51
|
Zhang G, Yan C, Chen D, Wu X, Zhang Y, Zhan Q, An F. Up-regulation of miR-155 contributes to TNF-mediated hepatocyte apoptosis in acute liver failure. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:475-484. [PMID: 31061003 DOI: 10.5152/tjg.2019.18159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Acute liver failure (ALF) is due to severe immune response, resulting in massive apoptosis/necrosis of hepatocytes. The precise mechanism has not been explored yet. MATERIALS AND METHODS The mouse with ALF model was induced by D-GalN/LPS; the hepatic miRNAs expression profile was evaluated by miRNA microarray and verified by RT-PCR. During the ALF in mice, the miR-155 expression was detected in the liver as well as in spleen. Then the correlation between miR-155 and inflammatory cytokines was evaluated. Furthermore, the miR-155 expression in activated Raw264.7 cells and apoptotic hepatocytes was also studied. Finally, the regulatory roles of miR-155 in TNF expression of apoptotic hepatocytes were shown. RESULTS It was shown that miRNAs changed in the mice with ALF relating to hepatocytes apoptosis/necrosis; the selected miRNAs were confirmed with RT-PCR. miR-155 was up-regulated, but miR-698, -720, and -329 were down-regulated. Moreover, hepatic miR-155 was up-regulated at all-time points in the liver, but only at 7 h in spleen of mice with ALF. A significant correlation was observed between hepatic miR-155 and TNF/IL-6 in mice with ALF, which was supported by the findings in vitro showing up-regulated miR-155 in Raw264.7 cells and Hepa1-6 cells under LPS or D-GalN+TNF induction, respectively. Moreover, a correlation was observed between miR155 and TNF levels in vivo and in vitro. CONCLUSION These data demonstrate that miR-155 regulates TNF-mediated hepatocyte apoptosis in ALF, which provides some useful information in both basic and clinical researches.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chunyu Yan
- Health Service Center of Lihu Community, Wuxi Binhu District, Wuxi, Jiangsu, China
| | - Dayang Chen
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiongbo Wu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yunan Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
52
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol Downregulates miR-31 to Promote T Regulatory Cells during Prevention of TNBS-Induced Colitis. Mol Nutr Food Res 2019; 64:e1900633. [PMID: 31730734 DOI: 10.1002/mnfr.201900633] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Colitis, an inflammatory bowel disease, is associated with aberrant regulation of the colonic mucosal immune system. Resveratrol, a natural plant product, has been found to exert anti-inflammatory properties and attenuate the development of murine colitis. In the current study, the role of microRNA (miR) in the ability of resveratrol to suppress colonic inflammation is examined. METHODS AND RESULTS BALB/C mice with 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS)-induced colitis, when treated with resveratrol, show improved clinical outcomes and reduce induction of inflammatory T cells (Th17 and Th1) while increasing CD4+Foxp3+ regulatory T cells (Tregs) and IL-10-producing CD4+ T cells. miR microarray analysis and polymerase chain reaction (PCR) validation from CD4+ T cells show treatment with resveratrol decreases the expression of several miRs (miR-31, Let7a, miR-132) that targets cytokines and transcription factors involved in anti-inflammatory T cell responses (Foxp3 and TGF-β). Transfection studies with miR-31 confirm that this miR directly regulates the expression of Foxp3. Lastly, analysis of public data from human patients with ulcerative colitis reveals that miR-31 expression is significantly increased when compared to controls. CONCLUSION Together, the current study demonstrates that resveratrol-mediated attenuation of colitis may be regulated by miR-31 through induction of Tregs and miR-31 may serve as a therapeutic target for human colitis.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
53
|
Lu Q, Wu R, Zhao M, Garcia-Gomez A, Ballestar E. miRNAs as Therapeutic Targets in Inflammatory Disease. Trends Pharmacol Sci 2019; 40:853-865. [PMID: 31662207 DOI: 10.1016/j.tips.2019.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
In the past decade, we have witnessed considerable developments in understanding the roles and functions of miRNAs. In parallel, the identification of alterations in miRNA expression in inflammatory disease indicates their potential as therapeutic targets. Pharmacological treatments targeting abnormally expressed miRNAs for inflammatory diseases are not yet in clinical practice; however, some small compounds and nucleic acids targeting miRNAs have shown promise in preclinical development. Here, we focus on recent advances in understanding miRNA deregulation in inflammatory diseases and provide an overview of the current development of miRNA-based therapeutics in these diseases with an emphasis on newly discovered miRNA therapeutic targets.
Collapse
Affiliation(s)
- Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Ruifang Wu
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
54
|
|
55
|
Roy S, Awasthi A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int Rev Immunol 2019; 38:232-245. [PMID: 31411520 DOI: 10.1080/08830185.2019.1648454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Noncoding RNA comprises of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that are abundantly present in mammalian transcriptome. These noncoding RNAs have been implicated in multiple biological processes through the regulation of gene expression. Each of these noncoding RNAs were found to have multiple genes targets. Emerging literature indicated the role of noncoding RNAs in shaping the immune responses which include immune cell development, helper T (Th) cell differentiation as well as maintenance of immune homeostasis by inducing the interplay between effector and regulatory T cells. Dysregulated expression and functions of noncoding RNAs in the immune system leads to aberrations in immune response that lead to the induction of tissue inflammation in autoimmune diseases. In this review, we summarize the current advances of post-transcriptional regulation, focusing on the functions of noncoding RNAs (miRNAs and lncRNAs) during differentiation of Th cells in tissue inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| |
Collapse
|
56
|
MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J Autoimmun 2019; 101:109-120. [DOI: 10.1016/j.jaut.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
|
57
|
Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Semin Immunopathol 2019; 41:379-399. [PMID: 30891628 DOI: 10.1007/s00281-019-00732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
58
|
Kadhim S, Singh NP, Zumbrun EE, Cui T, Chatterjee S, Hofseth L, Abood A, Nagarkatti P, Nagarkatti M. Resveratrol-Mediated Attenuation of Staphylococcus aureus Enterotoxin B-Induced Acute Liver Injury Is Associated With Regulation of microRNA and Induction of Myeloid-Derived Suppressor Cells. Front Microbiol 2018; 9:2910. [PMID: 30619104 PMCID: PMC6304356 DOI: 10.3389/fmicb.2018.02910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (RES) is a polyphenolic compound found abundantly in plant products including red grapes, peanuts, and mulberries. Because of potent anti-inflammatory properties of RES, we investigated whether RES can protect from Staphylococcal enterotoxin B (SEB)-induced acute liver injury in mice. SEB is a potent super antigen that induces robust inflammation and releases inflammatory cytokines that can be fatal. We observed that SEB caused acute liver injury in mice with increases in enzyme aspartate transaminase (AST) levels, and massive infiltration of immune cells into the liver. Treatment with RES (100 mg/kg body weight) attenuated SEB-induced acute liver injury, as indicated by decreased AST levels and cellular infiltration in the liver. Interestingly, RES treatment increased the number of myeloid derived suppressor cells (MDSCs) in the liver. RES treatment led to alterations in the microRNA (miR) profile in liver mononuclear cells (MNCs) of mice exposed to SEB, and pathway analysis indicated these miRs targeted many inflammatory pathways. Of these, we identified miR-185, which was down-regulated by RES, to specifically target Colony Stimulating Factor (CSF1) using transfection studies. Moreover, the levels of CSF1 were significantly increased in RES-treated SEB mice. Because CSF1 is critical in MDSC induction, our studies suggest that RES may induce MDSCs by down-regulating miR-185 leading to increase the expression of CSF1. The data presented demonstrate for the first time that RES can effectively attenuates SEB-induced acute liver injury and that this may result from its action on miRs and induction of MDSCs.
Collapse
Affiliation(s)
- Sabah Kadhim
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Elizabeth E. Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Lorne Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Abduladheem Abood
- College of Dental Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
59
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
60
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, García F, Rodríguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 2018; 61:129-139. [PMID: 30236870 DOI: 10.1016/j.jnutbio.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| |
Collapse
|
61
|
Yang Q, Zhang Q, Qing Y, Zhou L, Mi Q, Zhou J. miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice. Arthritis Res Ther 2018; 20:144. [PMID: 29996893 PMCID: PMC6042462 DOI: 10.1186/s13075-018-1550-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The findings of a previous study by Jin et al. have shown that microRNA (miR)-155 was upregulated in patients with acute gouty arthritis and enhanced the proinflammatory cytokines. There is no direct evidence to support that miR-155 is indeed involved in monosodium urate (MSU)-induced inflammatory responses in vivo. The aim of this study was to investigate the role of miR-155 knock-out (KO) or knock-in (KI) mice in MSU-induced animal models to mimic acute gout. METHODS MiR-155 expression in cultured bone marrow-derived macrophages (BMDMs) from miR-155 KO, miR-155 KI, and wild-type (WT) mice treated with MSU crystals in vitro was detected by real-time quantitative polymerase chain reaction (qPCR). MiR-155 KO and WT mice were used to induce an acute gouty inflammatory response with MSU crystals including models of foot pad inflammation, ankle arthritis, air pouch inflammation, and peritonitis. Furthermore, the proinflammatory interleukin (IL)-1β levels in lavage fluids from air pouch and peritoneal cavity models were measured by enzyme-linked immunosorbent assay (ELISA), and tumor necrosis factor (TNF)-α production from BMDMs of miR-155 KI mice treated with MSU were measured by flow cytometry. RESULTS MiR-155 expression was quickly upregulated in BMDMs from WT mice following MSU treatment in vitro. In comparison with WT mice in vivo, the swelling index of miR-155 KO mice showed no significant difference in the murine foot pad and ankle arthritis models for the indicated different time points. There were similar changes in total cell numbers of lavage fluids in the air pouch and peritoneal cavity models between miR-155 KO and WT mice following MSU crystal injection. Moreover, the IL-1β levels of lavage fluids in the air pouch and peritonitis models from miR-155 KO mice were almost the same as those from WT mice. TNF-α levels were comparable from BMDMs treated with MSU crystals in vitro between miR-155 KI mice and WT mice. CONCLUSIONS MiR-155 is dispensable in MSU-induced gouty inflammation in mice. Deletion of miR-155 might not be an effective therapeutic approach to relieve the inflammation in acute gout.
Collapse
Affiliation(s)
- Qibin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong, 637000, China.,Henry Ford Immunology Program, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.,Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA
| | - Quanbo Zhang
- Department of Gerontology, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong, 637000, China.,Henry Ford Immunology Program, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.,Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA
| | - Yufeng Qing
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong, 637000, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.,Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.,Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA
| | - Qingsheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA. .,Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA. .,Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| | - Jingguo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Sichuan Province, Chengdu, 610000, China.
| |
Collapse
|
62
|
Miranda K, Yang X, Bam M, Murphy EA, Nagarkatti PS, Nagarkatti M. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes (Lond) 2018; 42:1140-1150. [PMID: 29899524 PMCID: PMC6195825 DOI: 10.1038/s41366-018-0114-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Background/Objectives Obesity is a pandemic disorder that is characterized by accumulation of adipose tissue and chronic-low grade inflammation that is driven primarily by adipose tissue macrophages (ATMs). While ATM polarization from pro-(M1)to anti-(M2) inflammatory phenotype influences insulin sensitivity and energy expenditure, the mechanisms of such a switch are unclear. In the current study we identified epigenetic pathways including microRNAs (miR) in ATMs that regulate obesity-induced inflammation. Subjects/Methods Male C57BL/6J mice were fed normal chow diet (NCD) or high-fat diet (HFD) for 16 weeks to develop lean and diet-induced obese mice respectively. Transcriptome microarrays, microRNA microarrays, and meDIP-Seq were performed on ATMs isolated from visceral fat. Pathway analysis and bone marrow derived macrophage (BMDM) transfections further allowed computational and functional analysis of miRNA-mediated ATM polarization. Results ATMs from HFD-fed mice were skewed towards M1 inflammatory phenotype. Concurrently, the expression of miRs 30a-5p, 30c-5p, and 30e-5p was downregulated in ATMs from HFD mice when compared to mice fed NCD. The miR-30 family was shown to target Delta-like-4, a Notch1 ligand, whose expression was increased in HFD ATMs. Inhibition of miR-30 in conditioned BMDM triggered Notch1 signaling, pro-inflammatory cytokine production, and M1 macrophage polarization. In addition, DNA hypermethylation was observed in mir30-associated CpG islands suggesting HFD downregulates miR-30 through epigenetic modifications. Conclusions HFD-induced obesity downregulates miR-30 by DNA methylation thereby inducing Notch1 signaling in ATMs and their polarization to M1 macrophages. These findings identify miR-30 as a regulator of pro-inflammatory ATM polarization and suggest miR-30 manipulation could be a therapeutic target for obesity-induced inflammation.
Collapse
Affiliation(s)
- Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.
| |
Collapse
|
63
|
Schönauen K, Le N, von Arnim U, Schulz C, Malfertheiner P, Link A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2018; 24:1547-1557. [PMID: 29668922 DOI: 10.1093/ibd/izy046] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Assessment of the disease activity in inflammatory bowel disease (IBD) is essential for adequate treatment management and reliable noninvasive biomarkers for verification of mucosal healing are still needed. MicroRNAs (miRNAs) are differentially expressed in IBD and cancer. We aimed to evaluate the potential of circulating and fecal miRNAs as diagnostic biomarkers for IBD. METHODS In this proof-of-principle study we used 2 independent patient cohorts. Testing cohort (n = 96) included serum and fecal samples from controls (n = 35) and IBD patients (n = 61) including 43 patients with Crohn's disease (CD), 18 with ulcerative colitis (UC) with an active disease (n = 38), or in remission (n = 23). Validation cohort included fecal samples from patients with calprotectin/endoscopy-confirmed active disease (n = 30) or in remission (n = 15). Target-based approach (miR-16, miR-21, miR-155, and miR-223) has been used to evaluate miRNA expression. RESULTS Sera samples from IBD patients showed higher level of miR-16, miR-21, and miR-223, but not miR-155, compared to controls and was higher in CD than in UC patients. Much stronger miRNA expression changes were observed in feces from IBD patients for all studied miRNAs with highest expression of miR-155 and miR-223 in testing and validation cohorts. MiRNA expression correlated with clinical remission, however, only fecal but not circulating miRNAs, correlated with surrogate parameters such as fecal calprotectin or C-reactive protein. CONCLUSIONS Our data provide a novel evidence for differential expression level of fecal miRNAs in IBD. We demonstrate that miRNAs in feces correlate with disease activity and may be considered as potential tool for the further biomarker research in IBD. 10.1093/ibd/izy046_video1izy046.video15794822319001.
Collapse
Affiliation(s)
- Katharina Schönauen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Nha Le
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Gastroenterology Division, First Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Ulrike von Arnim
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Department of Medicine II, Klinikum der Universität München (KUM), Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
64
|
Wang D, Tang M, Zong P, Liu H, Zhang T, Liu Y, Zhao Y. MiRNA-155 Regulates the Th17/Treg Ratio by Targeting SOCS1 in Severe Acute Pancreatitis. Front Physiol 2018; 9:686. [PMID: 29937734 PMCID: PMC6002743 DOI: 10.3389/fphys.2018.00686] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a serious condition associated with intestinal barrier disruption or inflammation of the pancreatic tissue. Specific microRNAs are involved in the pathogenesis of AP, during which IL-17-producing CD4+ T helper (Th17) cells accumulate in the pancreas. In this study, significantly increased levels of miR-155 were detected in clinical samples from patients with AP, and overexpression of miR-155 correlated with severe AP (SAP). To identify the effect of miR-155 on T cell differentiation, we isolated CD4+ T lymphocytes and in vitro experiments showed that inhibition of miR-155 significantly reversed the stress-induced increase in the Th17/Treg ratio. The results also showed that miR-155 increased the Th17-mediated inflammatory response by targeting SOCS1. The interaction between miR-155 and the 3′-UTR of SOCS1 was confirmed by a dual luciferase reporter assay and RT-PCR. Experimental AP of varying severity was induced in BALB/c mice by caerulein hyperstimulation and miR-155 expression was found to increase with disease progression. Inhibition of miR-155 expression significantly improved the pathology of the pancreas. We also observed downregulation of expression of inflammatory factors, IL-17, SOCS1 and phosphorylated STAT1 after miR-155 inhibition. In summary, miR-155 regulates the Th17/Treg ratio by targeting SOCS1, most probably via direct binding to its 3′-UTR region, indicating that this microRNA may be a potential biomarker and/or therapeutic target for AP.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Maochun Tang
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Pengfei Zong
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Hua Liu
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yu Liu
- The Community Health Service Center of Nanxiang Town, Shanghai, China
| | - Yan Zhao
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
65
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
66
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Fernández-Caballero JA, García F, Rodríguez-Cabezas ME, Gálvez J. The Administration of Escherichia coli Nissle 1917 Ameliorates Development of DSS-Induced Colitis in Mice. Front Pharmacol 2018; 9:468. [PMID: 29867475 PMCID: PMC5958303 DOI: 10.3389/fphar.2018.00468] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
The beneficial effects of probiotics on immune-based pathologies such as inflammatory bowel disease (IBD) have been well reported. However, their exact mechanisms have not been fully elucidated. Few studies have focused on the impact of probiotics on the composition of the colonic microbiota. The aim of the present study was to correlate the intestinal anti-inflammatory activity of the probiotic Escherichia coli Nissle 1917 (EcN) in the dextran sodium sulfate (DSS) model of mouse colitis with the changes induced in colonic microbiota populations. EcN prevented the DSS-induced colonic damage, as evidenced by lower disease activity index (DAI) values and colonic weight/length ratio, when compared with untreated control mice. The beneficial effects were confirmed biochemically, since the probiotic treatment improved the colonic expression of different cytokines and proteins involved in epithelial integrity. In addition, it restored the expression of different micro-RNAs (miR-143, miR-150, miR-155, miR-223, and miR-375) involved in the inflammatory response that occurs in colitic mice. Finally, the characterization of the colonic microbiota by pyrosequencing showed that the probiotic administration was able to counteract the dysbiosis associated with the intestinal inflammatory process. This effect was evidenced by an increase in bacterial diversity in comparison with untreated colitic mice. The intestinal anti-inflammatory effects of the probiotic EcN were associated with an amelioration of the altered gut microbiome in mouse experimental colitis, especially when considering bacterial diversity, which is reduced in these intestinal conditions. Moreover, this probiotic has shown an ability to modulate expression levels of miRNAs and different mediators of the immune response involved in gut inflammation. This modulation could also be of great interest to understand the mechanism of action of this probiotic in the treatment of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Maria P Utrilla
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Jose A Fernández-Caballero
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Federico García
- Department of Microbiology, Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Maria E Rodríguez-Cabezas
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBEREHD, Department of Pharmacology, Instituto de Investigación Biosanitaria de Granada, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
67
|
Li J, Zhang J, Guo H, Yang S, Fan W, Ye N, Tian Z, Yu T, Ai G, Shen Z, He H, Yan P, Lin H, Luo X, Li H, Wu Y. Critical Role of Alternative M2 Skewing in miR-155 Deletion-Mediated Protection of Colitis. Front Immunol 2018; 9:904. [PMID: 29774026 PMCID: PMC5943557 DOI: 10.3389/fimmu.2018.00904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is associated with dysregulation of both innate and adaptive immune response in the intestine. MicroRNA (miR)-155 is frequently expressed and functions in many immune cell types. Besides its function in adaptive immunity, miR-155 is a key regulator of the innate immune response in macrophages, dendritic cells, and even in epithelia cells. Although the roles of miR-155 within T and B lymphocytes in colitis have been reported, its function in innate immune cells has not been thoroughly examined. In this study, the dextran sulfate sodium (DSS)-induced colitis model was established in wild-type (WT) and miR-155−/− mice. Our results showed that miR-155 deficiency in macrophages recapitulated the alleviated colitis feature of miR-155−/− mice and appeared to skew toward the alterative M2 phenotype. Notably, the predominance of M2 in colon can result in dampened intestinal immune cell proliferation and inhibit CD4 T cell polarization toward Th1 and Th17. Moreover, C/EBPβ and SOCS1 were demonstrated as two key functional targets in this process. We also provided evidence for use of miR-155 inhibitor to treat colitis. Collectively, the findings highlight the central role of alternative M2 skewing for miR-155 function in colitis and reveal that macrophages might be a main target for therapeutics.
Collapse
Affiliation(s)
- Jintao Li
- Institute of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Microbiology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Hongxia Guo
- Institute of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Microbiology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Shimin Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Nan Ye
- Institute of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Tiantian Yu
- Institute of Tropical Medicine, Army Medical University, Chongqing, China
| | - Guoping Ai
- Institute of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zigang Shen
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Ping Yan
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Lin
- Institute of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Institute of Tropical Medicine, Army Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| |
Collapse
|
68
|
Park EJ, Shimaoka M, Kiyono H. MicroRNA-mediated dynamic control of mucosal immunity. Int Immunol 2018; 29:157-163. [PMID: 28383678 DOI: 10.1093/intimm/dxx019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is a complex and important physiological and immunological organ embodying the first line of defense by which mucosal immunity regulates the immense number and diversity of naturally encountered antigens and commensal microflora. Effective microRNA (miRNA) control of transcription factors or mediators in mucosal immunity is essential to host defense and homeostasis in both physiologic and pathologic states. MiRNA biology has advanced our understanding of the immune regulatory system network at the level of post-transcriptional gene modification. Increasing knowledge on circulating miRNAs could potentially enhance diagnostic techniques in inflammatory bowel disease (IBD). Furthermore, recent findings on the dynamic role of exosomes vis-à-vis the intercellular transportation of miRNAs may provide insights on the use of miRNA as a target for treating IBD.
Collapse
Affiliation(s)
- Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8670, Japan
| |
Collapse
|
69
|
MiRNAs at the Crossroads between Innate Immunity and Cancer: Focus on Macrophages. Cells 2018; 7:cells7020012. [PMID: 29419779 PMCID: PMC5850100 DOI: 10.3390/cells7020012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Innate immune cells form an integrative component of the tumor microenvironment (TME), which can control or prevent tumor initiation and progression, due to the simultaneous processing of both anti- and pro-growth signals. This decision-making process is a consequence of gene expression changes, which are in part dependent on post-transcriptional regulatory mechanisms. In this context, microRNAs have been shown to regulate both recruitment and activation of specific tumor-associated immune cells in the TME. This review aims to describe the most important microRNAs that target cancer-related innate immune pathways. The role of exosomal microRNAs in tumor progression and microRNA-based therapeutic strategies are also discussed.
Collapse
|
70
|
Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-κB signaling. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-346RRR. [PMID: 29389019 PMCID: PMC6135699 DOI: 10.1002/jlb.3mir0817-346rrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Daniel E. Rothschild
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
71
|
Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, Ma B, Xu H, Lu L, Wang S. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget 2017; 7:15356-68. [PMID: 26885611 PMCID: PMC4941246 DOI: 10.18632/oncotarget.7324] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyu Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
72
|
Ren Y, Cui Y, Xiong X, Wang C, Zhang Y. Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9362-9371. [PMID: 31966808 PMCID: PMC6965969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Accumulated evidences suggest that microRNAs (miRNAs) are related with inflammation-associated diseases.The aim of this study is to investigate whether miR-155 is involved in lipopolysaccharide (LPS)-induced kidney injury, and to explore the underlying mechanisms. Mice were intraperitoneally injected with LPS to construct endotoxemia mice model, and miR-155 inhibitor was injected via tail vein to suppress the expression of miR-155 in kidney. The results indicated that the expression of miR-155 was markedly increased in renal tissues of LPS-treated mice. And miR-155 inhibitor protected mice from LPS-induced kidney injury associated with the lower levels of TNF-α and IL-6 in renal tissues. Furthermore, inhibition of miR-155 increased the expression of suppressor of cytokine signaling 1 (SOCS1), a target gene of miR-155 and a negative regulator of Janus activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Consistently, inhibition of miR-155 suppressed the expression of JAK2, STAT3 and phosphorylated STAT3 (p-STAT3). All these results indicated that inhibition of miR-155 protects mice from LPS-induced kidney injury possibly through regulating SOCS1-JAK2/STAT signaling pathway, which suggested that miR-155 might be an important and potential target in developing therapy for preventing sepsis-associated kidney injury.
Collapse
Affiliation(s)
- Yuqian Ren
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200062, P. R. China
| |
Collapse
|
73
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodríguez-Cabezas ME, Gálvez J. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 2017; 61. [PMID: 28752563 DOI: 10.1002/mnfr.201700144] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
SCOPE To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. METHODS AND RESULTS Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 108 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. CONCLUSION Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | - Federico Garcia
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | | | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
74
|
Hou J, Hu X, Chen B, Chen X, Zhao L, Chen Z, Liu F, Liu Z. miR-155 targets Est-1 and induces ulcerative colitis via the IL-23/17/6-mediated Th17 pathway. Pathol Res Pract 2017; 213:1289-1295. [PMID: 28888763 DOI: 10.1016/j.prp.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) affecting millions of people worldwide. miR-155 has been reported to be upregulated in various inflammatory diseases and is a positive regulator of the T-cell response. IL-17 secreting helper T (Th17) cells have been heavily implicated in tissue-specific immune pathology, including UC. METHODS AND RESULTS Therefore, we targeted miR-155 and investigated its expression levels in a DSS-induced UC mouse model, revealing increased expression. Est-1 expression was found to have decreased, but the levels of IL-23/17/6 were raised significantly and Th17 had experienced an obvious increase. We overexpressed miR-155 using a lentiviral treatment. Increased miR-155 expression induced a more severe damage to colon tissues. In this case, the level of Est-1 decreased even further, thereby enhancing IL-23/17/6-mediated Th17 differentiation. CONCLUSION miR-155 seems to target Est-1 and induces UC via the IL-23/17/6-mediated Th17 pathway.
Collapse
Affiliation(s)
- Jiangtao Hou
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueying Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Bin Chen
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xu Chen
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Lina Zhao
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhuoqun Chen
- Clinical Skills Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Fengbin Liu
- Department of Gastroenterology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhihui Liu
- Department of Laboratory, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
75
|
Jin C, Cheng L, Lu X, Xie T, Wu H, Wu N. Elevated expression of miR-155 is associated with the differentiation of CD8+ T cells in patients with HIV-1. Mol Med Rep 2017; 16:1584-1589. [PMID: 28627655 DOI: 10.3892/mmr.2017.6755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
The differentiation and response ofCD8+ T cells is vital in host defense against human immunodeficiency virus type 1 (HIV-1). MicroRNA (miR)‑155 is an important regulator of T cell differentiation. However, the profile of miR-155 in HIV‑1 infected individuals and its association with CD8+ T cell differentiation remain to be fully elucidated. The present cross‑sectional study was performed involving 63 HIV‑1‑infected patients undergoing highly active antiretroviral therapy (HAART), 31 HAART‑naïve patients and 35 healthy controls. The levels of miR‑155 in CD8+ T cells were detected using reverse transcription‑quantitative polymerase chain reaction analysis. Subsets of CD8+ T cell differentiation were detected using flow cytometry. The results revealed that the discord controllers and HAART‑naïve patients showed higher percentages of effector and effector memory cells, and lower percentages of naïve cells (P<0.05). The levels of miR‑155 in CD8+ T cells from the HIV‑1‑infected patients were higher, particularly in the discord controllers and HAART naïve patients (P<0.01). The expression levels of miR‑155 were positively correlated with the percentages of effector and effector memory CD8+ T cells, and negatively correlated with the percentages of naïve and central memory CD8+ T cells (P<0.01). Taken together, these findings suggested that the levels of miR‑155 in CD8+ T cells of patients with HIV-1 were increased and asso-ciated with CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
76
|
Tavasolian F, Abdollahi E, Rezaei R, Momtazi-Borojeni AA, Henrotin Y, Sahebkar A. Altered Expression of MicroRNAs in Rheumatoid Arthritis. J Cell Biochem 2017; 119:478-487. [PMID: 28598026 DOI: 10.1002/jcb.26205] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is one of the most common types of inflammatory joint diseases. Women, smokers, and people with positive family history are more susceptible to this disease. Diagnostic criteria include at least one swollen joint that has not been caused by other diseases. MicroRNAs are non-coding RNAs that are evolutionarily conserved and have a length of 18-25 nucleotides. MicroRNAs control gene expression at the post-transcriptional level via promoting mRNA degradation or translational repression. Recognition of alterations in microRNA status and their respective targets, may offer an opportunity to better identify the pathways that are involved in the etiopathogenesis of autoimmune diseases. It has been suggested that microRNAs may serve as potential biomarkers for both diagnosis and prognosis of autoimmune diseases. Here, we review the available evidence on the deregulations of microRNA expression in rheumatoid arthritis. More precisely, this review focuses on the microRNA involved in T cell regulation and gives perspectives on the use of this microRNA as biomarkers of diagnosis, prognosis, or intervention efficacy. J. Cell. Biochem. 119: 478-487, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Faculty of Medicine, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Elham Abdollahi
- Student Research Committee, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ramin Rezaei
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Belgium.,Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
77
|
Cao B, Zhou X, Ma J, Zhou W, Yang W, Fan D, Hong L. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci 2017; 62:1426-1438. [PMID: 28391412 DOI: 10.1007/s10620-017-4567-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD), mainly including Crohn's disease and ulcerative colitis, are characterized by chronic inflammation of the gastrointestinal tract. Despite improvements in detection, drug treatment and surgery, the pathogenesis of IBD has not been clarified. A number of miRNAs have been found to be involved in the initiation, development and progression of IBD, and they may have the potential to be used as biomarkers and therapeutic targets. Here, we have summarized the recent advances about the roles of miRNAs in IBD and analyzed the contribution of miRNAs to general diagnosis, differential diagnosis and activity judgment of IBD. Furthermore, we have also elaborated the promising role of miRNAs in IBD-related cancer prevention and prognosis prediction.
Collapse
Affiliation(s)
- Bo Cao
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Zhou
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
78
|
Jin C, Cheng L, Höxtermann S, Xie T, Lu X, Wu H, Skaletz-Rorowski A, Brockmeyer NH, Wu N. MicroRNA-155 is a biomarker of T-cell activation and immune dysfunction in HIV-1-infected patients. HIV Med 2017; 18:354-362. [PMID: 27981723 DOI: 10.1111/hiv.12470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES MicroRNA-155 (miR-155) regulates T-cell differentiation and activation. It has also been associated with HIV infection. However, it remains unclear whether miR-155 is related to the T-cell response in HIV-infected individuals (e.g. T-cell activation and exhaustion). METHODS We performed a cross-sectional study involving 121 HIV-1-infected patients on highly active antiretroviral therapy (HAART) and 43 HAART-naïve patients. MiR-155 levels in the peripheral blood were determined by quantitative reverse transcription-polymerase chain reaction (PCR). T-cell immune activation, exhaustion, and homeostasis were measured by determining the expression of CD38, programmed death 1 (PD-1) and CD127 via flow cytometry. RESULTS The levels of miR-155 in total peripheral blood mononuclear cells, CD4 T cells and CD8 T cells from HIV-1-infected patients were increased (P < 0.01). Nonresponders and HAART-naïve patients also exhibited a higher percentage of CD8+ CD38+ T cells and a lower percentage of CD4+ CD127+ and CD8+ CD127+ T cells (P < 0.05). We also found higher levels of PD-1 expression on the CD4+ and CD8+ T cells of HIV-1-infected patients (P < 0.05). CONCLUSIONS Our findings suggest that miR-155 levels in the peripheral blood of HIV-1-infected patients are increased and associated with T-cell activation. Therefore, miR-155 is a potential biomarker of the immune response following HIV-1 infection.
Collapse
Affiliation(s)
- C Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - S Höxtermann
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - T Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - X Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - A Skaletz-Rorowski
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N H Brockmeyer
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 2017; 8:501-513. [PMID: 28364278 PMCID: PMC5498339 DOI: 10.1007/s13238-017-0398-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are important immune cells linking innate and adaptive immune responses. DCs encounter various self and non-self antigens present in the environment and induce different types of antigen specific adaptive immune responses. DCs can be classified into lymphoid tissue-resident DCs, migratory DCs, non-lymphoid resident DCs, and monocyte derived DCs (moDCs). Recent work has also established that DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. The development of different DC subsets has been found to be regulated by a network of different cytokines and transcriptional factors. Moreover, the response of DC is tightly regulated to maintain the homeostasis of immune system. MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and are implicated in the maintenance of homeostasis. DCs are also regulated by miRNAs. In the past decade, much progress has been made to understand the role of miRNAs in regulating the development and function of DCs. In this review, we summarize the origin and distribution of different mouse DC subsets in both lymphoid and non-lymphoid tissues. The DC subsets identified in human are also described. Recent progress on the function of miRNAs in the development and activation of DCs and their functional relevance to autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Haibo Zhou
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
80
|
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23:976-985. [PMID: 28246471 PMCID: PMC5311107 DOI: 10.3748/wjg.v23.i6.976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis.
METHODS
A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry.
RESULTS
MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice.
CONCLUSION
MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/administration & dosage
- Antagomirs/therapeutic use
- Blotting, Western
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Cytokines/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Down-Regulation
- Female
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- MicroRNAs/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/metabolism
- RAW 264.7 Cells
- RNA Interference
- RNA, Small Interfering
- Signal Transduction
Collapse
|
81
|
Chen Y, Salem M, Boyd M, Bornholdt J, Li Y, Coskun M, Seidelin JB, Sandelin A, Nielsen OH. Relation between NOD2 genotype and changes in innate signaling in Crohn's disease on mRNA and miRNA levels. NPJ Genom Med 2017; 2:3. [PMID: 29263823 PMCID: PMC5642384 DOI: 10.1038/s41525-016-0001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
Crohn’s disease is associated with an altered innate immune response of pathogenic importance. This altered response can be associated to loss-of-function polymorphisms in the NOD2 (nucleotide-binding oligomerization domain-containing protein 2) gene, but also changes in transcriptional and post-transcriptional regulatory layers, including microRNA activity. Here, we characterized the link between NOD2 genotype and inflammatory-mediated changes in innate signaling by studying transcriptional and post-transcriptional activity in response to NOD2-agonist muramyl dipeptide in monocytes from healthy controls, and Crohn’s disease patients with and without NOD2 loss-of-function polymorphisms. We measured the expression of genes and microRNAs in monocytes from these subjects after stimulation with muramyl dipeptide. Gene expression profiles mainly distinguished the actual muramyl dipeptide response, but not the genotype. A hyper-responsive phenotype was found in Crohn’s disease patients without NOD2 mutations, characterized by upregulated cytokine receptors and general downregulation of microRNA expression. Conversely, microRNA expression could identify genotype-specific differences between subject groups but exhibited little change upon muramyl dipeptide treatment. Only two microRNAs showed muramyl dipeptide-induced response, including miR-155, which was found to regulate multiple genes and whose host gene was one of the highest muramyl dipeptide responders. miR-155 was upregulated in Crohn’s disease patients with NOD2 mutations following lipopolysaccharide and Escherichia coli treatment, but the upregulation was substantially reduced upon muramyl dipeptide treatment. While Crohn’s disease patients with NOD2 mutations on average showed a reduced muramyl dipeptide response, the cohort exhibited large individual variance: a small subset had inflammatory responses almost comparable to wild-type patients on both gene and miR-155 regulatory levels. The genetics of people with Crohn’s disease affects the molecular drivers of their dysregulated immune responses. Some individuals with Crohn’s harbor mutations in the NOD2 gene, which encodes a pathogen recognition receptor that binds to a molecule called muramyl dipeptide (MDP). To better understand how alternations in NOD2 can lead to increased susceptibility to gut inflammation, Yun Chen, Mohammad Salem and colleagues from the University of Copenhagen and Herlev Hospital, Denmark, analyzed the expression patterns of both genes and small, regulatory microRNAs in blood cells from healthy controls and from Crohn’s patients with and without NOD2 mutations. They exposed the cells to MDP, and saw that although gene acticity changed dramatically as a response, there was little difference between subjects, regardless of genetics. Conversely, microRNA expression showed genotype-specific differences that weren not impacted by MDP treatment. The findings underscore the importance of microRNAs in Crohn’s disease.
Collapse
Affiliation(s)
- Yun Chen
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mohammad Salem
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Mette Boyd
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Yuan Li
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Mehmet Coskun
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark.,Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| |
Collapse
|
82
|
Abstract
Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
83
|
Lee J, Park EJ, Kiyono H. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation. BMB Rep 2017; 49:263-9. [PMID: 26923304 PMCID: PMC5070705 DOI: 10.5483/bmbrep.2016.49.5.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 12/14/2022] Open
Abstract
The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269]
Collapse
Affiliation(s)
- Juneyoung Lee
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
84
|
Shamran H, Singh NP, Zumbrun EE, Murphy A, Taub DD, Mishra MK, Price RL, Chatterjee S, Nagarkatti M, Nagarkatti PS, Singh UP. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav Immun 2017; 59:10-20. [PMID: 27327245 PMCID: PMC5154806 DOI: 10.1016/j.bbi.2016.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), which is thought to result from immune-mediated inflammatory disorders, leads to high morbidity and health care cost. Fatty acid amide hydrolase (FAAH) is an enzyme crucially involved in the modulation of intestinal physiology through anandamide (AEA) and other endocannabinoids. Here we examined the effects of an FAAH inhibitor (FAAH-II), on dextran sodium sulphate (DSS)-induced experimental colitis in mice. Treatments with FAAH-II improved overall clinical scores by reversing weight loss and colitis-associated pathogenesis. The frequencies of activated CD4+ T cells in spleens, mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and colon lamina propiria (LP) were reduced by FAAH inhibition. Similarly, the frequencies of macrophages, neutrophils, natural killer (NK), and NKT cells in the PPs and LP of mice with colitis declined after FAAH blockade, as did concentrations of systemic and colon inflammatory cytokines. Microarray analysis showed that 26 miRNAs from MLNs and 217 from PPs had a 1.5-fold greater difference in expression after FAAH inhibition. Among them, 8 miRNAs were determined by reverse-transcription polymerase chain reaction (RT-PCR) analysis to have anti-inflammatory properties. Pathway analysis demonstrated that differentially regulated miRNAs target mRNA associated with inflammation. Thus, FAAH-II ameliorates experimental colitis by reducing not only the number of activated T cells but also the frequency of macrophages, neutrophils, and NK/NKT cell, as well as inflammatory miRNAs and cytokine at effector sites in the colon. These studies demonstrate for the first time that FAAH-II inhibitor may suppress colitis through regulation of pro-inflammatory miRNAs expression.
Collapse
Affiliation(s)
- Haidar Shamran
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Narendra P. Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Elizabeth E. Zumbrun
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Angela Murphy
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Dennis D. Taub
- Center for Translational Studies, Medical Services, VA Medical Center, Department of Veteran Affairs, Washington DC, USA
| | - Manoj K. Mishra
- Department of Math and Sciences, Alabama State University 1627 Hall St. Montgomery, AL 36104
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Prakash S. Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Udai P. Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
85
|
He C, Shi Y, Wu R, Sun M, Fang L, Wu W, Liu C, Tang M, Li Z, Wang P, Cong Y, Liu Z. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-α in IBD. Gut 2016; 65:1938-1950. [PMID: 26338824 DOI: 10.1136/gutjnl-2015-309389] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNA (miR)-301a is known to be involved in the tumourigenesis and pathogenesis of several autoimmune diseases, but it remains unclear whether miR-301a is associated with the pathogenesis of IBD. METHODS miR-301a expression was assessed in peripheral blood mononuclear cells (PBMC) and inflamed mucosa of patients with IBD by quantitative real-time-PCR. Peripheral blood CD4+ T cells were transduced with lentivirus-encoding pre-miR-301a (LV-miR-301a) or a reverse complementary sequence of miR-301a (LV-anti-miR-301a), and their differentiation and activation were investigated in vitro. Antisense miR-301a was administered into mice during trinitrobenzene sulphonic acid (TNBS)-induced colitis to determine its role in colitis. RESULTS miR-301a expression was significantly upregulated in PBMC and inflamed mucosa of patients with IBD compared with healthy controls. Stimulation with tumour necrosis factor-α (TNF-α) significantly enhanced miR-301a expression in IBD CD4+ T cells, which was markedly reversed by anti-TNF-α mAb (Infliximab) treatment. Transduction of LV-miR-301a into CD4+ T cells from patients with IBD promoted the Th17 cell differentiation and TNF-α production compared with the cells with expression of LV-anti-miR-301a. SNIP1 as a functional target of miR-301a was reduced in miR-301a expression but increased in LV-anti-miR-301a expression. Knockdown of SNIP1 could enhance Th17 cell differentiation. Furthermore, intracolonical administration of antisense miR-301a in TNBS-induced mouse colitis model significantly decreased numbers of interleukin (IL)-17A+ cells and amounts of pro-inflammatory cytokines (eg, IL-17A, TNF-α) in inflamed colon. CONCLUSIONS Our data reveal a novel mechanism in which the elevated miR-301a in PBMC and inflamed mucosa of IBD promotes Th17 cell differentiation through downregulation of SNIP1. Blockade of miR-301a in vivo may serve as a novel therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yan Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruijin Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Changqin Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Maochun Tang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhong Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ping Wang
- Central Laboratory for Medical Research, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
86
|
Chen R, Lai LA, Brentnall TA, Pan S. Biomarkers for colitis-associated colorectal cancer. World J Gastroenterol 2016; 22:7882-7891. [PMID: 27672285 PMCID: PMC5028804 DOI: 10.3748/wjg.v22.i35.7882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Patients with extensive ulcerative colitis (UC) of more than eight years duration have an increased risk of colorectal cancer. Molecular biomarkers for dysplasia and cancer could have a great clinical value in managing cancer risk in these UC patients. Using a wide range of molecular techniques - including cutting-edge OMICS technologies - recent studies have identified clinically relevant biomarker candidates from a variety of biosamples, including colonic biopsies, blood, stool, and urine. While the challenge remains to validate these candidate biomarkers in multi-center studies and with larger patient cohorts, it is certain that accurate biomarkers of colitis-associated neoplasia would improve clinical management of neoplastic risk in UC patients. This review highlights the ongoing avenues of research in biomarker development for colitis-associated colorectal cancer.
Collapse
|
87
|
MicroRNA-223 Regulates the Differentiation and Function of Intestinal Dendritic Cells and Macrophages by Targeting C/EBPβ. Cell Rep 2016; 13:1149-1160. [PMID: 26526992 DOI: 10.1016/j.celrep.2015.09.073] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells (DCs) and macrophages play important roles in maintaining intestinal homeostasis. However, the molecular mechanisms that regulate the differentiation and responses of intestinal DCs and macrophages remain poorly understood. Here, we have identified microRNA miR-223 as a key molecule for regulating these processes. Deficiency of miR-223 led to a significantly decreased number of intestinal CX3CR1(hi) macrophages at steady state. Both intestinal CX3CR1(hi) macrophages and CD103(+) conventional DCs (cDCs) in miR-223-deficient mice exhibited a strong pro-inflammatory phenotype. Moreover, miR-223-deficient monocytes gave rise to more monocyte-derived DCs (moDCs) and produced more pro-inflammatory cytokines upon stimulation. Using a mouse model of colitis, we demonstrated that the miR-223 deficiency resulted in more severe colitis. Target gene analysis further identified that the effects of miR-223 on DCs and macrophages were mediated by directly targeting C/EBPβ. Taken together, our study identifies a role for miR-223 as a critical regulator of intestinal homeostasis.
Collapse
|
88
|
MicroRNA-16 is putatively involved in the NF-κB pathway regulation in ulcerative colitis through adenosine A2a receptor (A2aAR) mRNA targeting. Sci Rep 2016; 6:30824. [PMID: 27476546 PMCID: PMC4967855 DOI: 10.1038/srep30824] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) act as important post-transcriptional regulators of gene expression by targeting the 3′-untranslated region of their target genes. Altered expression of miR-16 is reported in human ulcerative colitis (UC), but its role in the development of the disease remains unclear. Adenosine through adenosine A2a receptor (A2aAR) could inhibit nuclear factor-kappaB (NF-κB) signaling pathway in inflammation. Here we identified overexpression of miR-16 and down-regulation of A2aAR in the colonic mucosa of active UC patients. We demonstrated that miR-16 negatively regulated the expression of the A2aAR at the post-transcriptional level. Furthermore, transfection of miR-16 mimics promoted nuclear translocation of NF-κB p65 protein and expression of pro-inflammatory cytokines, IFN-γ and IL-8 in colonic epithelial cells. Treatment with miR-16 inhibitor could reverse these effects in cells. The A2aAR-mediated effects of miR-16 on the activation of the NF-κB signaling pathway were confirmed by the A2aAR knockdown assay. Our results suggest that miR-16 regulated the immune and inflammatory responses, at least in part, by suppressing the expression of the A2aAR to control the activation of the NF-κB signaling pathway.
Collapse
|
89
|
Nie M, Liu J, Yang Q, Seok HY, Hu X, Deng ZL, Wang DZ. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages. Cell Death Dis 2016; 7:e2261. [PMID: 27277683 PMCID: PMC5143393 DOI: 10.1038/cddis.2016.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases.
Collapse
Affiliation(s)
- M Nie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - J Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Q Yang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H Y Seok
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - X Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Z-L Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
| | - D-Z Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| |
Collapse
|
90
|
Expression and Function of miR-155 in Diseases of the Gastrointestinal Tract. Int J Mol Sci 2016; 17:ijms17050709. [PMID: 27187359 PMCID: PMC4881531 DOI: 10.3390/ijms17050709] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNA that can regulate the expression of target genes under physiological and pathophysiological conditions. miR-155 is a multifunctional miRNA with inflammation-related and oncogenic roles. In particular, the dysregulation of miR-155 has been strongly implicated in Helicobacter pylori-related gastric disease, inflammatory bowel disease, and colorectal cancer in addition to being involved in molecular changes of important targets and signaling pathways. This review focuses on the expression and function of miR-155 during inflammation and carcinogenesis and its potential use as an effective therapeutic target for certain gastrointestinal diseases.
Collapse
|
91
|
Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 2016; 73:2041-51. [PMID: 26943802 PMCID: PMC11108434 DOI: 10.1007/s00018-016-2167-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease. Here, we discuss the role of miRNAs in the maintenance of immune tolerance to self-antigens and the gain or loss of miRNA functions on tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
92
|
Velázquez KT, Enos RT, McClellan JL, Cranford TL, Chatzistamou I, Singh UP, Nagarkatti M, Nagarkatti PS, Fan D, Murphy EA. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G347-58. [PMID: 26744471 PMCID: PMC4796295 DOI: 10.1152/ajpgi.00326.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Clinical studies have linked microRNA-155 (miR-155) expression in the tumor microenvironment to poor prognosis. However, whether miR-155 upregulation is predictive of a pro- or antitumorigenic response is unclear, as the limited preclinical data available remain controversial. We examined miR-155 expression in tumor tissue from colon cancer patients. Furthermore, we investigated the role of this microRNA in proliferation and apoptosis, inflammatory processes, immune cell populations, and transforming growth factor-β/SMAD signaling in a chemically induced (azoxymethane-dextran sulfate sodium) mouse model of colitis-associated colon cancer. We found a higher expression of miR-155 in the tumor region than in nontumor colon tissue of patients with colon cancer. Deletion of miR-155 in mice resulted in a greater number of polyps/adenomas, an increased symptom severity score, a higher grade of epithelial dysplasia, and a decrease in survival. Surprisingly, these findings were associated with an increase in apoptosis in the normal mucosa, but there was no change in proliferation. The protumorigenic effects of miR-155 deletion do not appear to be driven solely by dysregulation of inflammation, as both genotypes had relatively similar levels of inflammatory mediators. The enhanced tumorigenic response in miR-155(-/-) mice was associated with alterations in macrophages and neutrophils, as markers for these populations were decreased and increased, respectively. Furthermore, we demonstrated a greater activation of the transforming growth factor-β/SMAD pathway in miR-155(-/-) mice, which was correlated with the increased tumorigenesis. Given the multiple targets of miR-155, careful evaluation of its role in tumorigenesis is necessary prior to any consideration of its potential as a biomarker and/or therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Kandy T. Velázquez
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Reilly T. Enos
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Jamie L. McClellan
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Taryn L. Cranford
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; ,3Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Udai P. Singh
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Prakash S. Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Daping Fan
- 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; ,3Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
93
|
Ngoh EN, Weisser SB, Lo Y, Kozicky LK, Jen R, Brugger HK, Menzies SC, McLarren KW, Nackiewicz D, van Rooijen N, Jacobson K, Ehses JA, Turvey SE, Sly LM. Activity of SHIP, Which Prevents Expression of Interleukin 1β, Is Reduced in Patients With Crohn's Disease. Gastroenterology 2016; 150:465-76. [PMID: 26481854 DOI: 10.1053/j.gastro.2015.09.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is associated with a dysregulated immune response to commensal micro-organisms in the intestine. Mice deficient in inositol polyphosphate 5'-phosphatase D (INPP5D, also known as SHIP) develop intestinal inflammation resembling that of patients with CD. SHIP is a negative regulator of PI3Kp110α activity. We investigated mechanisms of intestinal inflammation in Inpp5d(-/-) mice (SHIP-null mice), and SHIP levels and activity in intestinal tissues of subjects with CD. METHODS We collected intestines from SHIP-null mice, as well as Inpp5d(+/+) mice (controls), and measured levels of cytokines of the interleukin 1 (IL1) family (IL1α, IL1β, IL1ra, and IL6) by enzyme-linked immunosorbent assay. Macrophages were isolated from lamina propria cells of mice, IL1β production was measured, and mechanisms of increased IL1β production were investigated. Macrophages were incubated with pan-phosphatidylinositol 3-kinase inhibitors or PI3Kp110α-specific inhibitors. Some mice were given an antagonist of the IL1 receptor; macrophages were depleted from ilea of mice using clodronate-containing liposomes. We obtained ileal biopsies from sites of inflammation and peripheral blood mononuclear cells (PBMCs) from treatment-naïve subjects with CD or without CD (controls), and measured SHIP levels and activity. PBMCs were incubated with lipopolysaccharide and adenosine triphosphate, and levels of IL1β production were measured. RESULTS Inflamed intestinal tissues and intestinal macrophages from SHIP-null mice produced higher levels of IL1B and IL18 than intestinal tissues from control mice. We found PI3Kp110α to be required for macrophage transcription of Il1b. Macrophage depletion or injection of an IL1 receptor antagonist reduced ileal inflammation in SHIP-null mice. Inflamed ileal tissues and PBMCs from patients with CD had lower levels of SHIP protein than controls (P < .0001 and P < .0002, respectively). There was an inverse correlation between levels of SHIP activity in PBMCs and induction of IL1β production by lipopolysaccharide and adenosine triphosphate (R(2) = .88). CONCLUSIONS Macrophages from SHIP-deficient mice have increased PI3Kp110α-mediated transcription of Il1b, which contributes to spontaneous ileal inflammation. SHIP levels and activity are lower in intestinal tissues and peripheral blood samples from patients with CD than controls. There is an inverse correlation between SHIP activity and induction of IL1β production by lipopolysaccharide and adenosine triphosphate in PBMCs. Strategies to reduce IL1B might be developed to treat patients with CD found to have low SHIP activity.
Collapse
Affiliation(s)
- Eyler N Ngoh
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley B Weisser
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young Lo
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa K Kozicky
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roger Jen
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hayley K Brugger
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith W McLarren
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominika Nackiewicz
- Department of Surgery, Child & Family Research Institute, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Kevan Jacobson
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan A Ehses
- Department of Surgery, Child & Family Research Institute, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Division of Allergy and Immunology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
94
|
Abstract
Toll-like receptors (TLR), a family of pattern-recognition receptors (PRRs) stimulated by pathogen-associated molecular patterns (PAMPs), generate antigen-triggered innate and adaptive immune responses. Recent studies have indicated that several small, regulatory RNAs, called microRNAs (miRNas), are induced by TLR activation in immune cells and that many microRNAs can control the inflammatory process and response to infection by positively or negatively regulating TLR signaling. Among these miRNAs, aberrant microRNA-155 (miR-155) has been implicated in diverse immune processes including the pathogenesis of several autoimmune diseases and cancer. Here, we discuss the role of miR-155 in TLR-mediated and TLR-related immune system regulation. Furthermore, we present our current knowledge of the design, in vivo delivery strategies, and therapeutic efficacy of miR-155 inhibitors in various inflammatory disorders and cancer, including a protocol on the use of miRNA-155 inhibitors in experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
95
|
MicroRNAs and Inflammation in Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:53-69. [PMID: 27573894 DOI: 10.1007/978-3-319-42059-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancers (CRC) are known to be related to inflammatory conditions, and inflammatory bowel diseases increase the relative risk for developing CRC. The use of anti-inflammatory drugs prevents the development of colorectal cancer.Several molecular mediators are connecting the pathways that are involved in inflammatory conditions and in carcinogenesis. By the way these pathways are tightly interwoven, with the consequence that a deregulation at the level of any of these molecular mediators can affect the others.MiRNAs are demonstrated to be deregulated in inflammatory bowel diseases and in colorectal cancer. Moreover, they target several molecular mediators that connect inflammation to cancer, and they are thus implicated in the route from inflammation to colorectal cancer.This chapter will focus on the miRNAs that are jointly deregulated in inflammatory bowel disease and in colorectal cancer. Their role on the regulation of the molecular mediators and pathways that link inflammation to cancer will be described.
Collapse
|
96
|
Singh NP, Singh UP, Rouse M, Zhang J, Chatterjee S, Nagarkatti PS, Nagarkatti M. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA. THE JOURNAL OF IMMUNOLOGY 2015; 196:1108-22. [PMID: 26712945 DOI: 10.4049/jimmunol.1501727] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022]
Abstract
Aryl hydrocarbon receptor (AhR) has been shown to have profound influence on T cell differentiation, and use of distinct AhR ligands has shown that whereas some ligands induce regulatory T cells (Tregs), others induce Th17 cells. In the present study, we tested the ability of dietary AhR ligands (indole-3-carbinol [I3C] and 3,3'-diindolylmethane [DIM]) and an endogenous AhR ligand, 6-formylindolo(3,2-b)carbazole (FICZ), on the differentiation and functions of Tregs and Th17 cells. Treatment of C57BL/6 mice with indoles (I3C or DIM) attenuated delayed-type hypersensitivity (DTH) response to methylated BSA and generation of Th17 cells while promoting Tregs. In contrast, FICZ exacerbated the DTH response and promoted Th17 cells. Indoles decreased the induction of IL-17 but promoted IL-10 and Foxp3 expression. Also, indoles caused reciprocal induction of Tregs and Th17 cells only in wild-type (AhR(+/+)) but not in AhR knockout (AhR(-/-)) mice. Upon analysis of microRNA (miR) profile in draining lymph nodes of mice with DTH, treatment with I3C and DIM decreased the expression of several miRs (miR-31, miR-219, and miR-490) that targeted Foxp3, whereas it increased the expression of miR-495 and miR-1192 that were specific to IL-17. Interestingly, treatment with FICZ had precisely the opposite effects on these miRs. Transfection studies using mature miR mimics of miR-490 and miR-1192 that target Foxp3 and IL-17, respectively, or scrambled miR (mock) or inhibitors confirmed that these miRs specifically targeted Foxp3 and IL-17 genes. Our studies demonstrate, to our knowledge for the first time, that the ability of AhR ligands to regulate the differentiation of Tregs versus Th17 cells may depend on miR signature profile.
Collapse
Affiliation(s)
- Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208; and
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208;
| |
Collapse
|
97
|
Pathak S, Grillo AR, Scarpa M, Brun P, D'Incà R, Nai L, Banerjee A, Cavallo D, Barzon L, Palù G, Sturniolo GC, Buda A, Castagliuolo I. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med 2015; 47:e164. [PMID: 25998827 PMCID: PMC4454995 DOI: 10.1038/emm.2015.21] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/30/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Abnormal levels of microRNA (miR)-155, which regulate inflammation and immune responses, have been demonstrated in the colonic mucosa of patients with inflammatory bowel diseases (IBD), although its role in disease pathophysiology is unknown. We investigated the role of miR-155 in the acquisition and maintenance of an activated phenotype by intestinal myofibroblasts (IMF), a key cell population contributing to mucosal damage in IBD. IMF were isolated from colonic biopsies of healthy controls, ulcerative colitis (UC) and Crohn's disease (CD) patients. MiR-155 in IMF was quantified by quantitative reverse transcription-PCR in basal condition and following exposure to TNF-α, interleukin (IL)-1β, lipopolysaccharide (LPS) or TGF-β1. The effects of miR-155 mimic or inhibitor transfection on cytokine release and suppressor of cytokine signaling 1 (SOCS1) expression were assessed by enzyme-linked immunosorbent assay and western blot, respectively. Regulation of the target gene SOCS1 expression by miR-155 was assessed using luciferase reporter construct. We found that miR-155 was significantly upregulated in UC as compared with control- and CD-derived IMF. Moreover, TNF-α and LPS, but not TGF-β1 and IL-1β, significantly increased miR-155 expression in IMF. Ectopic expression of miR-155 in control IMF augmented cytokines release, whereas it downregulated SOCS1 expression. MiR-155 knockdown in UC-IMF reduced cytokine production and enhanced SOCS1 expression. Luciferase reporter assay demonstrated that miR-155 directly targets SOCS1. Moreover, silencing of SOCS1 in control IMF significantly increased IL-6 and IL-8 release. In all, our data suggest that inflammatory mediators induce miR-155 expression in IMF of patients with UC. By downregulating the expression of SOCS1, miR-155 wires IMF inflammatory phenotype.
Collapse
Affiliation(s)
- Surajit Pathak
- 1] Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy [2] Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessia Rosaria Grillo
- 1] Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy [2] Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Melania Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Renata D'Incà
- Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy
| | - Laura Nai
- 1] Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy [2] Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antara Banerjee
- Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy
| | - Donatella Cavallo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy
| | - Andrea Buda
- Department of Surgery Oncology and Gastroenterology DISCOG, University of Padova, Padova, Italy
| | | |
Collapse
|
98
|
Amado T, Schmolka N, Metwally H, Silva-Santos B, Gomes AQ. Cross-regulation between cytokine and microRNA pathways in T cells. Eur J Immunol 2015; 45:1584-95. [PMID: 25865116 DOI: 10.1002/eji.201545487] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/27/2023]
Abstract
microRNA (miRNA) mediated regulation of protein expression has emerged as an important mechanism in T-cell physiology, from development and survival to activation, proliferation, and differentiation. One of the major classes of proteins involved in these processes are cytokines, which are both key input signals and major products of T-cell function. Here, we summarize the current data on the molecular cross-talk between cytokines and miRNAs: how cytokines regulate miRNA expression, and how specific miRNAs control cytokine production in T cells. We also describe the inflammatory consequences of deregulating the miRNA/cytokine axis in mice and humans. We believe this topical area will have key implications for immune modulation and treatment of autoimmune pathology.
Collapse
Affiliation(s)
- Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nina Schmolka
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hozaifa Metwally
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
| |
Collapse
|
99
|
Zhang YH, Xia LH, Jin JM, Zong M, Chen M, Zhang B. Expression level of miR-155 in peripheral blood. ASIAN PAC J TROP MED 2015; 8:214-9. [PMID: 25902164 DOI: 10.1016/s1995-7645(14)60318-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the relationship between the expression level of miR-155 and the severity of coronary lesion, and explore the action mechanism. METHODS Peripheral blood mononuclear cells (PBMC) were isolated form blood simple from patients with acute myocardial infarction (AMI), unstable angina (UAP), stable angina (SAP) and chest pain syndrome (CPS). RT-PCR was performed to analysis the expression level of miR-155 in peripheral blood mononuclear cells, plasma and RAW264.7 macrophagocyte. MTT was used to analyze the cell viability of OxLDL treated RAW264.7 macrophagocyte. RESULTS The expression level of miR-155 in blood sample from coronary heart disease patients was much lower than in the blood sample of non-coronary heart disease (P<0.05). The level of miR-155 in PBMCs was much higher in the blood sample from CPS group than the other three group, and the level of miR-155 in plasma was higher in the CPS group than in the UAP and the AMI group, the difference was statistically significant (P<0.05). The expression level of miR-155 in PBMCs is positively associated with the level in the plasma (r=0.861, P=0.000). OxLDL can induce the expression of miR-155 in RAW264.7 macrophagocyte, decrease the cell viability of RAW264.7 macrophagocyte, and with the concentration and the treatment time of OxLDL increased, the effort become more obvious. The inhibition effort of OxLDL to RAW264.7 macrophagocyte with high miR-155 expression is much lower than the control group, and it is statistically significant after treated for 12, 24 and 48 h. CONCLUSIONS miR-155 plays a protective role in the progression of atherosclerosis, and it may be achieved by reducing the apoptosis effort of OxLDL to RAW264.7 macrophagocyte.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Liang-Hua Xia
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Jia-Mei Jin
- Department of Ultrasound, Shanghai Huadong Hospital Affiliated to Medicine School, Fudan University, Shanghai 200040, China
| | - Ming Zong
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Ming Chen
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Bo Zhang
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China.
| |
Collapse
|
100
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, 18-23 nucleotides long, which act as post-transcriptional regulators of gene expression. miRNAs are strongly implicated in the pathogenesis of many common diseases, including IBDs. This review aims to outline the history, biogenesis and regulation of miRNAs. The role of miRNAs in the development and regulation of the innate and adaptive immune system is discussed, with a particular focus on mechanisms pertinent to IBD and the potential translational applications.
Collapse
Affiliation(s)
- R Kalla
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N T Ventham
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N A Kennedy
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J F Quintana
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - E R Nimmo
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - A H Buck
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - J Satsangi
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| |
Collapse
|