 DOI: 10.1104/pp.16.00008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/27/2017] [Indexed: 05/18/2023]
Abstract
Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.
Collapse
Affiliation(s)
- Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Cui Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Rui Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Yaxue Chen
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Si Shu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Daowei Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Jian Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Shi Xiao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Nan Yao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| |
Collapse
|
96
|
Narusaka M, Iuchi S, Narusaka Y. Analyses of natural variation indicates that the absence of RPS4/RRS1 and amino acid change in RPS4 cause loss of their functions and resistance to pathogens. PLANT SIGNALING & BEHAVIOR 2017; 12:e1293218. [PMID: 28277970 PMCID: PMC5399910 DOI: 10.1080/15592324.2017.1293218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 06/01/2023]
Abstract
A pair of Arabidopsis thaliana resistance proteins, RPS4 and RRS1, recognizes the cognate Avr effector from the bacterial pathogens Pseudomonas syringae pv. tomato expressing avrRps4 (Pst-avrRps4), Ralstonia solanacearum, and the fungal pathogen Colletotrichum higginsianum and leads to defense signaling activation against the pathogens. In the present study, we analyzed 14 A. thaliana accessions for natural variation in Pst-avrRps4 and C. higginsianum susceptibility, and found new compatible and incompatible Arabidopsis-pathogen interactions. We first found that A. thaliana accession Cvi-0 is susceptible to Pst-avrRps4. Interestingly, the genome sequence assembly indicated that Cvi-0 lost both RPS4 and RRS1, but not RPS4B and RRS1B, compared to the reference genome sequence from A. thaliana accession Col-0. On the other hand, the natural variation analysis of RPS4 alleles from various Arabidopsis accessions revealed that one amino-acid change, Y950H, is responsible for the loss of resistance to Pst-avrRps4 and C. higginsianum in RLD-0. Our data indicate that the amino acid change, Y950H, in RPS4 resulted in the loss of both RPS4 and RRS1 functions and resistance to pathogens.
Collapse
Affiliation(s)
- Mari Narusaka
- Research Institute for Biological Sciences Okayama, Okayama, Japan
| | | | | |
Collapse
|
97
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
98
|
Zhang R, Qi H, Sun Y, Xiao S, Lim BL. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae. PLoS One 2017; 12:e0171040. [PMID: 28152090 PMCID: PMC5289510 DOI: 10.1371/journal.pone.0171040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 12/01/2022] Open
Abstract
Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hua Qi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuzhe Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- * E-mail:
| |
Collapse
|
99
|
Meng Z, Ruberti C, Gong Z, Brandizzi F. CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:486-501. [PMID: 27747970 PMCID: PMC5340296 DOI: 10.1111/tpj.13397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/07/2016] [Indexed: 05/13/2023]
Abstract
Completion of a plant's life cycle depends on successful prioritization of signaling favoring either growth or defense. Although hormones are pivotal regulators of growth-defense tradeoffs, the underlying signaling mechanisms remain obscure. The unfolded protein response (UPR) is essential for physiological growth as well as management of endoplasmic reticulum (ER) stress in unfavorable growth conditions. The plant UPR transducers are the kinase and ribonuclease IRE1 and the transcription factors bZIP28 and bZIP60. We analyzed management of the tradeoff between growth and ER stress defense by the stress response hormone salicylic acid (SA) and the UPR, which is modulated by SA via unknown mechanisms. We show that the plant growth and stress regulator CPR5, which represses accumulation of SA, favors growth in physiological conditions through inhibition of the SA-dependent IRE1-bZIP60 arm that antagonizes organ growth; CPR5 also favors growth in stress conditions through repression of ER stress-induced bZIP28/IRE1-bZIP60 arms. By demonstrating a physical interaction of CPR5 with bZIP60 and bZIP28, we provide mechanistic insights into CPR5-mediated modulation of UPR signaling. These findings define a critical surveillance strategy for plant growth-ER stress defense tradeoffs based on CPR5 and SA-modulated UPR signaling, whereby CPR5 acts as a positive modulator of growth in physiological conditions and in stress by antagonizing SA-dependent growth inhibition through UPR modulation.
Collapse
Affiliation(s)
- Zhe Meng
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology, Department Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
100
|
Lee DS, Kim YC, Kwon SJ, Ryu CM, Park OK. The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1. FRONTIERS IN PLANT SCIENCE 2017; 8:1856. [PMID: 29163585 PMCID: PMC5663720 DOI: 10.3389/fpls.2017.01856] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 05/20/2023]
Abstract
Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity.
Collapse
Affiliation(s)
- Dong Sook Lee
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Young Cheon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Sun Jae Kwon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, South Korea
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, South Korea
- *Correspondence: Ohkmae K. Park
| |
Collapse
|