51
|
Duze ST, Marimani M, Patel M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 2021; 97:103758. [PMID: 33653529 DOI: 10.1016/j.fm.2021.103758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes a life-threatening disease in humans known as listeriosis. Contamination of food during processing is the main route of transmission of Listeria monocytogenes. Therefore, biocides play a crucial role in food processing environments as they act as the first line of defense in the prevention and control of L. monocytogenes. Residues of biocides may be present at sublethal concentrations after disinfection. This, unfortunately, subjects L. monocytogenes to selection pressure, giving rise to tolerant strains, which pose a threat to food safety and public health. This review will give a brief description of L. monocytogenes, the clinical manifestation, treatment of listeriosis as well as recently recorded outbreaks. The article will then discuss the current literature on the ability of L. monocytogenes strains to tolerate biocides especially quaternary ammonium compounds as well as the mechanisms of tolerance towards biocides including the activation of efflux pump systems.
Collapse
Affiliation(s)
- Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
52
|
Chique C, Hynds P, Burke LP, Morris D, Ryan MP, O'Dwyer J. Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003-2019: A global scoping review. WATER RESEARCH 2021; 188:116496. [PMID: 33059158 DOI: 10.1016/j.watres.2020.116496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Verocytotoxin-producing E. coli (VTEC) are important agents of diarrhoeal disease in humans globally. As a noted waterborne disease, emphasis has been given to the study VTEC in surface waters, readily susceptible to microbial contamination. Conversely, the status of VTEC in potable groundwater sources, generally regarded as a "safe" drinking-water supply remains largely understudied. As such, this investigation presents the first scoping review seeking to determine the global prevalence of VTEC in groundwater supply sources intended for human consumption. Twenty-three peer-reviewed studies were identified and included for data extraction. Groundwater sample and supply detection rates (estimated 0.6 and 1.3%, respectively) indicate VTEC is infrequently present in domestic groundwater sources. However, where generic (fecal indicator) E. coli are present, the VTEC to E. coli ratio was found to be 9.9%, representing a latent health concern for groundwater consumers. Geographically, extracted data indicates higher VTEC detection rates in urban (5.4%) and peri‑urban (4.9%) environments than in rural areas (0.9%); however, this finding is confounded by the predominance of research studies in lower income regions. Climate trends indicate local environments classified as 'temperate' (14/554; 2.5%) and 'cold' (8/392; 2%) accounted for a majority of supply sources with VTEC present, with similar detection rates encountered among supplies sampled during periods typically characterized by 'high' precipitation (15/649; 2.3%). Proposed prevalence figures may find application in preventive risk-based catchment and groundwater quality management including development of Quantitative Microbial Risk Assessments (QMRA). Notwithstanding, to an extent, a large geographical disparity in available investigations, lack of standardized reporting, and bias in source selection, restrict the transferability of research findings. Overall, the mechanisms responsible for VTEC transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between hydrogeological and public health research. Key recommendations and guidelines are provided for prospective studies directed at increasingly integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin.
| | - L P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
53
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Zhao P, Ndayambaje JP, Liu X, Xia X. Microbial Spoilage of Fruits: A Review on Causes and Prevention Methods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1858859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ping Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jean Pierre Ndayambaje
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiao Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xingxing Xia
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
55
|
Yin HB, Gupta N, Chen CH, Boomer A, Pradhan A, Patel J. Persistence of Escherichia coli O157:H12 and Escherichia coli K12 as Non-pathogenic Surrogates for O157:H7 on Lettuce Cultivars Irrigated With Secondary-Treated Wastewater and Roof-Collected Rain Water in the Field. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.555459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treated wastewater (TW) and roof-collected rain water (RW) that meet the required microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve as alternative irrigation water sources to decrease the pressure on the current water scarcity. Alternative water sources may have different water characteristics that influence the survival and transfer of microorganisms to the irrigated produce. Further, these water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline” were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10 days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW, or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four replicate lettuce leaf samples (30 g per sample) from each group were collected and pummeled in 120 ml of buffered peptone water for 2 min, followed by spiral plating on MacConkey agars with antibiotics. Results showed that the recovery of E. coli O157:H12 was significantly greater than the populations of E. coli K12 recovered from the irrigated lettuce regardless of the water sources and the lettuce cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates on the lettuce compared to the populations of these bacteria recovered from the lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis” lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and “Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation, where GW served as a baseline water source. E. coli O157:H12 could be a more suitable surrogate compared to E. coli K12 because it is an environmental watershed isolate. The findings of this study provide critical information in risk assessment evaluation of RW and TW irrigation on lettuce in Mid-Atlantic area.
Collapse
|
56
|
Fan X, Song Y. Advanced Oxidation Process as a Postharvest Decontamination Technology To Improve Microbial Safety of Fresh Produce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12916-12926. [PMID: 32369356 DOI: 10.1021/acs.jafc.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fresh produce is frequently associated with outbreaks of foodborne diseases; thus, there is a need to develop effective intervention technologies and antimicrobial treatments to improve the microbial safety of fresh produce. Washing with chemical sanitizers, commonly used by the industry, is limited in its effectiveness and is viewed as a possible cross-contamination opportunity. This review discuses the advanced oxidation process (AOP), which involves generating highly reactive hydroxyl radicals to inactivate human pathogens. Ionizing irradiation, ultraviolet (UV) light, and cold plasma can be regarded as AOP; however, AOPs employing combinations of UV, H2O2, cold plasma, and ozone may be more promising because higher amounts of hydroxyl radicals are produced in comparison to the individual treatments and the combinative AOPs may be more consumer friendly than ionizing irradiation. When applied as a gaseous/aerosolized treatment, AOPs may have advantages over immersion treatments, considering the reactivity of hydroxyl radicals and presence of organic materials in wash water. Gaseous/aerosolized AOPs achieve up to 5 log reductions of pathogenic bacteria on fresh produce compared to reductions of 1-2 logs with aqueous sanitizers. Further research needs to be conducted on specific AOPs before being considered for commercialization, such as reduced formation of undesirable chemical byproducts, impact on quality, and scaled up studies.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| | - Yuanyuan Song
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
57
|
Sant'Anna PB, de Melo Franco BD, Maffei DF. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4664-4670. [PMID: 32329100 DOI: 10.1002/jsfa.10438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The market of ready-to-eat minimally processed vegetables (RTE-MPV) is increasing in Brazil and many other countries. During processing, these vegetables go through several steps that modify their natural structure while maintaining the same nutritional and sensory attributes as the fresh produce. One of the most important steps is washing-disinfection, which aims to reduce the microbial load, prevent cross-contamination and inactivate pathogenic microorganisms that may be present. Nonetheless, the presence of pathogens and occurrence of foodborne illnesses associated with consumption of RTE-MPV concern consumers, governments and the food industry. This review brings an overview on the microbiological safety of RTE-MPV, focusing on Brazilian findings. Most of the published data are on detection of Salmonella spp. and Listeria monocytogenes, indicating that their prevalence may range from 0.4% to 12.5% and from 0.6% to 3.1%, respectively. The presence of these pathogens in fresh produce is unacceptable and risky, mainly in RTE-MPV, because consumers expect them to be clean and sanitized and consequently safe for consumption without any additional care. Therefore, proper control during the production of RTE-MPV is mandatory to guarantee products with quality and safety to consumers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pedro B Sant'Anna
- Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Bernadette Dg de Melo Franco
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
| | - Daniele F Maffei
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| |
Collapse
|
58
|
Pietrysiak E, Kummer JM, Hanrahan I, Ganjyal GM. Hurdle Effect of Hot Air Impingement Drying and Surfactant-Sanitizer Wash on Removal of Listeria innocua from Fresh Apples. J Food Prot 2020; 83:1488-1494. [PMID: 32311702 DOI: 10.4315/jfp-20-078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study investigated the decontamination efficacy of washing treatments for whole fresh apples by using washes containing surfactants, lauric arginate, sodium dodecyl sulfate, and Tween 20, combined with peracetic acid (PAA), followed by hot air impingement drying. Whole fresh apples of selected varieties (Gala and Granny Smith) were inoculated with Listeria innocua (7 log CFU/mL) by using a dipping method, and then dried and subjected to wash treatments with selected washing solutions (H2O, PAA, PAA-lauric arginate, PAA-sodium dodecyl sulfate, and PAA-Tween 20), followed by hot air impingement drying at two different temperature and time conditions, 93°C for 60 s or 121°C for 25 s. The H2O and PAA wash followed by hot air impingement drying led to a maximum 1.5-log reduction of L. innocua on the fruit surface. Adding surfactants increased the effectiveness of washing and drying treatments, resulting in an approximate 2.2-log reduction. Surfactants increased the spreadability and evaporation rate of the washing solutions. Posttreatment changes in apple firmness were assessed during a 21-day storage at 4 and 21°C. The hot air impingement drying had no adverse effect on the firmness of the apples and did not show any further reduction in L. innocua. Washing apples with solutions containing surfactants combined with PAA followed by hot air impingement drying helped to reduce the microbial loads to some extent and may help to reduce drying times significantly. HIGHLIGHTS
Collapse
Affiliation(s)
- Ewa Pietrysiak
- School of Food Science, Washington State University, Pullman, Washington 99164-6376
| | - Julianne M Kummer
- School of Food Science, Washington State University, Pullman, Washington 99164-6376
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, 1719 Springwater Avenue, Wenatchee, Washington 98801, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington 99164-6376
| |
Collapse
|
59
|
Iwu CD, du Plessis EM, Korsten L, Nontongana N, Okoh AI. Antibiogram Signatures of Some Enterobacteria Recovered from Irrigation Water and Agricultural Soil in two District Municipalities of South Africa. Microorganisms 2020; 8:microorganisms8081206. [PMID: 32784678 PMCID: PMC7463487 DOI: 10.3390/microorganisms8081206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to evaluate the antibiogram fingerprints of some Enterobacteria recovered from irrigation water and agricultural soil in two District Municipalities of the Eastern Cape Province, South Africa using standard culture-based and molecular methods. The prevalent resistance patterns in the isolates follow the order: Salmonella enterica serovar Typhimurium [tetracycline (92.3%), ampicillin (69.2%)]; Enterobacter cloacae [amoxicillin/clavulanic acid (77.6%), ampicillin (84.5%), cefuroxime (81.0%), nitrofurantoin (81%), and tetracycline (80.3%)]; Klebsiella pneumoniae [amoxicillin/clavulanic acid (80.6%), ampicillin (88.9%), and cefuroxime (61.1%)]; and Klebsiella oxytoca [chloramphenicol (52.4%), amoxicillin/clavulanic acid (61.9%), ampicillin (61.9%), and nitrofurantoin (61.9%)]. Antibiotic resistance genes detected include tetC (86%), sulII (86%), and blaAmpC (29%) in Salmonella enterica serovar Typhimurium., tetA (23%), tetB (23%), tetC (12%), sulI (54%), sulII (54%), catII (71%), blaAmpC (86%), blaTEM (43%), and blaPER (17%) in Enterobacter cloacae., tetA (20%), tetC (20%), tetD (10%), sulI (9%), sulII (18%), FOX (11%) and CIT (11%)-type plasmid-mediated AmpC, blaTEM (11%), and blaSHV (5%) in Klebsiella pneumoniae and blaAmpC (18%) in Klebsiella oxytoca. Our findings document the occurrence of some antibiotic-resistant Enterobacteria in irrigation water and agricultural soil in Amathole and Chris Hani District Municipalities, Eastern Cape Province of South Africa, thus serving as a potential threat to food safety.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
- Correspondence:
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
60
|
Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int J Hyg Environ Health 2020; 227:113524. [DOI: 10.1016/j.ijheh.2020.113524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
|
61
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
62
|
Evaluation by Flow Cytometry of Escherichia coli Viability in Lettuce after Disinfection. Antibiotics (Basel) 2019; 9:antibiotics9010014. [PMID: 31906157 PMCID: PMC7168219 DOI: 10.3390/antibiotics9010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
Foodborne outbreaks due to the consumption of ready-to-eat vegetables have increased worldwide, with Escherichia coli (E. coli) being one of the main sources responsible. Viable but nonculturable bacteria (VBNC) retain virulence even after some disinfection procedures and constitute a huge problem to public health due to their non-detectability through conventional microbiological techniques. Flow cytometry (FCM) is a promising tool in food microbiology as it enables the distinction of the different physiological states of bacteria after disinfection procedures within a short time. In this study, samples of lettuce inoculated with E. coli were subject to disinfection with sodium hypochlorite at free chlorine concentrations of 5, 10, 25, 50, and 100 mg·L−1 or with 35% peracetic acid at concentrations of 5, 10, 25, and 50 mg·L−1. The efficiency of these disinfectants on the viability of E. coli in lettuce was evaluated by flow cytometry with LIVE/DEAD stains. Results from this study suggest that FCM can effectively monitor cell viability. However, peracetic acid is more effective than sodium hypochlorite as, at half the concentration, it is enough to kill 100% of bacteria and always induces a lower percentage of VBNC. Finally, we can conclude that the recommended levels of chemical disinfectants for fresh fruit and vegetables are adequate when applied in lettuce. More importantly, it is possible to ensure that all cells of E. coli are dead and that there are no VBNC cells even with lower concentrations of those chemicals. These results can serve as guidance for lettuce disinfection, improving quality and the safety of consumption.
Collapse
|
63
|
Olicón-Hernández DR, Acosta-Sánchez Á, Monterrubio-López R, Guerra-Sánchez G. Quitosano y mucílago de Opuntia ficus-indica (nopal) como base de una película polimérica comestible para la protección de tomates contra Rhizopus stolonifer. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
El quitosano es una materia prima extremadamente versátil para la producción de fibras y biomateriales. Como antifúngico, posee un mecanismo de acción relacionado con interacciones electrostáticas de las membranas celulares, siendo efectivo contra diversos hongos. Por otro lado, el mucílago de nopal (Opuntia) es una matriz polimérica con aplicaciones interesantes en el campo agrícola y alimentario como componente estructural de geles o suplemento dietético. En este trabajo se diseñó una película comestible basada en quitosano (antifúngico) y mucílago de nopal (estructurante) como una alternativa para la defensa de los cultivos contra las infecciones por hongos. Se realizaron diversas pruebas de homogeneidad y resistencia variando la concentración de quitosano, glicerol y mucílago para seleccionar la mejor composición para la película. Posteriormente se realizaron estudios estructurales y reológicos como elementos para la caracterización de la formulación elegida. Finalmente, se hicieron pruebas in vitro e in situ para evaluar el potencial antifúngico en la protección de frutos de interés. Con base en la caracterización cualitativa y fisicoquímica se determinó que la película con integridad homogénea en su estructura se obtuvo a concentraciones de 3% de glicerol, 2% de quitosano y 20% de mucílago de nopal. La película resultante tuvo una superficie homogénea, flexible, luminosa, ligeramente oscura y con viscosidad acumulativa, lo que significa que la viscosidad total es la suma de las viscosidades de cada componente. La película demostró un fuerte efecto antifúngico contra Rhizopus stolonifer en condiciones in vitro e in situ y aumentó la vida útil de los frutos probados. Los resultados mostraron el potencial del uso de esta película ecológica para la protección de frutas de interés, lo que la convierte en un producto polimérico atractivo para su aplicación en el campo
Collapse
|
64
|
Stefaniuk EM, Tyski S. Colistin Resistance in Enterobacterales Strains - A Current View. Pol J Microbiol 2019; 68:417-427. [PMID: 31880886 PMCID: PMC7260631 DOI: 10.33073/pjm-2019-055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.
Collapse
Affiliation(s)
- Elżbieta M Stefaniuk
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland ; Department of Pharmaceutical and Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
65
|
Aryal M, Muriana PM. Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria Monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods 2019; 8:E639. [PMID: 31817159 PMCID: PMC6963748 DOI: 10.3390/foods8120639] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria entrapped in biofilms are a source of recurring problems in food processing environments. We recently developed a robust, 7-day biofilm microplate protocol for creating biofilms with strongly adherent strains of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella serovars that could be used to examine the effectiveness of various commercial sanitizers. Listeria monocytogenes 99-38, E.coli O157:H7 F4546, and Salmonella Montevideo FSIS 051 were determined from prior studies to be good biofilm formers and could be recovered and enumerated from biofilms following treatment with trypsin. Extended biofilms were generated by cycles of growth and washing daily, for 7 days, to remove planktonic cells. We examined five different sanitizers (three used at two different concentrations) for efficacy against the three pathogenic biofilms. Quaternary ammonium chloride (QAC) and chlorine-based sanitizers were the least effective, showing partial inhibition of the various biofilms within 2 h (1-2 log reduction). The best performing sanitizer across all three pathogens was a combination of modified QAC, hydrogen peroxide, and diacetin which resulted in ~6-7 log reduction, reaching levels below our limit of detection (LOD) within 1-2.5 min. All treatments were performed in triplicate replication and analyzed by one way repeated measures analysis of variance (RM-ANOVA) to determine significant differences (p < 0.05) in the response to sanitizer treatment over time. Analysis of 7-day biofilms by scanning electron microscopy (SEM) suggests the involvement of extracellular polysaccharides with Salmonella and E. coli, which may make their biofilms more impervious to sanitizers than L. monocytogenes.
Collapse
Affiliation(s)
- Manish Aryal
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA;
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA
| | - Peter M. Muriana
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA;
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA
| |
Collapse
|
66
|
Lee D, Tertuliano M, Harris C, Vellidis G, Levy K, Coolong T. Salmonella Survival in Soil and Transfer onto Produce via Splash Events. J Food Prot 2019; 82:2023-2037. [PMID: 31692392 DOI: 10.4315/0362-028x.jfp-19-066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nearly one-half of foodborne illnesses in the United States can be attributed to fresh produce consumption. The preharvest stage of production presents a critical opportunity to prevent produce contamination in the field from contaminating postharvest operations and exposing consumers to foodborne pathogens. One produce-contamination route that is not often explored is the transfer of pathogens in the soil to edible portions of crops via splash water. We report here on the results from multiple field and microcosm experiments examining the potential for Salmonella contamination of produce crops via splash water, and the effect of soil moisture content on Salmonella survival in soil and concentration in splash water. In field and microcosm experiments, we detected Salmonella for up to 8 to 10 days after inoculation in soil and on produce. Salmonella and suspended solids were detected in splash water at heights of up to 80 cm from the soil surface. Soil-moisture conditions before the splash event influenced the detection of Salmonella on crops after the splash events-Salmonella concentrations on produce after rainfall were significantly higher in wet plots than in dry plots (geometric mean difference = 0.43 CFU/g; P = 0.03). Similarly, concentrations of Salmonella in splash water in wet plots trended higher than concentrations from dry plots (geometric mean difference = 0.67 CFU/100 mL; P = 0.04). These results indicate that splash transfer of Salmonella from soil onto crops can occur and that antecedent soil-moisture content may mediate the efficiency of microbial transfer. Splash transfer of Salmonella may, therefore, pose a hazard to produce safety. The potential for the risk of splash should be further explored in agricultural regions in which Salmonella and other pathogens are present in soil. These results will help inform the assessment of produce safety risk and the development of management practices for the mitigation of produce contamination.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | | | | | | | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | - Timothy Coolong
- Department of Horticulture, College of Agricultural & Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793, USA
| |
Collapse
|
67
|
The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int J Microbiol 2019; 2019:2894328. [PMID: 31885595 PMCID: PMC6899298 DOI: 10.1155/2019/2894328] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Many raw vegetables, such as tomato, chili, onion, lettuce, arugula, spinach, and cilantro, are incorporated into fresh dishes including ready-to-eat salads and sauces. The consumption of these foods confers a high nutritional value to the human diet. However, the number of foodborne outbreaks associated with fresh produce has been increasing, with Escherichia coli being the most common pathogen associated with them. In humans, pathogenic E. coli strains cause diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, and other indications. Vegetables can be contaminated with E. coli at any point from pre- to postharvest. This bacterium is able to survive in many environmental conditions due to a variety of mechanisms, such as adhesion to surfaces and internalization in fresh products, thereby limiting the usefulness of conventional processing and chemical sanitizing methods used by the food industry. The aim of this review is to provide a general description of the behavior and importance of pathogenic E. coli in ready-to-eat vegetable dishes. This information can contribute to the development of effective control measures for enhancing food safety.
Collapse
|
68
|
Olimpi EM, Baur P, Echeverri A, Gonthier D, Karp DS, Kremen C, Sciligo A, De Master KT. Evolving Food Safety Pressures in California's Central Coast Region. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
70
|
Liu BT, Song FJ. Emergence of two Escherichia coli strains co-harboring mcr-1 and bla NDM in fresh vegetables from China. Infect Drug Resist 2019; 12:2627-2635. [PMID: 31692544 PMCID: PMC6711560 DOI: 10.2147/idr.s211746] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background The concurrence of mcr and carbapenemase genes among Enterobacteriaceae has been a great clinical concern. In our study, we aimed to investigate the prevalence of mcr-positive carbapenem-resistant Enterobacteriaceae (CRE) in fresh vegetables and shed light on the possibility of transmission of mcr-positive CRE via fresh vegetables. Methods In this study, 712 fresh vegetable samples from 10 provinces in China were collected between May 2017 and Dec 2018 and were screened for mcr and carbapenemase genes. Antibiotic susceptibilities for isolates co-harboring carbapenemase genes and mcr were determined by an agar dilution or a broth microdilution method. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analysis were also performed. Transferability of the carbapenemase/mcr-bearing plasmids was determined by conjugation, replicon typing and S1-PFGE-Southern blotting. The sequences of these plasmids were analyzed by using whole-genome sequencing with Illumina Hiseq platform. Results Two E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 from leaf rape and spinach, respectively, were found and both isolates showed multidrug resistance. Notably, mcr-1-positive 690 harboring blaNDM-5 and 701 carrying blaNDM-9 belonged to ST156 and ST2847, respectively, similar to the prevalent MLST types of E. coli co-carrying mcr-1 and blaNDM from avian in our previous study. mcr-1 was on ~33-kb IncX4 plasmid or ~60-kb IncI2 plasmid, while blaNDM-5/9 was on ~46-kb IncX3 plasmid or ~120-kb untypable plasmid. The plasmids were highly similar to those from animals and clinical patients reported in various countries. Conclusion:E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 in fresh vegetables may serve as a direct source of pathogens in humans, and such discovery in fresh vegetables emphasizes the importance of prompt surveillance and intervention in limiting the spread of E. coli co-carrying blaNDM and mcr-1. To our knowledge, this is the first report of Enterobacteriaceae co-carrying blaNDM and mcr-1 in fresh vegetables.
Collapse
Affiliation(s)
- Bao-Tao Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Feng-Jing Song
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, People's Republic of China
| |
Collapse
|
71
|
|
72
|
Maffei DF, Moreira DA, Silva MBR, Faria DB, Saldaña E, Ishimura I, Landgraf M, Franco BDGM. Assessing the relationship between organic farming practices and microbiological characteristics of organic lettuce varieties (Lactuca sativa L.) grown in Sao Paulo, Brazil. J Appl Microbiol 2019; 127:237-247. [PMID: 30989772 DOI: 10.1111/jam.14281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to gather information on farming practices employed in organic lettuce fields in Sao Paulo, Brazil and associate these practices with the microbiological characteristics of the products. METHODS AND RESULTS Practices were surveyed using a questionnaire applied in ten farms, where 200 heads of lettuce were collected and submitted to enumeration of total coliforms and generic Escherichia coli and tested for Salmonella spp. using culture and molecular (qPCR) methods. Based on the responses, the farms could be clustered in two groups: group 1, comprised by six farms, where chicken manure was used as fertilizer in most of them and the composting process was not performed on site; and group 2, comprised by four farms, where other types of fertilizer were used, and the composting process was performed on site. Generic E. coli was detected in 56 (28%) samples, with an average of 1·1 ± 0·7 log MPN per g. Salmonella DNA was detected in two (1%) samples by qPCR. CONCLUSIONS The prevalence and bacterial loads of generic E. coli, and the occurrence of Salmonella, even at low populations undetectable by conventional culture methods, highlight the need for control measures during farming practices to reduce microbial contamination and risks of foodborne illnesses. These measures include the use of properly composted manure and appropriate washing procedures for leafy vegetables before consumption. SIGNIFICANCE AND IMPACT OF THE STUDY The obtained data contribute to a better understanding of the farming practices of organically grown lettuces in Sao Paulo, Brazil.
Collapse
Affiliation(s)
- D F Maffei
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - D A Moreira
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - M B R Silva
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - D B Faria
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - E Saldaña
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - I Ishimura
- Sao Paulo State Agency for Agribusiness Technology (APTA), Sao Roque, SP, Brazil
| | - M Landgraf
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - B D G M Franco
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
73
|
Julien-Javaux F, Gérard C, Campagnoli M, Zuber S. Strategies for the safety management of fresh produce from farm to fork. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
74
|
Liu BT, Li X, Zhang Q, Shan H, Zou M, Song FJ. Colistin-Resistant mcr-Positive Enterobacteriaceae in Fresh Vegetables, an Increasing Infectious Threat in China. Int J Antimicrob Agents 2019; 54:89-94. [PMID: 31034936 DOI: 10.1016/j.ijantimicag.2019.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
The presence of mobilized colistin resistance (mcr) genes is a global concern. However, data concerning mcr in fresh vegetables, a reservoir for antibiotic resistance genes, are still rare. In this study, mcr genes were analysed in 528 vegetable samples from 53 supermarkets or farmer's markets in 23 cities of 9 provinces in China, and the mcr-positive Enterobacteriaceae were characterized. Nineteen (3.6%) samples carried one or more mcr-positive isolates, and the highest three detection rates were found in carrot, pak choi and green pepper. Twenty-four mcr-1-positive isolates (23 Escherichia coli and one Enterobacter cloacae) were obtained, and E. coli isolates showed high genetic diversity. Different multilocus sequence type (MLST) isolates were also observed within the same sample. All 24 isolates showed multidrug resistance, and 14 carried blaCTX-M genes. Most isolates harbored similarly conjugative IncX4-type (∼33 kb) or IncI2-type (∼60 kb) mcr-1-bearing plasmids. The sequenced prevalent IncX4 plasmid and IncI2 plasmid from tomato were similar to the relevant plasmids from animals and clinical isolates in various countries. mcr-1-bearing IncHI2/ST3 plasmid highly similar to that carrying 14 resistance genes from E. coli of chicken was also observed. In conclusion, a high prevalence of mcr-1 in fresh vegetables was found in China, and the dissemination of mcr-1 was mediated by similar IncX4 or IncI2 plasmids. The plasmids from vegetables showed high similarity to plasmids from clinical isolates, indicating MCR-1-producers in ready-to-eat vegetables may pose a huge threat to public health and measures need to be taken to ensure food safety.
Collapse
Affiliation(s)
- Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| | - Xuyong Li
- College of Agricultural, Liaocheng University, Liaocheng, China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| | - Feng-Jing Song
- Qingdao Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
75
|
Optimal sustainable water-Energy storage strategies for off-grid systems in low-income communities. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
76
|
Erickson MC, Liao JY, Payton AS, Cook PW, Den Bakker HC, Bautista J, Pérez JCD. Pre-harvest internalization and surface survival of Salmonella and Escherichia coli O157:H7 sprayed onto different lettuce cultivars under field and growth chamber conditions. Int J Food Microbiol 2019; 291:197-204. [PMID: 30551016 DOI: 10.1016/j.ijfoodmicro.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/15/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Plant genotype has been advocated to have an important role in the fate of enteric pathogens residing in lettuce foliage. This study was therefore undertaken under the premise that different pathogen responses could occur in lettuce cultivars with cultivar selection being one of several hurdles in an overall strategy for controlling foodborne pathogens on field-grown produce. Up to eight lettuce cultivars ('Gabriella', 'Green Star', 'Muir', 'New Red Fire', 'Coastal Star', 'Starfighter', 'Tropicana', and 'Two Star') were examined in these experiments in which the plants were subjected to spray contamination of their foliage with pathogens. In an experiment that addressed internalization of Salmonella, cultivar was determined to be a significant variable (P < 0.05) with 'Gabriella' and 'Muir' being the least and most likely to exhibit internalization of this pathogen, respectively. Furthermore, antimicrobials (total phenols and antioxidant capacity chemicals) could be part of the plant's defenses to resist internalization as there was an inverse relationship between the prevalence of internalization at 1 h and the levels of these antimicrobials (r = -0.75 to -0.80, P = 0.0312 to 0.0165). Internalized cells appeared to be transient residents in that across all cultivars, plants sampled 1 h after being sprayed were 3.5 times more likely to be positive for Salmonella than plants analyzed 24 h after spraying (95% CI from 1.5 to 8.2, P = 0.0035). The fate of surface-resident Salmonella and Escherichia coli O157:H7 was addressed in subsequent growth chamber and field experiments. In the growth chamber study, no effect of cultivar was manifested on the fate of either pathogen when plants were sampled up to 12 days after spray contamination of their foliage. However, in the field study, five days after spraying the plants, Salmonella contamination was significantly affected by cultivar (P < 0.05) and the following order of prevalence of contamination was observed: 'Muir' < 'Gabriella' < 'Green Star' = 'New Red Fire' < 'Coastal Star'. Nine days after spray contamination of plants in the field, no effect of cultivar was exhibited due primarily to the low prevalence of contamination observed for Salmonella (8 of 300 plant samples positive by enrichment culture) and E. coli O157 (4 of 300 plant samples positive by enrichment culture). Given the narrow window of time during which cultivar differences were documented, it is unlikely that cultivar selection could serve as a viable option for reducing the microbiological risk associated with lettuce.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA.
| | - Jye-Yin Liao
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Alison S Payton
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Peter W Cook
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Henk C Den Bakker
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Jesus Bautista
- Department of Horticulture, University of Georgia, 2360 Rainwater Rd., Tifton, GA 31793-5766, USA
| | - Juan Carlos Díaz Pérez
- Department of Horticulture, University of Georgia, 2360 Rainwater Rd., Tifton, GA 31793-5766, USA
| |
Collapse
|
77
|
Pereira Batista AF, Rodrigues dos Santos A, Fiori da Silva A, Coelho Trevisan DA, Ribeiro LH, Zanetti Campanerut-Sá PA, Alves de Abreu Filho B, Junior MM, Graton Mikcha JM. Inhibition of Salmonella enterica serovar Typhimurium by combined carvacrol and potassium sorbate in vitro and in tomato paste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
78
|
O'Flaherty E, Solimini AG, Pantanella F, De Giusti M, Cummins E. Human exposure to antibiotic resistant-Escherichia coli through irrigated lettuce. ENVIRONMENT INTERNATIONAL 2019; 122:270-280. [PMID: 30449627 DOI: 10.1016/j.envint.2018.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 05/14/2023]
Abstract
Antibiotic resistant bacteria (ARB) have been found on fresh fruit and vegetables globally. These types of ARB infections are spreading rapidly and are a major human health threat. A quantitative human exposure assessment model was created using scenario analysis to investigate the potential human exposure to antibiotic resistant Escherichia coli (AR-E. coli) through the consumption of lettuce irrigated with surface water. Scientific literature and site specific data were collected to model each process from farm to fork to calculate the concentration of AR-E. coli on the lettuce at the point of human consumption. The processes examined were the adhesion, colonisation and viability of bacteria on the lettuce; the effect of different post-harvest cleaning processes; the effect of consuming the lettuce before, on or after the expiry date; and the effect of the consumer washing the lettuce. The results show the mean human exposure levels ranged between 1.00 × 10-2 and 1.35 × 106 colony forming units (CFU) of AR-E. coli per 100 g of surface water irrigated lettuce for the different scenarios investigated. The mean probability of illness from consuming 100 g of lettuce contaminated with potential pathogenic antibiotic-sensitive E. coli was between 1.46 × 10-9 to 1.88 × 10-2. A back calculation revealed that in order for the EC No 1441/2007 regulation to be exceeded (≥1000 CFU/g of E. coli on lettuce at the manufacturing stage), the mean contamination levels required in the irrigation water would need to be 2.7, 3.1 or 4.8 log CFU/ml using the post-harvest treatments of washing with water, rapid cooling with water and washing with a chlorine solution respectively. The information generated from this model could help to set guidelines for producers on maximum permissible AR-E. coli contamination levels in irrigation water and provides recommendations on the best post-harvest treatment to use.
Collapse
Affiliation(s)
- E O'Flaherty
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - A G Solimini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - F Pantanella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - M De Giusti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - E Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
79
|
Adegoke AA, Amoah ID, Stenström TA, Verbyla ME, Mihelcic JR. Epidemiological Evidence and Health Risks Associated With Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front Public Health 2018; 6:337. [PMID: 30574474 PMCID: PMC6292135 DOI: 10.3389/fpubh.2018.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/01/2018] [Indexed: 01/25/2023] Open
Abstract
The use of partially treated and untreated wastewater for irrigation is beneficial in agriculture but may be associated with human health risks. Reports from different locations globally have linked microbial outbreaks with agricultural reuse of wastewater. This article reviews the epidemiological evidence and health risks associated with this practice, aiming toward evidence-based conclusions. Exposure pathways that were addressed in this review included those relevant to agricultural workers and their families, consumers of crops, and residents close to areas irrigated with wastewater (partially treated or untreated). A meta-analysis gave an overall odds ratio of 1.65 (95% CI: 1.31, 2.06) for diarrheal disease and 5.49 (95% CI: 2.49, 12.10) for helminth infections for exposed agricultural workers and family members. The risks were higher among children and immunocompromised individuals than in immunocompetent adults. Predominantly skin and intestinal infections were prevalent among individuals infected mainly via occupational exposure and ingestion. Food-borne outbreaks as a result of crops (fruits and vegetables) irrigated with partially or untreated wastewater have been widely reported. Contamination of crops with enteric viruses, fecal coliforms, and bacterial pathogens, parasites including soil-transmitted helminthes (STHs), as well as occurrence of antibiotic residues and antibiotic resistance genes (ARGs) have also been evidenced. The antibiotic residues and ARGs may get internalized in crops along with pathogens and may select for antibiotic resistance, exert ecotoxicity, and lead to bioaccumulation in aquatic organisms with high risk quotient (RQ). Appropriate mitigation lies in adhering to existing guidelines such as the World Health Organization wastewater reuse guidelines and to Sanitation Safety Plans (SSPs). Additionally, improvement in hygiene practices will also provide measures against adverse health impacts.
Collapse
Affiliation(s)
- Anthony A. Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Isaac D. Amoah
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A. Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Matthew E. Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, United States
| | - James R. Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
80
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
81
|
Becker B, Stoll D, Schulz P, Kulling S, Huch M. Microbial Contamination of Organically and Conventionally Produced Fresh Vegetable Salads and Herbs from Retail Markets in Southwest Germany. Foodborne Pathog Dis 2018; 16:269-275. [PMID: 30484714 DOI: 10.1089/fpd.2018.2541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A total of 189 samples of fresh products (leafy salads, ready-to-eat mixed salads, and fresh herbs) bought in retail in Southwest Germany were investigated for their microbiological quality and the presence of pathogenic bacteria, including Salmonella spp., Listeria monocytogenes, and presumptive Bacillus cereus. Total aerobic mesophilic plate counts (TAC) ranged from 5.5 to 9.6 log colony-forming units (CFUs) per gram. Enterobacteria and pseudomonads were the predominant microorganisms and were detected in all samples with counts between 5.0 and 9.2 log CFU/g. Strains of Escherichia coli were detected in 9 salad (7.9%) and 25 herb samples (33.3%). Significant differences in bacterial counts were found between conventionally and organically-grown products: in herbs the counts of moulds were significantly higher in organically-grown products, while E. coli was only detected in conventionally-grown products. In conventionally-grown salad samples, yeast counts were significantly higher. Salmonella Enteritidis was only detected in two conventionally- and in one organically-produced salad samples (2.6%). No coagulase-positive staphylococci were detected in fresh salads as well as in herbs. High levels of B. cereus sensu lato (≥3 log CFU/g) were detected in 19 vegetable salads (16.7%) and even in 55 samples of fresh herbs (73.3%). Listeria monocytogenes could not be detected in fresh herbs; however, three L. monocytogenes strains were isolated from two conventionally-produced salad samples and belonged to PCR serogroup IIa. Although our results indicate a high microbial load in fresh salads and herbs in Southwest Germany in 2015, the incidences of human pathogenic bacteria, that is, L. monocytogenes, Salmonella spp., and coagulase-positive staphylococci strains, were low.
Collapse
Affiliation(s)
- Biserka Becker
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe, Germany
| | - Dominic Stoll
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe, Germany
| | - Patrick Schulz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food , Karlsruhe, Germany
| |
Collapse
|
82
|
Karunaratne AM. A multifaceted approach to harness probiotics as antagonists on plant based foods, for enhanced benefits to be reaped at a global level. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5189-5196. [PMID: 29931687 DOI: 10.1002/jsfa.9215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Investigations into probiotics have focused on their health benefits thus far, with some of the findings finally reaching the food and pharmaceutical industries, which have used them for commercial purposes. In biocontrol research some microbes, mainly isolated from plants, have shown antagonism towards both enteric and plant pathogens, and some of them represent probiotic species. Fresh fruits and vegetables are regarded as health-promoting dietary constituents, and if probiotics could be used to control the pathogens on them then they could turn out to be even healthier. The fresh produce industry still depends on agrochemicals and the increase in the demand for high-priced organically grown produce indicates consumer concerns regarding the use of agrochemicals. If the potential of probiotic organisms to serve as biocontrol agents for fresh produce is exploited, all fresh produce can be made as safe as organically grown produce, and much more wholesome. This review appraises the feasibility of such a move by evaluating how research has progressed in both disciplines (probiotic and biocontrol) and suggests sharing results from research via information technology, efficient collaboration, and the use of novel molecular biological tools to achieve the objective of probiotic antagonists. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anjani M Karunaratne
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
83
|
Riggio GM, Wang Q, Kniel KE, Gibson KE. Microgreens-A review of food safety considerations along the farm to fork continuum. Int J Food Microbiol 2018; 290:76-85. [PMID: 30308448 DOI: 10.1016/j.ijfoodmicro.2018.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023]
Abstract
The food safety implications of microgreens, an emerging salad crop, have been studied only minimally. The farm to fork continuum of microgreens and sprouts has some overlap in terms of production, physical characteristics, and consumption. This review describes the food safety risk of microgreens as compared to sprouts, potential control points for microgreen production, what is known to date about pathogen transfer in the microgreen production environment, and where microgreens differ from sprouts and their mature vegetable counterparts. The synthesis of published research to date may help to inform Good Agricultural Practices (GAPs) and Good Handling Practices (GHPs) for the emerging microgreen industry.
Collapse
Affiliation(s)
- Gina M Riggio
- University of Arkansas, Dept. of Food Science, 2650 Young Ave, Fayetteville, AR 72704, United States of America.
| | - Qing Wang
- University of Delaware, College of Agriculture and Natural Resources, Newark, DE 19711, United States of America.
| | - Kalmia E Kniel
- University of Delaware, College of Agriculture and Natural Resources, Newark, DE 19711, United States of America.
| | - Kristen E Gibson
- University of Arkansas, Dept. of Food Science, 2650 Young Ave, Fayetteville, AR 72704, United States of America.
| |
Collapse
|
84
|
Alves VF, Niño-Arias FC, Pitondo-Silva A, de Araújo Frazilio D, de Oliveira Gonçalves L, Chaul Toubas L, Sapateiro Torres IM, Oxaran V, Dittmann KK, De Martinis ECP. Molecular characterisation of Staphylococcus aureus from some artisanal Brazilian dairies. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
85
|
Rivera D, Toledo V, Reyes-Jara A, Navarrete P, Tamplin M, Kimura B, Wiedmann M, Silva P, Moreno Switt AI. Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiol 2018; 75:126-132. [DOI: 10.1016/j.fm.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/13/2017] [Indexed: 11/15/2022]
|
86
|
Beharielal T, Thamaga-Chitja J, Schmidt S. Pre-and post-harvest practices of smallholder farmers in rural KwaZulu-Natal, South Africa: Microbiological quality and potential market access implications. Food Control 2018; 92:53-62. [DOI: 10.1016/j.foodcont.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
Linares-Morales JR, Gutiérrez-Méndez N, Rivera-Chavira BE, Pérez-Vega SB, Nevárez-Moorillón GV. Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
88
|
Mokhtari A, Oryang D, Chen Y, Pouillot R, Van Doren J. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1718-1737. [PMID: 29315715 DOI: 10.1111/risa.12960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options.
Collapse
Affiliation(s)
- Amir Mokhtari
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - David Oryang
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Yuhuan Chen
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Regis Pouillot
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Jane Van Doren
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
89
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
90
|
Kyere EO, Palmer J, Wargent JJ, Fletcher GC, Flint S. Colonisation of lettuce byListeria Monocytogenes. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuel O. Kyere
- Institute of Food Science and Technology; School of Food and Nutrition; Massey University; Private Bag 11222 Palmerston North New Zealand
| | - Jon Palmer
- Institute of Food Science and Technology; School of Food and Nutrition; Massey University; Private Bag 11222 Palmerston North New Zealand
| | - Jason J. Wargent
- Institute of Agriculture & Environment; Massey University; Private Bag 11222 Palmerston North New Zealand
| | - Graham C. Fletcher
- The New Zealand Institute for Plant & Food Research Limited; Private Bag 92169 Auckland 1142 New Zealand
| | - Steve Flint
- Institute of Food Science and Technology; School of Food and Nutrition; Massey University; Private Bag 11222 Palmerston North New Zealand
| |
Collapse
|
91
|
Liu BT, Zhang XY, Wan SW, Hao JJ, Jiang RD, Song FJ. Characteristics of Carbapenem-Resistant Enterobacteriaceae in Ready-to-Eat Vegetables in China. Front Microbiol 2018; 9:1147. [PMID: 29910786 PMCID: PMC5992273 DOI: 10.3389/fmicb.2018.01147] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023] Open
Abstract
Vegetables harboring bacteria resistant to antibiotics are a growing food safety issue. However, data concerning carbapenem-resistant Enterobacteriaceae (CRE) in ready-to-eat fresh vegetables is still rare. In this study, 411 vegetable samples from 36 supermarkets or farmer's markets in 18 cities in China, were analyzed for CRE. Carbapenemase-encoding genes and other resistance genes were analyzed among the CRE isolates. Plasmids carrying carbapenemase genes were studied by conjugation, replicon typing, S1-PFGE southern blot, restriction fragment length polymorphism (RFLP), and sequencing. CRE isolates were also analyzed by pulsed-field gel electrophoresis (PFGE). Ten vegetable samples yielded one or more CRE isolates. The highest detection rate of CRE (14.3%, 4/28) was found in curly endive. Twelve CRE isolates were obtained and all showed multidrug resistance: Escherichia coli, 5; Citrobacter freundii, 5; and Klebsiella pneumoniae, 2. All E. coli and C. freundii carried blaNDM, while K. pneumoniae harbored blaKPC−2. Notably, E. coli with blaNDM and ST23 hypervirulent Klebsiella pneumoniae (hvKP) carrying blaKPC−2 were found in the same cucumber sample and clonal spread of E. coli, C. freundii, and K. pneumoniae isolates were all observed between vegetable types and/or cities. IncX3 plasmids carrying blaNDM from E. coli and C. freundii showed identical or highly similar RFLP patterns, and the sequenced IncX3 plasmid from cucumber was also identical or highly similar (99%) to the IncX3 plasmids from clinical patients reported in other countries, while blaKPC−2 in K. pneumoniae was mediated by similar F35:A-:B1 plasmids. Our results suggest that both clonal expansion and horizontal transmission of IncX3- or F35:A-:B1-type plasmids may mediate the spread of CRE in ready-to-eat vegetables in China. The presence of CRE in ready-to-eat vegetables is alarming and constitutes a food safety issue. To our knowledge, this is the first report of either the C. freundii carrying blaNDM, or K. pneumoniae harboring blaKPC−2 in vegetables. This is also the first report of ST23 carbapenem-resistant hvKP strain in vegetables.
Collapse
Affiliation(s)
- Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Yan Zhang
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Shu-Wei Wan
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Jun-Jie Hao
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Rui-De Jiang
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Feng-Jing Song
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
92
|
Jang H, Matthews KR. Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide. Food Res Int 2018; 108:35-41. [PMID: 29735067 DOI: 10.1016/j.foodres.2018.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response.
Collapse
Affiliation(s)
- Hyein Jang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
93
|
de Oliveira Elias S, Noronha TB, Tondo EC. Assessment of Salmonella spp. and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions. Food Microbiol 2018; 72:206-213. [PMID: 29407399 DOI: 10.1016/j.fm.2017.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to assess the growth of Salmonella and Escherichia coli O157:H7 on lettuce exposed to isothermal and non-isothermal conditions. Pathogens were inoculated on lettuce separately and stored under isothermal condition at 5 °C, 10 °C, 25 °C, 37 °C for both bacteria, at 40 °C for Salmonella and 42 °C for E. coli O157:H7. Growth curves were built by fitting the data to the Baranyi's DMFit, generating R2 values greater than 0.92 for primary models. Secondary models were fitted with Ratkowsky equations, generating R2 values higher than 0.91 and RMSE lower than 0.1. Experimental data showed that both bacteria could grow at all temperatures. Also, the growth of both pathogens under non-isothermal conditions was studied simulating temperatures found from harvest to supermarkets in Brazil. Models were analysed by R2, RMSE, bias factor (Bf) and accuracy factor (Af). Salmonella and E. coli O157:H7 were able to grow in this temperature profile and the models could predict the behavior of these microorganisms on lettuce under isothermal and non-isothermal conditions. Based on the results, a negligible growth time (ς) was proposed to provide the time which lettuce could be exposed to a specific temperature and do not present an expressive growth of bacteria. The ς was developed based on Baranyi's primary model equation and on growth potential concept. ς is the value of lag phase added of the time necessary to population grow 0.5 log CFU/g. The ς of lettuce exposed to 37 °C was 1.3 h, while at 5 °C was 3.3 days.
Collapse
Affiliation(s)
- Susana de Oliveira Elias
- Departamento de Ciências dos Alimentos, Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Av. Bento Gonçalves, 9500 Prédio 43212 Agronomia, CEP: 91505-970, Porto Alegre, RS, Brazil.
| | - Tiago Baptista Noronha
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Rua General Balbão, 81, CEP 96745-000, Charqueadas, RS, Brazil.
| | - Eduardo Cesar Tondo
- Departamento de Ciências dos Alimentos, UFRGS/ICTA, Av. Bento Gonçalves, 9500 Prédio 43212 Agronomia, CEP: 91505-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
94
|
Alvarenga VO, Campagnollo FB, do Prado-Silva L, Horita CN, Caturla MYR, Pereira EPR, Crucello A, Sant'Ana AS. Impact of Unit Operations From Farm to Fork on Microbial Safety and Quality of Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:131-175. [PMID: 29860973 DOI: 10.1016/bs.afnr.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Unit operations modify material properties aiming to produce uniform and high-quality food products with greater acceptance by the increasingly demanding consumers or with longer shelf life and better possibilities of storage and transport. Microorganisms, including bacteria, molds, viruses, and parasites, may have different susceptibilities to unit operations employed during food processing. On-farm (cleaning, selection and classification, cooling, storage, and transport) and on-factory unit operations (heating, refrigeration/freezing, dehydration, modification of atmosphere, irradiation, and physical, chemical, and microbial-based operations) are commonly employed throughout food production chain. The intensity and combination of unit operations along with food composition, packaging, and storage conditions will influence on the dominance of specific microorganisms, which can be pathogenic or responsible for spoilage. Thus, in the context of food safety objective (FSO), the knowledge and the quantification of the effects caused by each step of processing can enable to control and ensure the quality and safety of manufactured products.
Collapse
Affiliation(s)
| | | | | | - Claudia N Horita
- Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | | - Aline Crucello
- Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
95
|
Quantifying growth of cold-adapted Listeria monocytogenes and Listeria innocua on fresh spinach leaves at refrigeration temperatures. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
96
|
Microbial occurrence and antibiotic resistance in ready-to-go food items. Journal of Food Science and Technology 2018; 55:2600-2609. [PMID: 30042576 DOI: 10.1007/s13197-018-3180-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
Foodborne pathogens, such as Escherichia coli, and Salmonella, are commonly prevalent in contaminated food products seen through annual food recalls. Excessive use of antibiotics through the past few decades has led to a multitude of antibiotic resistant bacteria, including foodborne pathogens. We investigated microbial occurrence and their antibiotics resistances in ready-to-go food items, i.e. canned food, bagged food, and baby food. A total of 112 isolates were isolated from varying food items, and 21 of these isolates were identified through 16S rRNA sequencing revealing Bacillus sp., Staphylococcus sp. and Micrococcus sp. Bagged food items showed the most microbial diversity as well as the largest colony forming unit (log 20-25 CFU/g). Isolates showed antibiotic resistance to ampicillin, streptomycin, chloramphenicol, and kanamycin at concentrations of 100, 500, and 1000 µg/mL. 57% isolates were ampicillin resistance followed by kanamycin (26%). A variety of microorganisms present in ready-to-go food items may not be pathogenic, however their occurrence and multiple antibiotic resistance (MAR) poses risk of transferring their genes to foodborne pathogens.
Collapse
|
97
|
Luo Y, Zhou B, Van Haute S, Nou X, Zhang B, Teng Z, Turner ER, Wang Q, Millner PD. Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiol 2018; 70:120-128. [PMID: 29173618 DOI: 10.1016/j.fm.2017.09.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022]
Abstract
Determining the minimal effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination during produce washing is critical for developing science- and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated during commercial washing of chopped Romaine lettuce, shredded Iceberg lettuce, and diced cabbage as pathogen inoculation study during commercial operation is not feasible. Wash water was sampled every 30 min and assayed for organic loading, FC, and total aerobic mesophilic bacteria after chlorine neutralization. Water turbidity, chemical oxygen demand, and total dissolved solids increased significantly over time, with more rapid increases in diced cabbage water. Combined chlorine increased consistently while FC fluctuated in response to rates of chlorine dosing, product loading, and water replenishment. Total bacterial survival showed a strong correlation with real-time FC concentration. Under approximately 10 mg/L, increasing FC significantly reduced the frequency and population of surviving bacteria detected. Increasing FC further resulted in the reduction of the aerobic plate count to below the detection limit (50 CFU/100 mL), except for a few sporadic positive samples with low cell counts. This study confirms that maintaining at least 10 mg/L FC in wash water strongly reduced the likelihood of bacterial survival and thus potential cross contamination of washed produce.
Collapse
Affiliation(s)
- Yaguang Luo
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA.
| | - Bin Zhou
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA
| | - Sam Van Haute
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA
| | - Xiangwu Nou
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA
| | - Boce Zhang
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA
| | - Zi Teng
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA
| | - Ellen R Turner
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA
| | - Patricia D Millner
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbiology and Food Safety Laboratory, 10300 Baltimore Ave, Beltsville, MD 20705, USA
| |
Collapse
|
98
|
Bencardino D, Vitali LA, Petrelli D. Microbiological evaluation of ready-to-eat iceberg lettuce during shelf-life and effectiveness of household washing methods. Ital J Food Saf 2018; 7:6913. [PMID: 29732325 PMCID: PMC5913699 DOI: 10.4081/ijfs.2018.6913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess the microbiological quality of ready-to-eat (RTE) iceberg lettuce. Our investigation was based on the consumption tendency of university students considered a target market for this product. A total of 78 RTE samples were collected from chain supermarkets and analysed for the enumeration of aerobic mesophilic count (AMC), Escherichia coli and the detection of Salmonella spp. and Listeria monocytogenes. All samples were negative for the presence of pathogens. The mean value of AMC at the beginning, in the middle and after the expiration date was: 6.88, 8.51 and 8.72 log CFU g-1, respectively. The same investigation was performed on 12 samples of fresh iceberg lettuce samples. No pathogens were found and the mean value of AMC was lower than the RTE category (5.73 log CFU g-1; P<0.05). The effectiveness of 5 washing methods was determined on 15 samples of both fresh and RTE iceberg lettuce. Samples were washed for 15' and 30' in tap water (500 mL), tap water with NaCl (4 g/500 mL), tap water with bicarbonate (8 g/500 mL), tap water with vinegar (10 mL/500 mL) and tap water with chlorine-based disinfectant (10 mL/500 mL). A significant bacterial load reduction was recorded for vinegar and disinfectant after 30' and 15', respectively. Overall, these results showed that RTE iceberg lettuce is more contaminated than the fresh product. Also, the consumption in the first few days of packaging and after washing with disinfectants reduces the risk for health consumers.
Collapse
Affiliation(s)
- Daniela Bencardino
- School of Biosciences and Veterinary Medicine
- Microbiology Unit, School of Pharmacy, University of Camerino, Italy
| | | | | |
Collapse
|
99
|
Panghal A, Chhikara N, Sindhu N, Jaglan S. Role of Food Safety Management Systems in safe food production: A review. J Food Saf 2018. [DOI: 10.1111/jfs.12464] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anil Panghal
- Lovely Professional University; Phagwara Punjab India
| | | | - Neelesh Sindhu
- Lala Lajpat Rai University of Veterinary and Animal Science; Hisar Haryana India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine CSIR; Jammu Tawi Jammu and Kashmir India
| |
Collapse
|
100
|
Faour-Klingbeil D, Todd ECD. A Review on the Rising Prevalence of International Standards: Threats or Opportunities for the Agri-Food Produce Sector in Developing Countries, with a Focus on Examples from the MENA Region. Foods 2018; 7:E33. [PMID: 29510498 PMCID: PMC5867548 DOI: 10.3390/foods7030033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 12/02/2022] Open
Abstract
Food safety standards are a necessity to protect consumers' health in today's growing global food trade. A number of studies have suggested safety standards can interrupt trade, bringing financial and technical burdens on small as well as large agri-food producers in developing countries. Other examples have shown that economical extension, key intermediaries, and funded initiatives have substantially enhanced the capacities of growers in some countries of the Middle East and North Africa (MENA) region to meet the food safety and quality requirements, and improve their access to international markets. These endeavors often compensate for the weak regulatory framework, but do not offer a sustainable solution. There is a big gap in the food safety level and control systems between countries in the MENA region and those in the developed nations. This certainly has implications for the safety of fresh produce and agricultural practices, which hinders any progress in their international food trade. To overcome the barriers of legal and private standards, food safety should be a national priority for sustainable agricultural development in the MENA countries. Local governments have a primary role in adopting the vision for developing and facilitating the implementation of their national Good Agricultural Practices (GAP) standards that are consistent with the international requirements and adapted to local policies and environment. Together, the public and private sector's support are instrumental to deliver the skills and infrastructure needed for leveraging the safety and quality level of the agri-food chain.
Collapse
|