51
|
Zimmermann P, Peredkov S, Abdala PM, DeBeer S, Tromp M, Müller C, van Bokhoven JA. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213466] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
52
|
Abstract
Understanding the relationship between entangled degrees of freedom (DOF) is a central problem in correlated materials and the possibility to influence their balance is promising toward realizing novel functionalities. In Sr2IrO4, the interaction between spin–orbit coupling and electron correlations induces an exotic ground state with magnetotransport properties promising for antiferromagnetic spintronics applications. Moreover, the coupling between orbital and spin DOF renders the magnetic structure sensitive to the Ir–O bond environment. To date, a detailed understanding of the microscopic spin-lattice and electron–phonon interactions is still lacking. Here, we use strain engineering to perturb the local lattice environment and, by tracking the response of the low-energy elementary excitations, we unveil the response of the microscopic spin and charge interactions. In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling.
Collapse
|
53
|
Dziarzhytski S, Biednov M, Dicke B, Wang A, Miedema PS, Engel RY, Schunck JO, Redlin H, Weigelt H, Siewert F, Behrens C, Sinha M, Schulte A, Grimm-Lebsanft B, Chiuzbăian SG, Wurth W, Beye M, Rübhausen M, Brenner G. The TRIXS end-station for femtosecond time-resolved resonant inelastic x-ray scattering experiments at the soft x-ray free-electron laser FLASH. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054301. [PMID: 32953941 PMCID: PMC7498279 DOI: 10.1063/4.0000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We present the experimental end-station TRIXS dedicated to time-resolved soft x-ray resonant inelastic x-ray scattering (RIXS) experiments on solid samples at the free-electron laser FLASH. Using monochromatized ultrashort femtosecond XUV/soft x-ray photon pulses in combination with a synchronized optical laser in a pump-probe scheme, the TRIXS setup allows measuring sub-picosecond time-resolved high-resolution RIXS spectra in the energy range from 35 eV to 210 eV, thus spanning the M-edge (M1 and M2,3) absorption resonances of 3d transition metals and N4,5-edges of rare earth elements. A Kirkpatrick-Baez refocusing mirror system at the first branch of the plane grating monochromator beamline (PG1) provides a focus of (6 × 6) μm2 (FWHM) at the sample. The RIXS spectrometer reaches an energy resolution of 35-160 meV over the entire spectral range. The optical laser system based on a chirped pulse optical parametric amplifier provides approximately 100 fs (FWHM) long photon pulses at the fundamental wavelength of 800 nm and a fluence of 120 mJ/cm2 at a sample for optical pump-XUV probe measurements. Furthermore, optical frequency conversion enables experiments at 400 nm or 267 nm with a fluence of 80 and 30 mJ/cm2, respectively. Some of the first (pump-probe) RIXS spectra measured with this setup are shown. The measured time resolution for time-resolved RIXS measurements has been characterized as 287 fs (FWHM) for the used energy resolution.
Collapse
Affiliation(s)
| | - M. Biednov
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - B. Dicke
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - A. Wang
- Sorbonne Université, CNRS (UMR 7614), Laboratoire de Chimie Physique-Matière et Rayonnement, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | - H. Redlin
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - H. Weigelt
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - F. Siewert
- Helmholtz Zentrum Berlin, Department Optics and Beamlines, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - C. Behrens
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Sinha
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - A. Schulte
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - B. Grimm-Lebsanft
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - S. G. Chiuzbăian
- Sorbonne Université, CNRS (UMR 7614), Laboratoire de Chimie Physique-Matière et Rayonnement, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - W. Wurth
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Beye
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Rübhausen
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - G. Brenner
- DESY, Notkestr. 85, Hamburg 22607, Germany
| |
Collapse
|
54
|
Shvyd'ko Y. Diffraction gratings with two-orders-of-magnitude-enhanced dispersion rates for sub-meV resolution soft X-ray spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1227-1234. [PMID: 32876597 DOI: 10.1107/s1600577520008292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Diffraction gratings with large angular dispersion rates are central to obtaining high spectral resolution in grating spectrometers operating over a broad spectral range from infrared to soft X-ray domains. The greatest challenge is of course to achieve large dispersion rates in the short-wavelength X-ray domain. Here it is shown that crystals in non-coplanar asymmetric X-ray Bragg diffraction can function as high-reflectance broadband soft X-ray diffraction gratings with dispersion rates that are at least two orders of magnitude larger than those that are possible with state-of-the-art man-made gratings. This opens new opportunities to design and implement soft X-ray resonant inelastic scattering (RIXS) spectrometers with spectral resolutions that are up to two orders of magnitude higher than what is currently possible, to further advance a very dynamic field of RIXS spectroscopy, and to make it competitive with inelastic neutron scattering. Examples of large-dispersion-rate crystal diffraction gratings operating near the 930 eV L3 absorption edge in Cu and of the 2.838 keV L3-edge in Ru are presented.
Collapse
Affiliation(s)
- Yuri Shvyd'ko
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
55
|
Schröter NBM, Stolz S, Manna K, de Juan F, Vergniory MG, Krieger JA, Pei D, Schmitt T, Dudin P, Kim TK, Cacho C, Bradlyn B, Borrmann H, Schmidt M, Widmer R, Strocov VN, Felser C. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 2020; 369:179-183. [DOI: 10.1126/science.aaz3480] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/07/2020] [Indexed: 11/02/2022]
Abstract
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (C). Nodal band crossings with linear dispersion are expected to have at most |C|=4, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.
Collapse
Affiliation(s)
| | - Samuel Stolz
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Fernando de Juan
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Maia G. Vergniory
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Jonas A. Krieger
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratorium für Festkörperphysik, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ding Pei
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Barry Bradlyn
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA
| | - Horst Borrmann
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Marcus Schmidt
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Roland Widmer
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Vladimir N. Strocov
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| |
Collapse
|
56
|
Sanchez DS, Chang G, Belopolski I, Lu H, Yin JX, Alidoust N, Xu X, Cochran TA, Zhang X, Bian Y, Zhang SS, Liu YY, Ma J, Bian G, Lin H, Xu SY, Jia S, Hasan MZ. Observation of Weyl fermions in a magnetic non-centrosymmetric crystal. Nat Commun 2020; 11:3356. [PMID: 32620859 PMCID: PMC7335064 DOI: 10.1038/s41467-020-16879-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/19/2020] [Indexed: 11/21/2022] Open
Abstract
The absence of inversion symmetry in non-centrosymmetric materials has a fundamental role in the emergence of a vast number of fascinating phenomena, like ferroelectricity, second harmonic generation, and Weyl fermions. The removal of time-reversal symmetry in such systems further extends the variety of observable magneto-electric and topological effects. Here we report the striking topological properties in the non-centrosymmetric spin-orbit magnet PrAlGe by combining spectroscopy and transport measurements. By photoemission spectroscopy below the Curie temperature, we observe topological Fermi arcs that correspond to projected topological charges of ±1 in the surface Brillouin zone. In the bulk, we observe the linear energy-dispersion of the Weyl fermions. We further observe a large anomalous Hall response in our magneto-transport measurements, which is understood to arise from diverging bulk Berry curvature fields associated with the Weyl band structure. These results establish a novel Weyl semimetal phase in magnetic non-centrosymmetric PrAlGe.
Collapse
Affiliation(s)
- Daniel S Sanchez
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Guoqing Chang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Ilya Belopolski
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Hong Lu
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Nasser Alidoust
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Rigetti Computing, Berkeley, CA, 94720, USA
| | - Xitong Xu
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
| | - Tyler A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Xiao Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
| | - Yi Bian
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
| | - Songtian S Zhang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Yi-Yuan Liu
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
| | - Jie Ma
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Bian
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Su-Yang Xu
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Shuang Jia
- International Center for Quantum Materials, School of Physics, Peking University, Peking, China
- Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
57
|
Wang Q, Horio M, von Arx K, Shen Y, John Mukkattukavil D, Sassa Y, Ivashko O, Matt CE, Pyon S, Takayama T, Takagi H, Kurosawa T, Momono N, Oda M, Adachi T, Haidar SM, Koike Y, Tseng Y, Zhang W, Zhao J, Kummer K, Garcia-Fernandez M, Zhou KJ, Christensen NB, Rønnow HM, Schmitt T, Chang J. High-Temperature Charge-Stripe Correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. PHYSICAL REVIEW LETTERS 2020; 124:187002. [PMID: 32441965 DOI: 10.1103/physrevlett.124.187002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T^{-2} towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La_{1.875}Ba_{0.125}CuO_{4}, La_{1.475}Nd_{0.4}Sr_{0.125}CuO_{4}, and La_{1.875}Sr_{0.125}CuO_{4}) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4} extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.
Collapse
Affiliation(s)
- Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - M Horio
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - K von Arx
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Y Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - D John Mukkattukavil
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Y Sassa
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - O Ivashko
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - C E Matt
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - S Pyon
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - T Takayama
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - H Takagi
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - T Kurosawa
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - N Momono
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
- Department of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - M Oda
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - T Adachi
- Department of Engineering and Applied Sciences, Sophia University, Tokyo 102-8554, Japan
| | - S M Haidar
- Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan
| | - Y Koike
- Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan
| | - Y Tseng
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - W Zhang
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - J Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - K Kummer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - M Garcia-Fernandez
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N B Christensen
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - H M Rønnow
- Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - T Schmitt
- Swiss Light Source, Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
58
|
Chuang YD, Feng X, Glans-Suzuki PA, Yang W, Padmore H, Guo J. A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:695-707. [PMID: 32381770 PMCID: PMC7206552 DOI: 10.1107/s1600577520004440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The optical design of a Hettrick-Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump-probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick-Underwood optical scheme, expanding their capabilities in materials research.
Collapse
Affiliation(s)
- Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Per-Anders Glans-Suzuki
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Howard Padmore
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| |
Collapse
|
59
|
Structural, Electronic and Magnetic Properties of a Few Nanometer-Thick Superconducting NdBa 2Cu 3O 7 Films. NANOMATERIALS 2020; 10:nano10040817. [PMID: 32344792 PMCID: PMC7221900 DOI: 10.3390/nano10040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Epitaxial films of high critical temperature (Tc) cuprate superconductors preserve their transport properties even when their thickness is reduced to a few nanometers. However, when approaching the single crystalline unit cell (u.c.) of thickness, Tc decreases and eventually, superconductivity is lost. Strain originating from the mismatch with the substrate, electronic reconstruction at the interface and alteration of the chemical composition and of doping can be the cause of such changes. Here, we use resonant inelastic x-ray scattering at the Cu L3 edge to study the crystal field and spin excitations of NdBa2Cu3O7−x ultrathin films grown on SrTiO3, comparing 1, 2 and 80 u.c.-thick samples. We find that even at extremely low thicknesses, the strength of the in-plane superexchange interaction is mostly preserved, with just a slight decrease in the 1 u.c. with respect to the 80 u.c.-thick sample. We also observe spectroscopic signatures for a decrease of the hole-doping at low thickness, consistent with the expansion of the c-axis lattice parameter and oxygen deficiency in the chains of the first unit cell, determined by high-resolution transmission microscopy and x-ray diffraction.
Collapse
|
60
|
Hepting M, Li D, Jia CJ, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang YD, Hussain Z, Zhou KJ, Nag A, Garcia-Fernandez M, Rossi M, Huang HY, Huang DJ, Shen ZX, Schmitt T, Hwang HY, Moritz B, Zaanen J, Devereaux TP, Lee WS. Electronic structure of the parent compound of superconducting infinite-layer nickelates. NATURE MATERIALS 2020; 19:381-385. [PMID: 31959951 DOI: 10.1038/s41563-019-0585-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 05/21/2023]
Abstract
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
Collapse
Affiliation(s)
- M Hepting
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - D Li
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - C J Jia
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - H Lu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - E Paris
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Y Tseng
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - X Feng
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M Osada
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - E Been
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Y Hikita
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Y-D Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Z Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - K J Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - M Rossi
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - H Y Huang
- NSRRC, Hsinchu Science Park, Hsinchu, Taiwan
| | - D J Huang
- NSRRC, Hsinchu Science Park, Hsinchu, Taiwan
| | - Z X Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, USA
| | - T Schmitt
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - H Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - B Moritz
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J Zaanen
- Instituut-Lorentz for theoretical Physics, Leiden University, Leiden, the Netherlands
| | - T P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - W S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
61
|
Gretarsson H, Ketenoglu D, Harder M, Mayer S, Dill FU, Spiwek M, Schulte-Schrepping H, Tischer M, Wille HC, Keimer B, Yavaş H. IRIXS: a resonant inelastic X-ray scattering instrument dedicated to X-rays in the intermediate energy range. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:538-544. [PMID: 32153295 PMCID: PMC7064114 DOI: 10.1107/s1600577519017119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/21/2019] [Indexed: 06/01/2023]
Abstract
A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5-3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.
Collapse
Affiliation(s)
- Hlynur Gretarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Didem Ketenoglu
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Manuel Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Simon Mayer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Frank-Uwe Dill
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Manfred Spiwek
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | - Markus Tischer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Hans-Christian Wille
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Bernhard Keimer
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Hasan Yavaş
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, 2757 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
62
|
Sjöblom P, Todorescu G, Urpelainen S. Understanding the mechanical limitations of the performance of soft X-ray monochromators at MAX IV laboratory. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:272-283. [PMID: 32153266 PMCID: PMC7064110 DOI: 10.1107/s1600577520000843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/22/2020] [Indexed: 05/24/2023]
Abstract
MAX IV is a fourth-generation, or diffraction-limited, synchrotron light source with a number of state-of-the-art beamlines. The performance of a beamline is, to a high degree, set by the energy resolution it can achieve, which in turn is governed to a large extent by the monochromator. During the design phase of a monochromator, the mechanical requirements must be fully understood and met with margin. During commissioning, the performance must be verified and optimized. In this paper, six soft X-ray monochromators at MAX IV beamlines (Bloch, Veritas, HIPPIE, SPECIES, FinEstBeAMS and SoftiMAX) are examined with a focus on their resolving power, energy range and the time required to change measurement range, as those parameters are dependent on each other. The monochromators have a modern commercial design, planned and developed in close collaboration with the vendors. This paper aims to present the current status of the commissioning at MAX IV with emphasis on elucidating the mechanical limitations on the performance of the monochromators. It contains analysis of the outcome and our approach to achieve fast and high-resolution monochromators.
Collapse
Affiliation(s)
- Peter Sjöblom
- MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden
| | | | - Samuli Urpelainen
- MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden
- Nano and Molecular Systems Research Unit, PO Box 3000, FI-90014 University of Oulu, Finland
| |
Collapse
|
63
|
Liu Y, Luchini A, Martí-Sánchez S, Koch C, Schuwalow S, Khan SA, Stankevič T, Francoual S, Mardegan JRL, Krieger JA, Strocov VN, Stahn J, Vaz CAF, Ramakrishnan M, Staub U, Lefmann K, Aeppli G, Arbiol J, Krogstrup P. Coherent Epitaxial Semiconductor-Ferromagnetic Insulator InAs/EuS Interfaces: Band Alignment and Magnetic Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8780-8787. [PMID: 31877013 DOI: 10.1021/acsami.9b15034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.
Collapse
Affiliation(s)
- Yu Liu
- Microsoft Quantum Materials Lab Copenhagen , 2800 Lyngby , Denmark
| | | | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Catalonia , Spain
| | - Christian Koch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Catalonia , Spain
| | - Sergej Schuwalow
- Microsoft Quantum Materials Lab Copenhagen , 2800 Lyngby , Denmark
| | - Sabbir A Khan
- Microsoft Quantum Materials Lab Copenhagen , 2800 Lyngby , Denmark
| | - Tomaš Stankevič
- Microsoft Quantum Materials Lab Copenhagen , 2800 Lyngby , Denmark
| | - Sonia Francoual
- Deutsches Elektronen-Synchrotron DESY , Hamburg 22603 , Germany
| | | | | | | | - Jochen Stahn
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Carlos A F Vaz
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | | | - Urs Staub
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | | | - Gabriel Aeppli
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
- ETH , CH-8093 Zürich , Switzerland
- EPFL , CH-1015 Lausanne , Switzerland
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Catalonia , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Catalonia , Spain
| | - Peter Krogstrup
- Microsoft Quantum Materials Lab Copenhagen , 2800 Lyngby , Denmark
| |
Collapse
|
64
|
Huang Q, Kozhevnikov IV, Sokolov A, Zhuang Y, Li T, Feng J, Siewert F, Viefhaus J, Zhang Z, Wang Z. Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region. OPTICS EXPRESS 2020; 28:821-845. [PMID: 32121805 DOI: 10.1364/oe.28.000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The problem of X-ray diffraction from multilayer-coated blazed diffraction gratings is analyzed. Invalidity of the conventional condition of maximal diffraction efficiency observed in previous experiments is explained theoretically. This is attributed to two factors: contribution of anti-blaze facets to diffraction efficiency and effect of strongly asymmetric diffraction. We demonstrate that a proper choice of the multilayer d-spacing allows to design grating with the diffraction efficiency close to the maximal possible one throughout the tender X-ray range (E∼1-5 keV). An optimization procedure is suggested for the first time to choose the optimal grating parameters and the operation diffraction order to obtain a high fix-focus constant and high diffraction efficiency simultaneously in a wide spectral range.
Collapse
|
65
|
Schulz C, Lieutenant K, Xiao J, Hofmann T, Wong D, Habicht K. Characterization of the soft X-ray spectrometer PEAXIS at BESSY II. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:238-249. [PMID: 31868758 PMCID: PMC6927519 DOI: 10.1107/s1600577519014887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 06/02/2023]
Abstract
The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s-1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.
Collapse
Affiliation(s)
- Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Tommy Hofmann
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Habicht
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
66
|
Elnaggar H, Wang RP, Lafuerza S, Paris E, Tseng Y, McNally D, Komarek A, Haverkort M, Sikora M, Schmitt T, de Groot FMF. Magnetic Contrast at Spin-Flip Excitations: An Advanced X-Ray Spectroscopy Tool to Study Magnetic-Ordering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36213-36220. [PMID: 31495171 PMCID: PMC6778912 DOI: 10.1021/acsami.9b10196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 06/01/2023]
Abstract
The determination of the local orientation and magnitude of the magnetization in spin textures plays a pivotal role in understanding and harnessing magnetic properties for technological applications. Here, we show that by employing the polarization dependence of resonant inelastic X-ray scattering (RIXS), we can directly probe the spin ordering with chemical and site selectivity. Applied on the prototypical ferrimagnetic mixed-valence system, magnetite ([Fe3+]A[Fe3+,Fe2+]BO4), we can distinguish spin-flip excitations at the A and B antiferromagnetically coupled Fe3+ sublattices and quantify the exchange field. Furthermore, it is possible to determine the orbital contribution to the magnetic moment from detailed angular dependence measurements. RIXS dichroism measurements performed at spin-flip excitations with nanometer spatial resolution will offer a powerful mapping contrast suitable for the characterization of magnetic ordering at interfaces and engineered spin textures.
Collapse
Affiliation(s)
- Hebatalla Elnaggar
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Ru-Pan Wang
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Sara Lafuerza
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Eugenio Paris
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Yi Tseng
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Daniel McNally
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Komarek
- Max-Planck-Institute
for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Maurits Haverkort
- Institut
für Theoritiche Physik, Universität
Heidelberg, Philosophenweg
19, 69120 Heidelberg, Germany
| | - Marcin Sikora
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Thorsten Schmitt
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frank M. F. de Groot
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
67
|
Vaz da Cruz V, Ignatova N, Couto RC, Fedotov DA, Rehn DR, Savchenko V, Norman P, Ågren H, Polyutov S, Niskanen J, Eckert S, Jay RM, Fondell M, Schmitt T, Pietzsch A, Föhlisch A, Gel’mukhanov F, Odelius M, Kimberg V. Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol. J Chem Phys 2019; 150:234301. [DOI: 10.1063/1.5092174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vinícius Vaz da Cruz
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Nina Ignatova
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Rafael C. Couto
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Daniil A. Fedotov
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Dirk R. Rehn
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Viktoriia Savchenko
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Sergey Polyutov
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Raphael M. Jay
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Mattis Fondell
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Thorsten Schmitt
- Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Annette Pietzsch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Faris Gel’mukhanov
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Victor Kimberg
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Siberian Federal University, 660041 Krasnoyarsk, Russia
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
68
|
Sokolov A, Huang Q, Senf F, Feng J, Lemke S, Alimov S, Knedel J, Zeschke T, Kutz O, Seliger T, Gwalt G, Schäfers F, Siewert F, Kozhevnikov IV, Qi R, Zhang Z, Li W, Wang Z. Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region. OPTICS EXPRESS 2019; 27:16833-16846. [PMID: 31252903 DOI: 10.1364/oe.27.016833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The optimized design of multilayer-coated blazed gratings (MLBG) for high-flux tender X-ray monochromators was systematically studied by numerical simulations. The resulting correlation between the multilayer d-spacing and grating blaze angle significantly deviated from the one predicted by conventional equations. Three high line density gratings with different blaze angles were fabricated and coated by the same Cr/C multilayer. The MLBG with an optimal blaze angle of 1.0° showed a record efficiency reaching 60% at 3.1 keV and 4.1 keV. The measured efficiencies of all three gratings were consistent with calculated results proving the validity of the numerical simulation and indicating a more rigorous way to design the optimal MLBG structure.
Collapse
|
69
|
Huang Q, Jia Q, Feng J, Huang H, Yang X, Grenzer J, Huang K, Zhang S, Lin J, Zhou H, You T, Yu W, Facsko S, Jonnard P, Wu M, Giglia A, Zhang Z, Liu Z, Wang Z, Wang X, Ou X. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy. Nat Commun 2019; 10:2437. [PMID: 31164646 PMCID: PMC6547753 DOI: 10.1038/s41467-019-10095-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/27/2019] [Indexed: 11/30/2022] Open
Abstract
Gratings, one of the most important energy dispersive devices, are the fundamental building blocks for the majority of optical and optoelectronic systems. The grating period is the key parameter that limits the dispersion and resolution of the system. With the rapid development of large X-ray science facilities, gratings with periodicities below 50 nm are in urgent need for the development of ultrahigh-resolution X-ray spectroscopy. However, the wafer-scale fabrication of nanogratings through conventional patterning methods is difficult. Herein, we report a maskless and high-throughput method to generate wafer-scale, multilayer gratings with period in the sub-50 nm range. They are fabricated by a vacancy epitaxy process and coated with X-ray multilayers, which demonstrate extremely large angular dispersion at approximately 90 eV and 270 eV. The developed new method has great potential to produce ultrahigh line density multilayer gratings that can pave the way to cutting edge high-resolution spectroscopy and other X-ray applications. Fabrication of wafer-scale nanogratings for X-ray spectroscopy is difficult especially for very high line densities. The authors use vacancy epitaxy to fabricate sub-50-nm-periodicity gratings, coated with multilayers for efficient operation, for use in ultra-high resolution x-ray spectroscopy.
Collapse
Affiliation(s)
- Qiushi Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qi Jia
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Feng
- Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hao Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaowei Yang
- Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Joerg Grenzer
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden, 01328, Germany
| | - Kai Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shibing Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajie Lin
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Zhou
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiangui You
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Stefan Facsko
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden, 01328, Germany
| | - Philippe Jonnard
- Sorbonne Université, Faculté des Sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, boîte courrier 1140, 4 place Jussieu F-75252, Paris cedex 05, France
| | - Meiyi Wu
- Sorbonne Université, Faculté des Sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, boîte courrier 1140, 4 place Jussieu F-75252, Paris cedex 05, France
| | - Angelo Giglia
- CNR Istituto Officina Materiali, Trieste, 34149, Italy
| | - Zhong Zhang
- Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhanshan Wang
- Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xi Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Ou
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200092, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
70
|
Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering. Nat Commun 2019; 10:1013. [PMID: 30833573 PMCID: PMC6399250 DOI: 10.1038/s41467-019-08979-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/13/2019] [Indexed: 11/09/2022] Open
Abstract
Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.
Collapse
|
71
|
Meng X, Guo Z, Wang Y, Zhang H, Han Y, Zhao G, Liu Z, Tai R. Design and performance of bending-magnet beamline BL02B at the SSRF. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:543-550. [PMID: 30855266 DOI: 10.1107/s1600577518018179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The BL02B bending-magnet beamline at the Shanghai Synchrotron Radiation Facility (SSRF) has been constructed and is now operational for ambient-pressure photoelectron spectroscopy (APPES) and photon-in/photon-out spectroscopy (PIPOS) experimental use. Optical optimization was implemented for realization of high performance, e.g. photon flux, energy-resolving power and focus spot size. X-ray photoelectron spectroscopy experiments show that the energy range extends from 40 to 2000 eV. Argon, nitrogen and neon gas core-shell excitation spectra indicate energy-resolving powers of over 1.4 × 104 @ 244 eV, 1.0 × 104 @ 401 eV and 7.0 × 103 @ 867 eV, respectively. The measured photon flux is 1.3 × 1011 photons s-1 @ E/ΔE = 3700 at 244 eV at the expected sample position, for the SSRF electron energy of 3.5 GeV and electron current of 240 mA. The spot sizes are 177 µm × 23 µm and 150 µm × 46 µm at the APPES and PIPOS samples, respectively.
Collapse
Affiliation(s)
- Xiangyu Meng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201800, People's Republic of China
| | - Zhi Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201800, People's Republic of China
| | - Yong Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201800, People's Republic of China
| | - Hui Zhang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, People's Republic of China
| | - Yong Han
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, People's Republic of China
| | - Gaofeng Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201800, People's Republic of China
| | - Zhi Liu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, People's Republic of China
| | - Renzhong Tai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201800, People's Republic of China
| |
Collapse
|
72
|
Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Proc Natl Acad Sci U S A 2019; 116:4058-4063. [PMID: 30782822 PMCID: PMC6410789 DOI: 10.1073/pnas.1815701116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 ± 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.
Collapse
|
73
|
Ivashko O, Horio M, Wan W, Christensen NB, McNally DE, Paris E, Tseng Y, Shaik NE, Rønnow HM, Wei HI, Adamo C, Lichtensteiger C, Gibert M, Beasley MR, Shen KM, Tomczak JM, Schmitt T, Chang J. Strain-engineering Mott-insulating La 2CuO 4. Nat Commun 2019; 10:786. [PMID: 30783084 PMCID: PMC6381167 DOI: 10.1038/s41467-019-08664-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2-xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
Collapse
Affiliation(s)
- O Ivashko
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - M Horio
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - W Wan
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - N B Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - D E McNally
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - E Paris
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - Y Tseng
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - N E Shaik
- Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - H M Rønnow
- Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - H I Wei
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - C Adamo
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - C Lichtensteiger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - M Gibert
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - M R Beasley
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - K M Shen
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - J M Tomczak
- Institute of Solid State Physics, Vienna University of Technology, A-1040, Vienna, Austria
| | - T Schmitt
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
74
|
Heilmann RK, Kolodziejczak J, Bruccoleri AR, Gaskin JA, Schattenburg ML. Demonstration of resolving power λ/Δλ > 10,000 for a space-based x-ray transmission grating spectrometer. APPLIED OPTICS 2019; 58:1223-1238. [PMID: 30873991 DOI: 10.1364/ao.58.001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
We present measurements of the resolving power of a soft x-ray spectrometer consisting of 200 nm period lightweight, alignment-insensitive critical-angle transmission (CAT) gratings and a lightweight slumped-glass Wolter-I focusing mirror pair. We measure and model contributions from source, mirrors, detector pixel size, and grating period variation to the natural linewidth spectrum of the Al-K α 1 α 2 doublet. Measuring up to the 18th diffraction order, we consistently obtain small broadening due to gratings corresponding to a minimum effective grating resolving power Rg>10,000 with 90% confidence. Upper limits are often compatible with Rg=∞. Independent fitting of different diffraction orders, as well as ensemble fitting of multiple orders at multiple wavelengths, gives compatible results. Our data leads to uncertainties for the Al-Kα doublet linewidth and line separation parameters two to three times smaller than values found in the literature. Data from three different gratings are mutually compatible. This demonstrates that CAT gratings perform in excess of the requirements for the Arcus Explorer mission and are suitable for next-generation space-based x-ray spectrometer designs with resolving power five to 10 times higher than the transmission grating spectrometer onboard the Chandra X-ray Observatory.
Collapse
|
75
|
Schlappa J, Kumar U, Zhou KJ, Singh S, Mourigal M, Strocov VN, Revcolevschi A, Patthey L, Rønnow HM, Johnston S, Schmitt T. Probing multi-spinon excitations outside of the two-spinon continuum in the antiferromagnetic spin chain cuprate Sr 2CuO 3. Nat Commun 2018; 9:5394. [PMID: 30568161 PMCID: PMC6300594 DOI: 10.1038/s41467-018-07838-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022] Open
Abstract
One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.
Collapse
Affiliation(s)
- J Schlappa
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| | - U Kumar
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - K J Zhou
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - S Singh
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - M Mourigal
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - V N Strocov
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - A Revcolevschi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud 11, UMR 8182, 91405, Orsay, France
| | - L Patthey
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - H M Rønnow
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - S Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - T Schmitt
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
76
|
Xu N, Wang ZW, Magrez A, Bugnon P, Berger H, Matt CE, Strocov VN, Plumb NC, Radovic M, Pomjakushina E, Conder K, Dil JH, Mesot J, Yu R, Ding H, Shi M. Evidence of a Coulomb-Interaction-Induced Lifshitz Transition and Robust Hybrid Weyl Semimetal in T_{d}-MoTe_{2}. PHYSICAL REVIEW LETTERS 2018; 121:136401. [PMID: 30312078 DOI: 10.1103/physrevlett.121.136401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of T_{d}-MoTe_{2}. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe_{2}, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material.
Collapse
Affiliation(s)
- N Xu
- Institute of Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Z W Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - A Magrez
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - P Bugnon
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - H Berger
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - C E Matt
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - N C Plumb
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - M Radovic
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - E Pomjakushina
- Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - K Conder
- Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - J H Dil
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - J Mesot
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - R Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - H Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| | - M Shi
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
77
|
Chikina A, Lechermann F, Husanu MA, Caputo M, Cancellieri C, Wang X, Schmitt T, Radovic M, Strocov VN. Orbital Ordering of the Mobile and Localized Electrons at Oxygen-Deficient LaAlO 3/SrTiO 3 Interfaces. ACS NANO 2018; 12:7927-7935. [PMID: 29995384 DOI: 10.1021/acsnano.8b02335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interfacing different transition-metal oxides opens a route to functionalizing their rich interplay of electron, spin, orbital, and lattice degrees of freedom for electronic and spintronic devices. Electronic and magnetic properties of SrTiO3-based interfaces hosting a mobile two-dimensional electron system (2DES) are strongly influenced by oxygen vacancies, which form an electronic dichotomy, where strongly correlated localized electrons in the in-gap states (IGSs) coexist with noncorrelated delocalized 2DES. Here, we use resonant soft-X-ray photoelectron spectroscopy to prove the eg character of the IGSs, as opposed to the t2g character of the 2DES in the paradigmatic LaAlO3/SrTiO3 interface. We furthermore separate the d xy and d xz/d xz orbital contributions based on deeper consideration of the resonant photoexcitation process in terms of orbital and momentum selectivity. Supported by a self-consistent combination of density functional theory and dynamical mean field theory calculations, this experiment identifies local orbital reconstruction that goes beyond the conventional eg- vs-t2g band ordering. A hallmark of oxygen-deficient LaAlO3/SrTiO3 is a significant hybridization of the eg and t2g orbitals. Our findings provide routes for tuning the electronic and magnetic properties of oxide interfaces through "defect engineering" with oxygen vacancies.
Collapse
Affiliation(s)
- Alla Chikina
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Frank Lechermann
- Institut für Theoretische Physik , Universität Hamburg , Jungiusstrasse 9 , Hamburg DE-20355 , Germany
| | - Marius-Adrian Husanu
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
- National Institute of Materials Physics , Atomistilor 405A , Magurele RO-077125 , Romania
| | - Marco Caputo
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Claudia Cancellieri
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
- Empa, Swiss Federal Laboratories for Materials Science & Technology , Ueberlandstrasse 129 , Duebendorf CH-8600 , Switzerland
| | - Xiaoqiang Wang
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Milan Radovic
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| |
Collapse
|
78
|
Horio M, Hauser K, Sassa Y, Mingazheva Z, Sutter D, Kramer K, Cook A, Nocerino E, Forslund OK, Tjernberg O, Kobayashi M, Chikina A, Schröter NBM, Krieger JA, Schmitt T, Strocov VN, Pyon S, Takayama T, Takagi H, Lipscombe OJ, Hayden SM, Ishikado M, Eisaki H, Neupert T, Månsson M, Matt CE, Chang J. Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates. PHYSICAL REVIEW LETTERS 2018; 121:077004. [PMID: 30169083 DOI: 10.1103/physrevlett.121.077004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k_{z} dispersion is observed along the nodal direction, whereas a significant antinodal k_{z} dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La_{2-x}Sr_{x}CuO_{4} cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.
Collapse
Affiliation(s)
- M Horio
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - K Hauser
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Y Sassa
- Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden
| | - Z Mingazheva
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - D Sutter
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - K Kramer
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - A Cook
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - E Nocerino
- Department of Applied Physics, KTH Royal Institute of Technology, Electrum 229, SE-16440 Stockholm Kista, Sweden
| | - O K Forslund
- Department of Applied Physics, KTH Royal Institute of Technology, Electrum 229, SE-16440 Stockholm Kista, Sweden
| | - O Tjernberg
- Department of Applied Physics, KTH Royal Institute of Technology, Electrum 229, SE-16440 Stockholm Kista, Sweden
| | - M Kobayashi
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - A Chikina
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - N B M Schröter
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - J A Krieger
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Schmitt
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - S Pyon
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - T Takayama
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - H Takagi
- Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
| | - O J Lipscombe
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - M Ishikado
- Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - H Eisaki
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - T Neupert
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - M Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, Electrum 229, SE-16440 Stockholm Kista, Sweden
| | - C E Matt
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
79
|
k-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat Commun 2018; 9:2653. [PMID: 29992961 PMCID: PMC6041315 DOI: 10.1038/s41467-018-04354-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022] Open
Abstract
Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects, and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor heterostructures with an ultrathin barrier layer, key elements in current high-frequency and high-power electronics. Its electronic structure is accessed with angle-resolved photoelectron spectroscopy whose probing depth is pushed to a few nanometers using soft-X-ray synchrotron radiation. The experiment yields direct k-space images of the electronic structure fundamentals of this system—the Fermi surface, band dispersions and occupancy, and the Fourier composition of wavefunctions encoded in the k-dependent photoemission intensity. We discover significant planar anisotropy of the electron Fermi surface and effective mass connected with relaxation of the interfacial atomic positions, which translates into nonlinear (high-field) transport properties of the GaN/AlGaN heterostructures as an anisotropy of the saturation drift velocity of the 2D electrons. Semiconductor heterostructures hosting two-dimensional electron gases are widely used today in high-electron-mobility transistors. Here, the authors probe the electronic structure in GaN/AlGaN, heterostructures, discovering planar anisotropy of the electron Fermi surface, offering new insights into transport properties.
Collapse
|
80
|
Kormondy KJ, Gao L, Li X, Lu S, Posadas AB, Shen S, Tsoi M, McCartney MR, Smith DJ, Zhou J, Lev LL, Husanu MA, Strocov VN, Demkov AA. Large positive linear magnetoresistance in the two-dimensional t 2g electron gas at the EuO/SrTiO 3 interface. Sci Rep 2018; 8:7721. [PMID: 29769572 PMCID: PMC5955958 DOI: 10.1038/s41598-018-26017-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
The development of novel nano-oxide spintronic devices would benefit greatly from interfacing with emergent phenomena at oxide interfaces. In this paper, we integrate highly spin-split ferromagnetic semiconductor EuO onto perovskite SrTiO3 (001). A careful deposition of Eu metal by molecular beam epitaxy results in EuO growth via oxygen out-diffusion from SrTiO3. This in turn leaves behind a highly conductive interfacial layer through generation of oxygen vacancies. Below the Curie temperature of 70 K of EuO, this spin-polarized two-dimensional t 2g electron gas at the EuO/SrTiO3 interface displays very large positive linear magnetoresistance (MR). Soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) reveals the t 2g nature of the carriers. First principles calculations strongly suggest that Zeeman splitting, caused by proximity magnetism and oxygen vacancies in SrTiO3, is responsible for the MR. This system offers an as-yet-unexplored route to pursue proximity-induced effects in the oxide two-dimensional t 2g electron gas.
Collapse
Affiliation(s)
- Kristy J Kormondy
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Lingyuan Gao
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Xiang Li
- Materials Science and Engineering Program/Mechanical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sirong Lu
- School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Agham B Posadas
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Shida Shen
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Maxim Tsoi
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Martha R McCartney
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, USA
| | - David J Smith
- Department of Physics, Arizona State University, Tempe, Arizona, 85287, USA
| | - Jianshi Zhou
- Materials Science and Engineering Program/Mechanical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Leonid L Lev
- Paul Scherrer Institute, Swiss Light Source, CH-5232, Villigen PSI, Switzerland.,National Research Centre "Kurchatov Institute", 1 Akademika Kurchatova pl., 123182, Moscow, Russia
| | - Marius-Adrian Husanu
- Paul Scherrer Institute, Swiss Light Source, CH-5232, Villigen PSI, Switzerland.,National Institute of Materials Physics, 405A Atomistilor Str., 077125, Magurele, Romania
| | - Vladimir N Strocov
- Paul Scherrer Institute, Swiss Light Source, CH-5232, Villigen PSI, Switzerland
| | - Alexander A Demkov
- Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
81
|
|
82
|
Matt CE, Sutter D, Cook AM, Sassa Y, Månsson M, Tjernberg O, Das L, Horio M, Destraz D, Fatuzzo CG, Hauser K, Shi M, Kobayashi M, Strocov VN, Schmitt T, Dudin P, Hoesch M, Pyon S, Takayama T, Takagi H, Lipscombe OJ, Hayden SM, Kurosawa T, Momono N, Oda M, Neupert T, Chang J. Direct observation of orbital hybridisation in a cuprate superconductor. Nat Commun 2018; 9:972. [PMID: 29511188 PMCID: PMC5840306 DOI: 10.1038/s41467-018-03266-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/01/2018] [Indexed: 11/19/2022] Open
Abstract
The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{x^2 - y^2}$$\end{document}dx2-y2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{z^2}$$\end{document}dz2) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity. The essential physics of cuprate superconductors is often described by single-band models. Here, Matt et al. report direct observation of a two-band electronic structure in La-based cuprates.
Collapse
Affiliation(s)
- C E Matt
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. .,Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.
| | - D Sutter
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - A M Cook
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Y Sassa
- Department of Physics and Astronomy, Uppsala University, SE-75121, Uppsala, Sweden
| | - M Månsson
- Materials Physics, KTH Royal Institute of Technology, SE-164 40, Kista, Stockholm, Sweden
| | - O Tjernberg
- Materials Physics, KTH Royal Institute of Technology, SE-164 40, Kista, Stockholm, Sweden
| | - L Das
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - M Horio
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - D Destraz
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - C G Fatuzzo
- Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - K Hauser
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - M Shi
- Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - M Kobayashi
- Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - T Schmitt
- Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - P Dudin
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - M Hoesch
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - S Pyon
- Department of Advanced Materials, University of Tokyo, Kashiwa, 277-8561, Japan
| | - T Takayama
- Department of Advanced Materials, University of Tokyo, Kashiwa, 277-8561, Japan
| | - H Takagi
- Department of Advanced Materials, University of Tokyo, Kashiwa, 277-8561, Japan
| | - O J Lipscombe
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - T Kurosawa
- Department of Physics, Hokkaido University, Sapporo, 060-0810, Japan
| | - N Momono
- Department of Physics, Hokkaido University, Sapporo, 060-0810, Japan.,Department of Applied Sciences, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - M Oda
- Department of Physics, Hokkaido University, Sapporo, 060-0810, Japan
| | - T Neupert
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
83
|
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat Chem 2018; 10:288-295. [DOI: 10.1038/nchem.2923] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023]
|
84
|
Electrons and Polarons at Oxide Interfaces Explored by Soft-X-Ray ARPES. SPECTROSCOPY OF COMPLEX OXIDE INTERFACES 2018. [DOI: 10.1007/978-3-319-74989-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
85
|
Ertan E, Savchenko V, Ignatova N, Vaz da Cruz V, Couto RC, Eckert S, Fondell M, Dantz M, Kennedy B, Schmitt T, Pietzsch A, Föhlisch A, Gel'mukhanov F, Odelius M, Kimberg V. Ultrafast dissociation features in RIXS spectra of the water molecule. Phys Chem Chem Phys 2018; 20:14384-14397. [DOI: 10.1039/c8cp01807c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The “pseudo-atomic” peak is formed significantly faster than the atomic-like peak in water RIXS.
Collapse
|
86
|
Schütz P, Di Sante D, Dudy L, Gabel J, Stübinger M, Kamp M, Huang Y, Capone M, Husanu MA, Strocov VN, Sangiovanni G, Sing M, Claessen R. Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}. PHYSICAL REVIEW LETTERS 2017; 119:256404. [PMID: 29303315 DOI: 10.1103/physrevlett.119.256404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO_{3} ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr_{2}IrO_{4} opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.
Collapse
Affiliation(s)
- P Schütz
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - D Di Sante
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - L Dudy
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - J Gabel
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Stübinger
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Kamp
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Y Huang
- Van der Waals-Zeeman Insitute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Capone
- CNR-IOM-Democritos National Simulation Centre and International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - M-A Husanu
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Sing
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - R Claessen
- Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
87
|
Wang RP, Liu B, Green RJ, Delgado-Jaime MU, Ghiasi M, Schmitt T, van Schooneveld MM, de Groot FMF. Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:24919-24928. [PMID: 29170686 PMCID: PMC5694969 DOI: 10.1021/acs.jpcc.7b06882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/27/2017] [Indexed: 05/19/2023]
Abstract
We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster-Kronig induced) nonresonant X-ray emission is a measure of ligand covalency.
Collapse
Affiliation(s)
- Ru-Pan Wang
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Boyang Liu
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robert J. Green
- Department
of Physics & Astronomy, University of
British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
| | - Mario Ulises Delgado-Jaime
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mahnaz Ghiasi
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Thorsten Schmitt
- Paul
Scherrer Institut, Swiss Light Source, CH-5232 Villigen
PSI, Switzerland
| | - Matti M. van Schooneveld
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail: . Tel: (+31) 302537400
| | - Frank M. F. de Groot
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail: . Tel: (+31) 302537400
| |
Collapse
|
88
|
Minola M, Lu Y, Peng YY, Dellea G, Gretarsson H, Haverkort MW, Ding Y, Sun X, Zhou XJ, Peets DC, Chauviere L, Dosanjh P, Bonn DA, Liang R, Damascelli A, Dantz M, Lu X, Schmitt T, Braicovich L, Ghiringhelli G, Keimer B, Le Tacon M. Crossover from Collective to Incoherent Spin Excitations in Superconducting Cuprates Probed by Detuned Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2017; 119:097001. [PMID: 28949586 DOI: 10.1103/physrevlett.119.097001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.
Collapse
Affiliation(s)
- M Minola
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Y Lu
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Y Y Peng
- CNISM, CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - G Dellea
- CNISM, CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - H Gretarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - M W Haverkort
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Y Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - X Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - X J Zhou
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - D C Peets
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - L Chauviere
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - P Dosanjh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - D A Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - A Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - M Dantz
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - X Lu
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - T Schmitt
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - L Braicovich
- CNISM, CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - G Ghiringhelli
- CNISM, CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - B Keimer
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - M Le Tacon
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Institut für Festkörperphysik, Karlsruher Institut für Technologie, Hermann-v.-Helmoltz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
89
|
Di Sante D, Das PK, Bigi C, Ergönenc Z, Gürtler N, Krieger JA, Schmitt T, Ali MN, Rossi G, Thomale R, Franchini C, Picozzi S, Fujii J, Strocov VN, Sangiovanni G, Vobornik I, Cava RJ, Panaccione G. Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe_{2}. PHYSICAL REVIEW LETTERS 2017; 119:026403. [PMID: 28753342 DOI: 10.1103/physrevlett.119.026403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 06/07/2023]
Abstract
By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe_{2}, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe_{2} around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
Collapse
Affiliation(s)
- Domenico Di Sante
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - Pranab Kumar Das
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34100 Trieste, Italy
| | - C Bigi
- Dipartimento di Fisica, Universitá di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - Z Ergönenc
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - N Gürtler
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - J A Krieger
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
- Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - T Schmitt
- Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen, Switzerland
| | - M N Ali
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - G Rossi
- Dipartimento di Fisica, Universitá di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - R Thomale
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - C Franchini
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - S Picozzi
- Consiglio Nazionale delle Ricerche (CNR-SPIN), Via Vetoio, L'Aquila 67100, Italy
| | - J Fujii
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| | - V N Strocov
- Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen, Switzerland
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - I Vobornik
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| | - R J Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - G Panaccione
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| |
Collapse
|
90
|
Marschall F, McNally D, Guzenko VA, Rösner B, Dantz M, Lu X, Nue L, Strocov V, Schmitt T, David C. Zone plates as imaging analyzers for resonant inelastic x-ray scattering. OPTICS EXPRESS 2017; 25:15624-15634. [PMID: 28789077 DOI: 10.1364/oe.25.015624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
We have implemented and successfully tested an off-axis transmission Fresnel zone plate as a novel type of analyzer optics for resonant inelastic x-ray scattering (RIXS). We achieved a spectral resolution of 64 meV at the nitrogen K-edge (E/dE = 6200), closely matching theoretical predictions. The fundamental advantage of transmission optics is the fact that it can provide stigmatic imaging properties. This opens up a variety of advanced RIXS configurations, such as efficient scanning RIXS, parallel detection for varying incident energy and time-resolved measurements.
Collapse
|
91
|
Fabbris G, Meyers D, Xu L, Katukuri VM, Hozoi L, Liu X, Chen ZY, Okamoto J, Schmitt T, Uldry A, Delley B, Gu GD, Prabhakaran D, Boothroyd AT, van den Brink J, Huang DJ, Dean MPM. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La_{2-x}Sr_{x}NiO_{4} Observed by X Rays. PHYSICAL REVIEW LETTERS 2017; 118:156402. [PMID: 28452512 DOI: 10.1103/physrevlett.118.156402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 05/23/2023]
Abstract
We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L_{3} edge of La_{2-x}Sr_{x}NiO_{4} (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.
Collapse
Affiliation(s)
- G Fabbris
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Meyers
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - L Xu
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - V M Katukuri
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - L Hozoi
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - X Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Z-Y Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J Okamoto
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - T Schmitt
- Research Department "Synchotron Radiation and Nanotechnology", Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - A Uldry
- Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - B Delley
- Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G D Gu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, United Kingdom
| | - A T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, United Kingdom
| | - J van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - D J Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - M P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
92
|
Qiao R, Li Q, Zhuo Z, Sallis S, Fuchs O, Blum M, Weinhardt L, Heske C, Pepper J, Jones M, Brown A, Spucces A, Chow K, Smith B, Glans PA, Chen Y, Yan S, Pan F, Piper LFJ, Denlinger J, Guo J, Hussain Z, Chuang YD, Yang W. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:033106. [PMID: 28372380 DOI: 10.1063/1.4977592] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.
Collapse
Affiliation(s)
- Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Oliver Fuchs
- Universität Würzburg, Experimentelle Physik 7, 97074 Würzburg, Germany
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Lothar Weinhardt
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Clemens Heske
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - John Pepper
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Jones
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Brown
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adrian Spucces
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Chow
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Smith
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Per-Anders Glans
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yanxue Chen
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Shishen Yan
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Louis F J Piper
- Department of Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jonathan Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
93
|
Bogdanov NA, Bisogni V, Kraus R, Monney C, Zhou K, Schmitt T, Geck J, Mitrushchenkov AO, Stoll H, van den Brink J, Hozoi L. Orbital breathing effects in the computation of x-ray d-ion spectra in solids by ab initio wave-function-based methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:035502. [PMID: 27869641 DOI: 10.1088/1361-648x/29/3/035502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In existing theoretical approaches to core-level excitations of transition-metal ions in solids relaxation and polarization effects due to the inner core hole are often ignored or described phenomenologically. Here we set up an ab initio computational scheme that explicitly accounts for such physics in the calculation of x-ray absorption and resonant inelastic x-ray scattering spectra. Good agreement is found with experimental transition-metal L-edge data for the strongly correlated d 9 cuprate Li2CuO2, for which we determine the absolute scattering intensities. The newly developed methodology opens the way for the investigation of even more complex d n electronic structures of group VI B to VIII B correlated oxide compounds.
Collapse
Affiliation(s)
- Nikolay A Bogdanov
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany. Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Couto RC, Cruz VV, Ertan E, Eckert S, Fondell M, Dantz M, Kennedy B, Schmitt T, Pietzsch A, Guimarães FF, Ågren H, Gel'mukhanov F, Odelius M, Kimberg V, Föhlisch A. Selective gating to vibrational modes through resonant X-ray scattering. Nat Commun 2017; 8:14165. [PMID: 28106058 PMCID: PMC5263870 DOI: 10.1038/ncomms14165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/30/2016] [Indexed: 12/02/2022] Open
Abstract
The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations. Investigating dynamics of polyatomic molecules is difficult as their potential energy surfaces are multidimensional due to coupled degrees of freedom. Here the authors demonstrate a spatial selective gating technique to probe the different vibrational modes of water upon core-level excitation with X-rays.
Collapse
Affiliation(s)
- Rafael C Couto
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden.,Instituto de Química, Universidade Federal Goiás, Campus Samambaia, CP 131, Goiânia, Goiás 74001-970, Brazil
| | - Vinícius V Cruz
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Emelie Ertan
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Sebastian Eckert
- Institut für Physik and Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.,Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien and Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien and Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Marcus Dantz
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Brian Kennedy
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien and Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Thorsten Schmitt
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Annette Pietzsch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien and Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Freddy F Guimarães
- Instituto de Química, Universidade Federal Goiás, Campus Samambaia, CP 131, Goiânia, Goiás 74001-970, Brazil
| | - Hans Ågren
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Faris Gel'mukhanov
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden.,Laboratory for Nonlinear Optics and Spectroscopy, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Victor Kimberg
- Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden.,Laboratory for Nonlinear Optics and Spectroscopy, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Alexander Föhlisch
- Institut für Physik and Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.,Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien and Energie Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
95
|
Chuang YD, Shao YC, Cruz A, Hanzel K, Brown A, Frano A, Qiao R, Smith B, Domning E, Huang SW, Wray LA, Lee WS, Shen ZX, Devereaux TP, Chiou JW, Pong WF, Yashchuk VV, Gullikson E, Reininger R, Yang W, Guo J, Duarte R, Hussain Z. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:013110. [PMID: 28147697 DOI: 10.1063/1.4974356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (∼1μm) and detector pixels (∼5μm) with high line density gratings (∼3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.
Collapse
Affiliation(s)
- Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yu-Cheng Shao
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Alejandro Cruz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kelly Hanzel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adam Brown
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alex Frano
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Smith
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Edward Domning
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, SE221-00 Lund, Sweden
| | - L Andrew Wray
- Department of Physics, New York University, New York, New York 10003, USA
| | - Wei-Sheng Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhi-Xun Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jaw-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Valeriy V Yashchuk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Gullikson
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ruben Reininger
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert Duarte
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
96
|
Vaz da Cruz V, Ertan E, Couto RC, Eckert S, Fondell M, Dantz M, Kennedy B, Schmitt T, Pietzsch A, Guimarães FF, Ågren H, Gel'mukhanov F, Odelius M, Föhlisch A, Kimberg V. A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering. Phys Chem Chem Phys 2017; 19:19573-19589. [DOI: 10.1039/c7cp01215b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a full analysis of the resonant inelastic X-ray scattering spectra of H2O, D2O and HDO.
Collapse
|
97
|
Hoesch M, Kim TK, Dudin P, Wang H, Scott S, Harris P, Patel S, Matthews M, Hawkins D, Alcock SG, Richter T, Mudd JJ, Basham M, Pratt L, Leicester P, Longhi EC, Tamai A, Baumberger F. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:013106. [PMID: 28147670 DOI: 10.1063/1.4973562] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm2, and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 1013 ph/s and well below 3 meV for high resolution spectra.
Collapse
Affiliation(s)
- M Hoesch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - T K Kim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - P Dudin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - H Wang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - S Scott
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - P Harris
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - S Patel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - M Matthews
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - D Hawkins
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - S G Alcock
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - T Richter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - J J Mudd
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - M Basham
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - L Pratt
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - P Leicester
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - E C Longhi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, United Kingdom
| | - A Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
98
|
Urpelainen S, Såthe C, Grizolli W, Agåker M, Head AR, Andersson M, Huang SW, Jensen BN, Wallén E, Tarawneh H, Sankari R, Nyholm R, Lindberg M, Sjöblom P, Johansson N, Reinecke BN, Arman MA, Merte LR, Knudsen J, Schnadt J, Andersen JN, Hennies F. The SPECIES beamline at the MAX IV Laboratory: a facility for soft X-ray RIXS and APXPS. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:344-353. [PMID: 28009577 PMCID: PMC5182029 DOI: 10.1107/s1600577516019056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/29/2016] [Indexed: 05/24/2023]
Abstract
SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.
Collapse
Affiliation(s)
- Samuli Urpelainen
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Conny Såthe
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Walan Grizolli
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Marcus Agåker
- Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-751 20 Uppsala, Sweden
| | - Ashley R. Head
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Margit Andersson
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Brian N. Jensen
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Erik Wallén
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hamed Tarawneh
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Rami Sankari
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ralf Nyholm
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Mirjam Lindberg
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Peter Sjöblom
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Niclas Johansson
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Benjamin N. Reinecke
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - M. Alif Arman
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Lindsay R. Merte
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Jan Knudsen
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Jesper N. Andersen
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, PO Box 118, 221 00 Lund, Sweden
| | - Franz Hennies
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
99
|
Muntwiler M, Zhang J, Stania R, Matsui F, Oberta P, Flechsig U, Patthey L, Quitmann C, Glatzel T, Widmer R, Meyer E, Jung TA, Aebi P, Fasel R, Greber T. Surface science at the PEARL beamline of the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:354-366. [PMID: 28009578 PMCID: PMC5182030 DOI: 10.1107/s1600577516018646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
The Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM). Photoelectron diffraction in angle-scanned mode measures bonding angles of atoms near the emitter atom, and thus allows the orientation of small molecules on a substrate to be determined. In energy scanned mode it measures the distance between the emitter and neighboring atoms; for example, between adsorbate and substrate. STM provides complementary, real-space information, and is particularly useful for comparing the sample quality with reference measurements. In this article, the key features and measured performance data of the beamline and the experimental station are presented. As scientific examples, the adsorbate-substrate distance in hexagonal boron nitride on Ni(111), surface quantum well states in a metal-organic network of dicyano-anthracene on Cu(111), and circular dichroism in the photoelectron diffraction of Cu(111) are discussed.
Collapse
Affiliation(s)
| | - Jun Zhang
- Paul Scherrer Institut, Villigen, Switzerland
| | - Roland Stania
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Zürich, Zürich, Switzerland
| | - Fumihiko Matsui
- Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Peter Oberta
- Paul Scherrer Institut, Villigen, Switzerland
- Institute of Physics, Academy of Sciences of the Czech Republic, Praha Czech Republic
| | | | - Luc Patthey
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Quitmann
- Paul Scherrer Institut, Villigen, Switzerland
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | - Roland Widmer
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | | - Thomas A. Jung
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Basel, Basel, Switzerland
| | | | - Roman Fasel
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | |
Collapse
|
100
|
A Mott insulator continuously connected to iron pnictide superconductors. Nat Commun 2016; 7:13879. [PMID: 27991514 PMCID: PMC5187431 DOI: 10.1038/ncomms13879] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/08/2016] [Indexed: 12/05/2022] Open
Abstract
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1−xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1−xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.
Whether an actual Mott insulator phase exists in iron pnictides remains elusive. Here, Song et al. demonstrate an antiferromagnetic insulator phase persisting above the Néel temperature in NaFe1−xCuxAs, indicative of a Mott insulator, highlighting the role of electron correlations in high-Tc superconductivity.
Collapse
|