51
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
52
|
Carof M, Godinot O, Le Cadre E. Biodiversity-based cropping systems: A long-term perspective is necessary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156022. [PMID: 35588807 DOI: 10.1016/j.scitotenv.2022.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Biodiversity-based cropping systems are an interesting option to address the many challenges that agriculture faces. However, benefits of these systems should not obscure the fact that creating biodiversity-based cropping systems represents a major change for farmers. To address this challenge, we argue that designing biodiversity-based cropping systems requires transforming ecological concepts into technical opportunities. Indeed, integrating ecological concepts such as plant-soil feedback and plant functional traits more strongly into cropping system design offers promising opportunities for the provision of ecosystem services, such as pest and disease control, crop production (including crop yield stability), climate regulation and regulation of soil quality. Accordingly, we demonstrate that designing biodiversity-based cropping systems requires considering not only the short term but also the long term. This would ensure that the expected ecosystem services have enough time to build up and provide their full effects, that the cropping systems are resilient and that they avoid the limitations of short-term assessments, which do not sufficiently consider multi-year effects. Considering long-term consequences of system change - induced by biodiversity - is essential to identify potential trade-offs between ecosystem services, as well as agricultural obstacles to and mechanisms of change. Including farmers and other food-chain actors in cropping system design would help find acceptable compromises that consider not only the provision of ecosystem services, but also other dimensions related to economic viability, workload or the technical feasibility of crops, which are identified as major obstacles to crop diversification. This strategy represents an exciting research front for the development of agroecological cropping systems.
Collapse
|
53
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
54
|
Gao C, van Bodegom PM, Bezemer TM, Veldhuis MP, Mancinelli R, Soudzilovskaia NA. Soil Biota Adversely Affect the Resistance and Recovery of Plant Communities Subjected to Drought. Ecosystems 2022. [DOI: 10.1007/s10021-022-00785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractClimate change predictions indicate that summer droughts will become more severe and frequent. Yet, the impact of soil communities on the response of plant communities to drought remains unclear. Here, we report the results of a novel field experiment, in which we manipulated soil communities by adding soil inocula originating from different successional stages of coastal dune ecosystems to a plant community established from seeds on bare dune sand. We tested if and how the added soil biota from later-successional ecosystems influenced the sensitivity (resistance and recovery) of plant communities to drought. In contrast to our expectations, soil biota from later-successional soil inocula did not improve the resistance and recovery of plant communities subjected to drought. Instead, inoculation with soil biota from later successional stages reduced the post-drought recovery of plant communities, suggesting that competition for limited nutrients between plant community and soil biota may exacerbate the post-drought recovery of plant communities. Moreover, soil pathogens present in later-successional soil inocula may have impeded plant growth after drought. Soil inocula had differential impacts on the drought sensitivity of specific plant functional groups and individual species. However, the sensitivity of individual species and functional groups to drought was idiosyncratic and did not explain the overall composition of the plant community. Based on the field experimental evidence, our results highlight the adverse role soil biota can play on plant community responses to environmental stresses. These outcomes indicate that impacts of soil biota on the stability of plant communities subjected to drought are highly context-dependent and suggest that in some cases the soil biota activity can even destabilize plant community biomass responses to drought.
Collapse
|
55
|
Oduor AMO, Adomako MO, Yuan Y, Li JM. Older populations of the invader Solidago canadensis exhibit stronger positive plant-soil feedbacks and competitive ability in China. AMERICAN JOURNAL OF BOTANY 2022; 109:1230-1241. [PMID: 35819013 DOI: 10.1002/ajb2.16034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The enemy release hypothesis predicts that release from natural enemies, including soil-borne pathogens, liberates invasive plants from a negative regulating force. Nevertheless, invasive plants may acquire novel enemies and mutualists in the introduced range, which may cause variable effects on invader growth. However, how soil microorganisms may influence competitive ability of invasive plants along invasion chronosequences has been little explored. METHODS Using the invasive plant Solidago canadensis, we tested whether longer residence times are associated with stronger negative plant-soil feedbacks and thus weaker competitive abilities at the individual level. We grew S. canadensis individuals from 36 populations with different residence times across southeastern China in competition versus no competition and in three different types of soils: (1) conspecific rhizospheric soils; (2) soils from uninvaded patches; and (3) sterilized soil. For our competitor treatments, we constructed synthetic communities of four native species (Bidens parviflora, Solanum nigrum, Kalimeris indica, and Mosla scabra), which naturally co-occur with Solidago canadensis in the field. RESULTS Solidago canadensis populations with longer residence times experienced stronger positive plant-soil feedbacks and had greater competitive responses (i.e., produced greater above-ground biomass and grew taller) in conspecific rhizospheric soils than in sterilized or uninvaded soils. Moreover, S. canadensis from older populations significantly suppressed above-ground biomass of the native communities in rhizospheric and uninvaded soils but not in sterilized soil. CONCLUSIONS The present results suggest that older populations of S. canadensis experience stronger positive plant-soil feedbacks, which may enhance their competitive ability against native plant communities.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
- Department of Applied Biology, Technical University of Kenya, P.O. Box, 52428, Nairobi, Kenya
| | - Michael Opoku Adomako
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Yongge Yuan
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Jun-Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
56
|
Guo C, Yan ER, Cornelissen JHC. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol Evol 2022; 37:803-813. [PMID: 35810137 DOI: 10.1016/j.tree.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
A priority research field addresses how to optimize diverse ecosystem services to people, including biodiversity support, regulatory, utilitarian and cultural services. This field may benefit from linking ecosystem services to the sizes of different body parts of organisms, with functional traits as the go-between. Using woody ecosystems to explore such linkages, we hypothesize that across stem diameter classes from trunk via branches to twigs, key wood and bark functional traits (especially those defining size-shape and resource economics spectra) vary both within individual trees and shrubs and across woody species, thereby together boosting ecosystem multifunctionality. While we focus on woody plants aboveground, we discuss promising extensions to belowground organs of trees and shrubs and analogs with other organisms, for example, vertebrate animals.
Collapse
Affiliation(s)
- Chao Guo
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China
| | - En-Rong Yan
- Putuo Island Ecosystem Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, and Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 200062, China.
| | - J Hans C Cornelissen
- Systems Ecology, A-Life, Faculty of Science, Vrije Universiteit (VU University), De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Xue W, Huang L, Yu F, Bezemer TM. Light condition experienced by parent plants influences the response of offspring to light via both parental effects and soil legacy effects. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Xue
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Lin Huang
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Fei‐Hai Yu
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - T. Martijn Bezemer
- Institute of Biology Leiden (IBL) Aboveground Belowground Interactions Group, Leiden University Leiden The Netherlands
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| |
Collapse
|
58
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
59
|
Wang HR, Zhang JM, Zhao XY, Feng F. N limit as a switch node between positive and negative plant-soil feedback: A meta-analysis based on the covariant diagnosis of plant growth and soil factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113557. [PMID: 35483149 DOI: 10.1016/j.ecoenv.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mounting evidence has confirmed the existence of plant-soil feedback, a reflection of plant-soil interaction. However, analysis of ecological feedback pathways remains a challenge. In this study, single and mixed plant communities in different soil ecosystems were screened using strict control systems in global ecosystems to identify the positive or negative feedback effects in indicator plants. Furthermore, the plant components and biomass were identified in each pathway. The significantly changed components indicated pathway factors. As negative feedback increased, the InRR (Response Ratio) of soil organic matter, soil total N, microbial alpha diversity and the symbiotic fungi proportion were significantly up-regulated (P < 0.05). In contrast, the stoichiometric ratio (C: N), water content, and the pathogenic bacteria proportion were downregulated (P < 0.05). However, the positive feedback showed the opposite trend. Importantly, N limit as a transform node between positive and negative plant-soil feedback predicted by Akaike information criterion (AIC > 0.8). Therefore, it has become an important evaluation standard for the inter-species relationship and ecological environment changes under the background of global N deposition. Finally, the feedback values of each sampling site were recalculated over the next 20 years, 50 years, and 100 years based on the global temperature rise and changing rainfall patterns. We also found that global warming and extreme rainfall may change the distribution of interspecies relationships on a global scale, with global warming having the greatest recognisable effect and decreasing the negative feedback layout by 21.7% (P < 0.05). Therefore, this work promotes the cognition of relationship of soil environment, microbial abundance and function, plant diversity and plant- soil feedback model. Meanwhile, it is of great significance to protect species diversity and restore environmental degradation.
Collapse
Affiliation(s)
- Hong-Rui Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jia-Ming Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin-Yu Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
60
|
Cover crop-driven shifts in soil microbial communities could modulate early tomato biomass via plant-soil feedbacks. Sci Rep 2022; 12:9140. [PMID: 35650228 PMCID: PMC9160062 DOI: 10.1038/s41598-022-11845-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
Sustainable agricultural practices such as cover crops (CCs) and residue retention are increasingly applied to counteract detrimental consequences on natural resources. Since agriculture affects soil properties partly via microbial communities, it is critical to understand how these respond to different management practices. Our study analyzed five CC treatments (oat, rye, radish, rye-radish mixture and no-CC) and two crop residue managements (retention/R+ or removal/R-) in an 8-year diverse horticultural crop rotation trial from ON, Canada. CC effects were small but stronger than those of residue management. Radish-based CCs tended to be the most beneficial for both microbial abundance and richness, yet detrimental for fungal evenness. CC species, in particular radish, also shaped fungal and, to a lesser extent, prokaryotic community composition. Crop residues modulated CC effects on bacterial abundance and fungal evenness (i.e., more sensitive in R- than R+), as well as microbial taxa. Several microbial structure features (e.g., composition, taxa within Actinobacteria, Firmicutes and Ascomycota), some affected by CCs, were correlated with early biomass production of the following tomato crop. Our study suggests that, whereas mid-term CC effects were small, they need to be better understood as they could be influencing cash crop productivity via plant-soil feedbacks.
Collapse
|
61
|
Xi N, Crawford KM, De Long JR. Plant landscape abundance and soil fungi modulate drought effects on plant–soil feedbacks. OIKOS 2022. [DOI: 10.1111/oik.08836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nianxun Xi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan Univ. Haikou China
- School of Ecology, Sun Yat‐sen Univ. Guangzhou China
| | | | | |
Collapse
|
62
|
Changes in precipitation patterns can destabilize plant species coexistence via changes in plant-soil feedback. Nat Ecol Evol 2022; 6:546-554. [PMID: 35347257 DOI: 10.1038/s41559-022-01700-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023]
Abstract
Climate change can alter species coexistence through changes in biotic interactions. By describing reciprocal interactions between plants and soil microbes, plant-soil feedback (PSF) has emerged as a powerful framework for predicting plant species coexistence and community dynamics, but little is known about how PSF will respond to changing climate conditions. Hence, the context dependency of PSF has recently gained attention. Water availability is a major driver of all biotic interactions, and it is expected that precipitation patterns will change with ongoing climate change. We tested how soil water content affects PSF by conducting a full factorial pairwise PSF experiment using eight plant species common to southeastern United States coastal prairies under three watering treatments. We found coexistence-stabilizing negative PSF at drier-than-average conditions shifted to coexistence-destabilizing positive PSF under wetter-than-average conditions. A simulation model parameterized with the experimental results supports the prediction that more positive PSF accelerates the erosion of diversity within communities while decreasing the predictability in plant community composition. Our results underline the importance of considering environmental context dependency of PSF in light of a rapidly changing climate.
Collapse
|
63
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
64
|
Caravaca F, Torres P, Díaz G, Roldán A. Elevated functional versatility of the soil microbial community associated with the invader Carpobrotus edulis across a broad geographical scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152627. [PMID: 34963581 DOI: 10.1016/j.scitotenv.2021.152627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Exotic invasive plants may shape their own rhizosphere microbial community during global invasions. Nevertheless, the impacts of such plant invasions on the functional capacities of soil microbial communities remain poorly explored. We used an approach at a broad geographical scale to estimate the composition and abundance of the fungal functional groups, as well as the bacterial metabolic functions, associated with the rhizospheres of Carpobrotus edulis (L.) L. Bolus and the predominant native plants in coastal ecosystems located in different geographical regions. We used the ASV method to infer the potential functions of the soil microbial community with the PICRUSt2 and FUNGuild tools. The predictive functional profiling of the bacterial communities differed between the rhizospheres of the invasive and native plants, regardless of the biogeographic location of the invaded soil. Some predicted pathways related to the biosynthesis of nucleotides such as ppGpp and pppGpp, lipids, carbohydrates and secondary metabolites and the degradation of organic matter were enriched in the C. edulis rhizosphere. Moreover, the invasive microbiota was characterised by a greater richness and diversity of catabolic enzymes involved in nutrients cycling and higher relative abundances of saprotrophs and pathotrophs. Invasion by C. edulis promoted a shift in the potential functional versatility of the soil microbial communities, which can cope with nutrient limitations and biotic stress, and can favour the establishment of the invasive plant, but also alter the functioning and stability of the invaded ecosystems.
Collapse
Affiliation(s)
- F Caravaca
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| | - P Torres
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n, Edf. Laboratorios, 03202 Elche, Alicante, Spain
| | - G Díaz
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n, Edf. Laboratorios, 03202 Elche, Alicante, Spain
| | - A Roldán
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
65
|
Subedi SC, Allen P, Vidales R, Sternberg L, Ross M, Afkhami ME. Salinity legacy: Foliar microbiome's history affects mutualist-conferred salinity tolerance. Ecology 2022; 103:e3679. [PMID: 35302649 DOI: 10.1002/ecy.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The rapid human-driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host plant salt-tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve salt-tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field-collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes [ranging from no salt stress (0 ppt salinity) to high salt stress (40 ppt) environments]. We found that inoculation with field-collected endophytes significantly increased mangrove performance across almost all metrics examined (15-20% increase on average) and these beneficial effects typically occurred when grown in saltwater. Importantly, our study revealed the novel result that endophyte-conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt-stressed mangroves inoculated with endophyte microbiomes from high salinity environments performed, on average, as well as plants grown in low-stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for successful restoration and management of coastal habitats.
Collapse
Affiliation(s)
- Suresh C Subedi
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Preston Allen
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Rosario Vidales
- Department of Earth and environment, Florida International University, Miami, Florida
| | - Leonel Sternberg
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Michael Ross
- Department of Earth and environment, Florida International University, Miami, Florida.,Institute of Environment, Florida International University, Miami, Florida
| | | |
Collapse
|
66
|
Wang Z, Song Y. Toward understanding the genetic bases underlying plant-mediated "cry for help" to the microbiota. IMETA 2022; 1:e8. [PMID: 38867725 PMCID: PMC10989820 DOI: 10.1002/imt2.8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2024]
Abstract
Canonical plant stress biology research has focused mainly on the dynamic regulation of internal genetic pathways in stress responses. Increasingly more studies suggest that plant-mediated timely reshaping of the microbiota could also confer benefits in responding to certain biotic and abiotic stresses. This has led to the "cry for help" hypothesis, which is supported by the identification of plant genetic regulators integrating biotic/abiotic stress signaling and microbiota sculpting. Although diverse genetic mutants have been reported to affect microbiota composition, it has been challenging to confirm the causal link between specific microbiota changes and plant phenotypic outputs (e.g., fitness benefits) due to the complexity of microbial community composition. This limits the understanding of the relevance of plant-mediated microbiota changes. We reviewed the genetic bases of host-mediated reshaping of beneficial microbiota in response to biotic and abiotic stresses, and summarized the practical approaches linking microbiota changes and "functional outputs" in plants. Further understanding of the key regulators and pathways governing the assembly of stress-alleviating microbiota would benefit the design of crops that could dynamically enlist beneficial microbiota under conditions of stress.
Collapse
Affiliation(s)
- Zhenghong Wang
- Institute of Plant and Food Science, Department of BiologyUniversity of Science and TechnologyShenzhenChina
| | - Yi Song
- Institute of Plant and Food Science, Department of BiologyUniversity of Science and TechnologyShenzhenChina
| |
Collapse
|
67
|
Secondary Succession in the Tropical Lowland Rainforest Reduced the Stochasticity of Soil Bacterial Communities through the Stability of Plant Communities. FORESTS 2022. [DOI: 10.3390/f13020348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of natural succession on plant and soil bacterial communities were previously established, but changes in plant and soil bacterial communities and their response to soil properties are not well characterized in different stages of secondary forest succession, especially in tropical regions with endemic plant species. We investigated the dynamics of plant communities, soil properties and the structure of soil bacterial communities at sites representing 33 (early successional stage), 60 (early-mid successional stage) and 73 (mid successional stage) years of secondary succession in the tropical lowland rainforest of Hainan, China, by using16S rRNA high-throughput sequencing. From the perspective of plant composition, the number of families, genera and species were increasing along with the progress of succession. Additionally, the changes in the ranking of important values along with the progress of the forest succession were consistent with the niche width calculated by the previous stage of the plant community. The results of niche overlap, Pearson’s correlation and Spearman’s rank correlation coefficients and significance indicated that in the early stage of succession, tree species did not fully utilize environmental resources. Then, as time went by, the number of negative correlations of plants in the early-mid stage was more than that in the mid stage of succession. Significant differences were found in the species richness of soil microorganisms among the three successional stages. Nutrient contents in early successional stage rainforests were less abundant than in early-mid and mid forest soils. The influence of soil nutrient concentration, particularly N and P content, on soil bacterial composition at the phylum level was larger in the early-mid stage than in the mid stage. The stochasticity of the soil bacterial community at the early successional stage of the rainforest was significantly higher than that at mid stage. Overall, as the diversity of plant communities increased, the competition decreased, the soil nutrient content changed and the stochasticity of soil bacterial communities decreased as a result of forest succession.
Collapse
|
68
|
Huangfu C, Zhang L, Hui D. Density-dependent plant-soil feedbacks of two plant species affected by plant competition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150908. [PMID: 34653462 DOI: 10.1016/j.scitotenv.2021.150908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Both plant-soil feedbacks (PSF) and plant competition drive plant community assembly, but their interactive effects have rarely been investigated, and the role of community composition in modulating these interactions is unknown. We conducted a fully reciprocal experiment with two plant species (Polygonum criopolitanum and Carex thunbergii) and their associated soil biota communities to untangle the relative importance of PSF and competition. The two species were grown either in monoculture or in mixed plantings, with various densities of each plant's neighbor, and either in the presence or absence of the soil biota associated with either species. When grown individually, each plant species showed a neutral PSF in the presence of its own soil biota, while feedbacks in competition were predominantly negative. P. criopolitanum produced more biomass in the presence of soil biota than in autoclaved soil, but the opposite was observed for C. thunbergii. In competition, both plant species were suppressed by its presence of their own soil biota, and neither had a competitive advantage, resulting in a significant negative pairwise PSF in most cases. C. thunbergii also showed stronger per capita effects than did P. criopolitanum. The predication on species coexistence largely depended on the presence of soil biota, the soil origin, and the plant species ratio. When planted in equal proportion, P. criopolitanum and C. thunbergii only coexisted in the presence of soil biota of P. criopolitanum, while C. thunbergii usually excluded P. criopolitanum under all other conditions. When the density of the neighboring plant increased, either species was excluded in the presence of their own soil biota. However, in the absence of a soil biota, there was a priority effect, giving an advantage to the species that was planted first. Our study revealed that the strength and direction of these interactions were altered by interspecific competition at the community level, and both the identity and the density of the competitors must be taken into account in interpreting plant community assembly processes.
Collapse
Affiliation(s)
- Chaohe Huangfu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Liming Zhang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
69
|
Ouyang W, Wu Z, Wang P, Cui X, Hao X, Zhu W, Jin R. Diffuse nutrient export dynamics from accumulated litterfall in forested watersheds with remote sensing data coupled model. WATER RESEARCH 2022; 209:117948. [PMID: 34952486 DOI: 10.1016/j.watres.2021.117948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Nutrients exported from forest litterfall significantly contribute to the global cycling of elements and the water quality in watersheds. Simulating the watershed discharge load is challenging because of the combined effects of the decomposing litterfall and topographic heterogeneity. We quantified the contribution of diffuse nutrient export from forest litterfall in a low temperature watershed using artificial rainfall experiments and watershed territorial modeling with remote sensing data, and therefore, the critical spatial factors and corresponding nutrient export dynamics were identified. Rainfall intensity and terrain slope were found to be the key factors for nutrient export under different litterfall decomposition conditions. Based on the moderate resolution imaging spectroradiometer data and field observations, the temporal patterns of litterfall biomass of two types of dominant forests (broad-leaved and mixed) were interpreted. The spatial patterns of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) exports from watershed litterfall were simulated by coupling the observed discharge parameters under artificial rainfall conditions and watershed surface flow modeling with the hydrological characteristics of the forested areas. The average watershed TOC, TN, and TP loads exported from the litterfall were approximately 58.22, 7.89, and 0.37 kg ha-1 a-1, respectively. The exported loads of TOC, TN, and TP varied with the forest types, and the loads from the litterfall of deciduous broad-leaved forest were found to be ∼50-70% of loads from the litterfall of mixed forest. A comparison with similar studies worldwide also indicated that low temperature decreased the litterfall decomposition rate and diffuse nutrient export. This study indicated that litterfall nutrients were a key contributor to watershed water pollution, and their spatial discharge trend varied intensively with the terrestrial conditions. The modified simulation methods were found to accurately assess the cycling of nutrients from the forest litterfall on a watershed scale.
Collapse
Affiliation(s)
- Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Zeshan Wu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Pengtao Wang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xintong Cui
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xin Hao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Weihong Zhu
- School of Geographic and Ocean Sciences, Key laboratory of Wetland Ecological Functions and Ecological Security, Yanbian University, Yanji, Jilin 133000, China
| | - Ri Jin
- School of Geographic and Ocean Sciences, Key laboratory of Wetland Ecological Functions and Ecological Security, Yanbian University, Yanji, Jilin 133000, China
| |
Collapse
|
70
|
Zhu SC, Zheng HX, Liu WS, Liu C, Guo MN, Huot H, Morel JL, Qiu RL, Chao Y, Tang YT. Plant-Soil Feedbacks for the Restoration of Degraded Mine Lands: A Review. Front Microbiol 2022; 12:751794. [PMID: 35087482 PMCID: PMC8787142 DOI: 10.3389/fmicb.2021.751794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Much effort has been made to remediate the degraded mine lands that bring severe impacts to the natural environments. However, it remains unclear what drives the recovery of biodiversity and ecosystem functions, making the restoration of these fragile ecosystems a big challenge. The interactions among plant species, soil communities, and abiotic conditions, i.e., plant-soil feedbacks (PSFs), significantly influence vegetation development, plant community structure, and ultimately regulate the recovery of ecosystem multi-functionality. Here, we present a conceptual framework concerning PSFs patterns and potential mechanisms in degraded mine lands. Different from healthy ecosystems, mine lands are generally featured with harsh physical and chemical properties, which may have different PSFs and should be considered during the restoration. Usually, pioneer plants colonized in the mine lands can adapt to the stressful environment by forming tolerant functional traits and gathering specific soil microbial communities. Understanding the mechanisms of PSFs would enhance our ability to predict and alter both the composition of above- and below-ground communities, and improve the recovery of ecosystem functions in degraded mine lands. Finally, we put forward some challenges of the current PSFs study and discuss avenues for further research in the ecological restoration of degraded mine lands.
Collapse
Affiliation(s)
- Shi-Chen Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China.,Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Mei-Na Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China.,Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Hermine Huot
- CNRS, LIEC, Université de Lorraine, Nancy, France
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
71
|
Bizuti DTG, Robin A, Soares TM, Moreno¹ VS, Almeida DRA, Andreote FD, Casagrande JC, Guillemot J, Herrmann L, Melis J, Perim JEL, Medeiros SDS, Sorrini TB, Brancalion PHS. Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Denise T. G. Bizuti
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Agnès Robin
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Thaís M. Soares
- Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
| | | | - Danilo R. A. Almeida
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Fernando D. Andreote
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - José Carlos Casagrande
- Department of Natural Resources and Environmental Protection Federal University of São Carlos Araras Brazil
| | - Joannès Guillemot
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
| | - Laetitia Herrmann
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT‐Asia)Common Microbial Biotechnology Platform (CMBP) Hanoi Vietnam
| | - Juliano Melis
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Júlia E. L. Perim
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Simone D. S. Medeiros
- Department of Informatics and Statistics Federal University of Santa Catarina Florianópolis Brazil
| | - Taísi B. Sorrini
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Pedro H. S. Brancalion
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| |
Collapse
|
72
|
Eppinga MB, Van der Putten WH, Bever JD. Plant-soil feedback as a driver of spatial structure in ecosystems. Phys Life Rev 2022; 40:6-14. [DOI: 10.1016/j.plrev.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
73
|
Markalanda SH, McFadden CJ, Cassidy ST, Wood CW. The soil microbiome increases plant survival and modifies interactions with root endosymbionts in the field. Ecol Evol 2022; 12:e8283. [PMID: 35126998 PMCID: PMC8796929 DOI: 10.1002/ece3.8283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022] Open
Abstract
Evidence is accumulating that the soil microbiome-the community of microorganisms living in soils-has a major effect on plant traits and fitness. However, most work to date has taken place under controlled laboratory conditions and has not experimentally disentangled the effect of the soil microbiome on plant performance from the effects of key endosymbiotic constituents. As a result, it is difficult to extrapolate from existing data to understand the role of the soil microbiome in natural plant populations. To address this gap, we performed a field experiment using the black medick Medicago lupulina to test how the soil microbiome influences plant performance and colonization by two root endosymbionts (the mutualistic nitrogen-fixing bacteria Ensifer spp. and the parasitic root-knot nematode Meloidogyne hapla) under natural conditions. We inoculated all plants with nitrogen-fixing bacteria and factorially manipulated the soil microbiome and nematode infection. We found that plants grown in microbe-depleted soil exhibit greater mortality, but that among the survivors, there was no effect of the soil microbiome on plant performance (shoot biomass, root biomass, or shoot-to-root ratio). The soil microbiome also impacted parasitic nematode infection and affected colonization by mutualistic nitrogen-fixing bacteria in a plant genotype-dependent manner, increasing colonization in some plant genotypes and decreasing it in others. Our results demonstrate the soil microbiome has complex effects on plant-endosymbiont interactions and may be critical for survival under natural conditions.
Collapse
Affiliation(s)
| | - Connor J. McFadden
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Steven T. Cassidy
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Corlett W. Wood
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
74
|
Lozano YM, Rillig MC. Legacy effect of microplastics on plant-soil feedbacks. FRONTIERS IN PLANT SCIENCE 2022; 13:965576. [PMID: 36003804 PMCID: PMC9393594 DOI: 10.3389/fpls.2022.965576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 05/06/2023]
Abstract
Microplastics affect plants and soil biota and the processes they drive. However, the legacy effect of microplastics on plant-soil feedbacks is still unknown. To address this, we used soil conditioned from a previous experiment, where Daucus carota grew with 12 different microplastic types (conditioning phase). Here, we extracted soil inoculum from those 12 soils and grew during 4 weeks a native D. carota and a range-expanding plant species Calamagrostis epigejos in soils amended with this inoculum (feedback phase). At harvest, plant biomass and root morphological traits were measured. Films led to positive feedback on shoot mass (higher mass with inoculum from soil conditioned with microplastics than with inoculum from control soil). Films may decrease soil water content in the conditioning phase, potentially reducing the abundance of harmful soil biota, which, with films also promoting mutualist abundance, microbial activity and carbon mineralization, would positively affect plant growth in the feedback phase. Foams and fragments caused positive feedback on shoot mass likely via positive effects on soil aeration in the conditioning phase, which could have increased mutualistic biota and soil enzymatic activity, promoting plant growth. By contrast, fibers caused negative feedback on root mass as this microplastic may have increased soil water content in the conditioning phase, promoting the abundance of soil pathogens with negative consequences for root mass. Microplastics had a legacy effect on root traits: D. carota had thicker roots probably for promoting mycorrhizal associations, while C. epigejos had reduced root diameter probably for diminishing pathogenic infection. Microplastic legacy on soil can be positive or negative depending on the plant species identity and may affect plant biomass primarily via root traits. This legacy may contribute to the competitive success of range-expanding species via positive effects on root mass (foams) and on shoot mass (PET films). Overall, microplastics depending on their shape and polymer type, affect plant-soil feedbacks.
Collapse
Affiliation(s)
- Yudi M. Lozano
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- *Correspondence: Yudi M. Lozano,
| | - Matthias C. Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
75
|
Huang K, Kardol P, Yan X, Luo X, Guo H. Plant–soil biota interactions explain shifts in plant community composition under global change. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kailing Huang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Paul Kardol
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | - Xuebin Yan
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Xi Luo
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Hui Guo
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
76
|
Rillig MC, Lehmann A, Orr JA, Waldman WR. Mechanisms underpinning nonadditivity of global change factor effects in the plant-soil system. THE NEW PHYTOLOGIST 2021; 232:1535-1539. [PMID: 34482557 DOI: 10.1111/nph.17714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Plant-soil systems are key for understanding the effects of factors of global change. Recent work has highlighted the general importance of considering the simultaneous incidence of some factors or stressors. To help mechanistically dissect the possible interactions of such factors, we here propose three broad groups of mechanisms that may generally lead to nonadditivity of responses within a plant-soil system: direct factor interactions (that is one factor directly changing another), within-plant information processing and crosstalk, and effects of factors on groups of soil biota interacting with plants. Interactions are also possible within and across these groups. Factor interactions are very likely to be present in experiments, especially when dealing with an increasing number of factors. Identifying the nature of such interactions will be essential for understanding and predicting global change impacts on plants and soil.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - James A Orr
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Walter R Waldman
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052-780, Brazil
| |
Collapse
|
77
|
Rewcastle KE, Henning JA, Read QD, Irwin RE, Sanders NJ, Classen AT. Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization. Ecology 2021; 103:e03546. [PMID: 34618916 DOI: 10.1002/ecy.3546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022]
Abstract
The loss of aboveground plant diversity alters belowground ecosystem function; yet, the mechanisms underpinning this relationship and the degree to which plant community structure and climate mediate the effects of plant species loss remain unclear. Here, we explored how plant species loss through experimental removal shaped belowground function in ecosystems characterized by different climatic regimes and edaphic properties. We measured plant community composition as well as potential carbon (C) and nitrogen (N) mineralization and microbial extracellular enzyme activity in soils collected from four unique plant removal experiments located along an elevational gradient in Colorado, USA. We found that, regardless of the identity of the removed species or the climate at each site, plant removal decreased the absolute variation in potential N mineralization rates and marginally reduced the magnitude of N mineralization rates. While plant species removal also marginally reduced C mineralization rates, C mineralization, unlike N mineralization, displayed sensitivity to the climatic and edaphic differences among sites, where C mineralization was greatest at the high elevation site that receives the most precipitation annually and contains the largest soil total C pool. Plant removal had little impact on soil enzyme activity. Removal effects were not contingent on the amount of biomass removed annually, and shifts in mineralization rates occurred despite only marginal shifts in plant community structure following plant species removal. Our results present a surprisingly simple and consistent pattern of belowground response to the loss of dominant plant species across an elevational gradient with different climatic and edaphic properties, suggesting a common response of belowground ecosystem function to plant species loss regardless of which plant species are lost or the broader climatic context.
Collapse
Affiliation(s)
- Kenna E Rewcastle
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, Vermont, 05405, USA.,Gund Institute for Environment, University of Vermont, 210 Colchester Ave., Burlington, Vermont, 05405, USA.,Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA
| | - Jeremiah A Henning
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, Alabama, 36688, USA
| | - Quentin D Read
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,National Socio-Environmental Synthesis Center (SESYNC), 1 Park Pl., Annapolis, Maryland, 21401, USA
| | - Rebecca E Irwin
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, North Carolina, 27695, USA
| | - Nathan J Sanders
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| | - Aimée T Classen
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
78
|
Ladwig LM, Bell-Dereske LP, Bell KC, Collins SL, Natvig DO, Taylor DL. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
79
|
Liu Y, He F. Warming intensifies soil pathogen negative feedback on a temperate tree. THE NEW PHYTOLOGIST 2021; 231:2297-2307. [PMID: 33891310 PMCID: PMC8456973 DOI: 10.1111/nph.17409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
The soil pathogen-induced Janzen-Connell (JC) effect is considered as a primary mechanism regulating plant biodiversity worldwide. As predicted by the framework of the classic plant disease triangle, severity of plant diseases is often influenced by temperature, yet insufficient understanding of how increasing temperatures affect the JC effect contributes uncertainty in predictions about how global warming affects biodiversity. We conducted a 3-yr field warming experiment, combining open-top chambers with pesticide treatment, to test the effect of elevated temperatures on seedling mortality of a temperate tree species, Prunus padus, from a genus with known susceptibility to soil-borne pathogens. Elevated temperature significantly increased the mortality of P. padus seedlings in the immediate vicinity of parent trees, concurrent with increased relative abundance of pathogenic fungi identified to be virulent to Prunus species. Our study offers experimental evidence suggesting that global warming significantly intensifies the JC effect on a temperate tree species due to increased relative abundance of pathogenic fungi. This work advances our understanding about changes in the JC effect linked to ongoing global warming, which has important implications for predicting tree diversity in a warmer future.
Collapse
Affiliation(s)
- Yu Liu
- ECNU‐Alberta Joint Laboratory for Biodiversity StudyTiantong National Station for Forest Ecosystem ResearchSchool of Ecology and Environmental SciencesEast China Normal UniversityShanghai200241China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092China
| | - Fangliang He
- ECNU‐Alberta Joint Laboratory for Biodiversity StudyTiantong National Station for Forest Ecosystem ResearchSchool of Ecology and Environmental SciencesEast China Normal UniversityShanghai200241China
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlberta,T6G 2H1Canada
| |
Collapse
|
80
|
Grenzer J, Kulmatiski A, Forero L, Ebeling A, Eisenhauer N, Norton J. Moderate plant-soil feedbacks have small effects on the biodiversity-productivity relationship: A field experiment. Ecol Evol 2021; 11:11651-11663. [PMID: 34522331 PMCID: PMC8427583 DOI: 10.1002/ece3.7819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/22/2023] Open
Abstract
Plant-soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4-year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity-productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on "home" than on "away" soils. Nine-species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%-29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.
Collapse
Affiliation(s)
- Josephine Grenzer
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUTUSA
| | - Andrew Kulmatiski
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUTUSA
| | - Leslie Forero
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUTUSA
| | - Anne Ebeling
- Institute of Ecology and EvolutionUniversity of JenaJenaGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyUniversity of LeipzigLeipzigGermany
| | - Jeanette Norton
- Department of Plant, Soils and ClimateUtah State UniversityLoganUTUSA
| |
Collapse
|
81
|
Aires T, Stuij TM, Muyzer G, Serrão EA, Engelen AH. Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Front Microbiol 2021; 12:653998. [PMID: 34434172 PMCID: PMC8381869 DOI: 10.3389/fmicb.2021.653998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.
Collapse
Affiliation(s)
- Tania Aires
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Tamara M Stuij
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ester A Serrão
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CARMABI Foundation, Willemstad, Curaçao
| |
Collapse
|
82
|
Gols R, Ojeda-Prieto LM, Li K, van der Putten WH, Harvey JA. Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects. J Therm Biol 2021; 99:103006. [PMID: 34420636 DOI: 10.1016/j.jtherbio.2021.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Embedded in longer term warming are extreme climatic events such as heatwaves and droughts that are increasing in frequency, duration and intensity. Changes in climate attributes such as temperature are often measured over larger spatial scales, whereas environmental conditions to which many small ectothermic arthropods are exposed are largely determined by small-scale local conditions. Exposed edges of plant patches often exhibit significant short-term (daily) variation to abiotic factors due to wind exposure and sun radiation. By contrast, within plant patches, abiotic conditions are generally much more stable and thus less variable. Over an eight-week period in the summer of 2020, including an actual heatwave, we measured small-scale (1 m2) temperature variation in patches of forbs in experimental mesocosms. We found that soil surface temperatures at the edge of the mesocosms were more variable than those within mesocosms. Drought treatment two years earlier, amplified this effect but only at the edges of the mesocosms. Within a plant patch both at the soil surface and within the canopy, the temperature was always lower than the ambient air temperature. The temperature of the soil surface at the edge of a patch may exceed the ambient air temperature when ambient air temperatures rise above 23 °C. This effect progressively increased with ambient temperature. We discuss how microscale-variation in temperature may affect small ectotherms such as insects that have limited ability to thermoregulate, in particular under conditions of extreme heat.
Collapse
Affiliation(s)
- R Gols
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands.
| | - L M Ojeda-Prieto
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - K Li
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - W H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | - J A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Animal Ecology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
83
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|
84
|
Domínguez-Begines J, Ávila JM, García LV, Gómez-Aparicio L. Disentangling the role of oomycete soil pathogens as drivers of plant-soil feedbacks. Ecology 2021; 102:e03430. [PMID: 34105778 DOI: 10.1002/ecy.3430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Interactions among plant species and their soil biota drive plant-soil feedbacks (PSFs) that play a major role in the dynamics and diversity of plant communities. Among the different components of the soil community, pathogens are considered to be the main drivers of negative PSFs. Despite this, the number of studies that have experimentally quantified the contribution of soil pathogens to PSFs remains considerably low. Here we conducted a greenhouse experiment with oomycete-specific fungicide to quantify the contribution of soil pathogens, and particularly oomycete pathogens, to individual and pairwise PSFs in forest communities. We used as a case study Mediterranean mixed forests dominated by Quercus suber and invaded by the oomycete pathogen Phytophthora cinnamomi. The fungicide treatment was crossed with a competition treatment to explore how conspecific neighbors might modify pathogen effects. To place the results of the experiment in a wider context, we also conducted a systematic review of published papers that explicitly used fungicide to explore the role of pathogens in PSF experiments. Our experimental results showed that oomycete pathogens were the main drivers of individual PSFs in the study forests. Oomycete effects varied among tree species according to their susceptibility to P. cinnamomi, driving negative PSFs in the highly susceptible Q. suber but not in the coexistent Olea europaea. Oomycete-driven PSFs were not modified by intraspecific competition. Oomycete pathogens were also major contributors to negative pairwise PSFs assumed to promote species coexistence. Results from the systematic review supported the novelty of our experimental results, since only three studies had previously used oomycete-specific fungicide in a PSF context and none in systems invaded by exotic oomycetes. Overall, our results provide novel evidence of oomycete pathogens (including the exotic P. cinnamomi) as fundamental drivers of negative individual and pairwise PSFs with implications for species coexistence in invaded communities. Although in the short-term invasive pathogens might contribute to species coexistence by causing self-limitation in dominant species, strong inter-specific variation in self-limitation might undermine coexistence in the long-term. Because of the increasing number of exotic oomycetes worldwide, further attention should be given to oomycetes as drivers of PSFs in plant communities.
Collapse
Affiliation(s)
- Jara Domínguez-Begines
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - José M Ávila
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Luis V García
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Lorena Gómez-Aparicio
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| |
Collapse
|
85
|
Delevich CA, Koch RA, Aime MC, Henkel TW. Ectomycorrhizal fungal community assembly on seedlings of a Neotropical monodominant tree. Biotropica 2021. [DOI: 10.1111/btp.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Rachel A. Koch
- Department of Botany and Plant Pathology Purdue University West Lafayette IN USA
| | - M. Catherine Aime
- Department of Botany and Plant Pathology Purdue University West Lafayette IN USA
| | - Terry W. Henkel
- Department of Biological Sciences Humboldt State University Arcata CA USA
| |
Collapse
|
86
|
Maestre FT, Benito BM, Berdugo M, Concostrina-Zubiri L, Delgado-Baquerizo M, Eldridge DJ, Guirado E, Gross N, Kéfi S, Le Bagousse-Pinguet Y, Ochoa-Hueso R, Soliveres S. Biogeography of global drylands. THE NEW PHYTOLOGIST 2021; 231:540-558. [PMID: 33864276 DOI: 10.1111/nph.17395] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 05/21/2023]
Abstract
Despite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and nonvascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots. This diversity captures a strikingly high portion of the variation in leaf functional diversity observed globally. Part of this functional diversity is associated with the large variation in response and effect traits in the shrubs encroaching dryland grasslands. Aridity and its interplay with the traits of interacting plant species largely shape biogeographical patterns in plant-plant and plant-soil interactions, and in plant spatial patterns. Aridity also drives the composition of biocrust communities and vegetation productivity, which shows large geographical variation. We finish our review by discussing major research gaps, which include: studying regular vegetation spatial patterns; establishing large-scale plant and biocrust field surveys assessing individual-level trait measurements; knowing whether the impacts of plant-plant and plant-soil interactions on biodiversity are predictable; and assessing how elevated CO2 modulates future aridity conditions and plant productivity.
Collapse
Affiliation(s)
- Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Blas M Benito
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Miguel Berdugo
- Institut de Biologia Evolutiva, UPF-CSIC, Dr. Aiguadé, Barcelona, Cataluña, 08003, Spain
| | - Laura Concostrina-Zubiri
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, 63000, France
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, 34090, France
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Yoann Le Bagousse-Pinguet
- Aix Marseille Univ, CNRS, Avignon Université, IRD, IMBE, Technopôle Arbois-Méditerranée Bât. Villemin - BP 80, Aix-en-Provence cedex 04, F-13545, France
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Santiago Soliveres
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
87
|
Forero LE, Kulmatiski A, Grenzer J, Norton JM. Plant-soil feedbacks help explain biodiversity-productivity relationships. Commun Biol 2021; 4:789. [PMID: 34172839 PMCID: PMC8233354 DOI: 10.1038/s42003-021-02329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023] Open
Abstract
Species-rich plant communities can produce twice as much aboveground biomass as monocultures, but the mechanisms remain unresolved. We tested whether plant-soil feedbacks (PSFs) can help explain these biodiversity-productivity relationships. Using a 16-species, factorial field experiment we found that plants created soils that changed subsequent plant growth by 27% and that this effect increased over time. When incorporated into simulation models, these PSFs improved predictions of plant community growth and explained 14% of overyielding. Here we show quantitative, field-based evidence that diversity maintains productivity by suppressing plant disease. Though this effect alone was modest, it helps constrain the role of factors, such as niche partitioning, that have been difficult to quantify. This improved understanding of biodiversity-productivity relationships has implications for agriculture, biofuel production and conservation.
Collapse
Affiliation(s)
- Leslie E Forero
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | - Andrew Kulmatiski
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.
| | - Josephine Grenzer
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | - Jeanette M Norton
- Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA
| |
Collapse
|
88
|
Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun Biol 2021; 4:748. [PMID: 34135464 PMCID: PMC8209103 DOI: 10.1038/s42003-021-02244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Soil microbiomes are rapidly becoming known as an important driver of plant phenotypic variation and may mediate plant responses to environmental factors. However, integrating spatial scales relevant to climate change with plant intraspecific genetic variation and soil microbial ecology is difficult, making studies of broad inference rare. Here we hypothesize and show: 1) the degree to which tree genotypes condition their soil microbiomes varies by population across the geographic distribution of a widespread riparian tree, Populus angustifolia; 2) geographic dissimilarity in soil microbiomes among populations is influenced by both abiotic and biotic environmental variation; and 3) soil microbiomes that vary in response to abiotic and biotic factors can change plant foliar phenology. We show soil microbiomes respond to intraspecific variation at the tree genotype and population level, and geographic variation in soil characteristics and climate. Using a fully reciprocal plant population by soil location feedback experiment, we identified a climate-based soil microbiome effect that advanced and delayed bud break phenology by approximately 10 days. These results demonstrate a landscape-level feedback between tree populations and associated soil microbial communities and suggest soil microbes may play important roles in mediating and buffering bud break phenology with climate warming, with whole ecosystem implications.
Collapse
|
89
|
Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, Leff JW, Luis AD, Seabloom EW, Henning JA. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun 2021; 12:3484. [PMID: 34108462 PMCID: PMC8190096 DOI: 10.1038/s41467-021-23605-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.
Collapse
Affiliation(s)
- Ylva Lekberg
- MPG Ranch, Missoula, MT USA ,grid.253613.00000 0001 2192 5772Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT USA
| | - Carlos A. Arnillas
- grid.17063.330000 0001 2157 2938Department of Physical and Environmental Sciences, University of Toronto – Scarborough, Scarborough, Canada
| | - Elizabeth T. Borer
- grid.17635.360000000419368657Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN USA
| | | | - Noah Fierer
- grid.266190.a0000000096214564Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA ,grid.464551.70000 0004 0450 3000Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA
| | - Peter G. Kennedy
- grid.17635.360000000419368657Departments of Plant Biology and Ecology, University of Minnesota, St Paul, MN USA
| | | | - Angela D. Luis
- grid.253613.00000 0001 2192 5772Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT USA
| | - Eric W. Seabloom
- grid.17635.360000000419368657Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN USA
| | - Jeremiah A. Henning
- grid.17635.360000000419368657Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN USA ,grid.267153.40000 0000 9552 1255Department of Biology, University of South Alabama, Mobile, AL USA
| |
Collapse
|
90
|
Yang T, Lupwayi N, Marc SA, Siddique KH, Bainard LD. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
91
|
Liang M, Shi L, Burslem DFRP, Johnson D, Fang M, Zhang X, Yu S. Soil fungal networks moderate density-dependent survival and growth of seedlings. THE NEW PHYTOLOGIST 2021; 230:2061-2071. [PMID: 33506513 DOI: 10.1111/nph.17237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density-dependent effects on seedling growth and survival. Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. Our findings reveal a critical role of common fungal networks in mitigating negative density-dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.
Collapse
Affiliation(s)
- Minxia Liang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liuqing Shi
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Miao Fang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinyi Zhang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
92
|
Durán J, Rodríguez A, Fangueiro D, De Los Ríos A. In-situ soil greenhouse gas fluxes under different cryptogamic covers in maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144557. [PMID: 33508664 DOI: 10.1016/j.scitotenv.2020.144557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Soils can influence climate by sequestering or emitting greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We are far from understanding the direct influence of cryptogamic covers on soil GHG fluxes, particularly in areas free of potential anthropogenic confounding factors. We assessed the role of well-developed cryptogamic covers in soil attributes, as well as in the in-situ exchange of GHG between Antarctic soils and the atmosphere during the austral summer. We found lower values of soil organic matter, total organic carbon, and total nitrogen in bare areas than in soils covered by mosses and, particularly, lichens. These differences, together with concomitant decreases and increases in soil temperature and moisture, respectively, resulted in increases in in-situ CO2 emission (i.e. ecosystem respiration) and decreases in CH4 uptake but no significant changes in N2O fluxes. We found consistent linear positive and negative relationships between soil attributes (i.e. soil organic matter, total organic carbon and total nitrogen) and CO2 emissions and CH4 uptake, respectively, and polynomial relationships between these soil attributes and net N2O fluxes. Our results indicate that any increase in the area occupied by cryptogams in terrestrial Antarctic ecosystems (due to increased growing season and increasingly warming conditions) will likely result in parallel increases in soil fertility as well as in an enhanced capacity to emit CO2 and a decreased capacity to uptake CH4. Such changes, unless offset by parallel C uptake processes, would represent a paradigmatic example of a positive climate change feedback. Further, we show that the fate of these terrestrial ecosystems under future climate scenarios, as well as their capacity to exchange GHG with the atmosphere might depend on the relative ability of different aboveground cryptogams to thrive under the new conditions.
Collapse
Affiliation(s)
- J Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - A Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - D Fangueiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A De Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain
| |
Collapse
|
93
|
Clocchiatti A, Hannula SE, van den Berg M, Hundscheid MPJ, de Boer W. Evaluation of Phenolic Root Exudates as Stimulants of Saptrophic Fungi in the Rhizosphere. Front Microbiol 2021; 12:644046. [PMID: 33936001 PMCID: PMC8079663 DOI: 10.3389/fmicb.2021.644046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
The rhizosphere microbial community of crop plants in intensively managed arable soils is strongly dominated by bacteria, especially in the initial stages of plant development. In order to establish more diverse and balanced rhizosphere microbiomes, as seen for wild plants, crop variety selection could be based on their ability to promote growth of saprotrophic fungi in the rhizosphere. We hypothesized that this can be achieved by increasing the exudation of phenolic acids, as generally higher fungal abundance is observed in environments with phenolic-rich inputs, such as exudates of older plants and litter leachates. To test this, a rhizosphere simulation microcosm was designed to establish gradual diffusion of root exudate metabolites from sterile sand into arable soil. With this system, we tested the fungus-stimulating effect of eight phenolic acids alone or in combination with primary root metabolites. Ergosterol-based fungal biomass measurements revealed that most phenolic acids did not increase fungal abundance in the arable soil layer. These results were supported by comparison of fungal biomass in the rhizosphere of wild type Arabidopsis thaliana plants and mutants with altered phenolic acid metabolism. Salicylic acid was the only phenolic acid that stimulated a higher fungal biomass in the arable soil layer of microcosms, but only when combined with a background of primary root metabolites. However, such effect on rhizosphere fungi was not confirmed for a salicylic acid-impaired A. thaliana mutant. For three phenolic acid treatments (chlorogenic acid, salicylic acid, vanillic acid) fungal and bacterial community compositions were analyzed using amplicon sequencing. Despite having little effect on fungal biomass, phenolic acids combined with primary metabolites promoted a higher relative abundance of soil-borne fungi with the ability to invade plant roots (Fusarium, Trichoderma and Fusicolla spp.) in the simulated rhizosphere. Bacterial community composition was also affected by these phenolic acids. Although this study indicates that phenolic acids do not increase fungal biomass in the rhizosphere, we highlight a potential role of phenolic acids as attractants for root-colonizing fungi.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Soil Biology Group, Wageningen University, Wageningen, Netherlands
| | - S Emilia Hannula
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | | | - Wietse de Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Soil Biology Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
94
|
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM. Plant-Soil Feedbacks and Temporal Dynamics of Plant Diversity-Productivity Relationships. Trends Ecol Evol 2021; 36:651-661. [PMID: 33888322 DOI: 10.1016/j.tree.2021.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.
Collapse
Affiliation(s)
- Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christiane Roscher
- Helmholtz Centre for Environmental Research, Physiological Diversity - UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
95
|
The temporal development of plant-soil feedback is contingent on competition and nutrient availability contexts. Oecologia 2021; 196:185-194. [PMID: 33847804 DOI: 10.1007/s00442-021-04919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Strength and direction of plant-soil feedback (PSF), the reciprocal interactions between plants and soil, can change over time and have distinct effects on different life stages. PSF and its temporal development can also be modified by external biotic and abiotic factors such as competition and resource availability, yet most PSF research is conducted in simple experimental settings without considering temporal changes. Here I have studied the effect of different competitive settings (intraspecific, interspecific, and no competition) and nutrient addition on the magnitude and direction of biomass-based PSF (performance in conspecific relative to heterospecific inoculum) across 46 grassland species, estimated at the 4th, 10th, and 13th month of the response phase. I also examined whether conspecific inoculum had a long-term effect on plant survival at the 36th month, and whether biomass-based PSF may predict survival-based PSF effects. PSF pooled across all treatments and time points was negative, but a significant overall temporal trend or differences among competitive settings were missing. PSF developed unimodally for interspecific competition across the three time points, whereas it declined gradually in case of intraspecific and no competition. Nutrient addition attenuated negative biomass-based PSF and eliminated negative effects of conspecific inoculum on survival. Interspecific differences in biomass-based PSF were related to survival-based PSF, but only after nutrient addition. This study demonstrates that PSF is dynamic and modulated by external abiotic and biotic factors. PSF research should consider the temporal dynamics of focal communities to properly estimate how PSF contributes to community changes, preferably directly in the field.
Collapse
|
96
|
Durán J, Rodríguez A, Heiðmarsson S, Lehmann JRK, Del Moral Á, Garrido-Benavent I, De Los Ríos A. Cryptogamic cover determines soil attributes and functioning in polar terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143169. [PMID: 33131854 DOI: 10.1016/j.scitotenv.2020.143169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
We still lack studies that provide evidence for direct links between the development of soil surface cryptogamic communities and soil attributes and functioning. This is particularly true in areas free of potentially confounding factors such as different soil types, land uses, or anthropogenic disturbances. Despite the ecological importance of polar ecosystems and their sensitivity to climate change, we are far from understanding how their soils function and will respond to climate change-driven alterations in above- and belowground features. We used two complementary approaches (i.e. cover gradients in the forefront of retreating glaciers as well as long-time deglaciated areas with well-developed cryptogamic cover types) to evaluate the role of cryptogams driving multiple soil biotic and abiotic attributes and functioning rates in polar terrestrial ecosystems. Increases in cryptogamic cover were consistently related to increases in organic matter accumulation, soil fertility, and bacterial diversity, but also in enhanced soil functioning rates in both sampling areas. However, we also show that the ability to influence soil attributes varies among different polar cryptogamic covers, indicating that their differential ability to thrive under climate-change scenarios will largely determine the fate of polar soils in coming decades.
Collapse
Affiliation(s)
- Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Akureyri Division, Borgir Nordurslod, 600 Akureyri, Iceland
| | - Jan R K Lehmann
- Institute of Landscape Ecology, University of Muenster, 48149 Muenster, Germany
| | - Álvaro Del Moral
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, STEM Faculty, The Open University, MK7 6AA Milton Keynes, United Kingdom; Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain
| | - Isaac Garrido-Benavent
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain
| | - Asunción De Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain
| |
Collapse
|
97
|
Qin F, Yu S. Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:616726. [PMID: 33643349 PMCID: PMC7907608 DOI: 10.3389/fpls.2021.616726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Mixed-species forest plantation is a sound option to facilitate ecological restoration, plant diversity and ecosystem functions. Compatible species combinations are conducive to reconstruct plant communities that can persist at a low cost without further management and even develop into natural forest communities. However, our understanding of how the compatibility of mycorrhizal types mediates species coexistence is still limited, especially in a novel agroforestry system. Here, we assessed the effects of mycorrhizal association type on the survival and growth of native woody species in mixed-species Eucalyptus plantations. To uncover how mycorrhizal type regulates plant-soil feedbacks, we first conducted a pot experiments by treating distinct mycorrhizal plants with soil microbes from their own or other mycorrhizal types. We then compared the growth response of arbuscular mycorrhizal plants and ectomycorrhizal plants to different soil microbial compositions associated with Eucalyptus plants. We found that the type of mycorrhizal association had a significant impact on the survival and growth of native tree species in the Eucalyptus plantations. The strength and direction of the plant-soil feedbacks of focal tree species depended on mycorrhizal type. Non-mycorrhizal plants had consistent negative feedbacks with the highest survival in the Eucalyptus plantations, whereas nitrogen-fixing plants had consistent positive feedbacks and the lowest survival. Arbuscular mycorrhizal and ectomycorrhizal plants performed varied feedback responses to soil microbes from distinct mycorrhizal plant species. Non-mycorrhizal plants grew better with Eucalyptus soil microbes while nitrogen-fixing plants grew worse with their own conspecific soil microbes. Different soil microbial compositions of Eucalyptus consistently increased the aboveground growth of arbuscular mycorrhizal plants, but the non-mycorrhizal microbial composition of the Eucalyptus soil resulted in greater belowground growth of ectomycorrhizal plants. Overall, Eucalyptus plants induced an unfavorable soil community, impeding coexistence with other mycorrhizal plants. Our study provides consistent observational and experimental evidence that mycorrhizal-mediated plant-microbial feedback on species coexistence among woody species. These findings are with important implications to optimize the species combinations for better design of mixed forest plantations.
Collapse
|
98
|
Wang M, Tang X, Sun X, Jia B, Xu H, Jiang S, Siemann E, Lu X. An invasive plant rapidly increased the similarity of soil fungal pathogen communities. ANNALS OF BOTANY 2021; 127:327-336. [PMID: 33159517 PMCID: PMC7872125 DOI: 10.1093/aob/mcaa191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Plant invasions can change soil microbial communities and affect subsequent invasions directly or indirectly via foliar herbivory. It has been proposed that invaders promote uniform biotic communities that displace diverse, spatially variable communities (the biotic homogenization hypothesis), but this has not been experimentally tested for soil microbial communities, so the underlying mechanisms and dynamics are unclear. Here, we compared density-dependent impacts of the invasive plant Alternanthera philoxeroides and its native congener A. sessilis on soil fungal communities, and their feedback effects on plants and a foliar beetle. METHODS We conducted a plant-soil feedback (PSF) experiment and a laboratory bioassay to examine PSFs associated with the native and invasive plants and a beetle feeding on them. We also characterized the soil fungal community using high-throughput sequencing. KEY RESULTS We found locally differentiated soil fungal pathogen assemblages associated with high densities of the native plant A. sessilis but little variation in those associated with the invasive congener A. philoxeroides, regardless of plant density. In contrast, arbuscular mycorrhizal fungal assemblages associated with high densities of the invasive plant were more variable. Soil biota decreased plant shoot mass but their effect was weak for the invasive plant growing in native plant-conditioned soils. PSFs increased the larval biomass of a beetle reared on leaves of the native plant only. Moreover, PSFs on plant shoot and root mass and beetle mass were predicted by different pathogen taxa in a plant species-specific manner. CONCLUSION Our results suggest that plant invasions can rapidly increase the similarity of soil pathogen assemblages even at low plant densities, leading to taxonomically and functionally homogeneous soil communities that may limit negative soil effects on invasive plants.
Collapse
Affiliation(s)
- Meiling Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- School of Life Sciences, Central China Normal University, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- School of Life Sciences, Central China Normal University, Hubei, China
| | - Xiaoqiu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, China
| | - Bingbing Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- School of Life Sciences, Central China Normal University, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, China
| | - Suai Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, China
- For correspondence. E-mail
| |
Collapse
|
99
|
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. DIVERSITY 2021. [DOI: 10.3390/d13020064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field level, and its response to current changes, will help to explain the observed community shifts. Integrating approaches based on evolutionary biology, population genetics and ecology can quantify the contribution of nematode fauna to fundamental soil functions. These include carbon transformation, nutrient cycling, pest control and disease transmission. In conclusion, different facets of nematode diversity such as trophic groups, life history traits, variability in body size and/or taxa identities in combination with DNA-based techniques are needed in order to disclose nematode–soil–ecosystem functioning relationships. Further experimental studies are required to define locally adapted and sustainable management practices, through ecosystem-based approaches and nature-based solutions.
Collapse
|
100
|
Buerdsell SL, Milligan BG, Lehnhoff EA. Invasive plant benefits a native plant through plant-soil feedback but remains the superior competitor. NEOBIOTA 2021. [DOI: 10.3897/neobiota.64.57746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant soil feedback (PSF) occurs when a plant modifies soil biotic properties and those changes in turn influence plant growth, survival or reproduction. These feedback effects are not well understood as mechanisms for invasive plant species. Eragrostis lehmanniana is an invasive species that has extensively colonized the southwest US. To address how PSFs may affect E. lehmanniana invasion and native Bouteloua gracilis growth, soil inoculant from four sites of known invasion age at the Appleton-Whittell Audubon Research Ranch in Sonoita, AZ were used in a PSF greenhouse study, incorporating a replacement series design. The purpose of this research was to evaluate PSF conspecific and heterospecific effects and competition outcomes between the invasive E. lehmanniana and a native forage grass, Bouteloua gracilis. Eragrostis lehmannianaPSFs were beneficial to B. gracilis if developed in previously invaded soil. Plant-soil feedback contributed to competitive suppression of B. gracilis only in the highest ratio of E. lehmanniana to B. gracilis. Plant-soil feedback did not provide an advantage to E. lehmanniana in competitive interactions with B. gracilis at low competition levels but were advantageous to E. lehmanniana at the highest competition ratio, indicating a possible density-dependent effect. Despite being beneficial to B. gracilis under many conditions, E. lehmanniana was the superior competitor.
Collapse
|